

FCC Test Report

Report No.: RF160630D15

FCC ID: ARS-SMMTN28C01

Model No.: SM-MTN28-C01

Received Date: Jun. 30, 2016

Test Date: Jul. 19 ~ 21, 2016

Issued Date: Jul. 22, 2016

Applicant: TOP VICTORY ELECTRONICS (TAIWAN) CO., LTD.

Address: 10F., No 230, Liancheng Rd., Zhonghe Dist., New Taipei City 23553, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Relea	se Control Record	3
1	Certificate of Conformity	
2	Summary of Test Results	5
2.1	Measurement Uncertainty	5
2.2	Modification Record	5
3	General Information	6
3.1	General Description of EUT	6
3.2	Description of Test Modes	
3.2.	1 Test Mode Applicability and Tested Channel Detail	7
3.3	Description of Support Units	9
3.3.	5	
3.4	General Description of Applied Standards	10
4	Test Types and Results	.11
4.1	Radiated Emission Measurement	
	1 Limits of Radiated Emission Measurement	
4.1.	2 Test Instruments	12
	3 Test Procedures	
	Deviation from Test Standard	
	5 Test Set Up	
	6 EUT Operating Conditions	
	7 Test Results	
4.2	Conducted Emission Measurement	
	1 Limits of Conducted Emission Measurement	
	2 Test Instruments	
	3 Test Procedures 4 Deviation from Test Standard	
	5 Test Setup	
	6 EUT Operating Conditions	
	7 Test Results	
4.3	Frequency Stability	
4.3.		
	2 Test Setup	
	3 Test Instruments	
4.3.	1 Test Procedure	26
4.3.	5 Deviation fromTest Standard	26
4.3.	6 EUT Operating Conditions	26
4.3.	7 Test Result	
4.4	20dB bandwidth	
	1 Limits Of 20dB bandwidth Measurement	
	2 Test Setup	
	3 Test Instruments	
	4 Test Procedures	
	5 Deviation from Test Standard	
	6 EUT Operating Conditions	
4.4.	7 Test Results	
5	Pictures of Test Arrangements	30
Apper	Idix – Information on the Testing Laboratories	31

Release Control Record

Issue No.	Description	Date Issued
RF160630D15	Original release.	Jul. 22, 2016

1 **Certificate of Conformity**

Product:	NFC Controller Module with Integrated Antenna
Brand:	TPV
Model No.:	SM-MTN28-C01
Sample Status:	Engineering sample
Applicant:	TOP VICTORY ELECTRONICS (TAIWAN) CO., LTD.
Test Date:	Jul. 19 ~ 21, 2016
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.225)
	47 CFR FCC Part 15, Subpart C (Section 15.215)
	ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

Annie Chang / Senior Specialist

, Date: Jul. 22, 2016

Approved by :

Date: Jul. 22, 2016

Rex Lai / Assistant Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.225, 15.215)						
FCC Clause	Test Item	Result	Remarks			
15.207	Conducted emission test	PASS	Meet the requirement of limit. Minimum passing margin is -21.10dB at 0.40781MHz.			
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	PASS	Meet the requirement of limit. Minimum passing margin is -70.46dB at 13.56MHz.			
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	PASS	Meet the requirement of limit.			
15.225 (c)	The field strength of any emissions		Meet the requirement of limit.			
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	PASS	Meet the requirement of limit. Minimum passing margin is -2.83dB at 40.68MHz.			
15.225 (e)	The frequency tolerance	PASS	Meet the requirement of limit.			
15.215 (c)	20dB Bandwidth	PASS	Meet the requirement of limit.			

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.78 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1000MHz	4.00 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	NFC Controller Module with Integrated Antenna
Brand	TPV
Model No.	SM-MTN28-C01
Status of EUT	Engineering sample
Power Supply Rating	5Vdc from host equipment
Modulation Type	ASK
Operating Frequency	13.56MHz
Number of Channel	1
Antenna Type	Loop antenna
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note:

1. The EUT could be used with the following platforms:

Product	Model No.	Color of Outer Appearance	Internal Wireless Module
	GA5A00001-A03-Z04	Red	
Display	GA5A00001-A03-Z11	Blue	FCC ID: VOB-P2180
	GA5A00001-A03-Z37	Dark grey	(802.11abgn+ac)

Mode: GA5A00001-A03-Z04 was selected for finat test.

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

One channel was provided to this EUT:

Channel	FREQ. (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

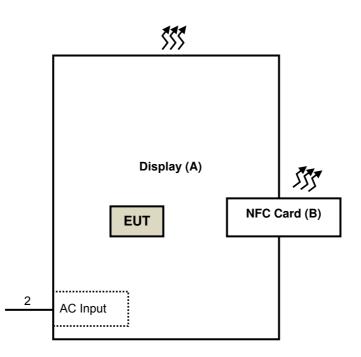
EUT Configure Mode		Appli	cable To		Description	
	RE	PLC	FS	EB	Description	
-	\checkmark	V	√	√		
Vhere RE: Radiat	ed Emission	PLC	: Power Line Cond	ucted Emissic	n	
FS: Freque	ency Stability	EB:	20dB Bandwidth m	easurement		
Radiated Emission Test:						
 Pre-Scan has been cor between available mod architecture). Eollowing shappel(a) w 	ulations, data ra	ates and ante	enna ports (if El	JT with ant		
Following channel(s) w			TESTED CHA		MODULATION TYPE	
EUT CONFIGURE MODE		ANNEL			ASK	
-	1		1		AON	
 Power Line Conducted Emission Test: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). 						
Following channel(s) was (were) selected for the final test as listed below. EUT CONFIGURE MODE AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE						
EUT CONFIGURE MODE					MODULATION TYPE	
					MODULATION TYPE ASK	
EUT CONFIGURE MODE Frequency Stability: ☑ This item includes all temode. ☑ Pre-Scan has been cor between available mod architecture).	AVAILABLE C 1 est value of each inducted to deten ulations, data ra	mode, but ormine the wo	TESTED CH/ 1 only includes sport orst-case mode feature enna ports (if El	Dectrum plo from all pos JT with ant	ASK t of worst value of each sible combinations	
 EUT CONFIGURE MODE Frequency Stability: This item includes all temode. Pre-Scan has been corbetween available mod architecture). ☑ Following channel(s) w 	AVAILABLE C 1 est value of each inducted to deten ulations, data ra as (were) selec	The mode, but of the mode, but of the wo	TESTED CHA 1 only includes sports-case mode fenna ports (if Elenna test as listed	Dectrum plo from all pos JT with ant I below.	ASK t of worst value of each sible combinations enna diversity	
EUT CONFIGURE MODE Frequency Stability: ☑ This item includes all temode. ☑ Pre-Scan has been cor between available mod architecture).	AVAILABLE C 1 est value of each inducted to deten ulations, data ra	The mode, but of the mode, but of the wo	TESTED CH/ 1 only includes sport orst-case mode feature enna ports (if El	Dectrum plo from all pos JT with ant I below.	ASK t of worst value of each sible combinations	
EUT CONFIGURE MODE	AVAILABLE C 1 est value of each iducted to deten ulations, data ra as (were) selecc AVAILABLE C 1 est value of each iducted to deten ulations, data ra	HANNEL h mode, but of mine the wo ates and anter HANNEL h mode, but of mine the wo ates and anter here anter here and anter here anter here anter here anter here anter here anter here anter	TESTED CH/ 1 1 only includes sport orst-case mode ferma ports (if Elematest as listed nal test as listed TESTED CH/ 1 only includes sport 1 sport 1 only includes sport 1 only includes sport orst-case mode ferma ports (if Elematest ports)	Dectrum plo from all pos JT with ant below. ANNEL Dectrum plo from all pos JT with ant	ASK t of worst value of each sible combinations enna diversity <u>MODULATION TYPE</u> ASK t of worst value of each sible combinations	
EUT CONFIGURE MODE Frequency Stability: ✓ This item includes all temode. Pre-Scan has been corbetween available modarchitecture). ✓ Following channel(s) w EUT CONFIGURE MODE	AVAILABLE C 1 est value of each iducted to deter ulations, data ra as (were) selec AVAILABLE C 1 est value of each iducted to deter ulations, data ra as (were) selec	h mode, but or mine the wo ates and ante ted for the fir HANNEL	TESTED CH/ 1 1 only includes sports-case mode ferma ports (if El nal test as listed TESTED CH/ 1 <tr< td=""><td>Dectrum plo from all pos JT with ant below. I below. Dectrum plo from all pos JT with ant below.</td><td>ASK t of worst value of each sible combinations enna diversity <u>MODULATION TYPE</u> ASK t of worst value of each sible combinations</td></tr<>	Dectrum plo from all pos JT with ant below. I below. Dectrum plo from all pos JT with ant below.	ASK t of worst value of each sible combinations enna diversity <u>MODULATION TYPE</u> ASK t of worst value of each sible combinations	
EUT CONFIGURE MODE	AVAILABLE C 1 est value of each iducted to deten ulations, data ra as (were) selecc AVAILABLE C 1 est value of each iducted to deten ulations, data ra	h mode, but or mine the wo ates and ante ted for the fir HANNEL	TESTED CH/ 1 1 only includes sport orst-case mode ferma ports (if Elematest as listed nal test as listed TESTED CH/ 1 only includes sport 1 sport 1 only includes sport 1 only includes sport orst-case mode ferma ports (if Elematest ports)	Dectrum plo from all pos JT with ant below. I below. Dectrum plo from all pos JT with ant below.	ASK t of worst value of each sible combinations enna diversity <u>MODULATION TYPE</u> ASK t of worst value of each sible combinations	

TEST CONDITION:

Applicable To	Environmental Conditions	Input Power	Tested By
RE	25deg. C, 73%RH	120Vac, 60Hz (System)	lan Chang
PLC	25deg. C, 73%RH	120Vac, 60Hz (System)	lan Chang
APCM	25deg. C, 60%RH	120Vac, 60Hz (System)	Saxon Lee

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Display	N/A	GA5A00001-A03-Z04	N/A	N/A	Provided by Lab
В.	NFC Card	N/A	N/A	N/A	N/A	Supplied by client

Note: All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	AC Power Cord	1	1.8	N	0	Supplied by client

Note: The core(s) is(are) originally attached to the cable(s).

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215) KDB 174176 D01 Line Conducted FAQ v01 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in \S 15.209.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	· · · · · · · · · · · · · · · · · · ·		Feb. 26, 2016	Feb. 25, 2017
HP Preamplifier	8449B	3008A01201	Feb. 26, 2016	Feb. 25, 2017
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Mar. 01, 2016	Feb. 28, 2017
Agilent TEST RECEIVER	N9038A	MY51210129	Feb. 02, 2016	Feb. 01, 2017
Schwarzbeck Antenna	VULB 9168	139	Jan. 04, 2016	Jan. 03, 2017
Schwarzbeck Antenna	VHBA 9123	480	May 29, 2015	May 28, 2017
Schwarzbeck Horn Antenna	BBHA-9170	212	Jan. 08, 2016	Jan. 07, 2017
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Jan. 21, 2016	Jan. 20, 2017
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.4	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF104	CABLE-CH6	Aug. 15, 2015	Aug. 14, 2016
SUHNER RF cable With 3dB PAD	SF102	Cable-CH8-3.6m	Aug. 15, 2015	Aug. 14, 2016
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	May 25, 2016	May 24, 2017
Loop Antenna EMCI	LPA600	270	Aug. 20, 2015	Aug. 19, 2017
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 23, 2015	Sep. 22, 2016
Temperature & Humidity Chamber	MHU-225AU	920409	May 25, 2016	May 24, 2017
Programable DC Source DSP-030-025HD		500156	Jul. 15, 2016	Jul. 14, 2017

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

4. The Industry Canada Reference No. IC 7450E-6.

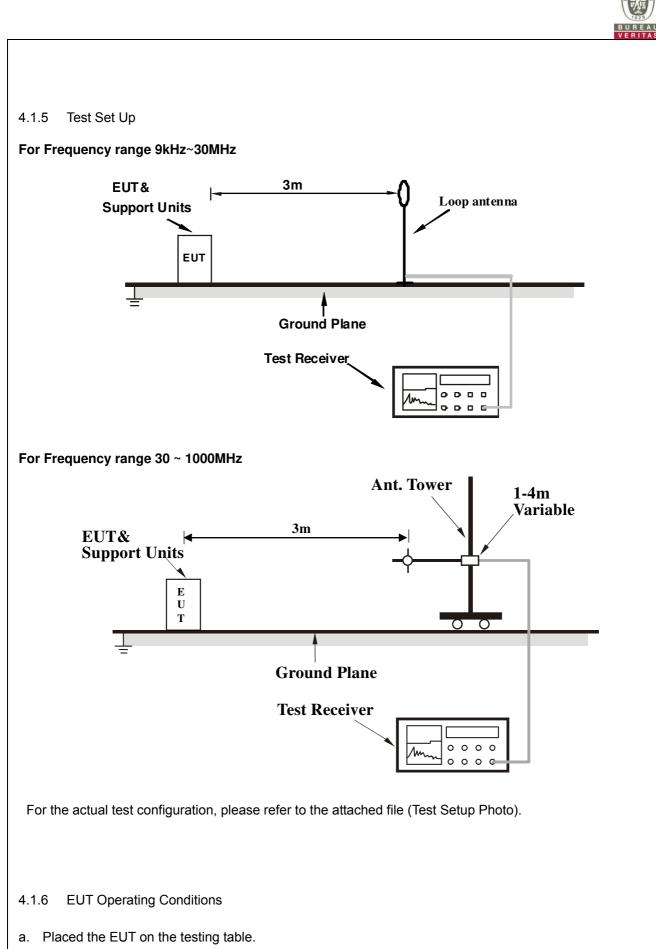
5. The FCC Site Registration No. is 447212.

4.1.3 Test Procedures

For Frequency range 9kHz~30MHz

- a. The EUT was placed on the horizontal metal ground plane at an accredited test facility at a 3 meter Semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Then the Loop antenna was rotated 360 degrees to determine the position of the highest radiation.
- b. The antenna is a broadband loop antenna, which is fixed of a 1m height above the ground, and set away from 3m to the EUT to find the disturbance reading on each frequency.
- c. The test-receiver system was set to Quasi-peak Detect Function and Specified Bandwidth.

For Frequency range 30 ~ 1000MHz


- a. The EUT was placed on the horizontal metal ground plane at an accredited test facility
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

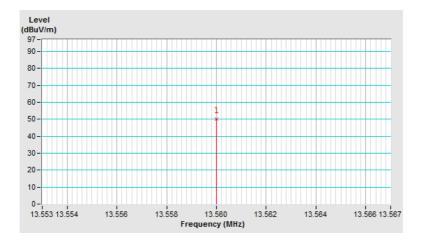
Channel	Channel 1	Detector Function	Quesi Desk
Frequency Range	13.553 ~ 13.567MHz	Detector Function	Quasi-Peak

	Antenna Polarity & Test Distance: Loop Antenna Open At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	13.56	50.11 QP	124.00	-73.89	1.00	217	53.92	-3.81		
REM	REMARKS: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)									

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.


5. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

Example:

13.56MHz	=	15848uV/m	30m
	=	84dBuV/m	30m
	=	84+20log(30/3) ²	3m

= 124dBuV/m

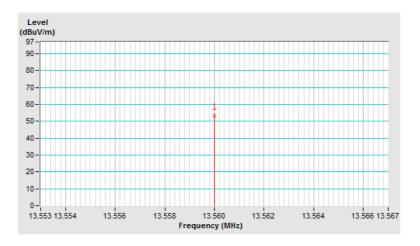
Channel	Channel 1	Datastar Eurotian	Ouesi Deek
Frequency Range	13.553 ~ 13.567MHz	Detector Function	Quasi-Peak

	Antenna Polarity & Test Distance: Loop Antenna Close At 3m												
	Frog	Emission	Limit	Morgin	Antenna	Table	Raw	Correction					
No.	Freq.	Level	Limit	-	_	_	-	(dBuV/m)	Margin	Height	Angle	Value	Factor
(MHz)	(dBuV/m)	(ubuv/iii)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)						
1	13.56	53.54 QP	124.00	-70.46	1.00	162	57.35	-3.81					

REMARKS:

5: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula

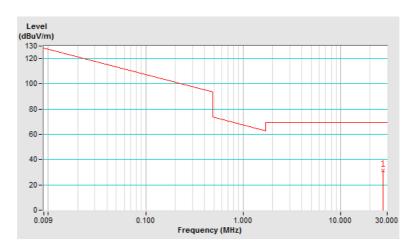

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

Example: 13.56MHz

2	=	15848uV/m	30m
	=	84dBuV/m	30m
	=	84+20log(30/3) ²	3m

124dBuV/m

=



CHANNEL	Channel 1	DETECTOR	Quesi Desk
FREQUENCY RANGE	Below 30MHz	FUNCTION	Quasi-Peak

	Antenna Polarity & Test Distance: Loop Antenna Open At 3m							
	Freq	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	•	level	level	Height	Angle	Value	Factor	
(MHz)	(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	
1	27.12	31.31 QP	69.54	-38.23	1.00 H	100	36.23	-4.92

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

CHANNEL	Channel 1	DETECTOR	Quesi Desk
FREQUENCY RANGE	Below 30MHz	FUNCTION	Quasi-Peak

	Antenna Polarity & Test Distance: Loop Antenna Close At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	27.12	37.08 QP	69.54	-32.46	1.00 V	159	42.00	-4.92	

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

-7.12

-5.46

-5.35

CHA	ANNEL		Cha	Channel 1			ETECTOR		Quasi-Peak		
FRE	FREQUENCY RANGE			Below 1000MHz			JNCTION		Quasi-reak		
	Antenna Polarity & Test Distance: Horizontal At 3m										
No.	Freq. (MHz)	Emissio Level (dBuV/i		Limit (dBuV/m)	Margin (dB)		Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	40.67	31.35 0	λb	40.00	-8.65		3.62 H	360	41.77	-10.42	
2	122.05	31.17 0	QΡ	43.50	-12.33		2.85 H	223	42.84	-11.67	
3	233.22	33.73 0	ΩP	46.00	-12.27		1.34 H	128	44.97	-11.24	

Antenna Polarity & Test Distance: Vertical At 3m

1.19 H

1.50 H

1.87 H

123

101

141

34.61

36.34

34.48

-18.51

-15.12

-16.87

	Antenna i blanty & rest Distance. Venical At om											
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction				
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor				
	(10172)	(dBuV/m)	(ubuv/iii)	(UB)	(m)	(Degree)	(dBuV)	(dB/m)				
1	40.68	37.17 QP	40.00	-2.83	1.00 V	112	47.59	-10.42				
2	116.43	32.77 QP	43.50	-10.73	1.03 V	143	45.00	-12.23				
3	135.49	33.31 QP	43.50	-10.19	1.62 V	119	43.74	-10.43				
4	230.01	30.36 QP	46.00	-15.64	1.80 V	87	42.15	-11.79				
5	347.82	26.27 QP	46.00	-19.73	2.35 V	12	33.39	-7.12				
6	417.51	32.08 QP	46.00	-13.92	1.69 V	143	37.43	-5.35				
7	600.02	32.92 QP	46.00	-13.08	1.41 V	222	34.53	-1.61				

REMARKS:

4

5

6

339.04

399.76

417.56

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

46.00

46.00

46.00

27.49 QP

30.88 QP

29.13 QP

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)						
Frequency (MHz)	Quasi-peak	Average					
0.15 - 0.5	66 - 56	56 - 46					
0.50 - 5.0	56	46					
5.0 - 30.0	60	50					

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due	
ROHDE & SCHWARZ TEST RECEIVER	ESCS 30	100276	Apr. 12, 2016	Apr. 11, 2017	
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ENV216	101197	May 04, 2016	May 03, 2017	
LISN With Adapter (for EUT)	AD10	C10Ada-002	May 04, 2016	May 03, 2017	
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100218	Nov. 25, 2015	Nov. 24, 2016	
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK8129	8129229	May 04, 2016	May 03, 2017	
Software	Cond_V7.3.7	NA	NA	NA	
RF cable (JYEBAO) With 10dB PAD	5D-FB	Cable-C10.01	Feb. 15, 2016	Feb. 14, 2017	
SUHNER Terminator (For ROHDE & SCHWARZ LISN)	65BNC-5001	E1-011484	May 12, 2016	May 11, 2017	
ROHDE & SCHWARZ Artificial Mains Network (For TV EUT)	ESH3-Z5	100220	Nov. 13, 2015	Nov. 12, 2016	
LISN With Adapter (for TV EUT)	100220	N/A	Nov. 13, 2015	Nov. 12, 2016	

Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 10.

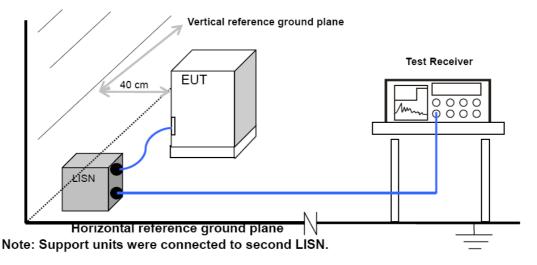
3. The VCCI Site Registration No. C-1852.

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

Per Q5 of KDB 174176 D01 Line Conducted FAQ v01,

Devices Operating Below 30 MHz


For a device with a permanent or detachable antenna operating at or below 30 MHz, the FCC will accept measurements done with a suitable dummy load in lieu of the antenna under the following conditions: (1) perform the AC line conducted tests with the antenna connected to determine compliance with Section 15.207 limits outside the transmitter's fundamental emission band; (2) retest with a dummy load in lieu of the antenna to determine compliance with Section 15.207 limits within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network which simulates the antenna in the fundamental frequency band.

All measurements must be performed as specified in clause 6.2 of ANSI C63.10-2013.

4.2.4 Deviation from Test Standard

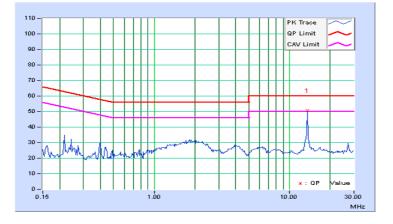
No deviation.

4.2.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as item 4.1.6.

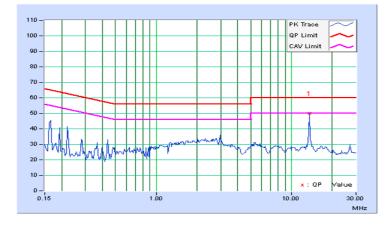

4.2.7 Test Results

Phase	Line 1	6dB Bandwidth	9kHz
Frequency Range	13.56MHz		

No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	*13.55987	9.93	40.87	40.65	50.80	50.58	60.00	50.00	-9.20	0.58

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value
- 6. " * ": Fundamental frequency.

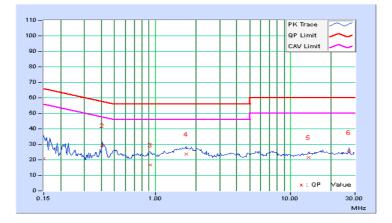


Phase	Line 2	6dB Bandwidth	9kHz
Frequency Range	13.56MHz		

No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	*13.55987	9.92	40.05	40.04	49.97	49.96	60.00	50.00	-10.03	-0.04

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value
- 6. " * ": Fundamental frequency.



Phase	Line 1	6dB Bandwidth	9kHz				
	150kHz ~ 30MHz						
Frequency Range	(Remove the antenna and terminate the RF output with a dummy loa						

No	Frequency	Correction Factor	Reading Value I (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.70	10.89	3.13	20.59	12.83	66.00	56.00	-45.41	-43.17
2	0.40781	9.69	19.40	16.90	29.09	26.59	57.69	47.69	-28.60	-21.10
3	0.91953	9.73	6.96	2.88	16.69	12.61	56.00	46.00	-39.31	-33.39
4	1.68750	9.77	13.95	10.24	23.72	20.01	56.00	46.00	-32.28	-25.99
5	13.56000	9.93	11.43	8.05	21.36	17.98	60.00	50.00	-38.64	-32.02
6	27.12109	9.98	14.98	14.42	24.96	24.40	60.00	50.00	-35.04	-25.60

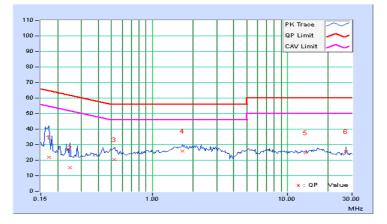
Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase	Line 2	6dB Bandwidth	9kHz				
	150kHz ~ 30MHz						
Frequency Range	(Remove the antenna and terminate the RF output with a dummy le						

No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17344	9.70	12.23	6.18	21.93	15.88	64.79	54.79	-42.87	-38.92
2	0.24766	9.69	5.58	1.35	15.27	11.04	61.84	51.84	-46.57	-40.80
3	0.52109	9.70	10.80	4.91	20.50	14.61	56.00	46.00	-35.50	-31.39
4	1.67578	9.76	16.29	13.83	26.05	23.59	56.00	46.00	-29.95	-22.41
5	13.56000	9.92	14.85	12.12	24.77	22.04	60.00	50.00	-35.23	-27.96
6	27.11975	9.93	15.72	15.41	25.65	25.34	60.00	50.00	-34.35	-24.66

Remarks:

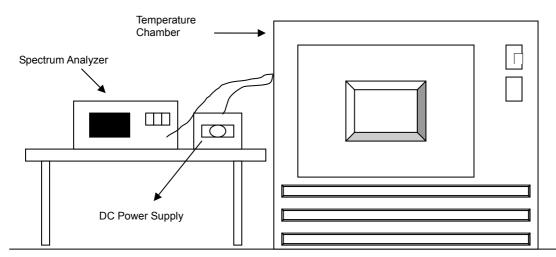

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.


2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- b. Turned the EUT on and coupled its output to a spectrum analyzer.
- c. Turned the EUT off and set the chamber to the highest temperature specified.
- d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency after 2, 5, and 10 minutes.
- e. Repeated step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
- 4.3.5 Deviation fromTest Standard

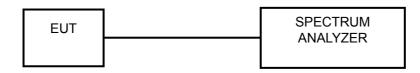
No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

OPERATING FREQUENCY: 13.56MHz		LIMIT: ± 0.01%	
ТЕМР. (°С)	POWER SUPPLY (Vdc)	(MHz)	(%)
20	5	13.5590	-0.00737463
	5.75	13.5601	0.00076746
	4.25	13.5604	0.00294985
-20	5	13.5608	0.00589970
55	5	13.5596	-0.00294985


Note: Operating temperature of EUT is -20 degrees C to 50 degrees C.

4.4 20dB bandwidth

4.4.1 Limits Of 20dB BANDWIDTH Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1kHz RBW and 3kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.


4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (kHz)	Pass/Fail
1	13.56	25.40	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---