Enlighted, Inc.

ADDENDUM TO EMC TEST REPORT 96813-12A

Compact Sensor Models: CS-D2 and FS-D22

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s) 15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 96813-12B

Date of issue: April 20, 2016

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 162 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
FCC Part 15 Subpart C	7
15.31e Voltage Variations	7
15.207 AC Conducted Emissions	10
15.247(a)(2) 6dB Bandwidth	31
15.247(b)(3) Output Power	38
15.247(e) Power Spectral Density	64
15.247(d) RF Conducted Emissions & Band Edge	77
15.247(d) Radiated Emissions & Band Edge	78
Appendix A: Additional Model Test Data	125
Test Facility Information	125
Software Versions	125
Site Registration & Accreditation Information	125
Summary of Results	126
Modifications During Testing	126
Conditions During Testing	126
Equipment Under Test	127
FCC Part 15 Subpart C	128
15.247(b)(3) Output Power	128
15.247(d) Radiated Spurious Emissions	148
Supplemental Information	161
Emissions Tost Datails	161

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Enlighted, Inc. Terri Rayle

930 Benecia Ave. CKC Laboratories, Inc.
Sunnyvale, CA 94085 5046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Deepak Kumar Project Number: 96813

Customer Reference Number: 0002183

DATE OF EQUIPMENT RECEIPT: June 25, 2015

DATE(S) OF TESTING:June 25 - July 2, 2015 and April 15-19, 2016

Revision History

Original: Testing of the Compact Sensor, Model, CS-D2 to FCC Part 15 Subpart C Section(s) 15.207 & 15.247 (DTS 2400-2483.5 MHz).

Addendum A: A statement in Test Notes was added for clarification for compliance to 15.31(e). **Addendum B:** To add test data for an equivalent model FS-D22. The new data is in Appendix A.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Steve of Below

Page 3 of 162 Report No.: 96813-12B

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.02.00
EMITest Immunity	5.02.00

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN
Fremont	US0082	SL2-IN-E-1148R	3082B-1	958979	A-0149

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Test Procedure	Description	Modifications*	Results
15.31e	Voltage Variations	NA	Pass
15.207	AC Conducted Emissions	NA	Pass
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	NA
15.247(d)	Radiated Emissions & Band Edge	NA	Pass

NA = Not applicable.

Modifications* During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
No modifications were made during testing.

^{*}Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 162 Report No.: 96813-12B

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
Compact Sensor	Enlighted, Inc.	CS-D2	03

Support Equipment:

Support Equipment			
Device	Manufacturer	Model #	S/N
AC/DC Power Adapter for	Enercell	273-332	None
EUT			
Laptop	Dell	E5450	36810358094
AC/ DC Adaptor for Laptop	Dell	HA65NM130	CN-06TFFF-75661-53L-
			01ZO-A01
Cebal Controller Devices	Texas Instruments	CC Debugger	None
Communication Board	ATMEL	None	None

Page 6 of 162 Report No.: 96813-12B

FCC PART 15 SUBPART C

15.31e Voltage Variations

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.31e

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI	3115	1/23/2013	1/23/2015
		C63.5			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

15.31e set up

Application: Putty version 0.64 for ZigBee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C, Relative Humidity: 39 %, Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: BLE on TX Mode

15.31(e): the RF output power was not changed when adjusting the voltage to 10.2VDC (-15%) and up to 16.1 (+ 15%) of the voltage range 12VDC to 14VDC.

Page 7 of 162 Report No.: 96813-12B

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.31e

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

1 031	Lyup	<i></i>				
	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	T1	AN02157	Horn Antenna-ANSI C63.5	3115	1/23/2013	1/23/2015
	T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	Т3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
		AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

15.31e set up

Application: Putty version 0.64 for ZigBee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

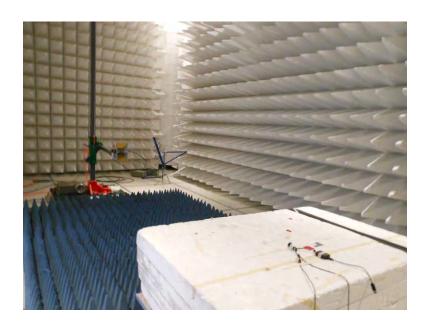
High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Zigbee on TX Mode


15.31(e): the RF output power was not changed when adjusting the voltage to 10.2VDC (-15%) and up to 16.1 (+ 15%) of the voltage range 12VDC to 14VDC.

Page 8 of 162 Report No.: 96813-12B

Test Setup Photo(s)

15.207 AC Conducted Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 96813 Date: 6/25/2015 Test Type: Conducted Emissions Time: 2:10:57 PM

Tested By: Hieu Song Nguyenpham Sequence#: 19

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: ANSI C 63.4 2009

The EUT is a Compact Sensor. It is powered by AC/DC adapter which sits next to it. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Bluetooth was transmitted on Middle channel constantly.

Page 10 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 19 Date: 6/25/2015 15,207 AC Mains - Average Test Lead: 120V 60Hz Black

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	3/31/2015	3/31/2017
T2	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T3	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
T4	AN00493	50uH LISN-L1 (L) Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN00493	50uH LISN-L(2) N Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T5	ANP05258	High Pass Filter	HE9615-150K- 50-720B	11/14/2014	11/14/2016

Measur	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	417.611k	33.7	+9.9	+0.0	+0.0	+0.1	+0.0	43.8	47.5	-3.7	Black
			+0.1								
2	667.043k	29.7	+9.8	+0.0	+0.0	+0.1	+0.0	39.7	46.0	-6.3	Black
			+0.1								
3	643.045k	29.3	+9.8	+0.0	+0.0	+0.1	+0.0	39.3	46.0	-6.7	Black
		• • • •	+0.1					•	150		
4	645.954k	29.1	+9.8	+0.0	+0.0	+0.1	+0.0	39.1	46.0	-6.9	Black
	624.0651	26.2	+0.1			. 0.1	. 0. 0	26.2	46.0	0.7	D1 1
5	624.865k	26.2	+9.9	+0.0	+0.0	+0.1	+0.0	36.3	46.0	-9.7	Black
	427.2461-	25.0	+0.1	10.0	100	+0.1	100	26.0	47.1	11.1	D1 1
6	437.246k	25.9	+9.9	+0.0	+0.0	+0.1	+0.0	36.0	47.1	-11.1	Black
7	(15 4111-	24.7	+0.1	100	100	+0.1	100	24.0	46.0	11.2	D11-
/	615.411k	24.7	+9.9 +0.1	+0.0	+0.0	+0.1	+0.0	34.8	46.0	-11.2	Black
8	457.608k	24.4	+9.9	+0.0	+0.0	+0.1	+0.0	34.6	46.7	-12.1	Black
8	457.000K	27.7	+0.2	10.0	10.0	10.1	10.0	54.0	40.7	-12.1	Diack
9	14.274M	27.3	+9.9	+0.3	+0.1	+0.1	+0.0	37.9	50.0	-12.1	Black
	17.2/7111	27.5	+0.2	10.5	. 0.1	. 0.1	10.0	31.7	50.0	12.1	Diack
10	13.571M	27.0	+9.9	+0.3	+0.0	+0.1	+0.0	37.5	50.0	-12.5	Black
10	10.0 / 11.1	_,	+0.2	0.2	0.0	0.11	0.0	27.0	20.0	12.0	210011
11	14.139M	27.0	+9.9	+0.3	+0.0	+0.1	+0.0	37.5	50.0	-12.5	Black
			+0.2							_	
12	14.391M	26.6	+9.9	+0.3	+0.1	+0.1	+0.0	37.2	50.0	-12.8	Black
			+0.2								
13	477.242k	23.2	+9.9	+0.0	+0.0	+0.1	+0.0	33.4	46.4	-13.0	Black
			+0.2								
14	12.977M	26.2	+9.9	+0.3	+0.0	+0.1	+0.0	36.7	50.0	-13.3	Black
			+0.2								

15	559.416k	22.5	+9.9 +0.1	+0.0	+0.0	+0.1	+0.0	32.6	46.0	-13.4	Black
16	498.331k	22.3	+9.9	+0.0	+0.0	+0.1	+0.0	32.5	46.0	-13.5	Black
			+0.2								
17	7.193M	26.2	+9.9 +0.1	+0.2	+0.0	+0.1	+0.0	36.5	50.0	-13.5	Black
18	14.364M	25.6	+9.9	+0.3	+0.1	+0.1	+0.0	36.2	50.0	-13.8	Dlaslr
			+0.2								Black
19	14.580M	25.6	+9.9 +0.2	+0.3	+0.1	+0.1	+0.0	36.2	50.0	-13.8	Black
20	6.968M	25.6	+9.9	+0.2	+0.0	+0.1	+0.0	35.9	50.0	-14.1	Black
	0.000.0		+0.1				***				
21	7.085M	25.5	+9.9	+0.2	+0.0	+0.1	+0.0	35.8	50.0	-14.2	Black
21	7.005WI	23.3	+0.1	10.2	10.0	10.1	10.0	33.6	30.0	-14.2	Diack
- 22	1446234	25.0		10.2	. 0. 1	. 0. 1	100	25.6	50.0	1 4 4	D1 1
22	14.463M	25.0	+9.9	+0.3	+0.1	+0.1	+0.0	35.6	50.0	-14.4	Black
			+0.2								
23	14.481M	24.5	+9.9	+0.3	+0.1	+0.1	+0.0	35.1	50.0	-14.9	Black
			+0.2								
24	518.693k	20.7	+9.9	+0.0	+0.0	+0.1	+0.0	30.9	46.0	-15.1	Black
			+0.2								
25	2.846M	20.7	+9.8	+0.1	+0.0	+0.1	+0.0	30.9	46.0	-15.1	Black
23	2.0401	20.7	+0.2	10.1	10.0	10.1	10.0	30.7	40.0	-13.1	Diack
26	2.01714	20.6		+0.1	100	ı O 1	100	20.0	46.0	15.0	D1 1
26	2.017M	20.6	+9.8	+0.1	+0.0	+0.1	+0.0	30.8	46.0	-15.2	Black
			+0.2								
27	2.162M	20.4	+9.9	+0.1	+0.0	+0.1	+0.0	30.7	46.0	-15.3	Black
			+0.2								
28	1.996M	20.4	+9.8	+0.1	+0.0	+0.1	+0.0	30.6	46.0	-15.4	Black
			+0.2								
29	2.621M	20.4	+9.8	+0.1	+0.0	+0.1	+0.0	30.6	46.0	-15.4	Black
2)	2.021111	20.4	+0.2	. 0.1	10.0	.0.1	10.0	30.0	40.0	13.7	Diack
20	2.57014	20.2		ı O 1	100	ı O 1	+0.0	20.4	46.0	15 (D1 1-
30	2.578M	20.2	+9.8	+0.1	+0.0	+0.1	+0.0	30.4	46.0	-15.6	Black
			+0.2								
31	2.663M	20.2	+9.8	+0.1	+0.0	+0.1	+0.0	30.4	46.0	-15.6	Black
			+0.2								
32	14.761M	23.8	+9.9	+0.3	+0.1	+0.1	+0.0	34.4	50.0	-15.6	Black
			+0.2								
33	2.034M	20.1	+9.8	+0.1	+0.0	+0.1	+0.0	30.3	46.0	-15.7	Black
	2.037111	20.1	+0.2	. 0.1	. 0.0	0.1	. 0.0	50.5	40.0	13.1	DIUCK
2.4	106134	10.7		10.2	100	ι Λ 1	100	20.0	16.0	160	D11-
34	4.964M	19.7	+9.9	+0.2	+0.0	+0.1	+0.0	30.0	46.0	-16.0	Black
			+0.1								
35	14.932M	23.4	+9.9	+0.3	+0.1	+0.1	+0.0	34.0	50.0	-16.0	Black
			+0.2								
36	14.661M	23.3	+9.9	+0.3	+0.1	+0.1	+0.0	33.9	50.0	-16.1	Black
			+0.2								
37	2.119M	19.5	+9.9	+0.1	+0.0	+0.1	+0.0	29.8	46.0	-16.2	Black
31	2.11/1/1	17.5	+0.2	. 0.1	. 0.0	. 0.1	. 0.0	27.0	10.0	10.2	Diack
20	10 01514	22.2		10.2	100	I O 1	100	22.7	50.0	16.2	D1c -1-
38	10.815M	23.3	+9.9	+0.2	+0.0	+0.1	+0.0	33.7	50.0	-16.3	Black
			+0.2								
39	14.860M	23.0	+9.9	+0.3	+0.1	+0.1	+0.0	33.6	50.0	-16.4	Black
			+0.2								
40	2.200M	19.2	+9.8	+0.1	+0.0	+0.1	+0.0	29.4	46.0	-16.6	Black
			+0.2								
<u> </u>			. 0.2								

2.098M	19.0	+9.9	+0.1	+0.0	+0.1	+0.0	29.3	46.0	-16.7	Black
		+0.2								
10.517M	22.8	+9.9	+0.2	+0.0	+0.2	+0.0	33.3	50.0	-16.7	Black
		+0.2								
1.183M	19.0	+9.8	+0.1	+0.0	+0.1	+0.0	29.2	46.0	-16.8	Black
		+0.2								
4.947M	18.9	+9.9	+0.2	+0.0	+0.1	+0.0	29.2	46.0	-16.8	Black
		+0.1								
2.991M	18.9	+9.8	+0.1	+0.0	+0.1	+0.0	29.1	46.0	-16.9	Black
		+0.2								
14.824M	22.5	+9.9	+0.3	+0.1	+0.1	+0.0	33.1	50.0	-16.9	Black
		+0.2								
15.058M	22.4	+9.9	+0.3	+0.1	+0.1	+0.0	33.0	50.0	-17.0	Black
		+0.2								
6.238M	22.6	+9.9	+0.2	+0.0	+0.1	+0.0	33.0	50.0	-17.0	Black
		+0.2								
15.265M	22.5	+9.9	+0.3	+0.0	+0.1	+0.0	33.0	50.0	-17.0	Black
		+0.2								
15.112M	22.5	+9.9	+0.3	+0.0	+0.1	+0.0	33.0	50.0	-17.0	Black
	-	+0.2								-
1	0.517M 1.183M 4.947M 2.991M 4.824M 5.058M 6.238M	0.517M 22.8 1.183M 19.0 4.947M 18.9 2.991M 18.9 4.824M 22.5 5.058M 22.4 6.238M 22.6 5.265M 22.5	+0.2 0.517M 22.8 +9.9 +0.2 1.183M 19.0 +9.8 +0.2 4.947M 18.9 +9.9 +0.1 2.991M 18.9 +9.8 +0.2 4.824M 22.5 +9.9 +0.2 5.058M 22.4 +9.9 +0.2 6.238M 22.6 +9.9 +0.2 5.265M 22.5 +9.9 +0.2 5.112M 22.5 +9.9	+0.2 0.517M 22.8 +9.9 +0.2 +0.2 1.183M 19.0 +9.8 +0.1 +0.2 4.947M 18.9 +9.9 +0.2 +0.1 2.991M 18.9 +9.8 +0.1 +0.2 4.824M 22.5 +9.9 +0.3 +0.2 5.058M 22.4 +9.9 +0.3 +0.2 6.238M 22.6 +9.9 +0.2 +0.2 5.265M 22.5 +9.9 +0.3 +0.2 5.112M 22.5 +9.9 +0.3	+0.2 0.517M 22.8 +9.9 +0.2 +0.0 +0.2 1.183M 19.0 +9.8 +0.1 +0.0 +0.2 4.947M 18.9 +9.9 +0.2 +0.0 +0.1 2.991M 18.9 +9.8 +0.1 +0.0 +0.2 4.824M 22.5 +9.9 +0.3 +0.1 +0.2 5.058M 22.4 +9.9 +0.3 +0.1 +0.2 6.238M 22.6 +9.9 +0.2 +0.0 +0.2 5.265M 22.5 +9.9 +0.3 +0.0 5.265M 22.5 +9.9 +0.3 +0.0	+0.2 0.517M 22.8 +9.9 +0.2 +0.0 +0.2 +0.2 1.183M 19.0 +9.8 +0.1 +0.0 +0.1 +0.2 4.947M 18.9 +9.9 +0.2 +0.0 +0.1 +0.1 2.991M 18.9 +9.8 +0.1 +0.0 +0.1 +0.2 4.824M 22.5 +9.9 +0.3 +0.1 +0.1 +0.2 5.058M 22.4 +9.9 +0.3 +0.1 +0.1 +0.2 6.238M 22.6 +9.9 +0.2 +0.0 +0.1 +0.2 5.265M 22.5 +9.9 +0.3 +0.0 +0.1 +0.2 5.112M 22.5 +9.9 +0.3 +0.0 +0.1	+0.2 0.517M 22.8 +9.9 +0.2 +0.0 +0.2 +0.0 +0.2 1.183M 19.0 +9.8 +0.1 +0.0 +0.1 +0.0 +0.2 4.947M 18.9 +9.9 +0.2 +0.0 +0.1 +0.0 +0.1 2.991M 18.9 +9.8 +0.1 +0.0 +0.1 +0.0 +0.2 4.824M 22.5 +9.9 +0.3 +0.1 +0.1 +0.0 +0.2 5.058M 22.4 +9.9 +0.3 +0.1 +0.1 +0.0 +0.2 6.238M 22.6 +9.9 +0.2 +0.0 +0.1 +0.0 +0.2 5.265M 22.5 +9.9 +0.3 +0.0 +0.1 +0.0 +0.2 5.112M 22.5 +9.9 +0.3 +0.0 +0.1 +0.0	+0.2 0.517M 22.8	+0.2 0.517M 22.8 +9.9 +0.2 +0.0 +0.2 +0.0 33.3 50.0 1.183M 19.0 +9.8 +0.1 +0.0 +0.1 +0.0 29.2 46.0 4.947M 18.9 +9.9 +0.2 +0.0 +0.1 +0.0 29.2 46.0 2.991M 18.9 +9.8 +0.1 +0.0 +0.1 +0.0 29.1 46.0 4.824M 22.5 +9.9 +0.3 +0.1 +0.1 +0.0 33.1 50.0 5.058M 22.4 +9.9 +0.3 +0.1 +0.1 +0.0 33.0 50.0 6.238M 22.6 +9.9 +0.2 +0.0 +0.1 +0.0 33.0 50.0 5.265M 22.5 +9.9 +0.3 +0.0 +0.1 +0.0 33.0 50.0 5.112M 22.5 +9.9 +0.3 +0.0 +0.1 +0.0 33.0 50.0	+0.2 0.517M 22.8 +9.9 +0.2 +0.0 +0.2 +0.0 33.3 50.0 -16.7 1.183M 19.0 +9.8 +0.1 +0.0 +0.1 +0.0 29.2 46.0 -16.8 4.947M 18.9 +9.9 +0.2 +0.0 +0.1 +0.0 29.2 46.0 -16.8 2.991M 18.9 +9.8 +0.1 +0.0 +0.1 +0.0 29.1 46.0 -16.9 +0.2 4.824M 22.5 +9.9 +0.3 +0.1 +0.1 +0.0 33.1 50.0 -16.9 5.058M 22.4 +9.9 +0.3 +0.1 +0.1 +0.0 33.0 50.0 -17.0 6.238M 22.6 +9.9 +0.2 +0.0 +0.1 +0.0 33.0 50.0 -17.0 5.265M 22.5 +9.9 +0.3 +0.0 +0.1 +0.0 33.0 50.0 -17.0 5.112M 22.5 +9.9 +0.3 +0.0 +0.1 +0.0 33.0 <td< td=""></td<>

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 96813 Date: 6/25/2015
Test Type: Conducted Emissions Time: 14:26:39
Tested By: Hieu Song Nguyenpham Sequence#: 20

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

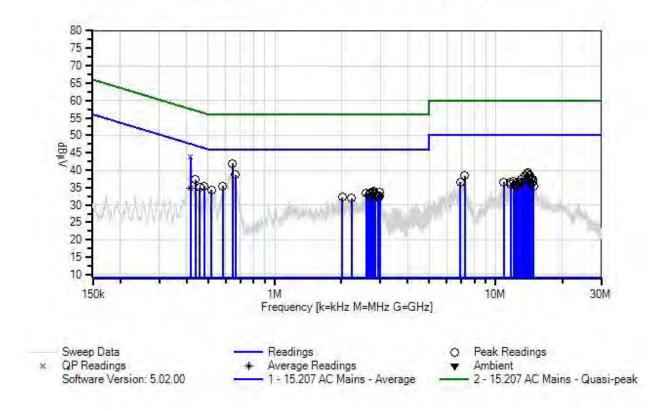
Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: ANSI C 63.4 2009


The EUT is a Compact Sensor. It is powered by AC/DC adapter which sits next to it. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Bluetooth was transmitted on Middle channel constantly.

Page 15 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 20 Date: 6/25/2015 15,207 AC Mains - Average Test Lead: 120V 60Hz White

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	3/31/2015	3/31/2017
T2	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T3	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN00493	50uH LISN-L1 (L) Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
T4	AN00493	50uH LISN-L(2) N Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T5	ANP05258	High Pass Filter	HE9615-150K- 50-720B	11/14/2014	11/14/2016

Measur	rement Data:		eading lis	ted by ma	argin.			Test Lead	d: White		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	642.318k	31.3	+9.8	+0.0	+0.0	+0.7	+0.0	41.9	46.0	-4.1	White
-	662 4071	20.1	+0.1	. 0. 0	. 0. 0		. 0 0	20.5	46.0		TT 71 1.
2	663.407k	28.1	+9.8	+0.0	+0.0	+0.7	+0.0	38.7	46.0	-7.3	White
2	427.2461-	26.6	+0.1	100	+0.0	+0.7	100	37.3	47.1	-9.8	White
3	437.246k	26.6	+9.9 +0.1	+0.0	+0.0	+0.7	+0.0	37.3	47.1	-9.8	wnite
4	580.505k	24.8	+9.9	+0.0	+0.0	+0.7	+0.0	35.5	46.0	-10.5	White
	300.303K	24.0	+0.1	10.0	10.0	10.7	10.0	33.3	40.0	10.3	Willie
5	14.013M	28.2	+9.9	+0.3	+0.0	+0.7	+0.0	39.3	50.0	-10.7	White
			+0.2								
6	478.697k	24.6	+9.9	+0.0	+0.0	+0.7	+0.0	35.4	46.4	-11.0	White
			+0.2								
7	13.824M	27.9	+9.9	+0.3	+0.0	+0.7	+0.0	39.0	50.0	-11.0	White
			+0.2								
8	14.139M	27.4	+9.9	+0.3	+0.0	+0.7	+0.0	38.5	50.0	-11.5	White
			+0.2								
9	14.238M	27.3	+9.9	+0.3	+0.1	+0.7	+0.0	38.5	50.0	-11.5	White
10	7.22014	27.4	+0.2	10.2	100	100	100	20.4	50.0	11.6	3371 '4
10	7.229M	27.4	+9.9 +0.1	+0.2	+0.0	+0.8	+0.0	38.4	50.0	-11.6	White
11	13.508M	27.3	+9.9	+0.3	+0.0	+0.7	+0.0	38.4	50.0	-11.6	White
11	13.306101	21.3	+0.2	10.5	10.0	10.7	10.0	J0. T	50.0	-11.0	Willie
12	457.608k	24.2	+9.9	+0.0	+0.0	+0.7	+0.0	35.0	46.7	-11.7	White
			+0.2								
13	517.966k	23.5	+9.9	+0.0	+0.0	+0.7	+0.0	34.3	46.0	-11.7	White
			+0.2								
14	2.808M	23.1	+9.8	+0.1	+0.0	+0.7	+0.0	33.9	46.0	-12.1	White
			+0.2								

15	2.765M	22.9	+9.8 +0.2	+0.1	+0.0	+0.7	+0.0	33.7	46.0	-12.3	White
16	14.067M	26.6	+9.9	+0.3	+0.0	+0.7	+0.0	37.7	50.0	-12.3	White
			+0.2								
17	2.991M	22.8	+9.8 +0.2	+0.1	+0.0	+0.7	+0.0	33.6	46.0	-12.4	White
18	14.409M	26.4	+9.9	+0.3	+0.1	+0.7	+0.0	37.6	50.0	-12.4	White
			+0.2								
19	2.723M	22.7	+9.8	+0.1	+0.0	+0.7	+0.0	33.5	46.0	-12.5	White
			+0.2								
20	2.782M	22.7	+9.8	+0.1	+0.0	+0.7	+0.0	33.5	46.0	-12.5	White
			+0.2								
21	14.490M	26.3	+9.9	+0.3	+0.1	+0.7	+0.0	37.5	50.0	-12.5	White
22	14 10234	26.2	+0.2	10.2		.0.7	100	27.4	50.0	10.6	33.71 *4
22	14.193M	26.3	+9.9	+0.3	+0.0	+0.7	+0.0	37.4	50.0	-12.6	White
23	14 652M	26.2	+0.2	+0.3	±0.1	+0.7	+0.0	37.4	50.0	-12.6	White
23	14.652M	26.2	+9.9 +0.2	±0.3	+0.1	⊤0. /	±0.0	37.4	50.0	-12.0	w mile
24	2.706M	22.5	+9.8	+0.1	+0.0	+0.7	+0.0	33.3	46.0	-12.7	White
24	2.700IVI	22.3	+0.2	10.1	10.0	10.7	10.0	33.3	40.0	-12./	vv iiite
25	13.040M	26.2	+9.9	+0.3	+0.0	+0.7	+0.0	37.3	50.0	-12.7	White
23	13.0 10111	20.2	+0.2	. 0.5	. 0.0	. 0.7	. 0.0	37.3	30.0	12.7	vv inte
26	2.600M	22.5	+9.8	+0.1	+0.0	+0.7	+0.0	33.3	46.0	-12.7	White
			+0.2								
27	416.045k	24.0	+9.9	+0.0	+0.0	+0.7	+0.0	34.7	47.5	-12.8	White
1	Ave		+0.1								
28	2.825M	22.4	+9.8	+0.1	+0.0	+0.7	+0.0	33.2	46.0	-12.8	White
			+0.2								
29	2.663M	22.1	+9.8	+0.1	+0.0	+0.7	+0.0	32.9	46.0	-13.1	White
			+0.2								
30	14.770M	25.5	+9.9	+0.3	+0.1	+0.7	+0.0	36.7	50.0	-13.3	White
			+0.2								
31	2.978M	21.9	+9.8	+0.1	+0.0	+0.7	+0.0	32.7	46.0	-13.3	White
	1001075	A. 7. 7	+0.2	0.0				2	700		
32	12.040M	25.6	+9.9	+0.3	+0.0	+0.7	+0.0	36.7	50.0	-13.3	White
22	10.7(1) (25.5	+0.2	10.2	10.0	10.7	100	26.6	50.0	12.4	3371 **
33	12.761M	25.5	+9.9 +0.2	+0.3	+0.0	+0.7	+0.0	36.6	50.0	-13.4	White
34	6.905M	25.6	+9.9	+0.2	+0.0	+0.8	+0.0	36.6	50.0	-13.4	White
34	U.ZUZIVI	23.0	+9.9 +0.1	±0.∠	±0.0	±0.8	±0.0	30.0	50.0	-13.4	w mile
35	10.878M	25.5	+9.9	+0.2	+0.0	+0.8	+0.0	36.6	50.0	-13.4	White
	10.0/01/1	43.3	+0.2	10.2	10.0	10.0	10.0	50.0	50.0	-1 <i>J</i> . T	** IIIC
36	13.328M	25.5	+9.9	+0.3	+0.0	+0.7	+0.0	36.6	50.0	-13.4	White
	13.520111	20.0	+0.2	. 0.3	. 0.0	/	. 0.0	20.0	20.0	13.1	
37	12.869M	25.5	+9.9	+0.3	+0.0	+0.7	+0.0	36.6	50.0	-13.4	White
			+0.2	,							
38	2.850M	21.7	+9.8	+0.1	+0.0	+0.7	+0.0	32.5	46.0	-13.5	White
			+0.2								
39	2.680M	21.6	+9.8	+0.1	+0.0	+0.7	+0.0	32.4	46.0	-13.6	White
			+0.2								
40	11.652M	25.3	+9.9	+0.3	+0.0	+0.7	+0.0	36.4	50.0	-13.6	White
			+0.2								
	•										

41	12.391M	25.2	+9.9 +0.2	+0.3	+0.0	+0.7	+0.0	36.3	50.0	-13.7	White
42	2.931M	21.5	+9.8	+0.1	+0.0	+0.7	+0.0	32.3	46.0	-13.7	White
			+0.2								
43	2.021M	21.4	+9.8	+0.1	+0.0	+0.7	+0.0	32.2	46.0	-13.8	White
			+0.2								
44	2.948M	21.4	+9.8	+0.1	+0.0	+0.7	+0.0	32.2	46.0	-13.8	White
			+0.2								
45	416.045k	33.0	+9.9	+0.0	+0.0	+0.7	+0.0	43.7	57.5	-13.8	White
	QP		+0.1								
^	416.045k	34.2	+9.9	+0.0	+0.0	+0.7	+0.0	44.9	47.5	-2.6	White
			+0.1								
47	14.589M	24.9	+9.9	+0.3	+0.1	+0.7	+0.0	36.1	50.0	-13.9	White
			+0.2								
48	11.706M	24.9	+9.9	+0.3	+0.0	+0.7	+0.0	36.0	50.0	-14.0	White
	,		+0.2								
49	2.221M	21.1	+9.8	+0.1	+0.0	+0.7	+0.0	31.9	46.0	-14.1	White
			+0.2								
50	12.202M	24.6	+9.9	+0.3	+0.0	+0.7	+0.0	35.7	50.0	-14.3	White
			+0.2								
51	14.842M	24.3	+9.9	+0.3	+0.1	+0.7	+0.0	35.5	50.0	-14.5	White
			+0.2	3.2	3.1	3.,	2.0		2 3.0		
52	12.409M	24.4	+9.9	+0.3	+0.0	+0.7	+0.0	35.5	50.0	-14.5	White
52	12.107111	2	+0.2	. 0.5	. 0.0	. 0.7	. 0.0	33.5	20.0	1 1.5	*** 11100

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 96813 Date: 6/25/2015
Test Type: Conducted Emissions Time: 16:04:14
Tested By: Hieu Song Nguyenpham Sequence#: 31

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

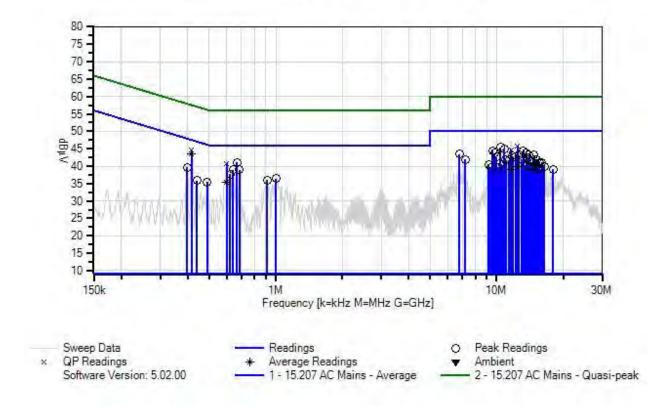
Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: ANSI C 63.4


The EUT is a Compact Sensor. It is powered by AC/DC adapter which sits next to it. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Zigbee on TX

Page 20 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 31 Date: 6/25/2015 15.207 AC Mains - Average Test Lead: 120V 60Hz Black

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	3/31/2015	3/31/2017
T2	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
Т3	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
T4	AN00493	50uH LISN-L1 (L) Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN00493	50uH LISN-L(2) N Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T5	ANP05258	High Pass Filter	HE9615-150K- 50-720B	11/14/2014	11/14/2016

Measur	rement Data:		eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	415.890k	33.5	+9.9	+0.0	+0.0	+0.1	+0.0	43.6	47.5	-3.9	Black
	Ave		+0.1								
2	10.391M	34.9	+9.9	+0.2	+0.0	+0.2	+0.0	45.4	50.0	-4.6	Black
			+0.2								
3	665.588k	31.0	+9.8	+0.0	+0.0	+0.1	+0.0	41.0	46.0	-5.0	Black
		2.1.5	+0.1					17.0			
4	10.797M	34.6	+9.9	+0.2	+0.0	+0.1	+0.0	45.0	50.0	-5.0	Black
	0.5003.5	22.0	+0.2	. 0. 2	. 0 0		. 0. 0		70.0	7.6	D1 1
5	9.598M	33.9	+9.9	+0.2	+0.0	+0.2	+0.0	44.4	50.0	-5.6	Black
	12 10234	22.0	+0.2	10.2	100	+0.1	100	11.1	50.0	<i>5.6</i>	D1 1
6	13.193M	33.9	+9.9	+0.3	+0.0	+0.1	+0.0	44.4	50.0	-5.6	Black
7	13.589M	33.2	+0.2	+0.3	+0.0	+0.1	+0.0	43.7	50.0	-6.3	D11-
/	13.389101	33.2	+9.9	+0.5	+0.0	+0.1	+0.0	43.7	30.0	-0.5	Black
8	9.797M	33.2	+9.9	+0.2	+0.0	+0.2	+0.0	43.7	50.0	-6.3	Black
0	9./9/1 v1	33.2	+0.2	10.2	10.0	10.2	10.0	43.7	30.0	-0.5	Diack
9	6.797M	33.1	+9.9	+0.2	+0.0	+0.1	+0.0	43.4	50.0	-6.6	Black
	0.777111	33.1	+0.1	10.2	10.0	. 0.1	10.0	13.1	30.0	0.0	Diack
10	12.598M	32.7	+9.9	+0.3	+0.0	+0.1	+0.0	43.2	50.0	-6.8	Black
			+0.2								
11	14.797M	32.6	+9.9	+0.3	+0.1	+0.1	+0.0	43.2	50.0	-6.8	Black
			+0.2								
12	13.995M	32.6	+9.9	+0.3	+0.0	+0.1	+0.0	43.1	50.0	-6.9	Black
			+0.2								
13	641.590k	29.0	+9.8	+0.0	+0.0	+0.1	+0.0	39.0	46.0	-7.0	Black
			+0.1								
14	684.495k	28.9	+9.8	+0.0	+0.0	+0.1	+0.0	38.9	46.0	-7.1	Black
			+0.1								

15 11.797M 32.4 49.9 40.3 40.0 40.1 40.0 42.9 50.0 -7.1 Black 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.0 40.1 40.0 42.8 50.0 -7.2 Black 40.2 40.2 40.0 40.1 40.0 42.6 50.0 -7.4 Black 40.2 40.2 40.0 40.1 40.0 42.4 50.0 -7.6 Black 40.2 40.2 40.0 40.1 40.0 41.9 50.0 -8.1 Black 40.2 40.0 40.1 40.0 41.9 50.0 -8.1 Black 40.2 40.0 40.1 40.0 41.9 50.0 -8.1 Black 40.2 40.2 40.0 40.1 40.0 41.9 50.0 -8.1 Black 40.2 40.2 40.0 40.1 40.0 41.9 50.0 -8.1 Black 40.2												
16 12.193M 32.3 49.9 +0.3 +0.0 +0.1 +0.0 42.8 50.0 -7.2 Black +0.2 +0.2 +0.2 +0.0 +0.2 +0.0 42.6 50.0 -7.4 Black +0.2 +0.0 +0.2 +0.0 +0.2 +0.0 42.6 50.0 -7.4 Black +0.2 +0.0 +0.2 +0.0 +0.1 +0.0 42.4 50.0 -7.6 Black +0.2 +0.2 +0.2 +0.0 +0.1 +0.0 41.9 50.0 -8.1 Black +0.1 +0.1 +0.0 41.9 50.0 -8.1 Black +0.1 +0.2	15	11.797M	32.4		+0.3	+0.0	+0.1	+0.0	42.9	50.0	-7.1	Black
17 9.995M 32.1 +9.9 +0.2 +0.0 +0.2 +0.0 42.6 50.0 -7.4 Black +0.2 +0.2 +0.2 +0.0 +0.1 +0.0 42.4 50.0 -7.6 Black +0.2 +0.2 +0.2 +0.0 +0.1 +0.0 41.9 50.0 -8.1 Black +0.1 +0.2 +0.2 +0.0 +0.1 +0.0 41.9 50.0 -8.1 Black +0.1 +0.2 +0.	16	12.193M	32.3	+9.9	+0.3	+0.0	+0.1	+0.0	42.8	50.0	-7.2	Black
18 13.797M 31.9 49.9 +0.3 +0.0 +0.1 +0.0 42.4 50.0 -7.6 Black +0.1 +0.1 +0.1 +0.0 41.9 50.0 -8.1 Black +0.1 +0.2 +0.2 +0.0 +0.1 +0.0 41.9 50.0 -8.1 Black +0.2 +0.	17	9.995M	32.1	+9.9	+0.2	+0.0	+0.2	+0.0	42.6	50.0	-7.4	Black
19	18	13.797M	31.9	+9.9	+0.3	+0.0	+0.1	+0.0	42.4	50.0	-7.6	Black
+0.1 20 12.995M 31.4 +9.9 +0.3 +0.0 +0.1 +0.0 41.9 50.0 -8.1 Black +0.2 21 15.193M 31.4 +9.9 +0.3 +0.0 +0.1 +0.0 41.9 50.0 -8.1 Black +0.2 22 10.995M 31.3 +9.9 +0.3 +0.0 +0.1 +0.0 41.8 50.0 -8.2 Black +0.2 23 11.391M 31.3 +9.9 +0.3 +0.0 +0.1 +0.0 41.8 50.0 -8.2 Black +0.2 24 397.249k 29.5 +9.9 +0.0 +0.0 +0.1 +0.0 39.6 47.9 -8.3 Black +0.2 25 621.228k 27.6 +9.9 +0.0 +0.0 +0.1 +0.0 39.6 47.9 -8.3 Black +0.1 25 621.228k 27.6 +9.9 +0.0 +0.0 +0.1 +0.0 37.7 46.0 -8.3 Black +0.1 26 14.400M 30.6 +9.9 +0.3 +0.1 +0.1 +0.0 41.2 50.0 -8.8 Black +0.2 27 15.995M 30.6 +9.9 +0.3 +0.0 +0.1 +0.0 41.1 50.0 -8.9 Black +0.2 28 15.589M 30.5 +9.9 +0.3 +0.0 +0.1 +0.0 41.0 50.0 -9.0 Black +0.2 29 14.995M 30.2 +9.9 +0.3 +0.0 +0.1 +0.0 41.0 50.0 -9.2 Black +0.2 30 1.001M 26.2 +9.9 +0.3 +0.1 +0.1 +0.0 40.8 50.0 -9.2 Black +0.2 31 9.193M 30.1 +9.9 +0.2 +0.0 +0.1 +0.0 40.5 50.0 -9.5 Black +0.2 31 9.193M 30.1 +9.9 +0.2 +0.0 +0.1 +0.0 40.3 50.0 -9.5 Black +0.2 31 9.193M 30.1 +9.9 +0.2 +0.0 +0.1 +0.0 40.3 50.0 -9.7 Black +0.2 33 13.391M 29.7 +9.9 +0.3 +0.0 +0.1 +0.0 40.3 50.0 -9.7 Black +0.2 34 915.479k 25.8 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -9.8 Black +0.2 35 12.396M 29.9 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -9.8 Black +0.2 36 14.589M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 36 14.589M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 36 14.589M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 36 14.589M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 37 14.193M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 38 16.391M 29.2 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 39 9.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 39.6 50.0 -10.4 Black +0.2 39 9.391M 29.4 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black +0.2	19	7.193M	31.6		+0.2	+0.0	+0.1	+0.0	41.9	50.0	-8.1	Black
+0.2 21 15.193M 31.4 +9.9 +0.3 +0.0 +0.1 +0.0 41.9 50.0 -8.1 Black +0.2 22 10.995M 31.3 +9.9 +0.3 +0.0 +0.1 +0.0 41.8 50.0 -8.2 Black +0.2 23 11.391M 31.3 +9.9 +0.3 +0.0 +0.1 +0.0 41.8 50.0 -8.2 Black +0.2 24 397.249k 29.5 +9.9 +0.0 +0.0 +0.1 +0.0 39.6 47.9 -8.3 Black +0.1 25 621.228k 27.6 +9.9 +0.0 +0.0 +0.1 +0.0 37.7 46.0 -8.3 Black +0.1 26 14.400M 30.6 +9.9 +0.3 +0.1 +0.1 +0.0 41.2 50.0 -8.8 Black +0.2 27 15.995M 30.6 +9.9 +0.3 +0.1 +0.1 +0.0 41.1 50.0 -8.9 Black +0.2 28 15.589M 30.5 +9.9 +0.3 +0.1 +0.1 +0.0 41.0 50.0 -9.0 Black +0.2 29 14.995M 30.2 +9.9 +0.3 +0.1 +0.1 +0.0 40.8 50.0 -9.2 Black +0.2 30 1.001M 26.2 +9.9 +0.1 +0.0 +0.1 +0.0 40.8 50.0 -9.5 Black +0.2 31 9.193M 30.1 +9.9 +0.2 +0.0 +0.1 +0.0 40.5 50.0 -9.5 Black +0.2 31 9.193M 30.1 +9.9 +0.2 +0.0 +0.1 +0.0 40.3 50.0 -9.5 Black +0.2 31 3.391M 29.7 +9.9 +0.3 +0.0 +0.1 +0.0 40.3 50.0 -9.5 Black +0.2 33 13.391M 29.7 +9.9 +0.3 +0.0 +0.1 +0.0 40.2 50.0 -9.8 Black +0.2 34 915.479k 25.8 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 36 14.589M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 36 14.589M 29.4 +9.9 +0.3 +0.1 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 39 9.391M 29.2 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 39 9.391M 29.2 +9.9 +0.2 +0.0 +0.2 +0.0 40.2 50.0 -10.4 Black +0.2 39 9.391M 29.2 +9.9 +0.2 +0.0 +0.2 +0.0 40.2 50.0 -10.4 Black +0.1 +0.1 +0.0 40.0 50.0 -10.4 Black +0.2 40.0 40.1 +0.0 40	20				+0.3	+0.0	+0.1	+0.0	41 9	50.0	-8.1	Black
+0.2 22 10.995M 31.3 +9.9 +0.3 +0.0 +0.1 +0.0 41.8 50.0 -8.2 Black +0.2 23 11.391M 31.3 +9.9 +0.3 +0.0 +0.1 +0.0 41.8 50.0 -8.2 Black +0.2 24 397.249k 29.5 +9.9 +0.0 +0.0 +0.1 +0.0 39.6 47.9 -8.3 Black +0.1 25 621.228k 27.6 +9.9 +0.0 +0.0 +0.1 +0.0 37.7 46.0 -8.3 Black +0.1 +0.1 +0.1 +0.0 37.7 46.0 -8.3 Black +0.1 +0.1 +0.0 41.2 50.0 -8.8 Black +0.2 +0				+0.2								
1.391M 31.3 49.9 +0.3 +0.0 +0.1 +0.0 41.8 50.0 -8.2 Black +0.2	21	15.193M	31.4		+0.3	+0.0	+0.1	+0.0	41.9	50.0		Black
23 11.391M 31.3 +9.9 +0.3 +0.0 +0.1 +0.0 41.8 50.0 -8.2 Black +0.2	22	10.995M	31.3		+0.3	+0.0	+0.1	+0.0	41.8	50.0	-8.2	Black
24 397.249k 29.5 +9.9 +0.0 +0.0 +0.1 +0.0 39.6 47.9 -8.3 Black 25 621.228k 27.6 +9.9 +0.0 +0.0 +0.1 +0.0 37.7 46.0 -8.3 Black 26 14.400M 30.6 +9.9 +0.3 +0.1 +0.1 +0.0 41.2 50.0 -8.8 Black 27 15.995M 30.6 +9.9 +0.3 +0.0 +0.1 +0.0 41.1 50.0 -8.9 Black 28 15.589M 30.5 +9.9 +0.3 +0.0 +0.1 +0.0 41.0 50.0 -9.0 Black 40.2 14.995M 30.2 +9.9 +0.3 +0.1 +0.1 +0.0 40.8 50.0 -9.2 Black 30 1.001M 26.2 +9.9 +0.1 +0.1 +0.1 +0.0 40.5 50.0 -9.5 Black 40.2 31<	23	11.391M	31.3	+9.9	+0.3	+0.0	+0.1	+0.0	41.8	50.0	-8.2	Black
25 621.228k 27.6 +9.9 +0.0 +0.0 +0.1 +0.0 37.7 46.0 -8.3 Black +0.1	24	397.249k	29.5	+9.9	+0.0	+0.0	+0.1	+0.0	39.6	47.9	-8.3	Black
26 14.400M 30.6 +9.9 +0.3 +0.1 +0.1 +0.0 41.2 50.0 -8.8 Black 27 15.995M 30.6 +9.9 +0.3 +0.0 +0.1 +0.0 41.1 50.0 -8.9 Black 28 15.589M 30.5 +9.9 +0.3 +0.0 +0.1 +0.0 41.0 50.0 -9.0 Black 29 14.995M 30.2 +9.9 +0.3 +0.1 +0.1 +0.0 40.8 50.0 -9.2 Black 30 1.001M 26.2 +9.9 +0.1 +0.0 +0.1 +0.0 40.5 50.0 -9.5 Black 40.2 31 9.193M 30.1 +9.9 +0.2 +0.0 +0.2 +0.0 40.5 50.0 -9.5 Black 32 10.589M 29.9 +9.9 +0.2 +0.0 +0.1 +0.0 40.3 50.0 -9.7 Black 33	25	621.228k	27.6	+9.9	+0.0	+0.0	+0.1	+0.0	37.7	46.0	-8.3	Black
27 15.995M 30.6 +9.9 +0.3 +0.0 +0.1 +0.0 41.1 50.0 -8.9 Black +0.2	26	14.400M	30.6	+9.9	+0.3	+0.1	+0.1	+0.0	41.2	50.0	-8.8	Black
28 15.589M 30.5 +9.9 +0.3 +0.0 +0.1 +0.0 41.0 50.0 -9.0 Black +0.2 29 14.995M 30.2 +9.9 +0.3 +0.1 +0.1 +0.0 40.8 50.0 -9.2 Black +0.2 30 1.001M 26.2 +9.9 +0.1 +0.0 +0.1 +0.0 36.5 46.0 -9.5 Black +0.2 31 9.193M 30.1 +9.9 +0.2 +0.0 +0.2 +0.0 40.5 50.0 -9.5 Black +0.1 32 10.589M 29.9 +9.9 +0.2 +0.0 +0.1 +0.0 40.3 50.0 -9.7 Black +0.2 33 13.391M 29.7 +9.9 +0.3 +0.0 +0.1 +0.0 40.2 50.0 -9.8 Black +0.2 34 915.479k 25.8 +9.9 +0.1 +0.0 +0.1 +0.0 36.0 46.0 -10.0 Black +0.1 35 12.396M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black Ave +0.2 36 14.589M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 37 14.193M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 39 9.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.9 50.0 -10.1 Black +0.2 39 9.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.6 50.0 -10.4 Black +0.1 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black +0.1	27	15.995M	30.6	+9.9	+0.3	+0.0	+0.1	+0.0	41.1	50.0	-8.9	Black
29 14.995M 30.2 +9.9 +0.3 +0.1 +0.1 +0.0 40.8 50.0 -9.2 Black +0.2	28	15.589M	30.5	+9.9	+0.3	+0.0	+0.1	+0.0	41.0	50.0	-9.0	Black
30 1.001M 26.2 +9.9 +0.1 +0.0 +0.1 +0.0 36.5 46.0 -9.5 Black +0.2 31 9.193M 30.1 +9.9 +0.2 +0.0 +0.2 +0.0 40.5 50.0 -9.5 Black +0.1 32 10.589M 29.9 +9.9 +0.2 +0.0 +0.1 +0.0 40.3 50.0 -9.7 Black +0.2 33 13.391M 29.7 +9.9 +0.3 +0.0 +0.1 +0.0 40.2 50.0 -9.8 Black +0.2 34 915.479k 25.8 +9.9 +0.1 +0.0 +0.1 +0.0 36.0 46.0 -10.0 Black +0.1 35 12.396M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 36 14.589M 29.4 +9.9 +0.3 +0.1 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 37 14.193M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.9 50.0 -10.1 Black +0.2 39 9.391M 29.2 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black +0.1 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black +0.1	29	14.995M	30.2	+9.9	+0.3	+0.1	+0.1	+0.0	40.8	50.0	-9.2	Black
+0.2 31 9.193M 30.1 +9.9 +0.2 +0.0 +0.2 +0.0 40.5 50.0 -9.5 Black +0.1	30	1.001M	26.2		+0.1	+0.0	+0.1	+0.0	36.5	46.0	-9.5	Black
+0.1 32 10.589M 29.9 +9.9 +0.2 +0.0 +0.1 +0.0 40.3 50.0 -9.7 Black +0.2 33 13.391M 29.7 +9.9 +0.3 +0.0 +0.1 +0.0 40.2 50.0 -9.8 Black +0.2 34 915.479k 25.8 +9.9 +0.1 +0.0 +0.1 +0.0 36.0 46.0 -10.0 Black +0.1 35 12.396M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black Ave +0.2 36 14.589M 29.4 +9.9 +0.3 +0.1 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 37 14.193M 29.5 +9.9 +0.3 +0.1 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 39 9.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.9 50.0 -10.1 Black +0.2 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black +0.1				+0.2								
+0.2 33 13.391M 29.7 +9.9 +0.3 +0.0 +0.1 +0.0 40.2 50.0 -9.8 Black +0.2 34 915.479k 25.8 +9.9 +0.1 +0.0 +0.1 +0.0 36.0 46.0 -10.0 Black +0.1 35 12.396M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 36 14.589M 29.4 +9.9 +0.3 +0.1 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 37 14.193M 29.5 +9.9 +0.3 +0.1 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 39 9.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.9 50.0 -10.1 Black +0.2 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black +0.1				+0.1								
+0.2 34 915.479k 25.8 +9.9 +0.1 +0.0 +0.1 +0.0 36.0 46.0 -10.0 Black +0.1 35 12.396M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black Ave +0.2 36 14.589M 29.4 +9.9 +0.3 +0.1 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 37 14.193M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.9 50.0 -10.1 Black +0.2 39 9.391M 29.2 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black +0.1 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black	32	10.589M	29.9		+0.2	+0.0	+0.1	+0.0	40.3	50.0	-9.7	Black
34 915.479k 25.8 +9.9 +0.1 +0.0 +0.1 +0.0 36.0 46.0 -10.0 Black 35 12.396M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black Ave +0.2 36 14.589M 29.4 +9.9 +0.3 +0.1 +0.1 +0.0 40.0 50.0 -10.0 Black 37 14.193M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black 40.2 38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.9 50.0 -10.1 Black 39 9.391M 29.2 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black	33	13.391M	29.7		+0.3	+0.0	+0.1	+0.0	40.2	50.0	-9.8	Black
35 12.396M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black 36 14.589M 29.4 +9.9 +0.3 +0.1 +0.1 +0.0 40.0 50.0 -10.0 Black 37 14.193M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black 38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.9 50.0 -10.1 Black 40 10.193M 29.2 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black	34	915.479k	25.8	+9.9	+0.1	+0.0	+0.1	+0.0	36.0	46.0	-10.0	Black
36 14.589M 29.4 +9.9 +0.3 +0.1 +0.1 +0.0 40.0 50.0 -10.0 Black 37 14.193M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black 38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.9 50.0 -10.1 Black 39 9.391M 29.2 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black			29.5	+9.9	+0.3	+0.0	+0.1	+0.0	40.0	50.0	-10.0	Black
37 14.193M 29.5 +9.9 +0.3 +0.0 +0.1 +0.0 40.0 50.0 -10.0 Black +0.2 38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.9 50.0 -10.1 Black +0.2 39 9.391M 29.2 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black +0.1 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black			29.4	+9.9	+0.3	+0.1	+0.1	+0.0	40.0	50.0	-10.0	Black
38 16.391M 29.4 +9.9 +0.3 +0.0 +0.1 +0.0 39.9 50.0 -10.1 Black +0.2 39 9.391M 29.2 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black +0.1 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black	37	14.193M	29.5	+9.9	+0.3	+0.0	+0.1	+0.0	40.0	50.0	-10.0	Black
39 9.391M 29.2 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black +0.1 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black	38	16.391M	29.4	+9.9	+0.3	+0.0	+0.1	+0.0	39.9	50.0	-10.1	Black
+0.1 40 10.193M 29.1 +9.9 +0.2 +0.0 +0.2 +0.0 39.6 50.0 -10.4 Black	39	9.391M	29.2		+0.2	+0.0	+0.2	+0.0	39.6	50.0	-10.4	Black
				+0.1								
	70	10.173111	27.1		10.2	10.0	10.2	. 0.0	37.0	50.0	10.7	Diack

Page 23 of 162 Report No.: 96813-12B

41 599.825k	25.3	+9.9	+0.0	+0.0	+0.1	+0.0	35.4	46.0	-10.6	Black
Ave	20.5	+0.1	. 0.0	. 0.0	. 0.1	. 0.0	55.1	10.0	10.0	Black
42 15.797M	28.8	+9.9	+0.3	+0.0	+0.1	+0.0	39.3	50.0	-10.7	Black
		+0.2								
43 489.604k	25.3	+9.9	+0.0	+0.0	+0.1	+0.0	35.5	46.2	-10.7	Black
		+0.2								
44 15.391M	28.7	+9.9	+0.3	+0.0	+0.1	+0.0	39.2	50.0	-10.8	Black
		+0.2								
45 11.597M	28.6	+9.9	+0.3	+0.0	+0.1	+0.0	39.1	50.0	-10.9	Black
Ave		+0.2								
46 17.995M	28.3	+9.9	+0.3	+0.1	+0.3	+0.0	39.1	50.0	-10.9	Black
		+0.2								
47 438.699k	25.8	+9.9	+0.0	+0.0	+0.1	+0.0	35.9	47.1	-11.2	Black
		+0.1								
48 415.890k	34.4	+9.9	+0.0	+0.0	+0.1	+0.0	44.5	57.5	-13.0	Black
QP		+0.1								
^ 415.890k	35.0	+9.9	+0.0	+0.0	+0.1	+0.0	45.1	47.5	-2.4	Black
		+0.1								
50 12.396M	35.3	+9.9	+0.3	+0.0	+0.1	+0.0	45.8	60.0	-14.2	Black
QP	• • • •	+0.2								
^ 12.396M	38.0	+9.9	+0.3	+0.0	+0.1	+0.0	48.5	50.0	-1.5	Black
50 500 0051	20.7	+0.2	. 0. 0	. 0. 0	. 0.1	. 0. 0	40.0	7.6.0	15.0	D1 1
52 599.825k	30.7	+9.9	+0.0	+0.0	+0.1	+0.0	40.8	56.0	-15.2	Black
QP ^ 500 8251	22.6	+0.1			+0.1		12.7	16.0	2.2	D1 1
^ 599.825k	33.6	+9.9	+0.0	+0.0	+0.1	+0.0	43.7	46.0	-2.3	Black
54 11.597M	242	+0.1	+0.3	10.0	+0.1	100	44.7	60.0	15.2	Dla al-
QP	34.2	+9.9 +0.2	±0.3	+0.0	+0.1	+0.0	44.7	60.0	-15.3	Black
^ 11.597M	36.8	+9.9	+0.3	+0.0	+0.1	+0.0	47.3	50.0	-2.7	Black
11.39/M	30.8	+0.2	±0.3	+0.0	±0.1	+0.0	47.3	30.0	-2.7	DIACK
		±0.2								

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 96813 Date: 6/25/2015
Test Type: Conducted Emissions Time: 16:13:24
Tested By: Hieu Song Nguyenpham Sequence#: 32

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

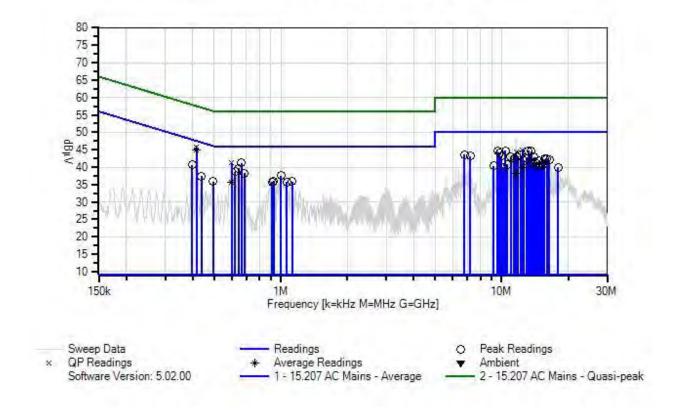
Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: ANSI C 63.4


The EUT is a Compact Sensor. It is powered by AC/DC adapter which sits next to it. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Zigbee on TX

Page 25 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 32 Date: 6/25/2015 15,207 AC Mains - Average Test Lead: 120V 60Hz White

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	3/31/2015	3/31/2017
T2	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T3	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN00493	50uH LISN-L1 (L) Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
T4	AN00493	50uH LISN-L(2) N Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T5	ANP05258	High Pass Filter	HE9615-150K- 50-720B	11/14/2014	11/14/2016

Measur	rement Data:		eading lis	ted by ma	argin.			Test Lead	d: White		Ant 2.6 White 3.8 White 3.3 White 3.3 White				
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar				
			T5												
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB					
1	415.244k	34.2	+9.9	+0.0	+0.0	+0.7	+0.0	44.9	47.5	-2.6	White				
	Ave		+0.1												
2	664.860k	30.6	+9.8	+0.0	+0.0	+0.7	+0.0	41.2	46.0	-4.8	White				
			+0.1												
3	13.193M	33.6	+9.9	+0.3	+0.0	+0.7	+0.0	44.7	50.0	-5.3	White				
	10.4003.5	22.6	+0.2	. 0. 2	. 0. 0	. 0. 0	. 0. 0		7 0.0		****				
4	10.400M	33.6	+9.9	+0.2	+0.0	+0.8	+0.0	44.7	50.0	-5.3	White				
	0.5003.5	22.5	+0.2	. 0. 2	. 0 0	. 0. 0	. 0 0	11.6	7 0.0		****				
5	9.598M	33.5	+9.9	+0.2	+0.0	+0.8	+0.0	44.6	50.0	-5.4	White				
	12 50014	22.4	+0.2	10.2	100	+0.7	100	115	50.0		3371 '4				
6	13.589M	33.4	+9.9 +0.2	+0.3	+0.0	+0.7	+0.0	44.5	50.0	-5.5	White				
7	9.797M	33.0	+9.9	+0.2	+0.0	10.8	+0.0	44.1	50.0	-5.9	White				
/	9./9/IVI	33.0	+0.2	±0.∠	+0.0	+0.8	+0.0	44.1	30.0	-3.9	Willte				
8	643.771k	29.1	+9.8	+0.0	+0.0	+0.7	+0.0	39.7	46.0	-6.3	White				
8	043.//IK	29.1	+0.1	10.0	10.0	10.7	10.0	39.1	40.0	-0.5	WIIIC				
9	6.797M	32.6	+9.9	+0.2	+0.0	+0.8	+0.0	43.6	50.0	-6.4	White				
	0.777111	32.0	+0.1	10.2	10.0	10.0	10.0	45.0	50.0	0.4	Willie				
10	12.193M	32.4	+9.9	+0.3	+0.0	+0.7	+0.0	43.5	50.0	-6.5	White				
			+0.2												
11	7.193M	32.1	+9.9	+0.2	+0.0	+0.8	+0.0	43.1	50.0	-6.9	White				
			+0.1												
12	9.995M	32.0	+9.9	+0.2	+0.0	+0.8	+0.0	43.1	50.0	-6.9	White				
			+0.2												
13	10.995M	31.8	+9.9	+0.3	+0.0	+0.8	+0.0	43.0	50.0	-7.0	White				
			+0.2												
14	11.797M	31.9	+9.9	+0.3	+0.0	+0.7	+0.0	43.0	50.0	-7.0	White				
			+0.2												

15	13.995M	31.8	+9.9 +0.2	+0.3	+0.0	+0.7	+0.0	42.9	50.0	-7.1	White
16	397.249k	29.9	+9.9	+0.0	+0.0	+0.7	+0.0	40.6	47.9	-7.3	White
			+0.1								
17	620.501k	28.0	+9.9 +0.1	+0.0	+0.0	+0.7	+0.0	38.7	46.0	-7.3	White
1.0	15.0053.5	21.4		. 0. 2	. 0. 0	. 0. 7	. 0. 0	10.5	50.0	7.5	XX 71
18	15.995M	31.4	+9.9 +0.2	+0.3	+0.0	+0.7	+0.0	42.5	50.0	-7.5	White
19	11.391M	31.3	+9.9 +0.2	+0.3	+0.0	+0.7	+0.0	42.4	50.0	-7.6	White
20	12.0053.6	21.2		. 0. 2		. 0. 7	. 0. 0	12.1	50.0	7.6	XX71 **
20	12.995M	31.3	+9.9 +0.2	+0.3	+0.0	+0.7	+0.0	42.4	50.0	-7.6	White
21	683.040k	27.7	+9.8	+0.0	+0.0	+0.7	+0.0	38.3	46.0	-7.7	White
			+0.1								
22	15.598M	31.2	+9.9	+0.3	+0.0	+0.7	+0.0	42.3	50.0	-7.7	White
	13.3761	31.2		10.5	10.0	10.7	10.0	72.3	30.0	-/./	vv iiite
22	1 (201) (21.0	+0.2	.0.2	. 0. 0	. 0. 7	. 0. 0	10.1	50.0	7.0	XX 71
23	16.391M	31.0	+9.9	+0.3	+0.0	+0.7	+0.0	42.1	50.0	-7.9	White
			+0.2								
24	12.589M	30.8	+9.9	+0.3	+0.0	+0.7	+0.0	41.9	50.0	-8.1	White
			+0.2								
25	14.797M	30.5	+9.9	+0.3	+0.1	+0.7	+0.0	41.7	50.0	-8.3	White
			+0.2								
26	1.001M	26.6	+9.9	+0.1	+0.0	+0.7	+0.0	37.5	46.0	-8.5	White
20	1.001111	20.0	+0.2	10.1	10.0	10.7	10.0	31.3	40.0	-0.5	vv iiite
27	12 2013 5	20.2		. 0. 2	. 0. 0	. 0. 7	. 0. 0	41.0	50.0	0.7	XX 71
27	13.391M	30.2	+9.9	+0.3	+0.0	+0.7	+0.0	41.3	50.0	-8.7	White
			+0.2								
28	13.788M	30.1	+9.9	+0.3	+0.0	+0.7	+0.0	41.2	50.0	-8.8	White
			+0.2								
29	14.391M	29.8	+9.9	+0.3	+0.1	+0.7	+0.0	41.0	50.0	-9.0	White
			+0.2								
30	15.193M	29.9	+9.9	+0.3	+0.0	+0.7	+0.0	41.0	50.0	-9.0	White
30	13.173111	27.7	+0.2	10.5	10.0	10.7	10.0	71.0	30.0	-7.0	vv iiite
21	10.5001.6	20.7			100	100	100	40.0	50.0	0.2	XX71 *4
31	10.598M	29.7	+9.9	+0.2	+0.0	+0.8	+0.0	40.8	50.0	-9.2	White
			+0.2								
32	15.391M	29.5	+9.9	+0.3	+0.0	+0.7	+0.0	40.6	50.0	-9.4	White
			+0.2								
33	437.972k	26.7	+9.9	+0.0	+0.0	+0.7	+0.0	37.4	47.1	-9.7	White
		•	+0.1							•	
34	9.193M	29.3	+9.9	+0.2	+0.0	+0.8	+0.0	40.3	50.0	-9.7	White
J-7	J.1 J J 1V1	47.3	+0.1	10.2	. 0.0	. 0.0	. 0.0	40.5	50.0	-2.1	** 111tC
2.5	1400534	20.1		10.2	+0.1	10.7	100	40.2	50.0	0.7	XX71. '4
35	14.995M	29.1	+9.9	+0.3	+0.1	+0.7	+0.0	40.3	50.0	-9.7	White
			+0.2								
36	14.589M	29.0	+9.9	+0.3	+0.1	+0.7	+0.0	40.2	50.0	-9.8	White
			+0.2								
37	12.395M	28.9	+9.9	+0.3	+0.0	+0.7	+0.0	40.0	50.0	-10.0	White
	Ave		+0.2				-	-			
38	928.237k	25.2	+9.9	+0.1	+0.0	+0.7	+0.0	36.0	46.0	-10.0	White
30	120.23 / K	49.4		. 0.1	. 0.0	. 0.7	. 0.0	50.0	-TU.U	10.0	** 11110
20	1 1043 5	25.1	+0.1	10.1	100		100	25.0	46.0	10.1	33.71 *-
39	1.124M	25.1	+9.8	+0.1	+0.0	+0.7	+0.0	35.9	46.0	-10.1	White
			+0.2								
40	17.995M	28.6	+9.9	+0.3	+0.1	+0.8	+0.0	39.9	50.0	-10.1	White
			+0.2								
L											

Page 28 of 162 Report No.: 96813-12B

41	10.193M	28.8	+9.9	+0.2	+0.0	+0.8	+0.0	39.9	50.0	-10.1	White
42	915.479k	25.0	+0.2	+0.1	+0.0	+0.7	+0.0	35.8	46.0	-10.2	White
			+0.1								
43	495.421k	25.1	+9.9 +0.2	+0.0	+0.0	+0.7	+0.0	35.9	46.1	-10.2	White
44	1.064M	24.9	+9.9	+0.1	+0.0	+0.7	+0.0	35.8	46.0	-10.2	White
4.5	500 5 001	25.0	+0.2		. 0. 0		. 0. 0	25.5	46.0	10.2	****
45	599.780k Ave	25.0	+9.9 +0.1	+0.0	+0.0	+0.7	+0.0	35.7	46.0	-10.3	White
46	415.244k	35.0	+9.9	+0.0	+0.0	+0.7	+0.0	45.7	57.5	-11.8	White
	QP		+0.1								
^	415.244k	35.6	+9.9 +0.1	+0.0	+0.0	+0.7	+0.0	46.3	47.5	-1.2	White
48	11.595M	27.0	+9.9	+0.3	+0.0	+0.7	+0.0	38.1	50.0	-11.9	White
	Ave		+0.2								
49	599.780k	30.5	+9.9	+0.0	+0.0	+0.7	+0.0	41.2	56.0	-14.8	White
	QP		+0.1								
^	599.780k	33.7	+9.9 +0.1	+0.0	+0.0	+0.7	+0.0	44.4	46.0	-1.6	White
51	12.395M	33.8	+9.9	+0.3	+0.0	+0.7	+0.0	44.9	60.0	-15.1	White
	QP		+0.2								
^	12.395M	37.5	+9.9	+0.3	+0.0	+0.7	+0.0	48.6	50.0	-1.4	White
			+0.2								
53	11.595M	33.1	+9.9	+0.3	+0.0	+0.7	+0.0	44.2	60.0	-15.8	White
	QP		+0.2								
^	11.595M	35.3	+9.9	+0.3	+0.0	+0.7	+0.0	46.4	50.0	-3.6	White
			+0.2								

Test Setup Photo(s)

15.247(a)(2) 6dB Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc. Specification: OBW Set up

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

z est zqui	Pintentt				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI C63.5	3115	1/23/2013	1/23/2015
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

OBW set up

Application: Putty version 0.64 for ZigBee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C, Relative Humidity: 39 %, Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi Method: KDB 558074 v03r02 section 8.1

RBW=100kHz VBW=300kHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: BLE on TX Mode

Page 31 of 162 Report No.: 96813-12B

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc. Specification: OBW Set up

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI	3115	1/23/2013	1/23/2015
		C63.5			
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

OBW set up

Application: Putty version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

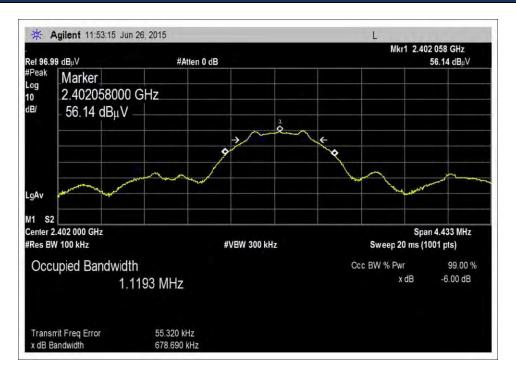
Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

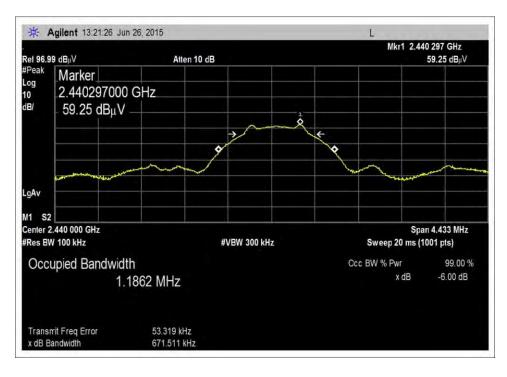
Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi Method: KDB 558074 v03r02 section 8.1

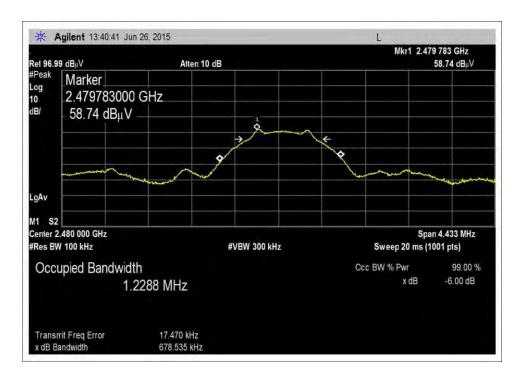
RBW=100kHz VBW=300kHz


The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

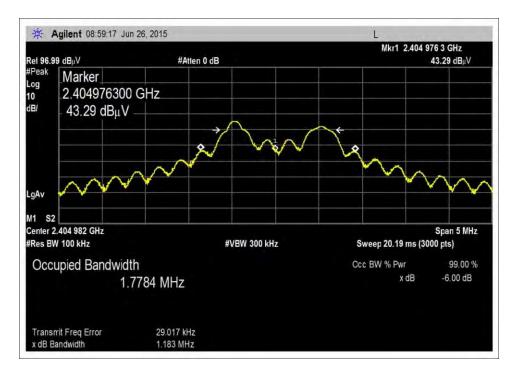
Note: Zigbee on TX Mode

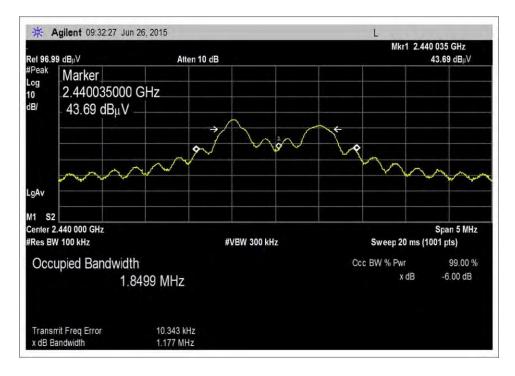

Page 32 of 162 Report No.: 96813-12B

Test Data

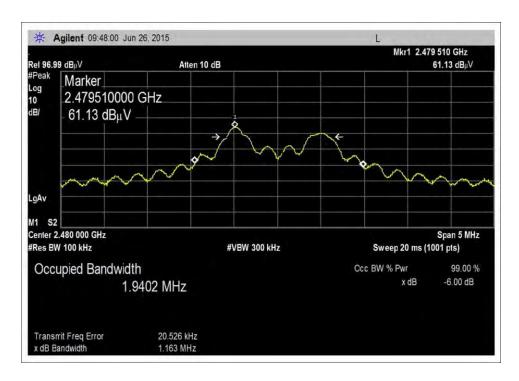


Low Channel, Bluetooth


Middle Channel, Bluetooth



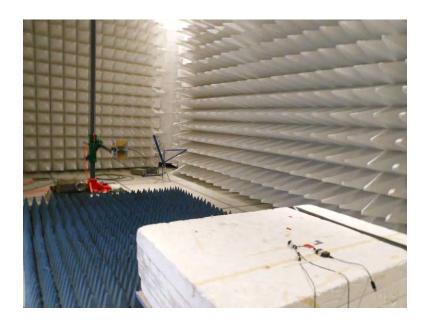
High Channel, Bluetooth



Low Channel, Zigbee

Middle Channel, Zigbee





High Channel, Zigbee

Test Setup Photo(s)

15.247(b)(3) Output Power

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(b)(3) Output Power

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Scan Time: 13:49:13
Tested By: Hieu Song Nguyenpham Sequence#: 36

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Fundamental of the EUT

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: 558074 D01 DTS Meas Guidance v03r02 section 9.1.1

RBW=3MHz VBW=8MHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving. The EUT is ceiling-mounted equipment. There is only a requirement to measure two orthogonals.

Note:

BLE on TX

X axis- Direct to Antenna

Page 38 of 162 Report No.: 96813-12B

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	ırement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
1	2440.276M	60.2	+28.7	+1.2	+2.6		+0.0	92.7	125.2	-32.5	Horiz
2	2479.580M	59.9	+28.8	+1.2	+2.6		+0.0	92.5	125.2	-32.7	Horiz
3	2402.360M	57.6	+28.6	+1.2	+2.6		+0.0	90.0	125.2	-35.2	Horiz
4	2440.276M	54.2	+28.7	+1.2	+2.6		+0.0	86.7	125.2	-38.5	Vert
5	2479.580M	53.8	+28.8	+1.2	+2.6		+0.0	86.4	125.2	-38.8	Vert
6	2402.360M	49.2	+28.6	+1.2	+2.6		+0.0	81.6	125.2	-43.6	Vert

Frequency (MHz)	Measured Power in Watt	Power Limit in Watt	Pass/Fail
2402.360			
Low Channel	3.0000E-04	1.00	Pass
(Horizontal)			
2402.360			
Low Channel	4.3363E-05	1.00	Pass
(Vertical)			
2440.276			
Middle Channel	5.5863E-04	1.00	Pass
(Horizontal)			
2440.276			
Middle Channel	1.4032E-04	1.00	Pass
(Vertical)			
2479.580			
High Channel	5.3348E-04	1.00	Pass
(Horizontal)			
2479.580			
High Channel	1.3095E-04	1.00	Pass
(Vertical)			

A formula converts Radiated Method to Conducted Method

dBm (conducted power) = dBuV/m +20*LOG D -104.77 - Gain (dBi)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(b)(3) Output Power

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Scan Time: 11:21:51
Tested By: Hieu Song Nguyenpham Sequence#: 35

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Emission Fundamental of the EUT

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: 558074 D01 DTS Meas Guidance v03r02 section 9.1.1

RBW=3MHz VBW=8MHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving. The EUT is ceiling-mounted equipment. There is only a requirement to measure two orthogonals.

Note:

BLE on TX

Y axis- Upward to Ceiling

Page 41 of 162 Report No.: 96813-12B

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
1	2440.036M	57.2	+28.7	+1.2	+2.6		+0.0	89.7	125.2	-35.5	Vert
2	2440.036M	56.1	+28.7	+1.2	+2.6		+0.0	88.6	125.2	-36.6	Horiz
3	2479.784M	55.8	+28.8	+1.2	+2.6		+0.0	88.4	125.2	-36.8	Vert
4	2402.132M	55.9	+28.6	+1.2	+2.6		+0.0	88.3	125.2	-36.9	Vert
5	2479.784M	55.1	+28.8	+1.2	+2.6		+0.0	87.7	125.2	-37.5	Horiz
6	2402.132M	54.8	+28.6	+1.2	+2.6		+0.0	87.2	125.2	-38.0	Horiz

Frequency (MHz)	Measured Power in Watt	Power Limit in Watt	Pass/Fail
2402.132			
Low Channel	1.5744E-04	1.00	Pass
(Horizontal)			
2402.132			
Low Channel	2.0282E-04	1.00	Pass
(Vertical)			
2440.036			
Middle Channel	2.1733E-04	1.00	Pass
(Horizontal)			
2440.036			
Middle Channel	2.7998E-04	1.00	Pass
(Vertical)			
2479.784			
High Channel	1.7665E-04	1.00	Pass
(Horizontal)			
2479.784			
High Channel	2.0755E-04	1.00	Pass
(Vertical)			

A formula converts Radiated Method to Conducted Method

dBm (conducted power) = dBuV/m +20*LOG D -104.77 - Gain (dBi)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(b)(3) Output Power

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Scan Time: 09:58:09
Tested By: Hieu Song Nguyenpham Sequence#: 31

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Support Equipment.				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Fundamental of the EUT

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: 558074 D01 DTS Meas Guidance v03r02 section 9.1.1

RBW=3MHz VBW=8MHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving. The EUT is ceiling-mounted equipment. There is only a requirement to measure two orthogonals.

Note:

Zigbee on TX

X axis- Direct to Antenna

Page 44 of 162 Report No.: 96813-12B

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
1	2404.628M	64.3	+28.6	+1.2	+2.6		+0.0	96.7	125.2	-28.5	Horiz
2	2439.424M	64.1	+28.7	+1.2	+2.6		+0.0	96.6	125.2	-28.6	Horiz
3	2439.424M	63.8	+28.7	+1.2	+2.6		+0.0	96.3	125.2	-28.9	Vert
4	2479.580M	63.0	+28.8	+1.2	+2.6		+0.0	95.6	125.2	-29.6	Horiz
5	2404.628M	62.5	+28.6	+1.2	+2.6		+0.0	94.9	125.2	-30.3	Vert
6	2479.580M	61.5	+28.8	+1.2	+2.6		+0.0	94.1	125.2	-31.1	Vert

Frequency (MHz)	Measured Power in Watt	Power Limit in Watt	Pass/Fail
2404.628			
Low Channel	1.4032E-03	1.00	Pass
(Horizontal)			
2404.628			
Low Channel	9.2709E-04	1.00	Pass
(Vertical)			
2439.424			
Middle Channel	1.3713E-03	1.00	Pass
(Horizontal)			
2439.424			
Middle Channel	1.2797E-03	1.00	Pass
(Vertical)			
2479.580			
High Channel	1.0892E-03	1.00	Pass
(Horizontal)			
2479.580			
High Channel	7.7112E-04	1.00	Pass
(Vertical)			

A formula converts Radiated Method to Conducted Method

dBm (conducted power) = dBuV/m +20*LOG D -104.77 - Gain (dBi)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(b)(3) Output Power

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Scan Time: 10:42:09
Tested By: Hieu Song Nguyenpham Sequence#: 34

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Fundamental of the EUT

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: 558074 D01 DTS Meas Guidance v03r02 section 9.1.1

RBW=3MHz VBW=8MHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving. The EUT is ceiling-mounted equipment. There is only a requirement to measure two orthogonals.

Note:

Zigbee on TX

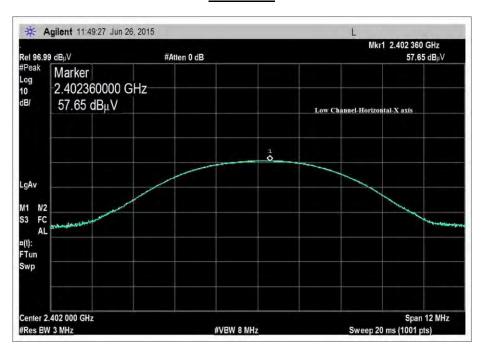
Y axis- Upward to Ceiling

Page 47 of 162 Report No.: 96813-12B

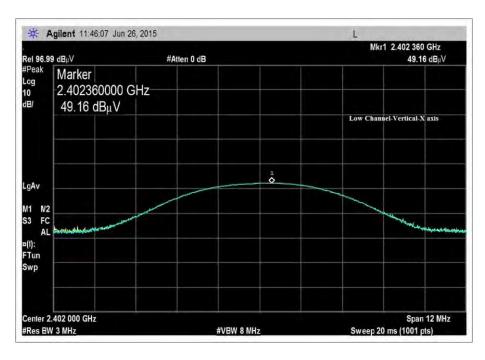
ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	;	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
1	2439.340M	62.2	+28.7	+1.2	+2.6		+0.0	94.7	125.2	-30.5	Horiz
2	2404.592M	61.9	+28.6	+1.2	+2.6		+0.0	94.3	125.2	-30.9	Horiz
3	2479.388M	61.0	+28.8	+1.2	+2.6		+0.0	93.6	125.2	-31.6	Vert
4	2439.340M	60.8	+28.7	+1.2	+2.6		+0.0	93.3	125.2	-31.9	Vert
5	2479.388M	59.7	+28.8	+1.2	+2.6		+0.0	92.3	125.2	-32.9	Horiz
6	2404.592M	59.7	+28.6	+1.2	+2.6		+0.0	92.1	125.2	-33.1	Vert

Frequency (MHz)	Measured Power in Watt	Power Limit in Watt	Pass/Fail
2404.592			
Low Channel	8.0746E-04	1.00	Pass
(Horizontal)			
2404.592			
Low Channel	4.8654E-04	1.00	Pass
(Vertical)			
2439.340			
Middle Channel	8.8536E-04	1.00	Pass
(Horizontal)			
2439.340			
Middle Channel	6.4139E-04	1.00	Pass
(Vertical)			
2479.388			
High Channel	5.0947E-04	1.00	Pass
(Horizontal)			
2479.388			
High Channel	6.8726E-04	1.00	Pass
(Vertical)			

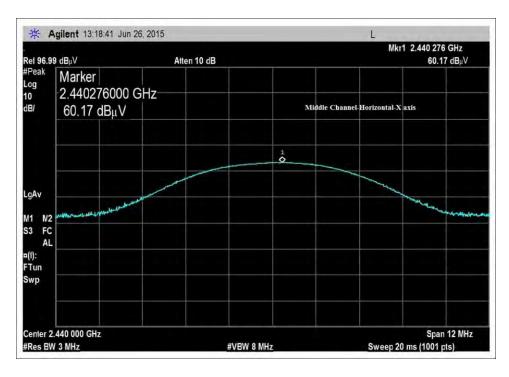

A formula converts Radiated Method to Conducted Method

dBm (conducted power) = dBuV/m +20*LOG D -104.77 – Gain (dBi)

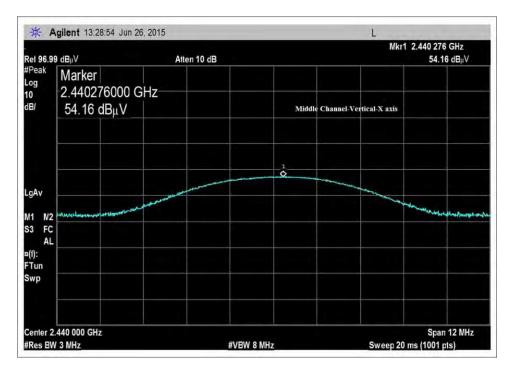


Test Plot(s)

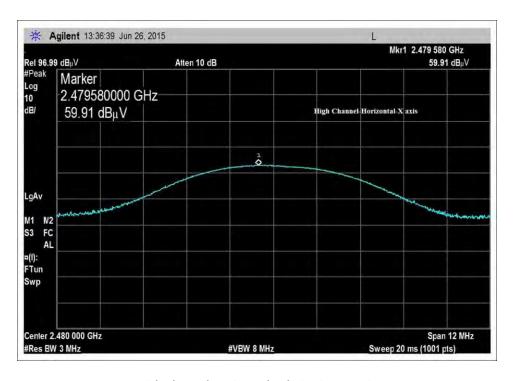
Bluetooth



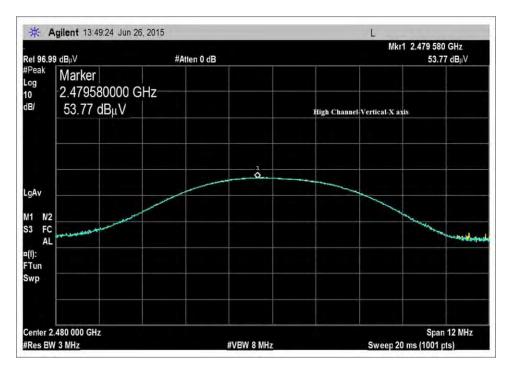
Low Channel-Horizontal Polarization, X-Axis



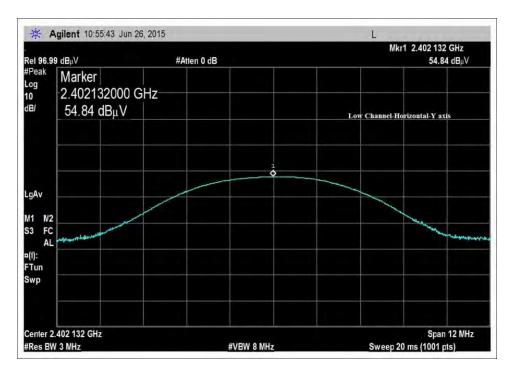
Low Channel-Vertical Polarization, X-Axis



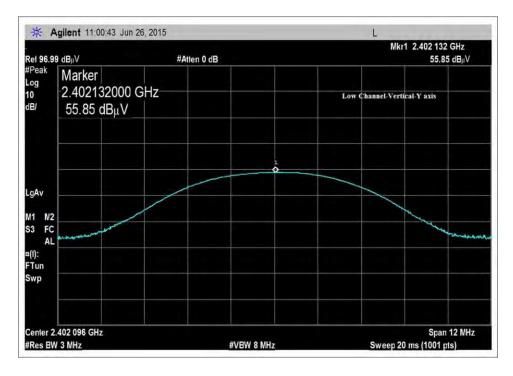
Middle Channel-Horizontal Polarization, X-Axis



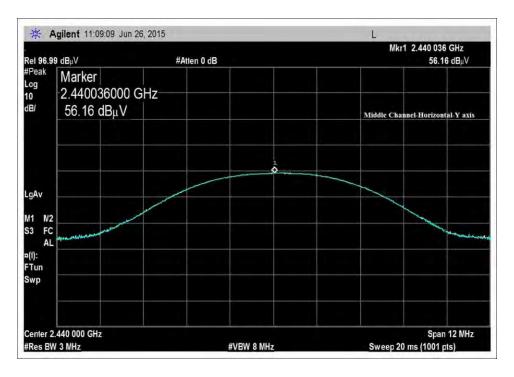
Middle Channel-Vertical Polarization, X-Axis



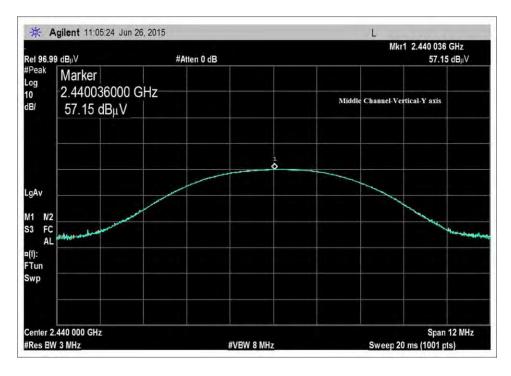
High Channel-Horizontal Polarization, X-Axis



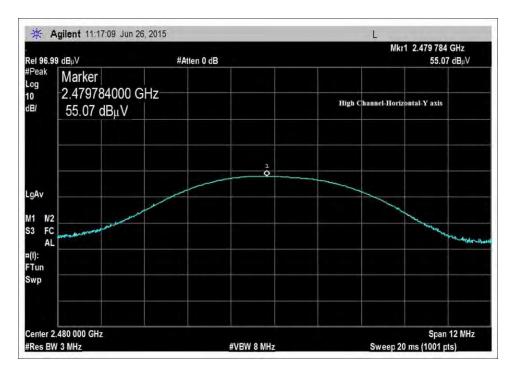
High Channel-Vertical Polarization, X-Axis



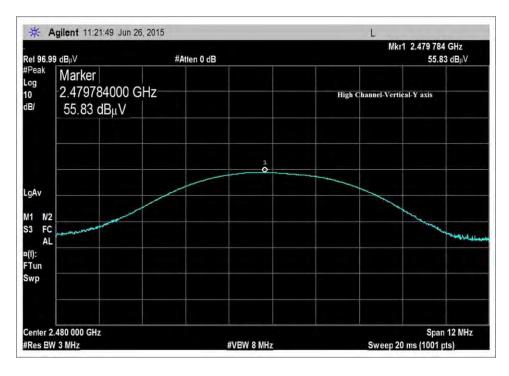
Low Channel-Horizontal Polarization, Y-Axis



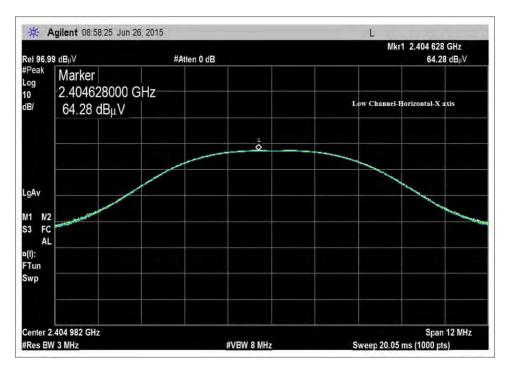
Low Channel-Vertical Polarization, Y-Axis

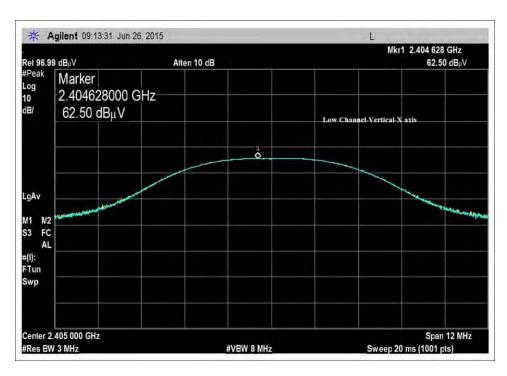


Middle Channel-Horizontal Polarization, Y-Axis

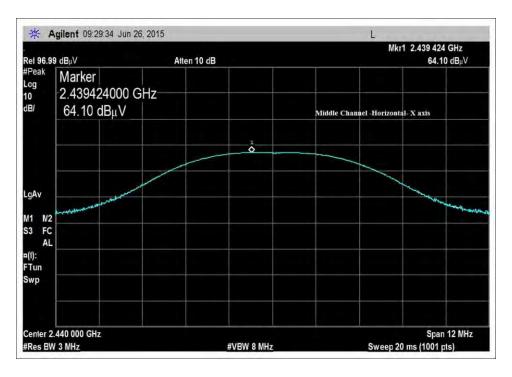


Middle Channel-Vertical Polarization, Y-Axis

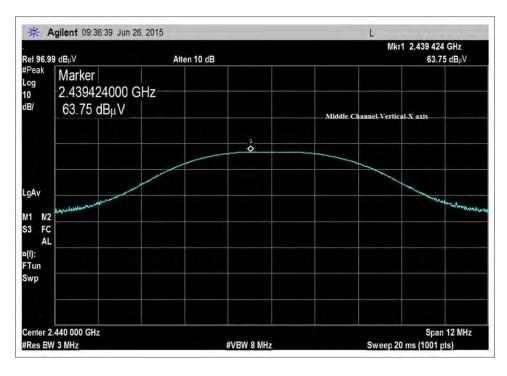

High Channel-Horizontal Polarization, Y-Axis


High Channel-Vertical Polarization, Y-Axis

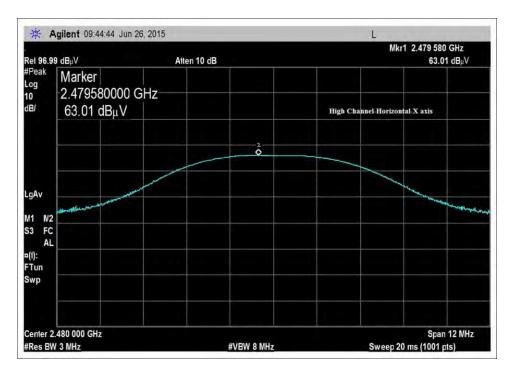
Zigbee



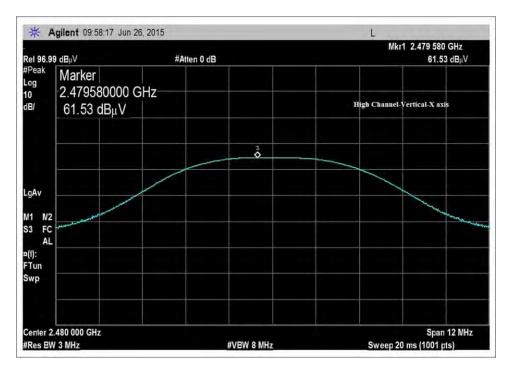
Low Channel-Horizontal Polarization, X Axis



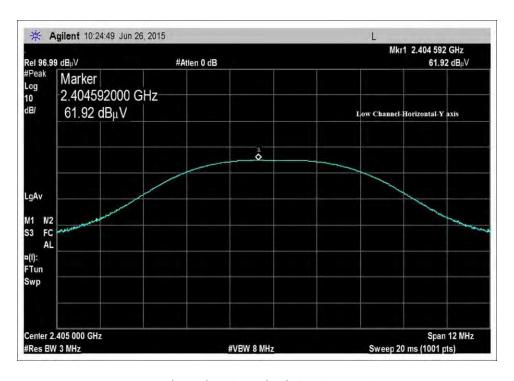
Low Channel-Vertical Polarization, X-Axis



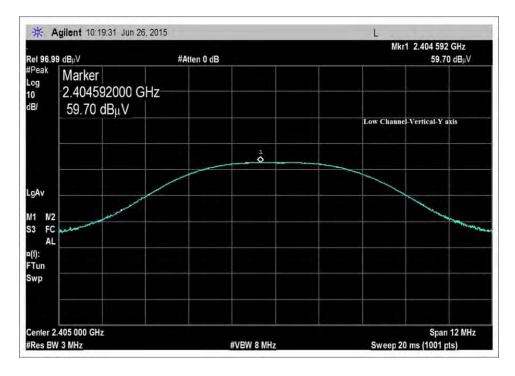
Middle Channel-Horizontal, X-Axis



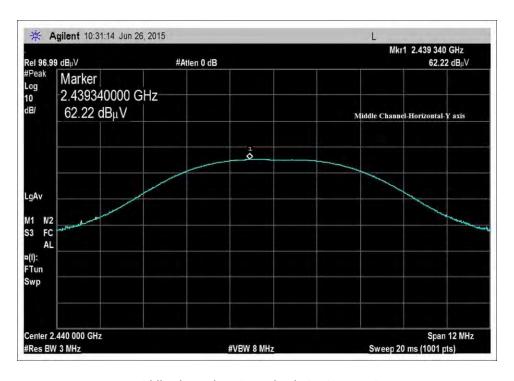
Middle Channel – Vertical Polarization, X-Axis



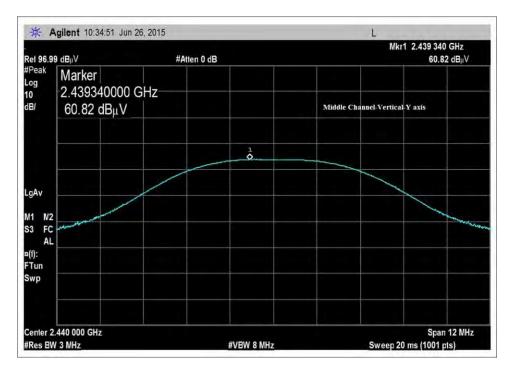
High Channel-Horizontal Polarization, X-Axis



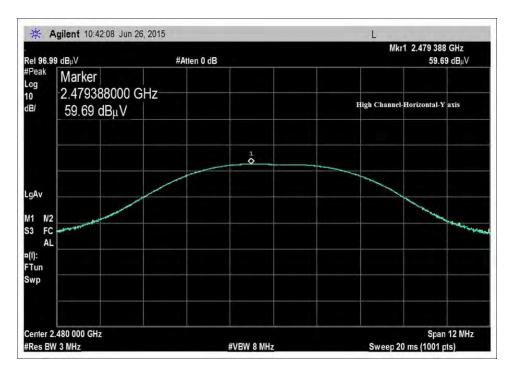
High Channel-Vertical Polarization, X-Axis



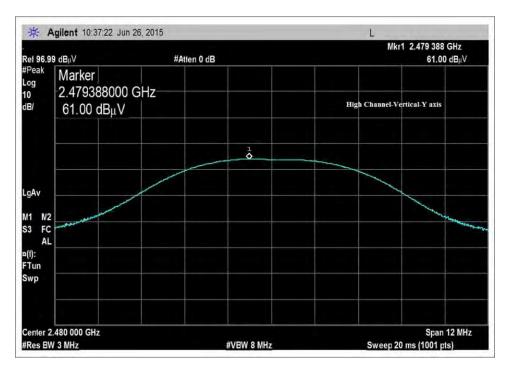
Low Channel-Horizontal Polarization, Y-Axis



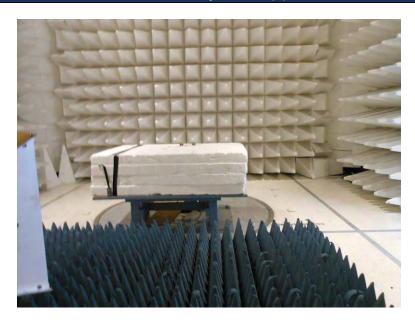
Low Channel-Vertical Polarization, Y-Axis

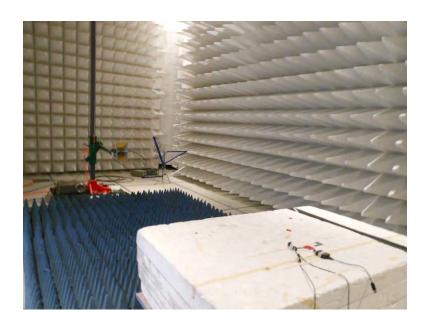


Middle Channel-Horizontal Polarization, Y-Axis



Middle Channel-Vertical Polarization, Y-Axis


High Channel-Horizontal Polarization, Y-Axis


High Channel-Vertical Polarization, Y-Axis

Test Setup Photo(s)

Front View

Back View

X-Axis

Y-Axis

15.247(e) Power Spectral Density

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)

Work Order #: 96813 Date: 6/26/2015

Test Type: Radiated Scan Time: 13:51:22

Tested By: Hieu Song Nguyenpham Sequence#: 37

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

Power Spectrum Density

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C, Relative Humidity: 39 %, Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi Method: KDB 558074 v03r02 section 10.2

RBW= 100kHz VBW= 300kHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: BLE on TX

X axis- Direct to Antenna is the worst orthogonal.

Page 64 of 162 Report No.: 96813-12B

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	st Distance	e: 3 Meters	S	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
1	2440.303M	59.2	+28.7	+1.2	+2.6		+0.0	91.7	103.2	-11.5	Horiz
2	2479.806M	59.0	+28.8	+1.2	+2.6		+0.0	91.6	103.2	-11.6	Horiz
3	2402.291M	57.1	+28.6	+1.2	+2.6		+0.0	89.5	103.2	-13.7	Horiz
4	2479.806M	52.9	+28.8	+1.2	+2.6		+0.0	85.5	103.2	-17.7	Vert
5	2440.303M	52.4	+28.7	+1.2	+2.6		+0.0	84.9	103.2	-18.3	Vert
6	2402.291M	48.1	+28.6	+1.2	+2.6		+0.0	80.5	103.2	-22.7	Vert

Frequency (MHz)	Measured Power in dBm/100kHz	Power Limit in dBm/3kHz	Pass/Fail
2402.291			
Low Channel	-5.729	8.00	Pass
(Horizontal)			
2402.291			
Low Channel	-14.729	8.00	Pass
(Vertical)			
2440.303			
Middle Channel	-4.129	8.00	Pass
(Horizontal)			
2440.303			
Middle Channel	-10.329	8.00	Pass
(Vertical)			
2479.806			
High Channel	-3.629	8.00	Pass
(Horizontal)			
2479.806			
High Channel	-9.729	8.00	Pass
(Vertical)			

A formula converts Radiated Method to Conducted Method

dBm (conducted power) = dBuV/m +20*LOG D -104.77 – Gain (dBi)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)
Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Scan Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 33

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Power Spectrum Density

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi Method: KDB 558074 v03r02 section 10.2

RBW=100kHz VBW=300kHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving

Note:

Zigbee on TX

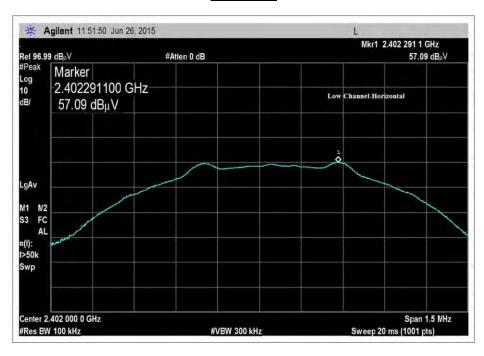
X axis- Direct to Antenna is the worst orthogonal

Page 67 of 162 Report No.: 96813-12B

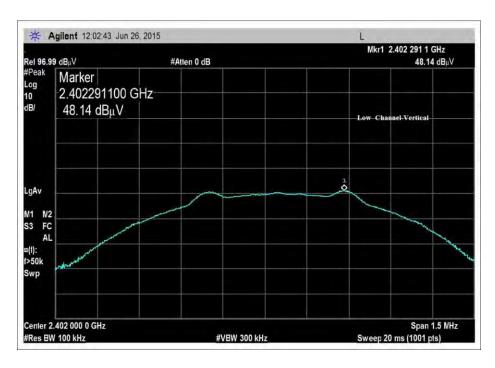
ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measurement Data:		Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
1	2439.512M	62.4	+28.7	+1.2	+2.6		+0.0	94.9	103.2	-8.3	Horiz
2	2404.510M	62.4	+28.6	+1.2	+2.6		+0.0	94.8	103.2	-8.4	Horiz
3	2439.512M	61.9	+28.7	+1.2	+2.6		+0.0	94.4	103.2	-8.8	Vert
4	2479.518M	61.1	+28.8	+1.2	+2.6		+0.0	93.7	103.2	-9.5	Horiz
5	2404.510M	60.7	+28.6	+1.2	+2.6		+0.0	93.1	103.2	-10.1	Vert
6	2479.518M	60.0	+28.8	+1.2	+2.6		+0.0	92.6	103.2	-10.6	Vert

Frequency (MHz)	Measured Power in dBm/100kHz	Power Limit in dBm/3kHz	Pass/Fail
Low Channel (Horizontal)	-0.429	8.00	Pass
Low Channel (Vertical)	-2.129	8.00	Pass
Middle Channel (Horizontal)	-0.329	8.00	Pass
Middle Channel (Vertical)	-0.829	8.00	Pass
High Channel (Horizontal)	-1.529	8.00	Pass
High Channel (Vertical)	-2.629	8.00	Pass


A formula converts Radiated Method to Conducted Method

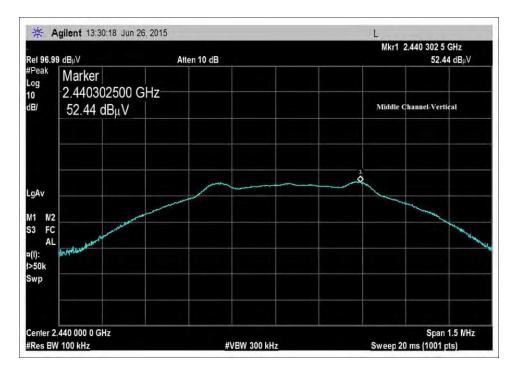
dBm (conducted power) = dBuV/m +20*LOG D -104.77 - Gain (dBi)



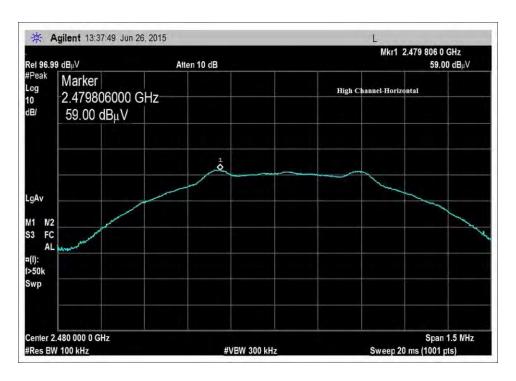
Test Plot(s)

Bluetooth

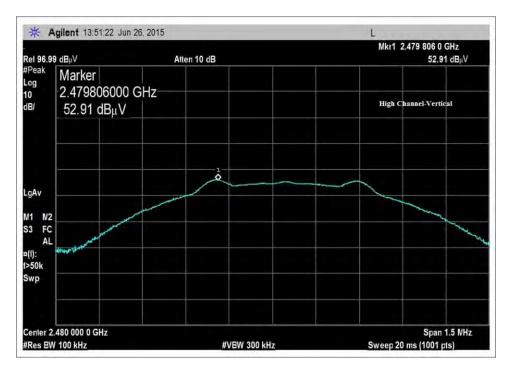
Low Channel-Horizontal Polarization



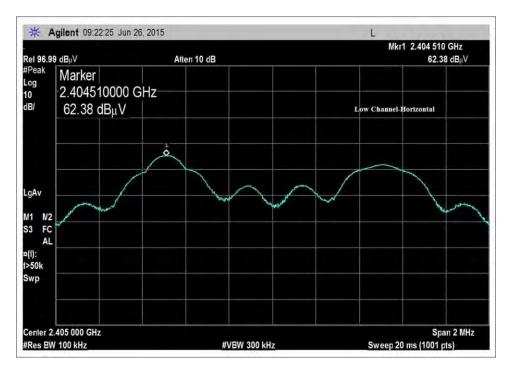
Low Channel-Vertical Polarization

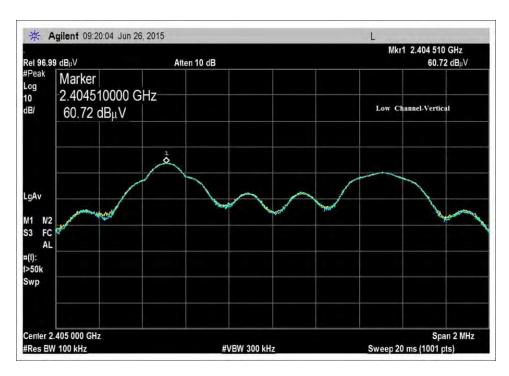


Middle Channel-Horizontal Polarization

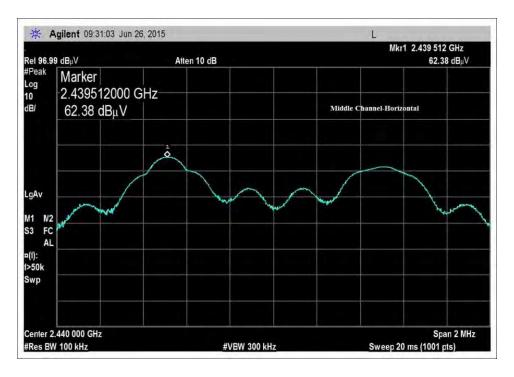


Middle Channel-Vertical Polarization

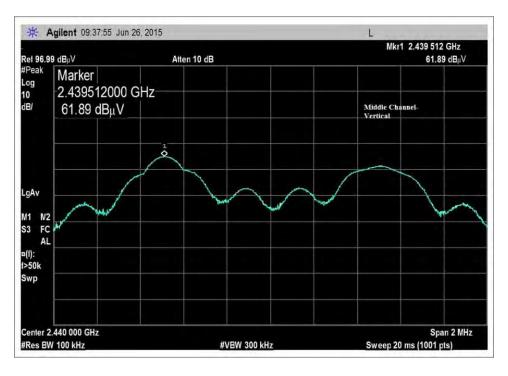

High Channel-Horizontal Polarization


High Channel-Vertical Polarization

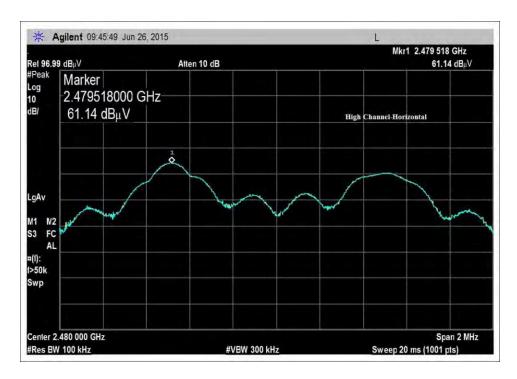
Zigbee



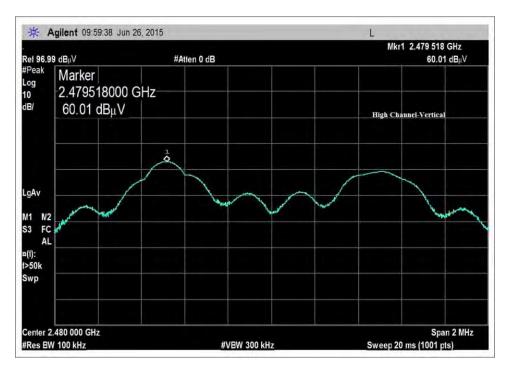
Low Channel-Horizontal Polarization



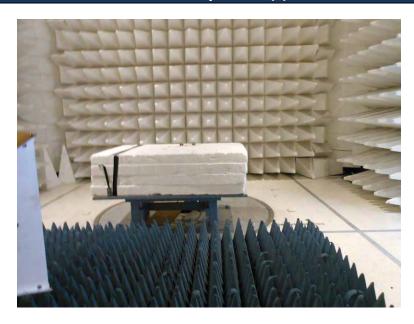
Low Channel-Vertical Polarization

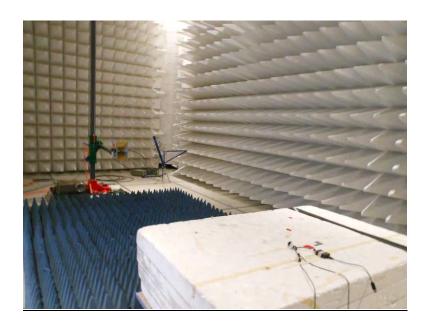


Middle Channel-Horizontal Polarization



Middle Channel-Vertical Polarization


High Channel-Horizontal Polarization



High Channel-Vertical Polarization

Test Setup Photo(s)

15.247(d) RF Conducted Emissions & Band Edge

Note: The EUT has an integral antenna.

15.247(d) Radiated Emissions & Band Edge

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/2/2015
Test Type: Radiated Scan Time: 09:46:37
Tested By: Hieu Song Nguyenpham Sequence#: 110

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Frequency Emission Frequency Range: 9kHz to 1000MHz Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

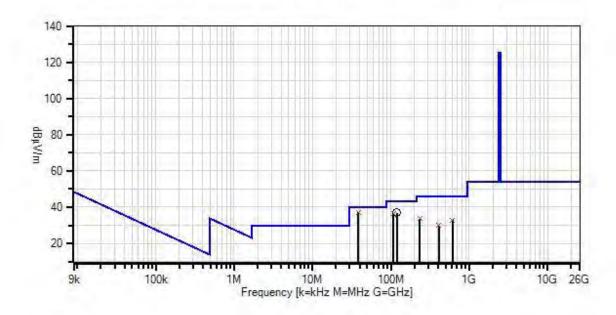
Frequency range of measurement = 9 kHz - 1 GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

Low Channel

Page 78 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 110 Date: 7/2/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

- Readings
 × QP Readings
- ▼ Ambient
 - 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings
 Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	38.431M	51.0	-29.3	+14.5	+0.5	+0.2	+0.0	37.1	40.0	-2.9	Vert
	QP		+0.2								
^	38.431M	60.5	-29.3	+14.5	+0.5	+0.2	+0.0	46.6	40.0	+6.6	Vert
			+0.2								
3	120.044M	52.5	-29.1	+11.8	+1.0	+0.3	+0.0	36.9	43.5	-6.6	Vert
			+0.4								
4		53.1	-29.1	+10.9	+0.9	+0.2	+0.0	36.4	43.5	-7.1	Vert
	QP		+0.4								
^	108.084M	59.4	-29.1	+10.9	+0.9	+0.2	+0.0	42.7	43.5	-0.8	Vert
			+0.4								
6		48.0	-28.5	+11.7	+1.4	+0.5	+0.0	33.7	46.0	-12.3	Horiz
	QP		+0.6								
^	233.561M	61.5	-28.5	+11.7	+1.4	+0.5	+0.0	47.2	46.0	+1.2	Horiz
			+0.6								
8	010.2001.1	38.3	-29.8	+19.7	+2.5	+1.0	+0.0	32.8	46.0	-13.2	Horiz
	QP		+1.1								
^	615.296M	52.1	-29.8	+19.7	+2.5	+1.0	+0.0	46.6	46.0	+0.6	Horiz
			+1.1								
10	408.553M	38.8	-29.1	+16.6	+2.0	+0.7	+0.0	29.9	46.0	-16.1	Horiz
	QP		+0.9								
^	408.553M	58.7	-29.1	+16.6	+2.0	+0.7	+0.0	49.8	46.0	+3.8	Horiz
			+0.9								

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 09:05:23
Tested By: Hieu Song Nguyenpham Sequence#: 72

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

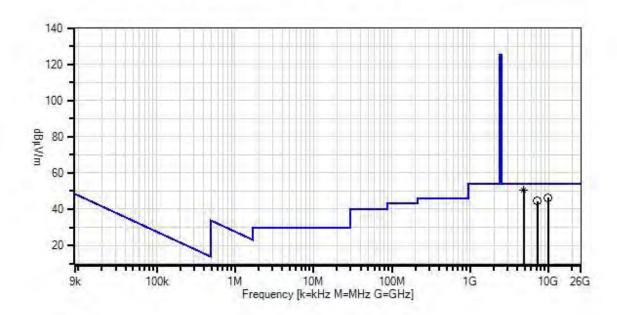
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

Low Channel

Page 81 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 72 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
× QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T3	AN03114	Preamp	AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143	Cable	32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
Т6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
T7	AN03309 High Pass Filter		11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

1	Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
	#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6	T7						
		MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	4804.616M	65.4	+33.2	+1.7	-57.8	+2.9	+0.0	50.3	54.0	-3.7	Horiz
		Ave		+3.6	+1.1	+0.2						
	^	4804.616M	71.6	+33.2	+1.7	-57.8	+2.9	+0.0	56.5	54.0	+2.5	Horiz
				+3.6	+1.1	+0.2						
	3	9834.933M	50.6	+39.2	+2.4	-57.6	+4.3	+0.0	46.2	54.0	-7.8	Horiz
				+5.4	+1.7	+0.2						
	4	7209.860M	55.3	+35.9	+2.0	-58.3	+3.6	+0.0	44.5	54.0	-9.5	Horiz
				+4.5	+1.3	+0.2						

Page 83 of 162 Report No.: 96813-12B

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/2/2015
Test Type: Radiated Scan Time: 10:24:09
Tested By: Hieu Song Nguyenpham Sequence#: 113

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 9kHz to 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

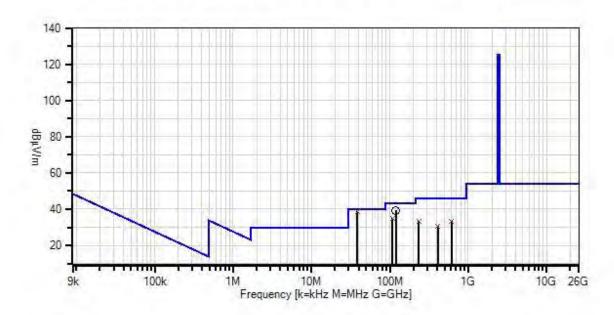
Frequency range of measurement = 9 kHz- 1GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

Middle Channel

Page 84 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 113 Date: 7/2/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	38.513M	52.6	-29.3	+14.5	+0.5	+0.2	+0.0	38.7	40.0	-1.3	Vert
	QP		+0.2								
^	38.513M	60.0	-29.3	+14.5	+0.5	+0.2	+0.0	46.1	40.0	+6.1	Vert
			+0.2								
3	120.139M	54.8	-29.1	+11.8	+1.0	+0.3	+0.0	39.2	43.5	-4.3	Vert
			+0.4								
4	108.043M	51.6	-29.1	+10.9	+0.9	+0.2	+0.0	34.9	43.5	-8.6	Vert
	QP		+0.4								
^	108.043M	58.5	-29.1	+10.9	+0.9	+0.2	+0.0	41.8	43.5	-1.7	Vert
			+0.4								
6	615.212M	38.9	-29.8	+19.7	+2.5	+1.0	+0.0	33.4	46.0	-12.6	Horiz
	QP		+1.1								
^	615.212M	51.6	-29.8	+19.7	+2.5	+1.0	+0.0	46.1	46.0	+0.1	Horiz
			+1.1								
8	233.589M	47.7	-28.5	+11.7	+1.4	+0.5	+0.0	33.4	46.0	-12.6	Horiz
	QP		+0.6								
^	233.589M	61.8	-28.5	+11.7	+1.4	+0.5	+0.0	47.5	46.0	+1.5	Horiz
			+0.6								
10	408.536M	39.6	-29.1	+16.6	+2.0	+0.7	+0.0	30.7	46.0	-15.3	Horiz
	QP		+0.9								
^	408.536M	57.9	-29.1	+16.6	+2.0	+0.7	+0.0	49.0	46.0	+3.0	Horiz
			+0.9								

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 09:53:15
Tested By: Hieu Song Nguyenpham Sequence#: 75

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

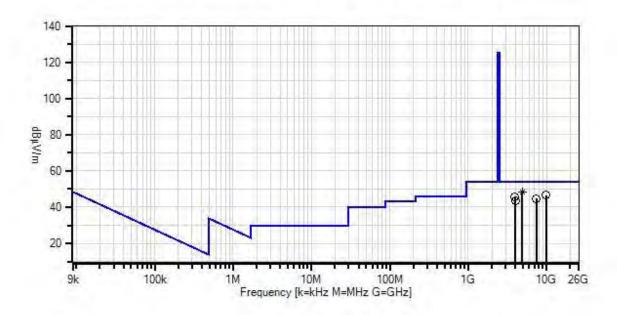
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

Middle Channel

Page 87 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 75 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

- Readings

 × QP Readings
- ▼ Ambient
 - 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- * Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T3	3 AN03114 Preamp AMF-7 001018		AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143 Cable		32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
T6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
T7	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4880.562M	62.9	+33.4	+1.7	-57.6	+2.9	+0.0	48.2	54.0	-5.8	Horiz
	Ave		+3.6	+1.1	+0.2						
^	4880.562M	69.5	+33.4	+1.7	-57.6	+2.9	+0.0	54.8	54.0	+0.8	Horiz
			+3.6	+1.1	+0.2						
3	9813.845M	51.0	+39.1	+2.4	-57.6	+4.3	+0.0	46.5	54.0	-7.5	Horiz
			+5.4	+1.7	+0.2						
4	3923.282M	63.5	+32.5	+1.5	-58.9	+2.5	+0.0	45.6	54.0	-8.4	Vert
			+3.2	+1.0	+0.3						
5	7384.302M	54.4	+36.6	+2.1	-58.3	+3.6	+0.0	44.6	54.0	-9.4	Horiz
			+4.6	+1.4	+0.2						
6	4015.237M	61.6	+32.3	+1.5	-59.0	+2.6	+0.0	43.5	54.0	-10.5	Vert
			+3.2	+1.0	+0.3						

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/2/2015
Test Type: Radiated Scan Time: 10:51:08
Tested By: Hieu Song Nguyenpham Sequence#: 116

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 9kHz to 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

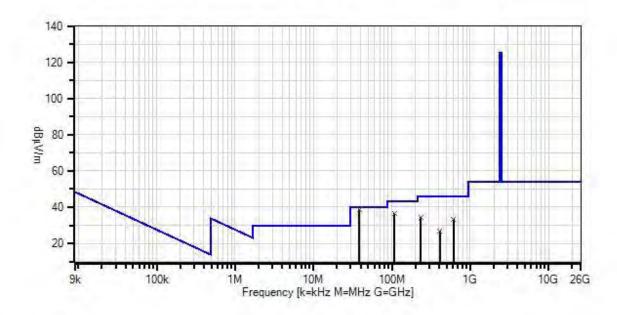
Frequency range of measurement = 9 kHz- 1GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

High Channel

Page 90 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 116 Date: 7/2/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table		dBμV/m	dB	Ant
1	38.513M	52.7	-29.3	+14.5	+0.5	+0.2	+0.0	38.8	40.0	-1.2	Vert
	QP		+0.2								
^	38.513M	60.2	-29.3	+14.5	+0.5	+0.2	+0.0	46.3	40.0	+6.3	Vert
			+0.2								
3	108.083M	53.4	-29.1	+10.9	+0.9	+0.2	+0.0	36.7	43.5	-6.8	Vert
	QP		+0.4								
^	108.083M	58.7	-29.1	+10.9	+0.9	+0.2	+0.0	42.0	43.5	-1.5	Vert
			+0.4								
5	233.688M	48.9	-28.5	+11.7	+1.4	+0.5	+0.0	34.6	46.0	-11.4	Horiz
	QP		+0.6								
^	233.688M	61.9	-28.5	+11.7	+1.4	+0.5	+0.0	47.6	46.0	+1.6	Horiz
			+0.6								
7	615.159M	38.8	-29.8	+19.7	+2.5	+1.0	+0.0	33.3	46.0	-12.7	Horiz
(QP		+1.1								
^	615.159M	50.8	-29.8	+19.7	+2.5	+1.0	+0.0	45.3	46.0	-0.7	Horiz
			+1.1								
9	409.099M	35.7	-29.1	+16.6	+2.0	+0.7	+0.0	26.8	46.0	-19.2	Vert
	QP		+0.9								
^	409.099M	54.7	-29.1	+16.6	+2.0	+0.7	+0.0	45.8	46.0	-0.2	Vert
			+0.9								

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 10:26:17
Tested By: Hieu Song Nguyenpham Sequence#: 78

Software: EMITest 5.02.00

Equipment Tested:

Equipment Testeur				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

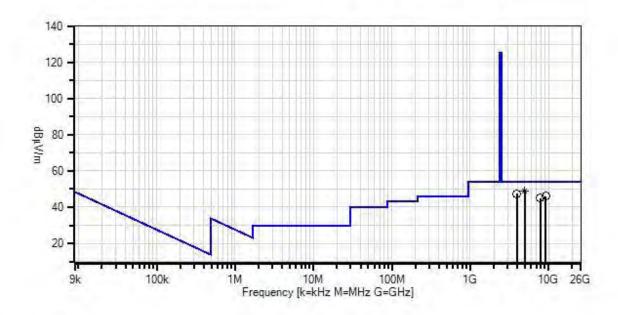
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

High Channel

Page 93 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 78 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings
 Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T3	AN03114 Preamp AMF-7D- 00101800		AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143 Cable		32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
T6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
T7	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

Measi	irement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4959.570M	63.3	+33.5	+1.7	-57.3	+2.9	+0.0	49.0	54.0	-5.0	Horiz
	Ave		+3.6	+1.1	+0.2						
^	4959.570M	66.6	+33.5	+1.7	-57.3	+2.9	+0.0	52.3	54.0	-1.7	Horiz
			+3.6	+1.1	+0.2						
3	3955.591M	65.3	+32.4	+1.5	-58.9	+2.5	+0.0	47.3	54.0	-6.7	Horiz
			+3.2	+1.0	+0.3						
4	9156.593M	50.8	+38.2	+2.3	-56.6	+4.2	+0.0	46.0	54.0	-8.0	Horiz
			+5.2	+1.6	+0.3						
5	7854.020M	53.9	+36.6	+2.2	-57.8	+3.8	+0.0	45.0	54.0	-9.0	Horiz
			+4.7	+1.4	+0.2						

Page 95 of 162 Report No.: 96813-12B

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 15:07:47
Tested By: Hieu Song Nguyenpham Sequence#: 93

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Support Equipment				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 9kHz to 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

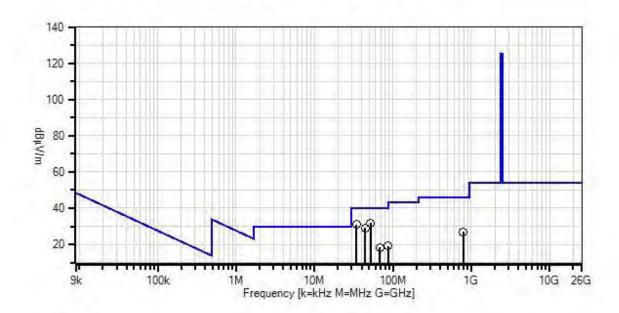
Frequency range of measurement = 9 kHz-1GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

Low Channel

Page 96 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 93 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings
 Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measi	irement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	51.968M	51.6	-29.3	+8.5	+0.6	+0.2	+0.0	31.8	40.0	-8.2	Vert
			+0.2								
2	34.166M	42.5	-29.3	+16.9	+0.5	+0.2	+0.0	31.0	40.0	-9.0	Vert
			+0.2								
3	44.561M	45.7	-29.3	+11.6	+0.6	+0.3	+0.0	29.1	40.0	-10.9	Vert
			+0.2								
4	797.414M	29.0	-29.5	+21.9	+2.9	+1.2	+0.0	26.8	46.0	-19.2	Horiz
			+1.3								
5	87.859M	38.3	-29.2	+8.7	+0.8	+0.3	+0.0	19.2	40.0	-20.8	Horiz
			+0.3								
6	67.918M	40.1	-29.3	+6.2	+0.7	+0.2	+0.0	18.2	40.0	-21.8	Horiz
			+0.3								

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 11:03:42
Tested By: Hieu Song Nguyenpham Sequence#: 81

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

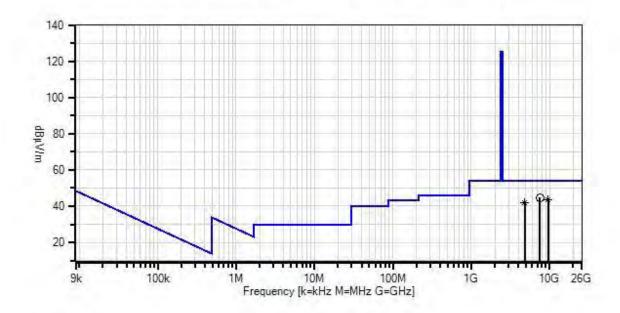
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

Low Channel

Page 99 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 81 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

 Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T3	AN03114	Preamp	AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143	Cable	32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
T6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
T7	7 AN03309 High Pass Filter		11SH10- 3000/T10000- O/O	4/2/2016	
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

Measuren	nent Data:	Re	Reading listed by margin.				Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1 74	196.139M	54.5	+36.6	+2.1	-58.3	+3.7	+0.0	44.8	54.0	-9.2	Horiz
			+4.6	+1.4	+0.2						
2 96	518.035M	48.2	+38.6	+2.4	-57.2	+4.3	+0.0	43.4	54.0	-10.6	Horiz
Av	re e		+5.3	+1.6	+0.2						
^ 96	518.035M	57.5	+38.6	+2.4	-57.2	+4.3	+0.0	52.7	54.0	-1.3	Horiz
			+5.3	+1.6	+0.2						
4 48	311.028M	57.2	+33.2	+1.7	-57.8	+2.9	+0.0	42.1	54.0	-11.9	Horiz
Av	ve .		+3.6	+1.1	+0.2						
^ 48	311.028M	64.5	+33.2	+1.7	-57.8	+2.9	+0.0	49.4	54.0	-4.6	Horiz
			+3.6	+1.1	+0.2						

Page 101 of 162 Report No.: 96813-12B

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 15:31:24
Tested By: Hieu Song Nguyenpham Sequence#: 96

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 9kHz to 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

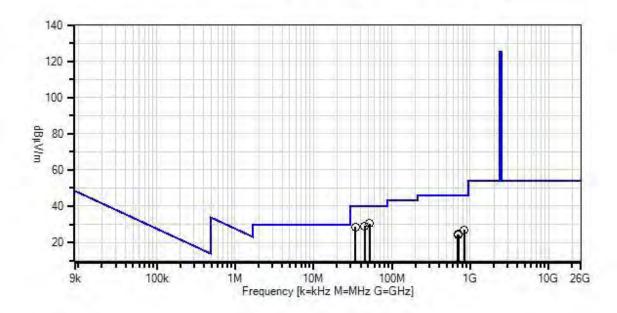
Frequency range of measurement = 9 kHz- 1GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

Middle Channel

Page 102 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 96 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

 Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852 Biconilog Antenna		CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

4	Measur	rement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters		
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5								
		MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	52.305M	50.2	-29.3	+8.4	+0.6	+0.2	+0.0	30.3	40.0	-9.7	Vert
				+0.2								
	2	45.066M	45.9	-29.3	+11.4	+0.6	+0.3	+0.0	29.1	40.0	-10.9	Vert
				+0.2								
	3	34.503M	40.3	-29.3	+16.7	+0.5	+0.2	+0.0	28.6	40.0	-11.4	Vert
				+0.2								
	4	837.114M	28.7	-29.4	+22.4	+3.0	+1.0	+0.0	27.0	46.0	-19.0	Horiz
				+1.3								
	5	698.748M	28.7	-29.7	+20.5	+2.8	+1.0	+0.0	24.5	46.0	-21.5	Horiz
				+1.2								
	6	703.419M	28.3	-29.7	+20.6	+2.9	+1.0	+0.0	24.3	46.0	-21.7	Horiz
				+1.2								

Page 104 of 162 Report No.: 96813-12B

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 11:25:14
Tested By: Hieu Song Nguyenpham Sequence#: 84

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

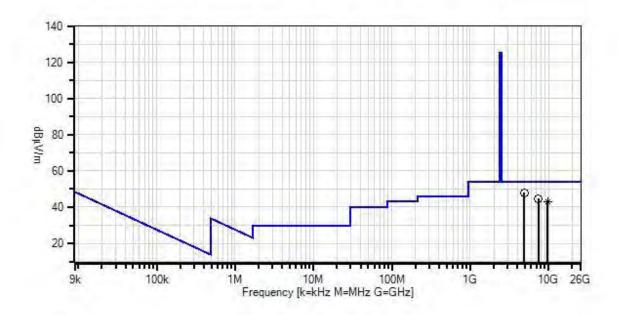
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

Middle Channel

Page 105 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 84 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
Т3	AN03114	Preamp	AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143	Cable	32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
Т6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
Т7	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

4	Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Τe	est Distance	e: 3 Meters	1	
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6	T7						
		MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
Γ	1	4878.805M	62.7	+33.4	+1.7	-57.6	+2.9	+0.0	48.0	54.0	-6.0	Horiz
				+3.6	+1.1	+0.2						
	2	7394.243M	54.4	+36.6	+2.1	-58.3	+3.7	+0.0	44.7	54.0	-9.3	Vert
				+4.6	+1.4	+0.2						
Γ	3	9762.150M	47.9	+39.0	+2.4	-57.6	+4.3	+0.0	43.2	54.0	-10.8	Horiz
		Ave		+5.4	+1.6	+0.2						
Γ	^	9762.150M	57.0	+39.0	+2.4	-57.6	+4.3	+0.0	52.3	54.0	-1.7	Horiz
				+5.4	+1.6	+0.2						

Page 107 of 162 Report No.: 96813-12B

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 15:54:10
Tested By: Hieu Song Nguyenpham Sequence#: 99

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 9kHz to 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

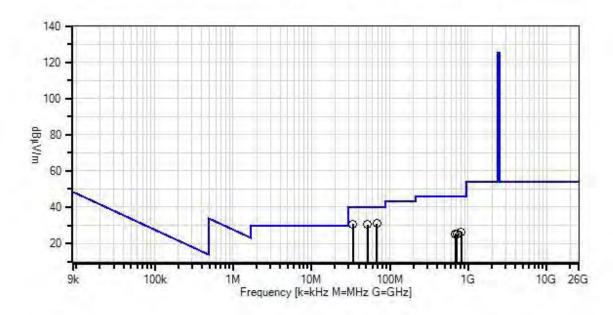
Frequency range of measurement = 9 kHz- 1GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

High Channel

Page 108 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 99 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

 Average Readings Software Version: 5.02.00

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

	Measur	rement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters		
ſ	#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
				T5								
		MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	68.507M	52.8	-29.3	+6.2	+0.7	+0.2	+0.0	30.9	40.0	-9.1	Vert
				+0.3								
	2	33.956M	42.0	-29.3	+17.0	+0.5	+0.2	+0.0	30.6	40.0	-9.4	Vert
				+0.2								
	3	51.884M	50.3	-29.3	+8.5	+0.6	+0.2	+0.0	30.5	40.0	-9.5	Vert
				+0.2								
Ī	4	821.935M	28.3	-29.4	+22.2	+3.0	+1.1	+0.0	26.5	46.0	-19.5	Horiz
				+1.3								
Ī	5	691.743M	29.5	-29.7	+20.4	+2.8	+1.1	+0.0	25.3	46.0	-20.7	Horiz
				+1.2								
Ī	6	715.095M	28.9	-29.6	+20.7	+2.9	+1.0	+0.0	25.1	46.0	-20.9	Horiz
				+1.2								

Page 110 of 162 Report No.: 96813-12B

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 11:49:54
Tested By: Hieu Song Nguyenpham Sequence#: 87

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

High Channel

Page 111 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 87 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.02.00

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T3	AN03114	Preamp	AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143	Cable	32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
T6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
T7	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

Mea	surement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 4959.643M	62.5	+33.5	+1.7	-57.3	+2.9	+0.0	48.2	54.0	-5.8	Horiz
			+3.6	+1.1	+0.2						
	2 7441.463M	55.6	+36.6	+2.1	-58.2	+3.7	+0.0	46.0	54.0	-8.0	Horiz
			+4.6	+1.4	+0.2						
	3 9917.927M	48.0	+39.5	+2.4	-57.7	+4.3	+0.0	43.8	54.0	-10.2	Horiz
	Ave		+5.4	+1.7	+0.2						
	^ 9917.927M	56.3	+39.5	+2.4	-57.7	+4.3	+0.0	52.1	54.0	-1.9	Horiz
			+5.4	+1.7	+0.2						

Page 113 of 162 Report No.: 96813-12B

Band Edge

Test Conditions/Setup

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc. Specification: Band edge

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI	3115	1/23/2013	1/23/2015
		C63.5			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

Band edge set up

Application: Putty version 0.64 for ZigBee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi Method: KDB 558074 v03r02 section 13.2

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: BLE on TX Mode

Page 114 of 162 Report No.: 96813-12B

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc. Specification: Band edge

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI C63.5	3115	1/23/2013	1/23/2015
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Band edge set up

Application: Putty version 0.64 for ZigBee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

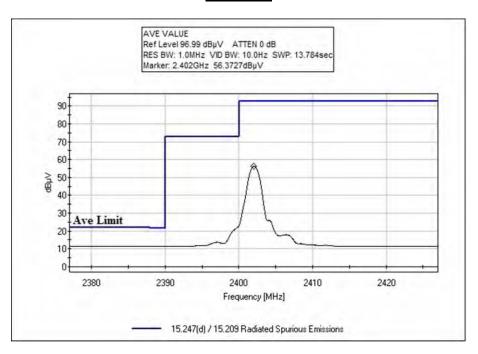
Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

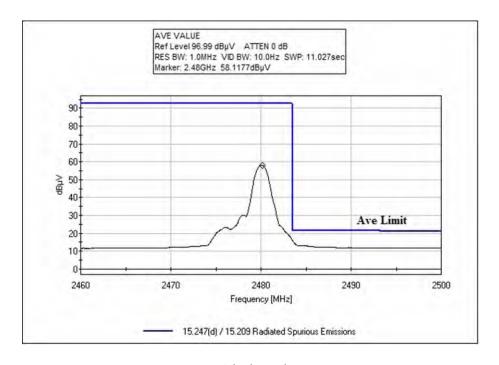
Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi Method: KDB 558074 v03r02 section 13.2

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

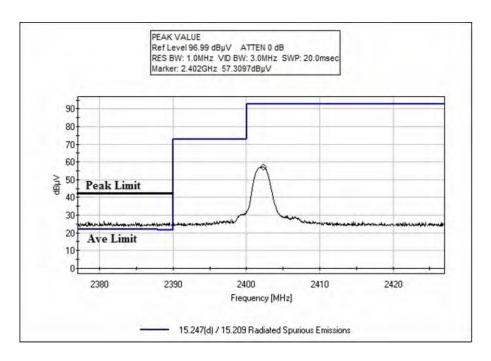

Note: Zigbee on TX Mode

Page 115 of 162 Report No.: 96813-12B

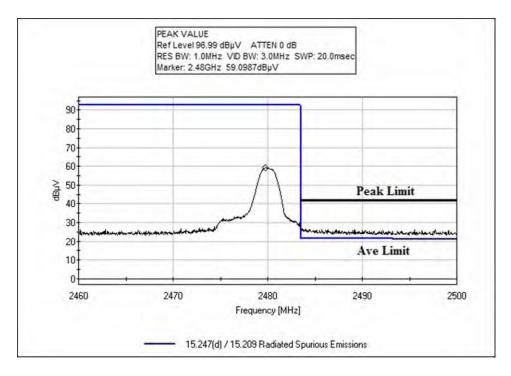


Test Data

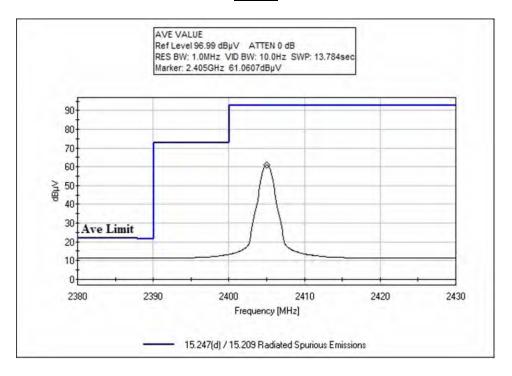
Bluetooth

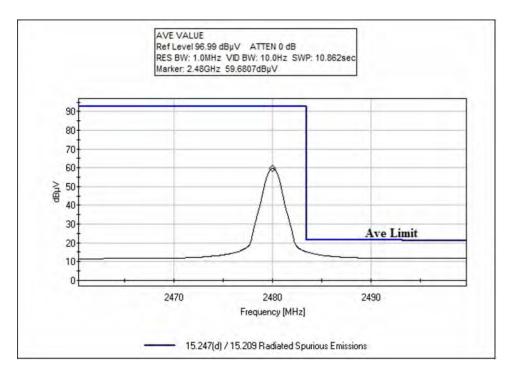


Low Channel

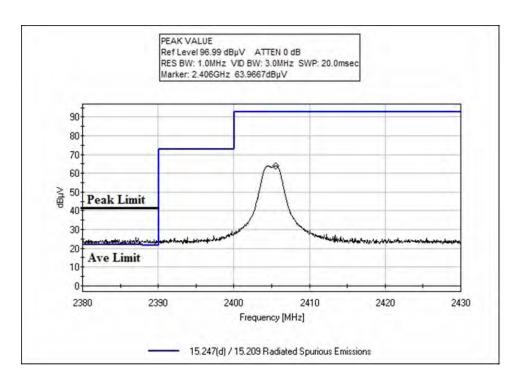


High Channel

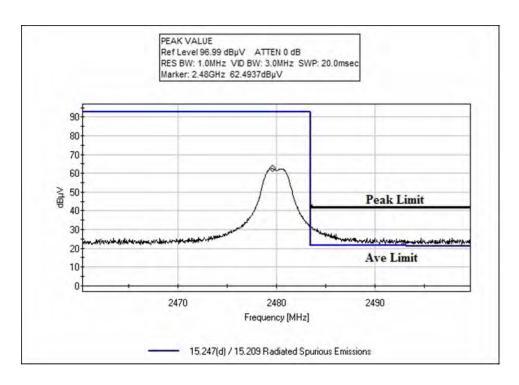

Low Channel


High Channel

Zigbee

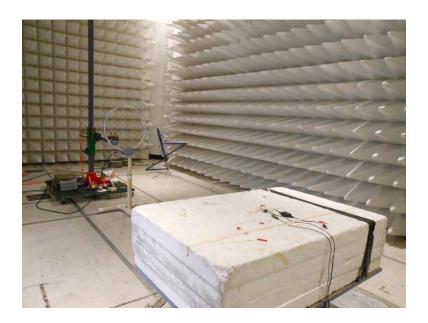


Low Channel

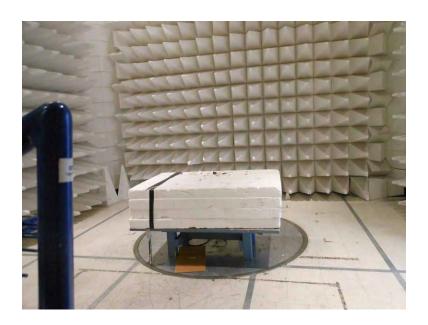


High Channel

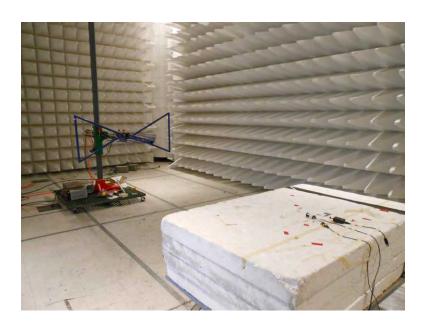
Low Channel


High Channel

Test Setup Photo(s)

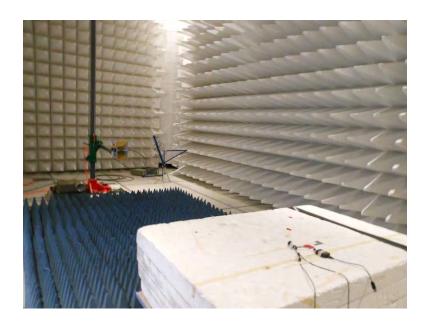


Front View, 9kHz-30MHz



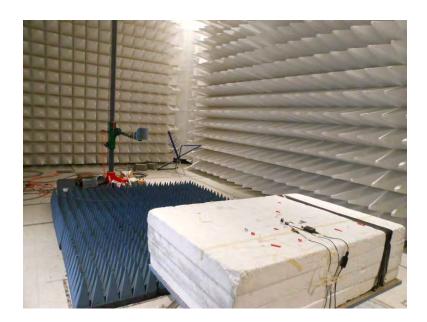
Back View, 9kHz-30MHz

Front View, 30MHz-1GHz

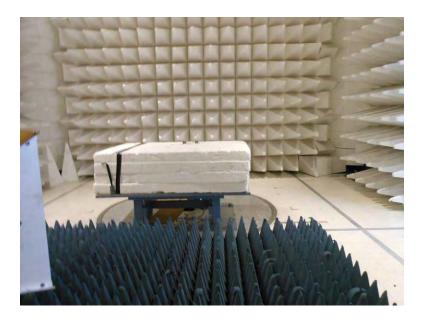


Back View, 30MHz-1GHz

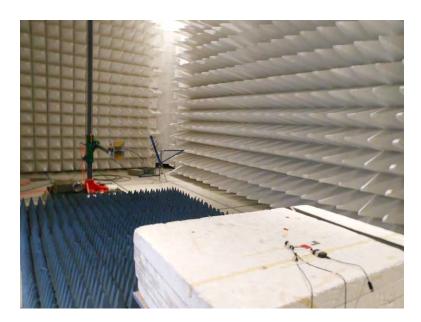
Front View, 1-12GHz



Back View, 1-12GHz



Front View, 12-25GHz



Back View, 12-25GHz

Front View, Band Edge

Back View, Band Edge

APPENDIX A: Additional Model Test Data

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02
EMITest Immunity	5.03.02

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Fremont	US0082	SL2-IN-E-1148R	3082B-1	958979	A-0149

Page 125 of 162 Report No.: 96813-12B

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Test Procedure	Description	Modifications*	Results
15.31e	Voltage Variations	NA	NP
15.207	AC Conducted Emissions	NA	NP
15.247(a)(2)	6dB Bandwidth	NA	NP
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	NP
15.247(d)	5.247(d) RF Conducted Emissions & Band Edge		NA
15.247(d)	Radiated Spurious Emissions	NA	Pass

NA = Not applicable.

NA = Not applicable because the EUT has an integral antenna.

NP = Test not performed.

Modifications* During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions			
No modifications were made during testing.			

^{*}Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

•	Summary of Conditions
	None

Page 126 of 162 Report No.: 96813-12B

EQUIPMENT UNDER TEST (EUT)

The following model has been tested by CKC Laboratories: **CS-D2**

The manufacturer states that the following additional model is identical electrically to the one which was tested, or any difference between them does not affect their EMC characteristics, and therefore they meet the level of testing equivalent to the tested models.

FS-D22

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 3

Equipment Tested:

Device	Manufacturer	Model #	S/N
Compact Sensor	Enlighted, Inc.	FS-D22	01

Support Equipment:

TI TI			
Device	Manufacturer	Model #	S/N
Communication Board	ATMEL	None	NA
Cebal Controller Devices	Texas Instruments	CC Debugger	NA
AC/ DC Adaptor for Laptop	Dell	HA65NM130	CN-06TFFF-75661-53L-
			01ZO-A01
Laptop	Dell	E5450	36810358094
DC Power Supply for EUT	Tektronix	CPS250	CPS-250TW18988

Page 127 of 162 Report No.: 96813-12B

FCC PART 15 SUBPART C

15.247(b)(3) Output Power

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(b) Power Output (2400-2483.5 MHz DTS)

Work Order #: 96813 Date: 4/15/2016
Test Type: Radiated Scan Time: 10:51:07
Tested By: D. Bertran Sequence#: 2

Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 3

Support Equipment:

Device Manufacturer Model # S/N
Configuration 3

Test Conditions / Notes:

Fundamental of the EUT

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 20.6°C Humidity: 50 %

Atmospheric Pressure: 101.6 kPa

High Clock: 16MHz

Transmitting operating frequency= 2.4GHz Band

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: 558074 D01 DTS Meas Guidance v03r02 section 9.1.1

RBW=3MHz VBW=8MHz

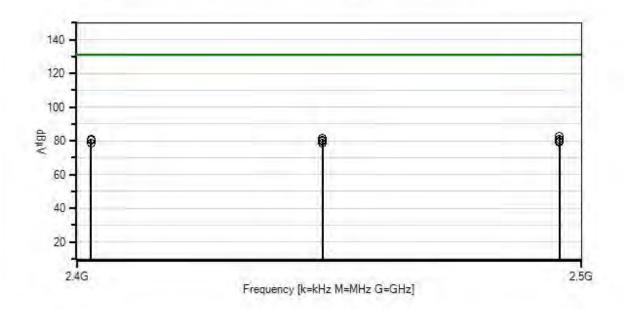
The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving

Note: BLE on TX

X axis- Direct to Antenna

Y axis- Direct to Ceiling

Transmitting operating frequency for BLE= 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel).


Transmitting operating frequency for Zigbee= 2405MHz (Low Channel), 2440MHz (Middle Channel),

2480MHz (High Channel).

Page 128 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 2 Date: 4/15/2016 15.247(b) Power Output (2400-2483.5 MHz DTS) Test Distance: 3 Meters Horiz

O Peak Readings

* Average Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02113	Horn Antenna	3115	2/3/2015	2/3/2017
T2	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
T3	AN03302	Cable	32026-29094K-	1/29/2016	1/29/2018
			29094K-72TC		
	AN02660	Spectrum Analyzer	E4446A	7/9/2015	7/9/2017

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Te	st Distan	ce: 3 Meter	S	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	2479.784M	52.6	+26.3	+2.6	+1.3		+0.0	82.8	131.2	-48.4	Horiz
									Y		
2	2440.276M	51.3	+26.2	+2.6	+1.3		+0.0	81.4	131.2	-49.8	Horiz
									Y		
3	2479.784M	50.8	+26.3	+2.6	+1.3		+0.0	81.0	131.2	-50.2	Vert
									X		
4	2402.360M	50.9	+26.0	+2.6	+1.3		+0.0	80.8	131.2	-50.4	Vert
									X		
5	2440.276M	50.5	+26.2	+2.6	+1.3		+0.0	80.6	131.2	-50.6	Vert
									X		
6	2402.360M	50.7	+26.0	+2.6	+1.3		+0.0	80.6	131.2	-50.6	Horiz
<u> </u>		10.6							Y		
7	2479.784M	49.6	+26.3	+2.6	+1.3		+0.0	79.8	131.2	-51.4	Horiz
	2440.2563.5	40.6	. 2 . 2	. 2 . 6	. 1 0				X		
8	2440.276M	49.6	+26.2	+2.6	+1.3		+0.0	79.7	131.2	-51.5	Horiz
	2470 7043 6	40.2	1262	10.6	. 1 2		. 0. 0	70.4	X 121.2	71.0	T.7
9	2479.784M	49.2	+26.3	+2.6	+1.3		+0.0	79.4	131.2	-51.8	Vert
1.0	2402 26014	40.0	1260	12.6	.1.2			70.0	Y 121.2	50.0	тт .
10	2402.360M	49.0	+26.0	+2.6	+1.3		+0.0	78.9	131.2	-52.3	Horiz
11	2440.27614	10.7	1262	12.6	+1.2		ΙΛΛ	70.0	X 121.2	52.4	V 4
11	2440.276M	48.7	+26.2	+2.6	+1.3		+0.0	78.8	131.2 Y	-52.4	Vert
12	2402.260M	10 6	126.0	12.6	+1.3		+0.0	79.5		52.7	Vont
12	2402.360M	48.6	+26.0	+2.6	+1.3		+0.0	78.5	131.2 Y	-52.7	Vert
									I		

Page 130 of 162 Report No.: 96813-12B

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(b) Power Output (2400-2483.5 MHz DTS)

 Work Order #:
 96813
 Date: 4/15/2016

 Test Type:
 Radiated Scan
 Time: 10:00:27

 Tested By:
 D. Bertran
 Sequence#: 1

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Fundamental of the EUT

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 20.6°C Humidity: 50 %

Atmospheric Pressure: 101.6 kPa

High Clock: 16MHz

Transmitting operating frequency= 2.4GHz Band

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

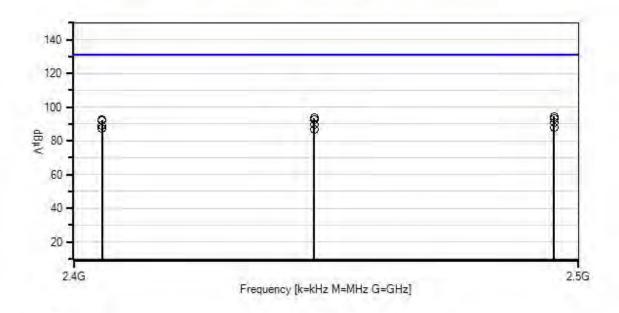
Method: 558074 D01 DTS Meas Guidance v03r02 section 9.1.1

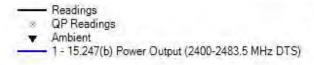
RBW=3MHz VBW=8MHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving

Note: Zigbee on TX

X axis- Direct to Antenna Y axis- Direct to Ceiling


Transmitting operating frequency for BLE= 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel).


Transmitting operating frequency for Zigbee= 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel).

Page 131 of 162 Report No.: 96813-12B

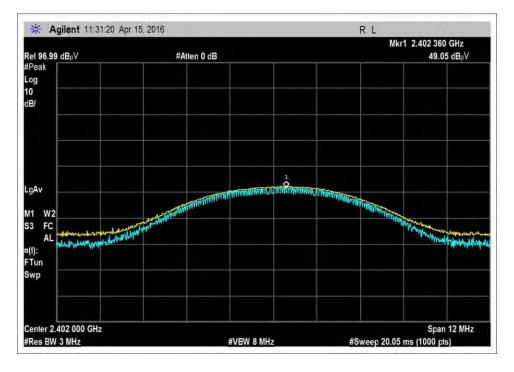
Enlighted, Inc WO#: 96813 Sequence#: 1 Date: 4/15/2016 15.247(b) Power Output (2400-2483.5 MHz DTS) Test Distance: 3 Meters Horiz

O Peak Readings

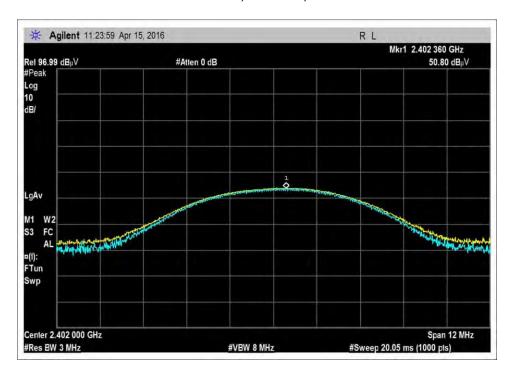
* Average Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02113	Horn Antenna	3115	2/3/2015	2/3/2017
T2	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
T3	AN03302	Cable	32026-29094K-	1/29/2016	1/29/2018
			29094K-72TC		
	AN02660	Spectrum Analyzer	E4446A	7/9/2015	7/9/2017

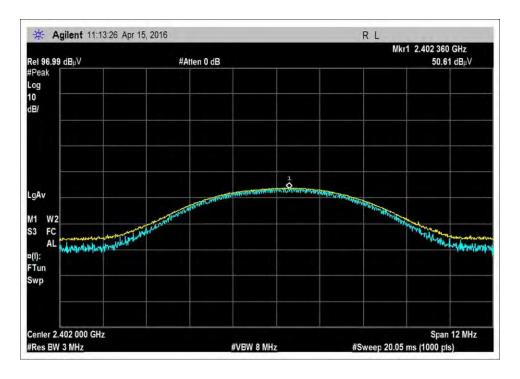

Measu	rement Data:	Reading listed by margin.				Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	2479.388M	64.2	+26.3	+2.6	+1.3		+0.0	94.4	131.2	-36.8	Horiz
									X		
2	2439.424M	63.6	+26.1	+2.6	+1.3		+0.0	93.6	131.2	-37.6	Horiz
									X		
3	2479.388M	63.1	+26.3	+2.6	+1.3		+0.0	93.3	131.2	-37.9	Vert
									Y		
4	2439.424M	62.7	+26.1	+2.6	+1.3		+0.0	92.7	131.2	-38.5	Vert
									Y		
5	2404.628M	62.6	+26.0	+2.6	+1.3		+0.0	92.5	131.2	-38.7	Vert
									Y		
6	2404.628M	62.3	+26.0	+2.6	+1.3		+0.0	92.2	131.2	-39.0	Horiz
									X		
7	2479.388M	60.8	+26.3	+2.6	+1.3		+0.0	91.0	131.2	-40.2	Horiz
									Y		
8	2439.424M	59.5	+26.1	+2.6	+1.3		+0.0	89.5	131.2	-41.7	Horiz
									Y		
9	2404.628M	59.3	+26.0	+2.6	+1.3		+0.0	89.2	131.2	-42.0	Horiz
									Y		
10	2479.388M	57.8	+26.3	+2.6	+1.3		+0.0	88.0	131.2	-43.2	Vert
									X		
11	2404.628M	57.6	+26.0	+2.6	+1.3		+0.0	87.5	131.2	-43.7	Vert
									X		
12	2439.424M	56.9	+26.1	+2.6	+1.3		+0.0	86.9	131.2	-44.3	Vert
									X		

Page 133 of 162 Report No.: 96813-12B

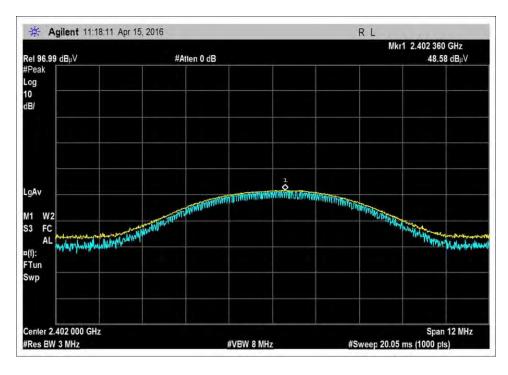


Plots

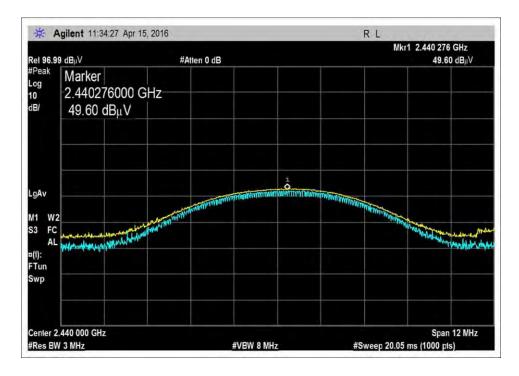
BLE



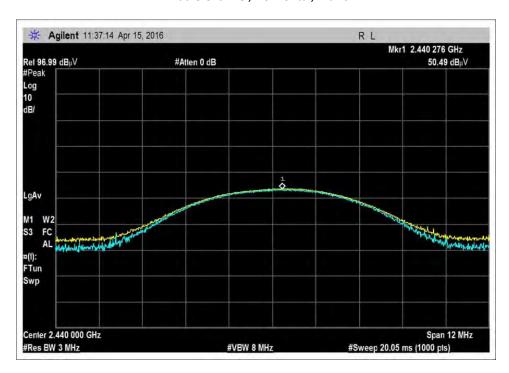
Low Channel, Horizontal,-X axis



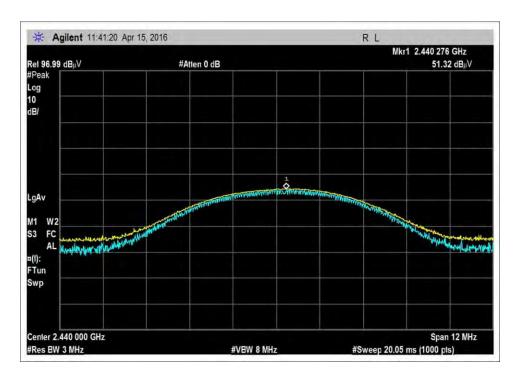
Low Channel, Vertical,-X axis



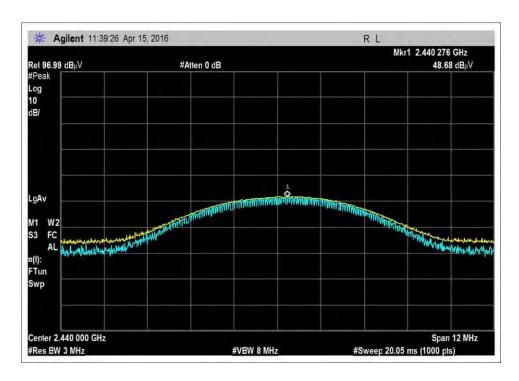
Low Channel,-Horizontal,-Y axis



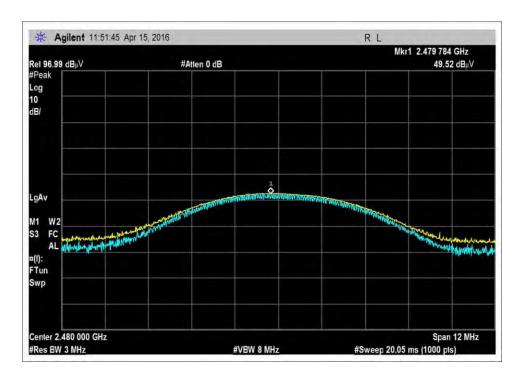
Low Channel, Vertical,-Y axis



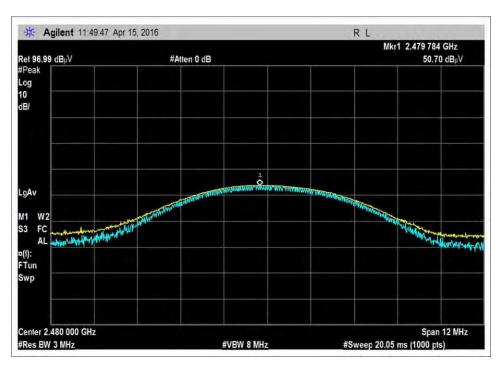
Middle Channel, Horizontal,-X axis



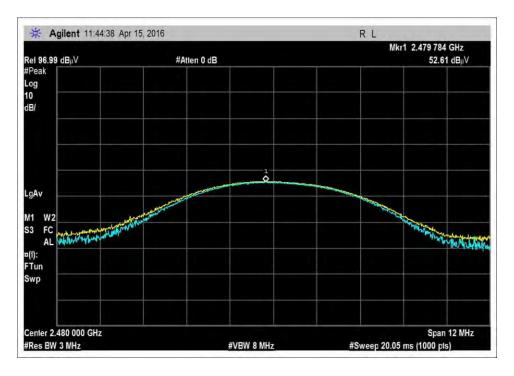
Middle Channel,-Vertical,-X axis



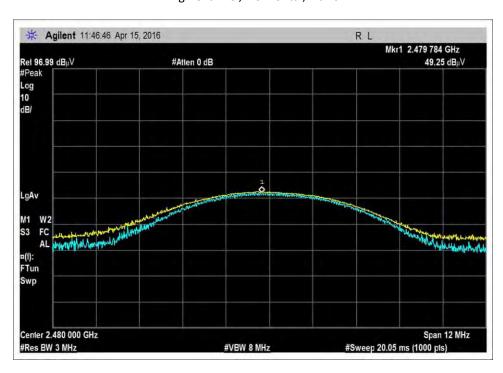
Middle Channel,-Horizontal,-Y axis



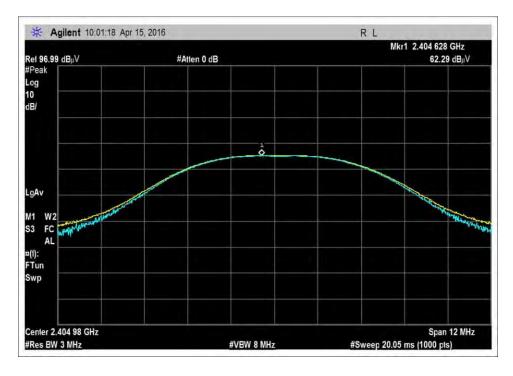
Middle Channel, Vertical,-Y axis

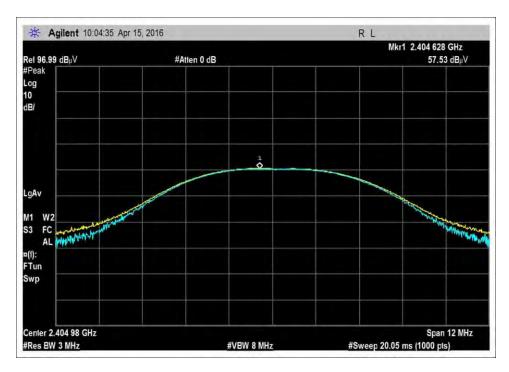


High Channel, Horizontal,-X axis

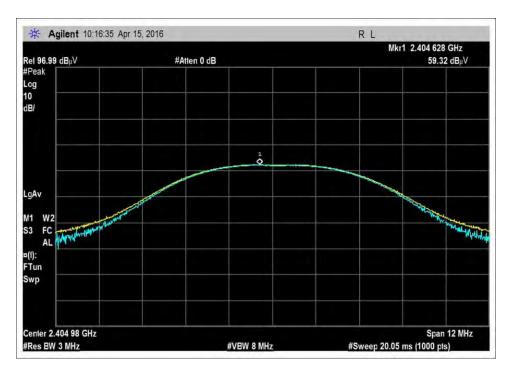


-High Channel, Vertical,-X axis

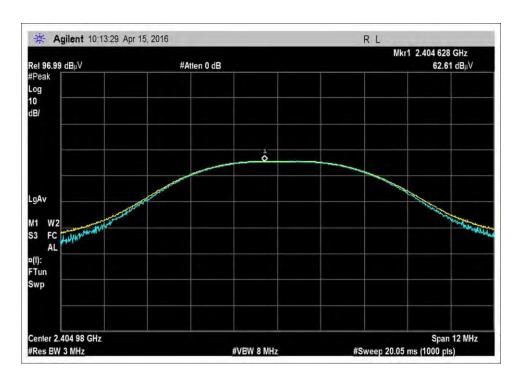

High Channel,-Horizontal, Y axis


High Channel,-Vertical,-Y axis

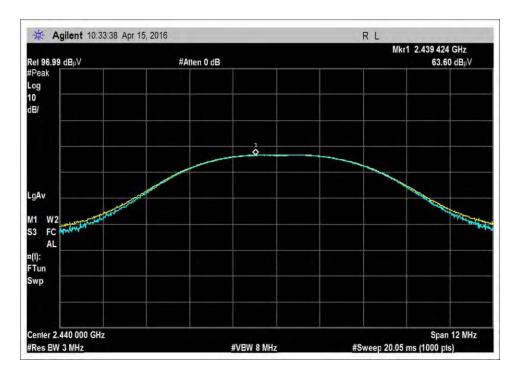
Zigbee



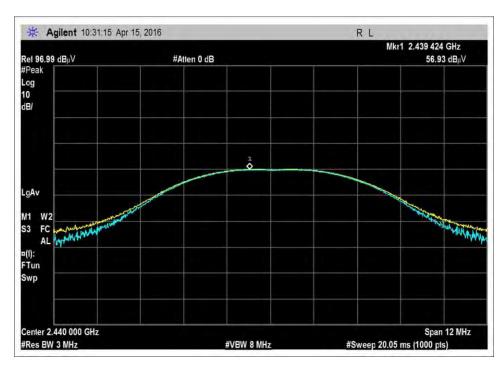
Low Channel,-Horizontal, X axis



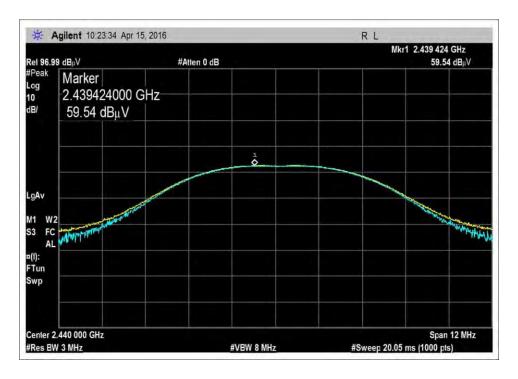
Low Channel, Vertical,-X axis



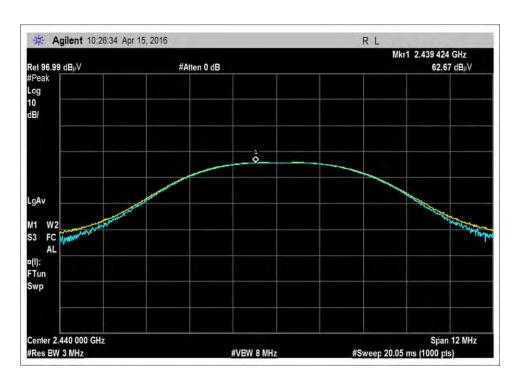
Low Channel, Horizontal,-Y axis



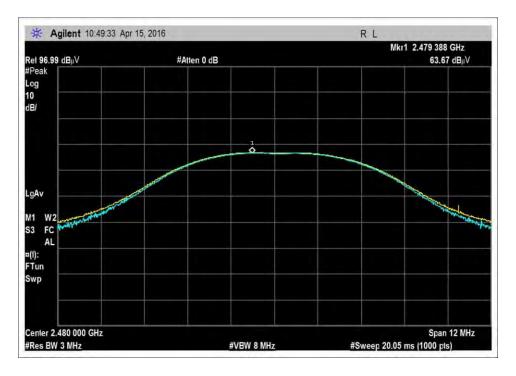
Low Channel, Vertical,-Y axis



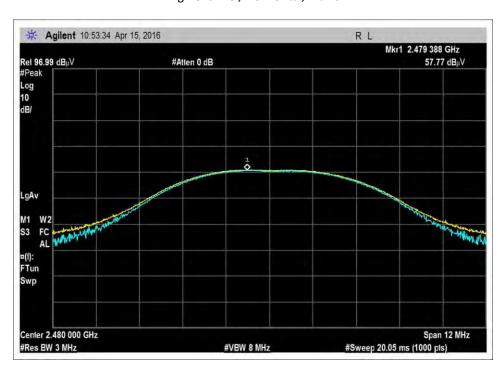
Middle Channel, Horizontal,-X axis



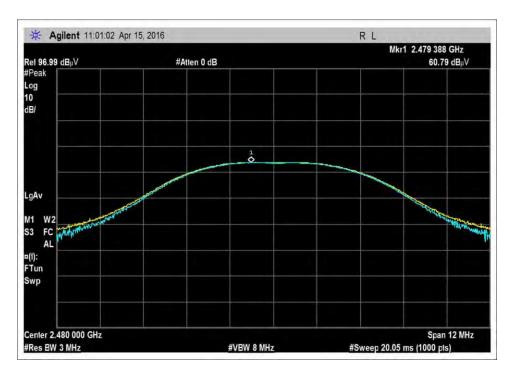
Middle Channel, Vertical,-X axis



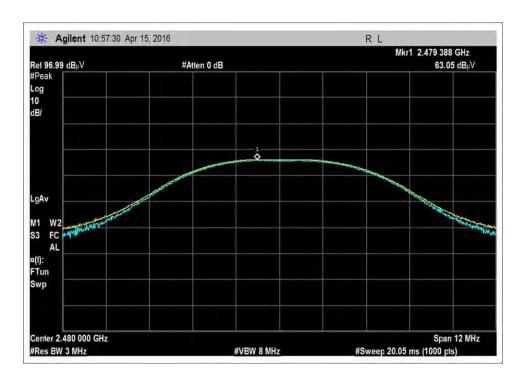
Middle Channel,-Horizontal,-Y axis



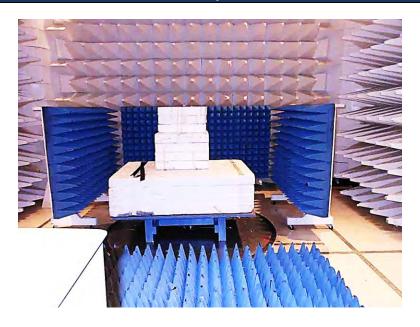
Middle Channel, Vertical,-Y axis



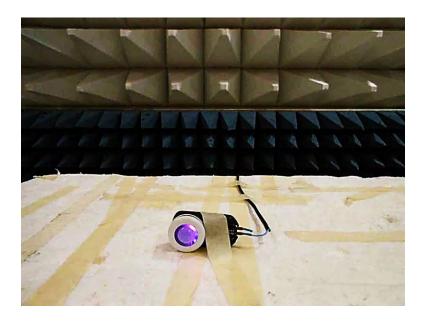
High Channel,-Horizontal,-X axis



High Channel,-Vertical,-X axis


High Channel, Horizontal,-Y axis

High Channel, Vertical,-Y axis


Test Setup Photos

Page 146 of 162 Report No.: 96813-12B

X Axis

Y Axis

15.247(d) Radiated Spurious Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 4/19/2016
Test Type: Radiated Scan Time: 08:59:38
Tested By: D. Bertran Sequence#: 7

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 3			

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 9kHz - 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmitting operating frequency= 2.4GHz Band

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving

Note: Zigbee on TX

X axis is the worst orthogonal


High Channel

No emissions were found within 20dB of the limit line.

Page 148 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 7 Date: 4/19/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Test Equipment:

Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN00971A	Preamp	8447D	2/5/2016	2/5/2018
	ANP01187	Cable	CNT-195	12/30/2014	12/30/2016
	AN02660	Spectrum Analyzer	E4446A	7/9/2015	7/9/2017
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017

Software Version: 5.03.02

Page 149 of 162 Report No.: 96813-12B

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 96813
 Date: 4/15/2016

 Test Type:
 Radiated Scan
 Time: 13:05:43

Tested By: D. Bertran Sequence#: 4

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Spurious Emissions

Frequency Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 20.6°C Humidity: 50 %

Atmospheric Pressure: 101.6 kPa

High Clock: 16MHz

Transmitting operating frequency= 2.4GHz Band

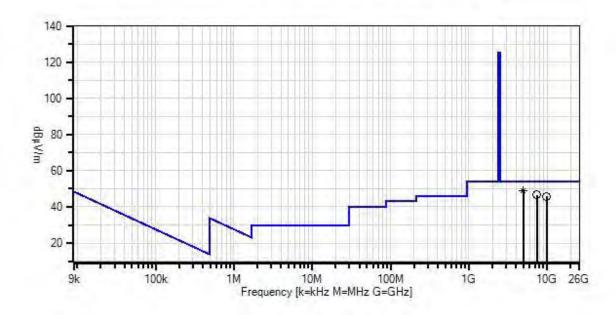
Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 (2009)

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

High Channel

Page 150 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 4 Date: 4/15/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings * Average Readings Software Version: 5,03,02

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02113	Horn Antenna	3115	2/3/2015	2/3/2017
T2	ANP06900	Cable	32022-29094K-	12/30/2015	12/30/2017
			29094K-36TC		
Т3	AN03309	High Pass Filter	11SH10-	1/18/2016	1/18/2018
			3000/T10000-		
			0/0		
T4	AN03114	Preamp	AMF-7D-	4/22/2015	4/22/2017
			00101800-30-		
			10P		
T5	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
T6	AN03302	Cable	32026-29094K-	1/29/2016	1/29/2018
			29094K-72TC		
	AN02660	Spectrum Analyzer	E4446A	7/9/2015	7/9/2017

Meast	urement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4958.993M	68.2	+31.1	+0.8	+0.3	-57.3	+0.0	48.7	54.0	-5.3	Vert
	Ave		+3.8	+1.8							
^	4958.993M	72.2	+31.1	+0.8	+0.3	-57.3	+0.0	52.7	54.0	-1.3	Vert
			+3.8	+1.8							
3	7438.480M	61.7	+34.4	+1.0	+0.3	-58.2	+0.0	46.6	54.0	-7.4	Vert
			+5.1	+2.3							
4	9919.140M	58.7	+35.0	+1.1	+0.4	-57.7	+0.0	45.8	54.0	-8.2	Vert
			+5.7	+2.6							

Page 152 of 162 Report No.: 96813-12B

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 4/15/2016
Test Type: Radiated Scan Time: 11:44:17
Tested By: D. Bertran Sequence#: 3

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Spurious Emissions

Frequency Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 20.6°C Humidity: 50 %

Atmospheric Pressure: 101.6 kPa

High Clock: 16MHz

Transmitting operating frequency= 2.4GHz Band

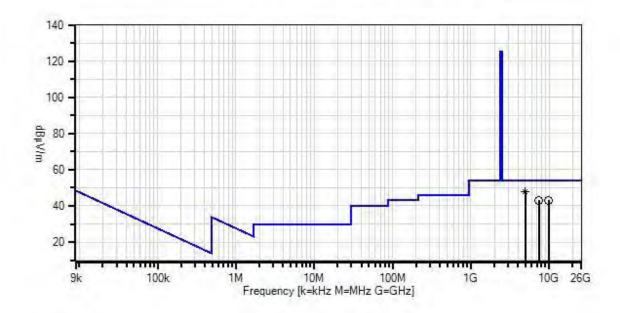
Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 (2009)

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: BLE on TX


Y axis- Direct to Ceiling is the worst orthogonal

High Channel

Page 153 of 162 Report No.: 96813-12B

Enlighted, Inc WO#: 96813 Sequence#: 3 Date: 4/15/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings QP Readings

▼ Ambient

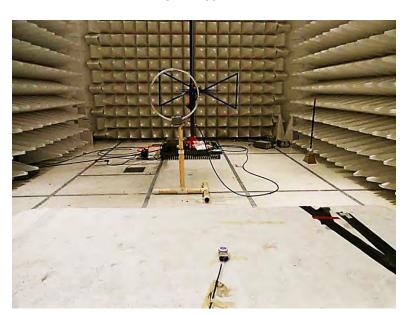
1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings * Average Readings Software Version: 5,03,02

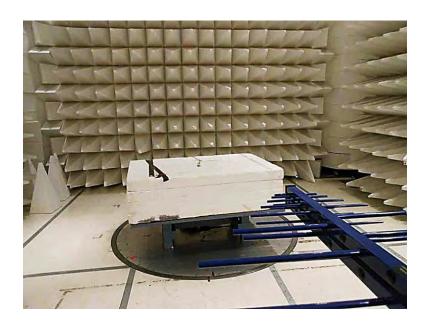
Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02113	Horn Antenna	3115	2/3/2015	2/3/2017
T2	ANP06900	Cable	32022-29094K-	12/30/2015	12/30/2017
			29094K-36TC		
T3	AN03309	High Pass Filter	11SH10-	1/18/2016	1/18/2018
			3000/T10000-		
			0/0		
T4	AN03114	Preamp	AMF-7D-	4/22/2015	4/22/2017
			00101800-30-		
			10P		
T5	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
T6	AN03302	Cable	32026-29094K-	1/29/2016	1/29/2018
			29094K-72TC		
	AN02660	Spectrum Analyzer	E4446A	7/9/2015	7/9/2017

Me	easurement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
7	# Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 4959.601M	67.2	+31.1	+0.8	+0.3	-57.3	+0.0	47.7	54.0	-6.3	Horiz
	Ave		+3.8	+1.8							
	^ 4959.601M	74.1	+31.1	+0.8	+0.3	-57.3	+0.0	54.6	54.0	+0.6	Horiz
			+3.8	+1.8							
	3 7439.350M	58.2	+34.4	+1.0	+0.3	-58.2	+0.0	43.1	54.0	-10.9	Horiz
			+5.1	+2.3							
	4 9919.140M	55.9	+35.0	+1.1	+0.4	-57.7	+0.0	43.0	54.0	-11.0	Horiz
			+5.7	+2.6							


Page 155 of 162 Report No.: 96813-12B

Test Setup Photos



9kHz – 30MHz

9kHz – 30MHz

30MHz -1GHz

30MHz – 1GHz

1 – 12GHz

1 – 12GHz

12 – 18GHz

12 – 18GHz

18 – 25GHz

18 – 25GHz

SUPPLEMENTAL INFORMATION

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 161 of 162 Report No.: 96813-12B

	SAMPLE CALCULATIONS								
	Meter reading	(dBμV)							
+	Antenna Factor	(dB)							
+	Cable Loss	(dB)							
-	Distance Correction	(dB)							
-	Preamplifier Gain	(dB)							
=	Corrected Reading	(dBµV/m)							

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 162 of 162 Report No.: 96813-12B