

FCC Test Report (Co-Located)

Report No.: RF160630D15-1

FCC ID: ARS-SMMTN28C01

Model No.: SM-MTN28-C01

Received Date: Jun. 30, 2016

Test Date: Jul. 19 ~ 21, 2016

Issued Date: Jul. 22, 2016

Applicant: TOP VICTORY ELECTRONICS (TAIWAN) CO., LTD.

Address: 10F., No 230, Liancheng Rd., Zhonghe Dist., New Taipei City 23553, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record	3
1 Certificate of Conformity	4
2 Summary of Test Results	5
 2.1 Measurement Uncertainty 2.2 Modification Record 	
3 General Information	6
3.1General Description of EUT63.2Description of Test Modes63.2.1Test Mode Applicability and Tested Channel Detail73.3Description of Support Units63.3.1Configuration of System under Test63.4General Description of Applied Standard10	6 7 9 9
4 Test Types and Results11	1
4.1Radiated Emission and Bandedge Measurement.14.1.1Limits of Radiated Emission and Bandedge Measurement14.1.2Test Instruments14.1.3Test Procedure14.1.4Deviation from Test Standard14.1.5Test Setup14.1.6EUT Operating Condition14.1.7Test Results14.2Conducted Emission Measurement14.2.1Limits of Conducted Emission Measurement14.2.2Test Instruments14.2.3Test Procedures24.2.4Deviation from Test Standard24.2.5Test Setup24.2.6EUT Operating Conditions24.2.7Test Results25Pictures of Test Arrangements2	123345699900001
Appendix – Information on the Testing Laboratories	6

Issue No.	Description	Date Issued
RF160630D15-1	Original release.	Jul. 22, 2016

1 **Certificate of Conformity**

Product:	NFC Controller Module with Integrated Antenna			
Brand:	TPV			
Model No.:	SM-MTN28-C01			
Sample Status:	Engineering sample			
Applicant:	TOP VICTORY ELECTRONICS (TAIWAN) CO., LTD.			
Test Date:	Jul. 19 ~ 21, 2016			
Standard:	47 CFR FCC Part 15, Subpart C (Section 15.225)			
	47 CFR FCC Part 15, Subpart C (Section 15.215)			
	ANSI C63.10:2013			

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

Annie Chang, Date: Jul. 22, 2016

Annie Chang / Senior Specialist

Approved by :

Rex Lai / Assistant Manager

Date: Jul. 22, 2016

2 Summary of Test Results

FCC Clause	Test Item	Result	Remarks	
15.207	Conducted emission test	PASS	Meet the requirement of limit. Minimum passing margin is -21.10dB at 0.40781MHz.	
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	PASS		
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	FA33	Meet the requirement of limit. Minimum passing margin is -2.83dB at	
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	40.68MHz.	
15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions & Band Edge Measurement*	PASS		

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.78 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1000MHz	4.00 dB
Radiated Emissions above 1 GHz	1GHz ~ 40GHz	3.36 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	NFC Controller Module with Integrated Antenna
Brand	TPV
Model No.	SM-MTN28-C01
Status of EUT	Engineering sample
Power Supply Rating	5Vdc from host equipment
Modulation Type	ASK
Operating Frequency	13.56MHz
Number of Channel	1
Antenna Type	Loop antenna
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note:

1. The EUT could be used with the following platforms:

Product	Brand	Model No.	Color of Outer Appearance	Internal Wireless Module
		GA5A00001-A03-Z04	Red	
Interactive flat panel	Google	GA5A00001-A03-Z11	Blue	FCC ID: VOB-P2180
		GA5A00001-A03-Z37	Dark grey	(802.11abgn+ac)

Mode: **GA5A00001-A03-Z04** was selected for finat test.

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

One channel was provided to this EUT:

Channel	FREQ. (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT		APPLICABLE TO)	DESCRIPTION	
MODE	RE≥1G	RE<1G	PLC		
-		\checkmark	√ -		
PLC	: Power Line Co	mission above 1GB anducted Emission nission Test:		liated Emission below 1GHz	-
between a	vailable modu			ase mode from all poss ports (if EUT with ante	
between a architectur	vailable modu e). channel(s) wa	ulations, data ra		ports (if EUT with ante	nna diversity
between a architectur	vailable modu e). channel(s) wa	ulations, data ra	ates and antenna	ports (if EUT with ante st as listed below.	
between a architectur Following EUT CONFIGUR	vailable modu e). channel(s) wa	ulations, data ra as (were) selec	ates and antenna ted for the final te	ports (if EUT with ante st as listed below.	nna diversity MODULATION
between a architectur Following	vailable modu e). channel(s) wa RE M	ulations, data ra as (were) selec	ates and antenna ted for the final te FREQ. BAND (MHz)	ports (if EUT with ante st as listed below. TESTED CHANNEL	nna diversity MODULATION

Radiated Emission Test (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	TESTED CHANNEL	MODULATION TECHNOLOGY
		13.56	1	-
	NFC+	2412 ~ 2462	06	OFDM
-	2.4GHz 802.11n (40MHz)+ 5.0GHz 802.11n (20MHz)	5180 ~ 5240, 5260 ~ 5320, 5500 ~ 5700 5745 ~ 5825	52	OFDM

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

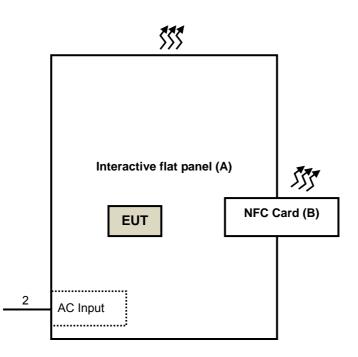
EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	TESTED CHANNEL	MODULATION TECHNOLOGY
		13.56	1	-
	NFC+ 2.4GHz 802.11n (40MHz)+ 5.0GHz 802.11n (20MHz)	2412 ~ 2462	06	OFDM
-		5180 ~ 5240, 5260 ~ 5320,		
		5500 ~ 5700	52	OFDM
		5745 ~ 5825		

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY	
RE≥1G	23deg. C, 76%RH	120Vac, 60Hz (System)	Dalen Dai	
RE<1G	23deg. C, 76%RH	120Vac, 60Hz (System)	Dalen Dai	
PLC	25deg. C, 73%RH	120Vac, 60Hz (System)	lan Chang	

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Interactive flat panel	Google	GA5A00001-A03-Z04	N/A	N/A	Provided by Lab
В.	NFC Card	N/A	N/A	N/A	N/A	Supplied by client

Note: All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	AC Power Cord	1	1.8	N	0	Supplied by client

Note: The core(s) is(are) originally attached to the cable(s).

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standard

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215) KDB 174176 D01 Line Conducted FAQ v01 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in \S 15.209.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits Of Unwanted Emission Out Of The Restricted Bands

Applicable To		Limit
789033 D02 General UNII Test	FIELD ST	RENGTH at 3m
Procedure New Rules v01r02	PK:74 (dBµV/m)	AV:54 (dBµV/m)
Applicable To	EIRP Limit	Equivalent Field Strength at 3m
15.407(b)(1)		
15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)
15.407(b)(3)		
15.407(b)(4)(i)	PK:-27 (dBm/MHz) ^{*1} PK:10 (dBm/MHz) ^{*2} PK:15.6 (dBm/MHz) ^{*3} PK:27 (dBm/MHz) ^{*4}	PK: 68.2(dBµV/m) ^{*1} PK:105.2 (dBµV/m) ^{*2} PK: 110.8(dBµV/m) ^{*3} PK:122.2 (dBµV/m) ^{*4}
15.407(b)(4)(ii)	FIELD STRENG	TH at 3m / § 15.247(d),
	PK:74 (dBµV/m)	AV:54 (dBµV/m)
 ¹ beyond 75 MHz or more above of the bedge. ³ below the band edge increasing linearly level of 15.6 dBm/MHz at 5 MHz above. 	dBm/MHz at 25 MI ^{*4} from 5 MHz abov	edge increasing linearly to 10 Hz above. e or below the band edge to a level of 27 dBm/MHz at the

NOTE: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$=\frac{1000000\sqrt{30P}}{3}$$

 μ V/m, where P is the eirp (Watts).

Е

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 26, 2016	Feb. 25, 2017
HP Preamplifier	8449B	3008A01201	Feb. 26, 2016	Feb. 25, 2017
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Mar. 01, 2016	Feb. 28, 2017
Agilent TEST RECEIVER	N9038A	MY51210129	Feb. 02, 2016	Feb. 01, 2017
Schwarzbeck Antenna	VULB 9168	139	Jan. 04, 2016	Jan. 03, 2017
Schwarzbeck Antenna	VHBA 9123	480	May 29, 2015	May 28, 2017
Schwarzbeck Horn Antenna	BBHA-9170	212	Jan. 08, 2016	Jan. 07, 2017
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Jan. 21, 2016	Jan. 20, 2017
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.4	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF104	CABLE-CH6	Aug. 15, 2015	Aug. 14, 2016
SUHNER RF cable With 3dB PAD	SF102	Cable-CH8-3.6m	Aug. 15, 2015	Aug. 14, 2016
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	May 25, 2016	May 24, 2017
Loop Antenna EMCI	LPA600	270	Aug. 20, 2015	Aug. 19, 2017
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 23, 2015	Sep. 22, 2016
Temperature & Humidity Chamber	MHU-225AU	920409	May 25, 2016	May 24, 2017
Programable DC Source IDRC	DSP-030-025HD	500156	Jul. 15, 2016	Jul. 14, 2017

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

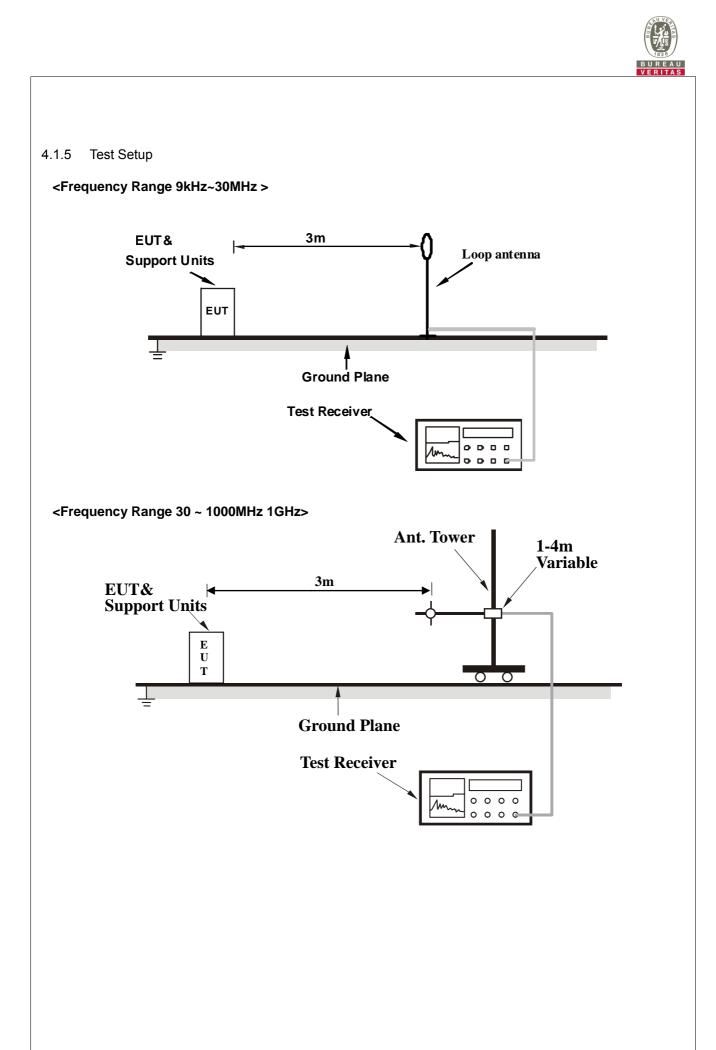
4. The Industry Canada Reference No. IC 7450E-6.

5. The FCC Site Registration No. is 447212.

4.1.3 Test Procedure

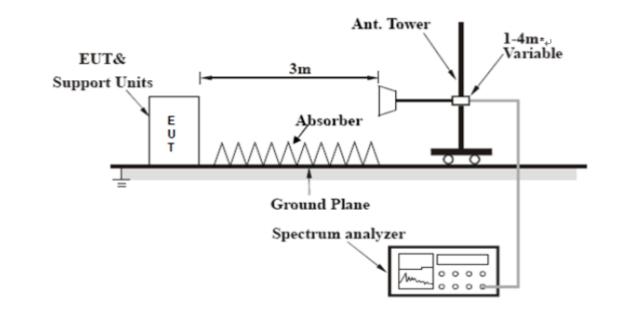
For Frequency range 9kHz~30MHz

- a. The EUT was placed on the horizontal metal ground plane at an accredited test facility at a 3 meter Semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Then the Loop antenna was rotated 360 degrees to determine the position of the highest radiation.
- b. The antenna is a broadband loop antenna, which is fixed of a 1m height above the ground, and set away from 3m to the EUT to find the disturbance reading on each frequency.
- c. The test-receiver system was set to Quasi-peak Detect Function and Specified Bandwidth.


For Frequency range 30 ~ 1000MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard

No deviation.

<Frequency Range above 1GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

- 4.1.6 EUT Operating Condition
- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

Test Results 4.1.7

	QUENCY R	ANGE	Belov	v 30MHz		DET	ECTOR FUN	CTION	Qua	si-Peak	
		-									
		Ar	ntenna	a Polarity & T	Fest Dis	stance	: Loop Anten	na Open J	At 3m	ו	•
۱o.	Freq. (MHz)	Emissi Leve		Limit (dBuV/m)	Marg (dE	-	Antenna Height	Table Angle		Raw Value	Correction Factor
		(dBuV/				•	(m)	(Degree)	(dBuV)	(dB/m)
1	*13.56	50.11 (124.00	-73.		1.00	217		53.92	-3.81
2	27.12	31.31 (1	69.54	-38.		1.00	100		31.12	0.19
	[a Polarity & 1	Fest Dis	stance	: Loop Anten		At 3m		
	Freq.	Emissi		Limit	Mar	Margin	Antenna	Table		Raw	Correction
lo.	(MHz)	Leve		(dBuV/m)	(dE	-	Height	Angle		Value	Factor
		(dBuV/					(m)	(Degree)	(dBuV)	(dB/m)
1	*13.56	53.54 (124.00	-70.		1.00	162		57.35	-3.81
2	27.12	37.08 0	Ч	69.54	-32.	40	1.00	159		36.89	0.19
var	nnlai			istance squa	ire (40d	IB per	decade of di				infit of here
	= 8 = 8	5848uV/n 4dBuV/m 4+20log(24dBuV/	m າ 30/3)	30m 30m	ì	IB per	decade of di				limit of field

CHANNEL	NFC (13.56MHz) +802.11n (40MHz) Ch06 +802.11n (20MHz) Ch52				
FREQUENCY RANGE	30MHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Peak		

	Antenna Polarity & Test Distance: Horizontal At 3m										
Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
40.67	31.35 QP	40.00	-8.65	3.62 H	360	41.77	-10.42				
122.05	31.17 QP	43.50	-12.33	2.85 H	223	42.84	-11.67				
233.22	33.73 QP	46.00	-12.27	1.34 H	128	44.97	-11.24				
339.04	27.49 QP	46.00	-18.51	1.19 H	123	34.61	-7.12				
399.76	30.88 QP	46.00	-15.12	1.50 H	101	36.34	-5.46				
417.56	29.13 QP	46.00	-16.87	1.87 H	141	34.48	-5.35				
	Ar	ntenna Polar	ity & Test Di	stance: Verti	cal At 3m						
Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
40.68	37.17 QP	40.00	-2.83	1.00 V	112	47.59	-10.42				
116.43	32.77 QP	43.50	-10.73	1.03 V	143	45.00	-12.23				
135.49	33.31 QP	43.50	-10.19	1.62 V	119	43.74	-10.43				
230.01	30.36 QP	46.00	-15.64	1.80 V	87	42.15	-11.79				
347.82	26.27 QP	46.00	-19.73	2.35 V	12	33.39	-7.12				
417.51	32.08 QP	46.00	-13.92	1.69 V	143	37.43	-5.35				
	(MHz) 40.67 122.05 233.22 339.04 399.76 417.56 Freq. (MHz) 40.68 116.43 135.49 230.01 347.82	Freq. (MHz) Level (dBuV/m) 40.67 31.35 QP 122.05 31.17 QP 233.22 33.73 QP 339.04 27.49 QP 399.76 30.88 QP 417.56 29.13 QP Ar Freq. (MHz) 40.68 37.17 QP 116.43 32.77 QP 135.49 33.31 QP 230.01 30.36 QP 347.82 26.27 QP 417.51 32.08 QP	Freq. (MHz) Level (dBuV/m) Limit (dBuV/m) 40.67 31.35 QP 40.00 122.05 31.17 QP 43.50 233.22 33.73 QP 46.00 339.04 27.49 QP 46.00 399.76 30.88 QP 46.00 417.56 29.13 QP 46.00 Antenna Polar Freq. (MHz) Emission Level (dBuV/m) Limit (dBuV/m) 40.68 37.17 QP 40.00 116.43 32.77 QP 43.50 230.01 30.36 QP 46.00 347.82 26.27 QP 46.00 417.51 32.08 QP 46.00	Freq. (MHz)Level (dBuV/m)Limit (dBuV/m)Margin (dB) 40.67 31.35 QP 40.00 -8.65 122.05 31.17 QP 43.50 -12.33 233.22 33.73 QP 46.00 -12.27 339.04 27.49 QP 46.00 -18.51 399.76 30.88 QP 46.00 -15.12 417.56 29.13 QP 46.00 -16.87 Artenna Polarity & Test DiFreq. (MHz) $Emission$ (dBuV/m)Limit (dBuV/m) 40.68 37.17 QP 40.00 -2.83 116.43 32.77 QP 43.50 -10.73 135.49 33.31 QP 43.50 -10.73 230.01 30.36 QP 46.00 -15.64 347.82 26.27 QP 46.00 -19.73 417.51 32.08 QP 46.00 -13.92	Freq. (MHz)Level (dBuV/m)Limit (dBuV/m)Margin (dB)Height (m) 40.67 31.35 QP 40.00 -8.65 3.62 H 122.05 31.17 QP 43.50 -12.33 2.85 H 233.22 33.73 QP 46.00 -12.27 1.34 H 339.04 27.49 QP 46.00 -18.51 1.19 H 399.76 30.88 QP 46.00 -15.12 1.50 H 417.56 29.13 QP 46.00 -16.87 1.87 H Antenna Polarity & Test Distance: Vertific (dBuV/m) (MHz) $Level$ (dBuV/m) $Limit$ (dBuV/m)Margin (dB)Antenna Height (m) 40.68 37.17 QP 40.00 -2.83 1.00 V 116.43 32.77 QP 43.50 -10.73 1.03 V 135.49 33.31 QP 46.00 -15.64 1.80 V 347.82 26.27 QP 46.00 -19.73 2.35 V 417.51 32.08 QP 46.00 -13.92 1.69 V	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

CHANNEL	NFC (13.56MHz) +802.11n (40MHz) Ch06 +802.11n (20MHz) Ch52						
FREQUENCY RANGE	1(GHz ~ 4()(GHz	DETECTOR FUNCTION	Peak (PK) Average (AV)				

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2437.00	103.96 PK			1.37 H	265	103.25	0.71
2	*2437.00	95.18 AV			1.37 H	265	94.47	0.71
3	4874.00	45.73 PK	74.00	-28.27	1.64 H	38	38.90	6.83
4	4874.00	35.62 AV	54.00	-18.38	1.64 H	38	28.79	6.83
5	*5260.00	104.27 PK			1.21 H	292	96.22	8.05
6	*5260.00	95.63 AV			1.21 H	292	87.58	8.05
7	5350.00	56.09 PK	74.00	-17.91	1.21 H	292	47.79	8.30
8	5350.00	47.84 AV	54.00	-6.16	1.21 H	292	39.54	8.30
9	#10520.00	55.15 PK	74.00	-18.85	1.58 H	353	35.99	19.16
10	#10520.00	43.94 AV	54.00	-10.06	1.58 H	353	24.78	19.16
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М	

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2437.00	101.54 PK			2.03 V	196	100.83	0.71
2	*2437.00	92.16 AV			2.03 V	196	91.45	0.71
3	4874.00	44.97 PK	74.00	-29.03	1.92 V	267	38.14	6.83
4	4874.00	31.53 AV	54.00	-22.47	1.92 V	267	24.70	6.83
5	*5260.00	102.05 PK			1.49 V	308	94.00	8.05
6	*5260.00	93.11 AV			1.49 V	308	85.06	8.05
7	5350.00	50.39 PK	74.00	-23.61	1.49 V	308	42.09	8.30
8	5350.00	42.81 AV	54.00	-11.19	1.49 V	308	34.51	8.30
9	#10520.00	48.74 PK	74.00	-25.26	2.29 V	156	29.58	19.16
10	#10520.00	40.21 AV	54.00	-13.79	2.29 V	156	21.05	19.16

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

6. " # ": The radiated frequency is out of the restricted band.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)					
Frequency (Mirz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due	
ROHDE & SCHWARZ TEST RECEIVER	ESCS 30	100276	Apr. 12, 2016	Apr. 11, 2017	
ROHDE & SCHWARZ					
Artificial Mains Network	ENV216	101197	May 04, 2016	May 03, 2017	
(for EUT)					
LISN With Adapter	AD10	C10Ada-002	May 04, 2016	May 03, 2017	
(for EUT)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
ROHDE & SCHWARZ					
Artificial Mains Network	ESH3-Z5	100218	Nov. 25, 2015	Nov. 24, 2016	
(for peripherals)					
SCHWARZBECK					
Artificial Mains Network (For	NNLK8129	8129229	May 04, 2016	May 03, 2017	
EUT)					
Software	Cond_V7.3.7	NA	NA	NA	
RF cable (JYEBAO) With 10dB PAD	5D-FB	Cable-C10.01	Feb. 15, 2016	Feb. 14, 2017	
SUHNER Terminator					
(For ROHDE & SCHWARZ	65BNC-5001	E1-011484	May 12, 2016	May 11, 2017	
LISN)					
ROHDE & SCHWARZ					
Artificial Mains Network (For	ESH3-Z5	100220	Nov. 13, 2015	Nov. 12, 2016	
TV EUT)					
LISN With Adapter	100220	N/A	Nov 12 2015	Nov 12 2016	
(for TV EUT)	100220	IN/A	Nov. 13, 2015	Nov. 12, 2016	

Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 10.

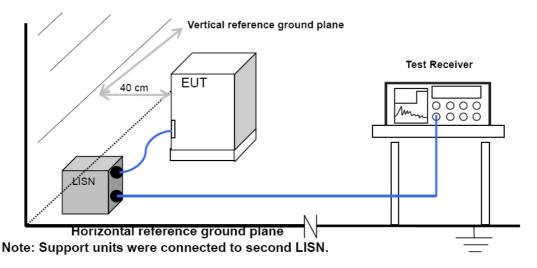
3. The VCCI Site Registration No. C-1852.

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

Per Q5 of KDB 174176 D01 Line Conducted FAQ v01,

Devices Operating Below 30 MHz


For a device with a permanent or detachable antenna operating at or below 30 MHz, the FCC will accept measurements done with a suitable dummy load in lieu of the antenna under the following conditions: (1) perform the AC line conducted tests with the antenna connected to determine compliance with Section 15.207 limits outside the transmitter's fundamental emission band; (2) retest with a dummy load in lieu of the antenna to determine compliance with Section 15.207 limits within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network which simulates the antenna in the fundamental frequency band.

All measurements must be performed as specified in clause 6.2 of ANSI C63.10-2013.

4.2.4 Deviation from Test Standard

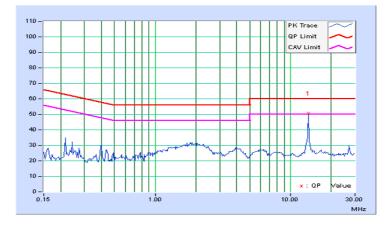
No deviation.

4.2.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as item 4.1.6.

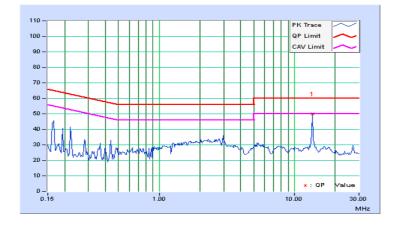


4.2.7 Test Results

Phase	Line 1	9kHz							
Frequency Range	13.56MHz	13.56MHz							
Channel	NFC (13.56MHz) +802.11n	(40MHz) Ch06 +802.11n (2	20MHz) Ch52						

No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	*13.55987	9.93	40.87	40.65	50.80	50.58	60.00	50.00	-9.20	0.58

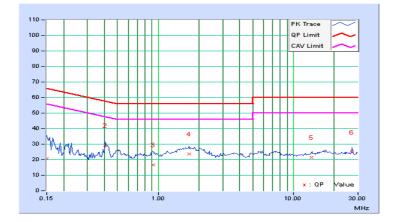
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value
- 6. " * ": Fundamental frequency.



Phase	Line 2	6dB Bandwidth	9kHz						
Frequency Range	13.56MHz	13.56MHz							
Channel	NFC (13.56MHz) +802.11n	(40MHz) Ch06 +802.11n (2	20MHz) Ch52						

No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	*13.55987	9.92	40.05	40.04	49.97	49.96	60.00	50.00	-10.03	-0.04

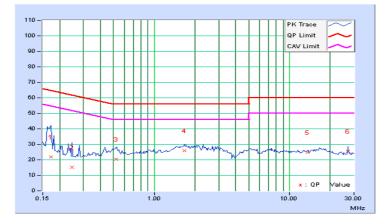
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value
- 6. " * ": Fundamental frequency.



Phase	Line 1	6dB Bandwidth	9kHz				
Frequency Range	150kHz ~ 30MHz (Remove the antenna and terminate the RF output with a dummy load)						
Channel	NFC (13.56MHz) +802.11n (40MHz) Ch06 +802.11n (20MHz) Ch52						

No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.70	10.89	3.13	20.59	12.83	66.00	56.00	-45.41	-43.17
2	0.40781	9.69	19.40	16.90	29.09	26.59	57.69	47.69	-28.60	-21.10
3	0.91953	9.73	6.96	2.88	16.69	12.61	56.00	46.00	-39.31	-33.39
4	1.68750	9.77	13.95	10.24	23.72	20.01	56.00	46.00	-32.28	-25.99
5	13.56000	9.93	11.43	8.05	21.36	17.98	60.00	50.00	-38.64	-32.02
6	27.12109	9.98	14.98	14.42	24.96	24.40	60.00	50.00	-35.04	-25.60

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Phase	Line 2	6dB Bandwidth	9kHz				
Frequency Range	150kHz ~ 30MHz (Remove the antenna and terminate the RF output with a dummy load)						
Channel	NFC (13.56MHz) +802.11n (40MHz) Ch06 +802.11n (20MHz) Ch52						

No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17344	9.70	12.23	6.18	21.93	15.88	64.79	54.79	-42.87	-38.92
2	0.24766	9.69	5.58	1.35	15.27	11.04	61.84	51.84	-46.57	-40.80
3	0.52109	9.70	10.80	4.91	20.50	14.61	56.00	46.00	-35.50	-31.39
4	1.67578	9.76	16.29	13.83	26.05	23.59	56.00	46.00	-29.95	-22.41
5	13.56000	9.92	14.85	12.12	24.77	22.04	60.00	50.00	-35.23	-27.96
6	27.11975	9.93	15.72	15.41	25.65	25.34	60.00	50.00	-34.35	-24.66

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----