Enlighted, Inc.

ADDENDUM TO EMC TEST REPORT 96813-12

Compact Sensor Model: CS-D2

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s) 15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 96813-12A

Date of issue: August 19, 2015

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 126 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
FCC Part 15 Subpart C	7
15.31e Voltage Variations	7
15.207 AC Conducted Emissions	10
15.247(a)(2) 6dB Bandwidth	31
15.247(b)(3) Output Power	38
15.247(e) Power Spectral Density	64
15.247(d) RF Conducted Emissions & Band Edge	77
15.247(d) Radiated Emissions & Band Edge	78
Supplemental Information	125
Fmissions Test Details	125

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Enlighted, Inc.

Joyce Walker

930 Benecia Ave. CKC Laboratories, Inc.
Sunnyvale, CA 94085 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Deepak Kumar Project Number: 96813

Customer Reference Number: 0002183

DATE OF EQUIPMENT RECEIPT: June 25, 2015

DATE(S) OF TESTING: June 25 - July 2, 2015

Revision History

Original: Testing of the Compact Sensor, Model, CS-D2 to FCC Part 15 Subpart C Section(s) 15.207 & 15.247 (DTS 2400-2483.5 MHz).

Addendum A: A statement in Test Notes was added for clarification for compliance to 15.31(e).

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve of Below

Page 3 of 126 Report No.: 96813-12A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.02.00
EMITest Immunity	5.02.00

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN
Fremont	US0082	SL2-IN-E-1148R	3082B-1	958979	A-0149

Page 4 of 126 Report No.: 96813-12A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Test Procedure	Description	Modifications*	Results
15.31e	Voltage Variations	NA	Pass
15.207	AC Conducted Emissions	NA	Pass
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	15.247(e) Power Spectral Density		Pass
15.247(d) RF Conducted Emissions & Band Edge		NA	NA
15.247(d)	Radiated Emissions & Band Edge	NA	Pass

NA = Not applicable.

Modifications* During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
No modifications were made during testing.

^{*}Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 126 Report No.: 96813-12A

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
Compact Sensor	Enlighted, Inc.	CS-D2	03

Support Equipment:

Device	Manufacturer	Model #	S/N
AC/DC Power Adapter for	Enercell	273-332	None
EUT			
Laptop	Dell	E5450	36810358094
AC/ DC Adaptor for Laptop	Dell	HA65NM130	CN-06TFFF-75661-53L-
			01ZO-A01
Cebal Controller Devices	Texas Instruments	CC Debugger	None
Communication Board	ATMEL	None	None

Page 6 of 126 Report No.: 96813-12A

FCC PART 15 SUBPART C

15.31e Voltage Variations

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: **Enlighted, Inc.**

Specification: 15.31e

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI	3115	1/23/2013	1/23/2015
		C63.5			
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

15.31e set up

Application: Putty version 0.64 for ZigBee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C, Relative Humidity: 39 %, Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: BLE on TX Mode

15.31(e): the RF output power was not changed when adjusting the voltage to 10.2VDC (-15%) and up to 16.1 (+ 15%) of the voltage range 12VDC to 14VDC.

Page 7 of 126 Report No.: 96813-12A

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.31e

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39

Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

I cst Lqui	ipineni.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI C63.5	3115	1/23/2013	1/23/2015
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

15.31e set up

Application: Putty version 0.64 for ZigBee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

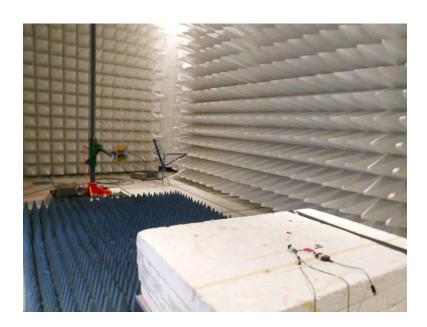
High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Zigbee on TX Mode


15.31(e): the RF output power was not changed when adjusting the voltage to 10.2VDC (-15%) and up to 16.1 (+ 15%) of the voltage range 12VDC to 14VDC.

Page 8 of 126 Report No.: 96813-12A

Test Setup Photo(s)

15.207 AC Conducted Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 96813 Date: 6/25/2015 Test Type: Conducted Emissions Time: 2:10:57 PM

Tested By: Hieu Song Nguyenpham Sequence#: 19

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: ANSI C 63.4 2009


The EUT is a Compact Sensor. It is powered by AC/DC adapter which sits next to it. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Bluetooth was transmitted on Middle channel constantly.

Page 10 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 19 Date: 6/25/2015 15,207 AC Mains - Average Test Lead: 120V 60Hz Black

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	3/31/2015	3/31/2017
T2	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T3	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
T4	AN00493	50uH LISN-L1 (L) Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN00493	50uH LISN-L(2) N Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T5	ANP05258	High Pass Filter	HE9615-150K- 50-720B	11/14/2014	11/14/2016

Measur	rement Data:		eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	417.611k	33.7	+9.9	+0.0	+0.0	+0.1	+0.0	43.8	47.5	-3.7	Black
			+0.1								
2	667.043k	29.7	+9.8	+0.0	+0.0	+0.1	+0.0	39.7	46.0	-6.3	Black
			+0.1								
3	643.045k	29.3	+9.8	+0.0	+0.0	+0.1	+0.0	39.3	46.0	-6.7	Black
	645.0541	20.1	+0.1			.0.1	. 0. 0	20.1	46.0		D1 1
4	645.954k	29.1	+9.8	+0.0	+0.0	+0.1	+0.0	39.1	46.0	-6.9	Black
	(24.0(51	26.2	+0.1			+0.1	10.0	26.2	46.0	0.7	D1 1
5	624.865k	26.2	+9.9	+0.0	+0.0	+0.1	+0.0	36.3	46.0	-9.7	Black
-	427.2461-	25.0	+0.1	+0.0	ΙΟ Ο	+0.1	100	26.0	47.1	11 1	Dlasla
6	437.246k	25.9	+9.9 +0.1	+0.0	+0.0	+0.1	+0.0	36.0	47.1	-11.1	Black
7	615.411k	24.7	+9.9	+0.0	+0.0	+0.1	+0.0	34.8	46.0	-11.2	Dlask
/	013.411K	24.7	+9.9	+0.0	+0.0	+0.1	+0.0	34.8	40.0	-11.2	Black
8	457.608k	24.4	+9.9	+0.0	+0.0	+0.1	+0.0	34.6	46.7	-12.1	Black
8	437.000K	24.4	+0.2	10.0	10.0	10.1	10.0	34.0	40.7	-12.1	Diack
9	14.274M	27.3	+9.9	+0.3	+0.1	+0.1	+0.0	37.9	50.0	-12.1	Black
	1 1.27 1111	27.5	+0.2	. 0.5	. 0.1	. 0.1	. 0.0	31.7	50.0	12.1	Diuck
10	13.571M	27.0	+9.9	+0.3	+0.0	+0.1	+0.0	37.5	50.0	-12.5	Black
			+0.2								
11	14.139M	27.0	+9.9	+0.3	+0.0	+0.1	+0.0	37.5	50.0	-12.5	Black
			+0.2								
12	14.391M	26.6	+9.9	+0.3	+0.1	+0.1	+0.0	37.2	50.0	-12.8	Black
			+0.2								
13	477.242k	23.2	+9.9	+0.0	+0.0	+0.1	+0.0	33.4	46.4	-13.0	Black
			+0.2								
14	12.977M	26.2	+9.9	+0.3	+0.0	+0.1	+0.0	36.7	50.0	-13.3	Black
			+0.2								

15	559.416k	22.5	+9.9 +0.1	+0.0	+0.0	+0.1	+0.0	32.6	46.0	-13.4	Black
16	498.331k	22.3	+9.9	+0.0	+0.0	+0.1	+0.0	32.5	46.0	-13.5	Black
			+0.2								
17	7.193M	26.2	+9.9 +0.1	+0.2	+0.0	+0.1	+0.0	36.5	50.0	-13.5	Black
18	14.364M	25.6	+9.9 +0.2	+0.3	+0.1	+0.1	+0.0	36.2	50.0	-13.8	Black
19	14.580M	25.6	+9.9	+0.3	+0.1	+0.1	+0.0	36.2	50.0	-13.8	Black
			+0.2								
20	6.968M	25.6	+9.9 +0.1	+0.2	+0.0	+0.1	+0.0	35.9	50.0	-14.1	Black
21	7.085M	25.5	+9.9	+0.2	+0.0	+0.1	+0.0	35.8	50.0	-14.2	Black
21	7.003141	25.5	+0.1	10.2	10.0	10.1	10.0	33.0	30.0	17.2	Diack
22	14.463M	25.0	+9.9	+0.3	+0.1	+0.1	+0.0	35.6	50.0	-14.4	Black
22	14.403WI	23.0	+0.2	10.3	10.1	10.1	10.0	33.0	30.0	-14.4	Diack
22	14 40114	24.5		+0.2	+Λ.1	ι 0.1	+0.0	25.1	50.0	140	Dlasla
23	14.481M	24.5	+9.9	+0.3	+0.1	+0.1	+0.0	35.1	50.0	-14.9	Black
	-10 cool	• • •	+0.2		0.0	0.1		200	16.0		
24	518.693k	20.7	+9.9 +0.2	+0.0	+0.0	+0.1	+0.0	30.9	46.0	-15.1	Black
25	2.846M	20.7	+9.8	+0.1	+0.0	+0.1	+0.0	30.9	46.0	-15.1	Black
			+0.2								
26	2.017M	20.6	+9.8	+0.1	+0.0	+0.1	+0.0	30.8	46.0	-15.2	Black
	2.017111	20.0	+0.2	. 0.1	. 0.0	. 0.1	. 0.0	50.0	10.0	10.2	Biacit
27	2.162M	20.4	+9.9	+0.1	+0.0	+0.1	+0.0	30.7	46.0	-15.3	Black
21	2.102101	20.4	+0.2	10.1	10.0	10.1	10.0	30.7	40.0	-13.3	Diack
20	1.00614	20.4		+0.1	+0.0	ι 0.1	+0.0	20.6	46.0	15 /	Dlasla
28	1.996M	20.4	+9.8	+0.1	+0.0	+0.1	+0.0	30.6	46.0	-15.4	Black
20	2 (21) (20.4	+0.2	. 0. 1	. 0. 0	. 0. 1	. 0. 0	20.6	46.0	15.4	D1 1
29	2.621M	20.4	+9.8	+0.1	+0.0	+0.1	+0.0	30.6	46.0	-15.4	Black
			+0.2								
30	2.578M	20.2	+9.8	+0.1	+0.0	+0.1	+0.0	30.4	46.0	-15.6	Black
			+0.2								
31	2.663M	20.2	+9.8	+0.1	+0.0	+0.1	+0.0	30.4	46.0	-15.6	Black
			+0.2								
32	14.761M	23.8	+9.9	+0.3	+0.1	+0.1	+0.0	34.4	50.0	-15.6	Black
			+0.2								
33	2.034M	20.1	+9.8	+0.1	+0.0	+0.1	+0.0	30.3	46.0	-15.7	Black
			+0.2	J	3.0	0.1	0			-0.,	
34	4.964M	19.7	+9.9	+0.2	+0.0	+0.1	+0.0	30.0	46.0	-16.0	Black
77	7.707111	17.1	+0.1	0.2	. 0.0	. 0.1	0.0	50.0	70.0	10.0	Diack
35	14.932M	23.4	+9.9	+0.3	+0.1	+0.1	+0.0	34.0	50.0	-16.0	Black
33	14.734101	43.4	+0.2	10.5	10.1	10.1	10.0	34.0	50.0	-10.0	Diack
26	1466134	22.2		10.2	+0.1	ι Λ. 1	10.0	22.0	50.0	1.6.1	Dla -1
36	14.661M	23.3	+9.9	+0.3	+0.1	+0.1	+0.0	33.9	50.0	-16.1	Black
	0.1103.5	10.5	+0.2				. 0. 0	20.0	46.0	1	DI I
37	2.119M	19.5	+9.9	+0.1	+0.0	+0.1	+0.0	29.8	46.0	-16.2	Black
			+0.2								
38	10.815M	23.3	+9.9	+0.2	+0.0	+0.1	+0.0	33.7	50.0	-16.3	Black
			+0.2								
39	14.860M	23.0	+9.9	+0.3	+0.1	+0.1	+0.0	33.6	50.0	-16.4	Black
			+0.2								
40	2.200M	19.2	+9.8	+0.1	+0.0	+0.1	+0.0	29.4	46.0	-16.6	Black
			+0.2								
<u> </u>											

41	2.098M	19.0	+9.9 +0.2	+0.1	+0.0	+0.1	+0.0	29.3	46.0	-16.7	Black
42	10.517M	22.8	+9.9	+0.2	+0.0	+0.2	+0.0	33.3	50.0	-16.7	Black
- 12	1 1001 5	10.0	+0.2	. 0. 1	. 0. 0	. 0. 1	. 0. 0	20.2	46.0	160	D1 1
43	1.183M	19.0	+9.8 +0.2	+0.1	+0.0	+0.1	+0.0	29.2	46.0	-16.8	Black
44	4.947M	18.9	+9.9 +0.1	+0.2	+0.0	+0.1	+0.0	29.2	46.0	-16.8	Black
45	2.991M	18.9	+9.8 +0.2	+0.1	+0.0	+0.1	+0.0	29.1	46.0	-16.9	Black
46	14.824M	22.5	+9.9 +0.2	+0.3	+0.1	+0.1	+0.0	33.1	50.0	-16.9	Black
47	15.058M	22.4	+9.9 +0.2	+0.3	+0.1	+0.1	+0.0	33.0	50.0	-17.0	Black
48	6.238M	22.6	+9.9 +0.2	+0.2	+0.0	+0.1	+0.0	33.0	50.0	-17.0	Black
49	15.265M	22.5	+9.9 +0.2	+0.3	+0.0	+0.1	+0.0	33.0	50.0	-17.0	Black
50	15.112M	22.5	+9.9 +0.2	+0.3	+0.0	+0.1	+0.0	33.0	50.0	-17.0	Black

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 96813 Date: 6/25/2015
Test Type: Conducted Emissions Time: 14:26:39
Tested By: Hieu Song Nguyenpham Sequence#: 20

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

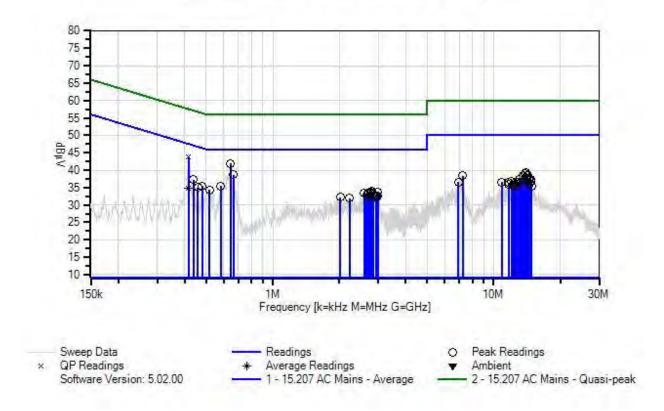
Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: ANSI C 63.4 2009


The EUT is a Compact Sensor. It is powered by AC/DC adapter which sits next to it. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Bluetooth was transmitted on Middle channel constantly.

Page 15 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 20 Date: 6/25/2015 15,207 AC Mains - Average Test Lead: 120V 60Hz White

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	3/31/2015	3/31/2017
T2	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T3	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN00493	50uH LISN-L1 (L) Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
T4	AN00493	50uH LISN-L(2) N Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T5	ANP05258	High Pass Filter	HE9615-150K- 50-720B	11/14/2014	11/14/2016

Measui	rement Data:		eading lis	ted by ma	argin.			Test Lea	d: White		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dBμV	dB	Ant
1	642.318k	31.3	+9.8	+0.0	+0.0	+0.7	+0.0	41.9	46.0	-4.1	White
			+0.1								
2	663.407k	28.1	+9.8	+0.0	+0.0	+0.7	+0.0	38.7	46.0	-7.3	White
	105.016	26.6	+0.1	. 0. 0	. 0. 0		. 0. 0	25.2	45.1	0.0	****
3	437.246k	26.6	+9.9	+0.0	+0.0	+0.7	+0.0	37.3	47.1	-9.8	White
4	500 5051-	24.0	+0.1	+0.0	100	+0.7	100	25.5	46.0	10.5	Wilsian
4	580.505k	24.8	+9.9 +0.1	+0.0	+0.0	+0.7	+0.0	35.5	46.0	-10.5	White
5	14.013M	28.2	+9.9	+0.3	+0.0	+0.7	+0.0	39.3	50.0	-10.7	White
3	14.015WI	28.2	+9.9	+0.3	+0.0	+0.7	+0.0	39.3	30.0	-10./	wille
6	478.697k	24.6	+9.9	+0.0	+0.0	+0.7	+0.0	35.4	46.4	-11.0	White
	4/0.07/K	24.0	+0.2	10.0	10.0	10.7	10.0	33.4	то.т	-11.0	Willia
7	13.824M	27.9	+9.9	+0.3	+0.0	+0.7	+0.0	39.0	50.0	-11.0	White
,	13.02 1111	27.5	+0.2	. 0.5	. 0.0	. 0.,	. 0.0	37.0	20.0	11.0	*** 11110
8	14.139M	27.4	+9.9	+0.3	+0.0	+0.7	+0.0	38.5	50.0	-11.5	White
			+0.2								
9	14.238M	27.3	+9.9	+0.3	+0.1	+0.7	+0.0	38.5	50.0	-11.5	White
			+0.2								
10	7.229M	27.4	+9.9	+0.2	+0.0	+0.8	+0.0	38.4	50.0	-11.6	White
			+0.1								
11	13.508M	27.3	+9.9	+0.3	+0.0	+0.7	+0.0	38.4	50.0	-11.6	White
			+0.2								
12	457.608k	24.2	+9.9	+0.0	+0.0	+0.7	+0.0	35.0	46.7	-11.7	White
			+0.2								
13	517.966k	23.5	+9.9	+0.0	+0.0	+0.7	+0.0	34.3	46.0	-11.7	White
1.	2 0001 7	22.1	+0.2	. 0. 1	. 0. 0	=	. 0. 0	22.6	46.6	10.1	TT 71 .
14	2.808M	23.1	+9.8	+0.1	+0.0	+0.7	+0.0	33.9	46.0	-12.1	White
			+0.2								

15	2.765M	22.9	+9.8	+0.1	+0.0	+0.7	+0.0	33.7	46.0	-12.3	White
16	14.067M	26.6	+0.2	+0.3	+0.0	+0.7	+0.0	37.7	50.0	-12.3	White
10	14.06/M	20.0	+0.2	+0.3	+0.0	±0.7	+0.0	31.1	30.0	-12.3	willte
17	2.991M	22.8	+9.8	+0.1	+0.0	+0.7	+0.0	33.6	46.0	-12.4	White
1 /	2.551111	22.0	+0.2	. 0.1	. 0.0	. 0.7	. 0.0	33.0	10.0	12.1	vv inte
18	14.409M	26.4	+9.9	+0.3	+0.1	+0.7	+0.0	37.6	50.0	-12.4	White
			+0.2								
19	2.723M	22.7	+9.8	+0.1	+0.0	+0.7	+0.0	33.5	46.0	-12.5	White
			+0.2								
20	2.782M	22.7	+9.8	+0.1	+0.0	+0.7	+0.0	33.5	46.0	-12.5	White
			+0.2								
21	14.490M	26.3	+9.9	+0.3	+0.1	+0.7	+0.0	37.5	50.0	-12.5	White
- 22	14 1003 5	26.2	+0.2	. 0. 2	. 0. 0	. 0. 7	. 0. 0	25.4	5 0.0	10.6	****
22	14.193M	26.3	+9.9	+0.3	+0.0	+0.7	+0.0	37.4	50.0	-12.6	White
22	14 (52) 4	26.2	+0.2	+0.2	+0.1	10.7	+0.0	27.4	50.0	12.6	Wilsian
23	14.652M	26.2	+9.9 +0.2	+0.3	+0.1	+0.7	+0.0	37.4	30.0	-12.6	White
24	2.706M	22.5	+9.8	+0.1	+0.0	+0.7	+0.0	33.3	46.0	-12.7	White
24	2.700W	22.3	+0.2	10.1	10.0	10.7	10.0	33.3	40.0	-12.7	Willie
25	13.040M	26.2	+9.9	+0.3	+0.0	+0.7	+0.0	37.3	50.0	-12.7	White
25	13.0 10111	20.2	+0.2	. 0.5	. 0.0	. 0.7	. 0.0	37.3	20.0	12.,	vv inte
26	2.600M	22.5	+9.8	+0.1	+0.0	+0.7	+0.0	33.3	46.0	-12.7	White
			+0.2								
27	416.045k	24.0	+9.9	+0.0	+0.0	+0.7	+0.0	34.7	47.5	-12.8	White
	Ave		+0.1								
28	2.825M	22.4	+9.8	+0.1	+0.0	+0.7	+0.0	33.2	46.0	-12.8	White
			+0.2								
29	2.663M	22.1	+9.8	+0.1	+0.0	+0.7	+0.0	32.9	46.0	-13.1	White
20	1477014	25.5	+0.2	+0.2	+0.1	.0.7		267	50.0	12.2	XX/1 '/
30	14.770M	25.5	+9.9 +0.2	+0.3	+0.1	+0.7	+0.0	36.7	50.0	-13.3	White
31	2.978M	21.9	+9.8	+0.1	+0.0	+0.7	+0.0	32.7	46.0	-13.3	White
31	2.976IVI	21.9	+0.2	10.1	10.0	10.7	10.0	32.1	40.0	-13.3	Willie
32	12.040M	25.6	+9.9	+0.3	+0.0	+0.7	+0.0	36.7	50.0	-13.3	White
32	12.0 10111	20.0	+0.2	. 0.5	. 0.0	. 0.7	. 0.0	30.7	20.0	15.5	vv inte
33	12.761M	25.5	+9.9	+0.3	+0.0	+0.7	+0.0	36.6	50.0	-13.4	White
			+0.2								
34	6.905M	25.6	+9.9	+0.2	+0.0	+0.8	+0.0	36.6	50.0	-13.4	White
			+0.1								
35	10.878M	25.5	+9.9	+0.2	+0.0	+0.8	+0.0	36.6	50.0	-13.4	White
			+0.2								
36	13.328M	25.5	+9.9	+0.3	+0.0	+0.7	+0.0	36.6	50.0	-13.4	White
27	12.06014	25.5	+0.2	10.2	100	10.7	100	26.6	50.0	12.4	W/lade
37	12.869M	25.5	+9.9 +0.2	+0.3	+0.0	+0.7	+0.0	36.6	50.0	-13.4	White
38	2.850M	21.7	+9.8	+0.1	+0.0	+0.7	+0.0	32.5	46.0	-13.5	White
36	2.03UW	41./	+0.2	10.1	10.0	10.7	10.0	34.3	40.0	-13.3	vv mite
39	2.680M	21.6	+9.8	+0.1	+0.0	+0.7	+0.0	32.4	46.0	-13.6	White
	2.000111	-1.0	+0.2	J.1	3.0	J.,	0.0	Z =		15.0	
40	11.652M	25.3	+9.9	+0.3	+0.0	+0.7	+0.0	36.4	50.0	-13.6	White
			+0.2								
-											

Page 18 of 126 Report No.: 96813-12A

41	12.391M	25.2	+9.9 +0.2	+0.3	+0.0	+0.7	+0.0	36.3	50.0	-13.7	White
42	2.931M	21.5	+9.8	+0.1	+0.0	+0.7	+0.0	32.3	46.0	-13.7	White
			+0.2								
43	2.021M	21.4	+9.8	+0.1	+0.0	+0.7	+0.0	32.2	46.0	-13.8	White
			+0.2								
44	2.948M	21.4	+9.8	+0.1	+0.0	+0.7	+0.0	32.2	46.0	-13.8	White
			+0.2								
45	416.045k	33.0	+9.9	+0.0	+0.0	+0.7	+0.0	43.7	57.5	-13.8	White
	QP		+0.1								
^	416.045k	34.2	+9.9	+0.0	+0.0	+0.7	+0.0	44.9	47.5	-2.6	White
			+0.1								
47	14.589M	24.9	+9.9	+0.3	+0.1	+0.7	+0.0	36.1	50.0	-13.9	White
			+0.2								
48	11.706M	24.9	+9.9	+0.3	+0.0	+0.7	+0.0	36.0	50.0	-14.0	White
			+0.2								
49	2.221M	21.1	+9.8	+0.1	+0.0	+0.7	+0.0	31.9	46.0	-14.1	White
			+0.2								
50	12.202M	24.6	+9.9	+0.3	+0.0	+0.7	+0.0	35.7	50.0	-14.3	White
			+0.2								
51	14.842M	24.3	+9.9	+0.3	+0.1	+0.7	+0.0	35.5	50.0	-14.5	White
			+0.2								
52	12.409M	24.4	+9.9	+0.3	+0.0	+0.7	+0.0	35.5	50.0	-14.5	White
			+0.2								

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 96813 Date: 6/25/2015
Test Type: Conducted Emissions Time: 16:04:14
Tested By: Hieu Song Nguyenpham Sequence#: 31

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

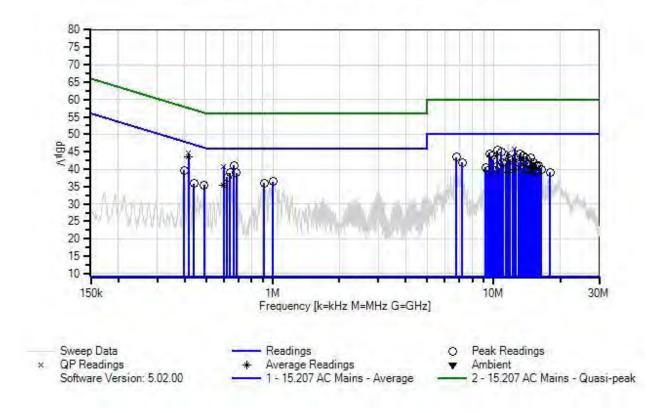
Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: ANSI C 63.4


The EUT is a Compact Sensor. It is powered by AC/DC adapter which sits next to it. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Zigbee on TX

Page 20 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 31 Date: 6/25/2015 15,207 AC Mains - Average Test Lead: 120V 60Hz Black

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	3/31/2015	3/31/2017
T2	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T3	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
T4	AN00493	50uH LISN-L1 (L) Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN00493	50uH LISN-L(2) N Loss W/O	3816/NM	3/4/2015	3/4/2017
		European Adapter			
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T5	ANP05258	High Pass Filter	HE9615-150K- 50-720B	11/14/2014	11/14/2016

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	415.890k	33.5	+9.9	+0.0	+0.0	+0.1	+0.0	43.6	47.5	-3.9	Black
	Ave		+0.1								
2	10.391M	34.9	+9.9	+0.2	+0.0	+0.2	+0.0	45.4	50.0	-4.6	Black
			+0.2								
3	665.588k	31.0	+9.8	+0.0	+0.0	+0.1	+0.0	41.0	46.0	-5.0	Black
	10.70716	24.6	+0.1	.0.2		. 0. 1	. 0. 0	45.0	50.0	7.0	D1 1
4	10.797M	34.6	+9.9	+0.2	+0.0	+0.1	+0.0	45.0	50.0	-5.0	Black
	0.50014	22.0	+0.2	+0.2		.0.2		44.4	50.0	5.6	D1 1
5	9.598M	33.9	+9.9	+0.2	+0.0	+0.2	+0.0	44.4	50.0	-5.6	Black
-	12 102M	22.0	+0.2	+0.2	+0.0	+0.1	100	111	50.0	5.6	Dlasla
6	13.193M	33.9	+9.9 +0.2	+0.3	+0.0	+0.1	+0.0	44.4	50.0	-5.6	Black
7	13.589M	33.2	+9.9	+0.3	+0.0	+0.1	+0.0	43.7	50.0	-6.3	Dlask
/	13.389101	33.2	+9.9	+0.3	+0.0	+0.1	+0.0	43.7	30.0	-0.3	Black
8	9.797M	33.2	+9.9	+0.2	+0.0	+0.2	+0.0	43.7	50.0	-6.3	Black
0	9.1911 v1	33.2	+0.2	10.2	10.0	10.2	10.0	43.7	30.0	-0.5	Diack
9	6.797M	33.1	+9.9	+0.2	+0.0	+0.1	+0.0	43.4	50.0	-6.6	Black
	0.777111	33.1	+0.1	. 0.2	. 0.0	. 0.1	. 0.0	15.1	50.0	0.0	Diuck
10	12.598M	32.7	+9.9	+0.3	+0.0	+0.1	+0.0	43.2	50.0	-6.8	Black
			+0.2			***					
11	14.797M	32.6	+9.9	+0.3	+0.1	+0.1	+0.0	43.2	50.0	-6.8	Black
			+0.2								
12	13.995M	32.6	+9.9	+0.3	+0.0	+0.1	+0.0	43.1	50.0	-6.9	Black
			+0.2								
13	641.590k	29.0	+9.8	+0.0	+0.0	+0.1	+0.0	39.0	46.0	-7.0	Black
			+0.1								
14	684.495k	28.9	+9.8	+0.0	+0.0	+0.1	+0.0	38.9	46.0	-7.1	Black
			+0.1								

15	11.797M	32.4	+9.9 +0.2	+0.3	+0.0	+0.1	+0.0	42.9	50.0	-7.1	Black
16	12.193M	32.3	+9.9	+0.3	+0.0	+0.1	+0.0	42.8	50.0	-7.2	Black
			+0.2								
17	9.995M	32.1	+9.9	+0.2	+0.0	+0.2	+0.0	42.6	50.0	-7.4	Black
- 10	10 =0=1 -		+0.2								
18	13.797M	31.9	+9.9 +0.2	+0.3	+0.0	+0.1	+0.0	42.4	50.0	-7.6	Black
19	7.193M	31.6	+9.9 +0.1	+0.2	+0.0	+0.1	+0.0	41.9	50.0	-8.1	Black
20	12.00514	21.4		10.2		. 0. 1		41.0	50.0	0.1	D1 1
20	12.995M	31.4	+9.9 +0.2	+0.3	+0.0	+0.1	+0.0	41.9	50.0	-8.1	Black
21	15.193M	31.4	+9.9	+0.3	+0.0	+0.1	+0.0	41.9	50.0	-8.1	Black
21	13.175141	31.1	+0.2	. 0.5	. 0.0	. 0.1	. 0.0	11.7	50.0	0.1	Diuck
22	10.00514	21.2	+9.9	+0.2	ΙΟ Ο	ι 0.1	ΙΟ Ο	41.0	50.0	0.2	Dlasta
22	10.995M	31.3		+0.3	+0.0	+0.1	+0.0	41.8	50.0	-8.2	Black
			+0.2								
23	11.391M	31.3	+9.9	+0.3	+0.0	+0.1	+0.0	41.8	50.0	-8.2	Black
			+0.2								
24	397.249k	29.5	+9.9 +0.1	+0.0	+0.0	+0.1	+0.0	39.6	47.9	-8.3	Black
2.5	(21 2201	27.6		١, ٥, ٥		. 0. 1		27.7	46.0	0.2	D1 1
25	621.228k	27.6	+9.9 +0.1	+0.0	+0.0	+0.1	+0.0	37.7	46.0	-8.3	Black
26	14.400M	30.6	+9.9	+0.3	+0.1	+0.1	+0.0	41.2	50.0	-8.8	Black
	1	20.0	+0.2	0.5	0.1	0.1	0.0		00.0	0.0	214411
27	15.995M	30.6	+9.9	+0.3	+0.0	+0.1	+0.0	41.1	50.0	-8.9	Black
27	13.993WI	30.0	+0.2	+0.3	+0.0	+0.1	+0.0	41.1	30.0	-8.9	Diack
20	15 500) 6	20.5		. 0. 2	. 0. 0	. 0. 1	. 0. 0	41.0	50.0	0.0	D1 1
28	15.589M	30.5	+9.9	+0.3	+0.0	+0.1	+0.0	41.0	50.0	-9.0	Black
			+0.2								
29	14.995M	30.2	+9.9	+0.3	+0.1	+0.1	+0.0	40.8	50.0	-9.2	Black
			+0.2								
30	1.001M	26.2	+9.9	+0.1	+0.0	+0.1	+0.0	36.5	46.0	-9.5	Black
			+0.2								
31	9.193M	30.1	+9.9	+0.2	+0.0	+0.2	+0.0	40.5	50.0	-9.5	Black
31	7.175111	30.1	+0.1	. 0.2	. 0.0	. 0.2	. 0.0	10.5	50.0	7.5	Diuck
22	10.5001/	20.0	+9.9	+0.2	+0.0	⊥∩ 1		40.3	50.0	0.7	Dlast
32	10.589M	29.9		±0.∠	±0.0	+0.1	+0.0	40.3	50.0	-9.7	Black
	10.0013.5		+0.2				. 0 . 0	40.5	5 0.0		DI 1
33	13.391M	29.7	+9.9	+0.3	+0.0	+0.1	+0.0	40.2	50.0	-9.8	Black
			+0.2								
34	915.479k	25.8	+9.9	+0.1	+0.0	+0.1	+0.0	36.0	46.0	-10.0	Black
L			+0.1								
35	12.396M	29.5	+9.9	+0.3	+0.0	+0.1	+0.0	40.0	50.0	-10.0	Black
	Ave		+0.2								
36	14.589M	29.4	+9.9	+0.3	+0.1	+0.1	+0.0	40.0	50.0	-10.0	Black
] 30	17.JUJIVI	4.√.	+0.2	0.5	0.1	0.1	0.0	70.0	50.0	10.0	Diack
27	1/ 1023/	20.5		10.2	100	+Λ 1	100	40.0	50.0	10.0	D1a a1-
37	14.193M	29.5	+9.9	+0.3	+0.0	+0.1	+0.0	40.0	50.0	-10.0	Black
	1600135	• • •	+0.2				. 0 . 0	20.0	5 0.0	101	DI 1
38	16.391M	29.4	+9.9	+0.3	+0.0	+0.1	+0.0	39.9	50.0	-10.1	Black
			+0.2								
39	9.391M	29.2	+9.9	+0.2	+0.0	+0.2	+0.0	39.6	50.0	-10.4	Black
			+0.1								
40	10.193M	29.1	+9.9	+0.2	+0.0	+0.2	+0.0	39.6	50.0	-10.4	Black
			+0.2								
			. 5.2								

	99.825k	25.3	+9.9	+0.0	+0.0	+0.1	+0.0	35.4	46.0	-10.6	Black
Ave	e		+0.1								
42 1	5.797M	28.8	+9.9	+0.3	+0.0	+0.1	+0.0	39.3	50.0	-10.7	Black
			+0.2								
43 4	89.604k	25.3	+9.9	+0.0	+0.0	+0.1	+0.0	35.5	46.2	-10.7	Black
			+0.2								
44 1	5.391M	28.7	+9.9	+0.3	+0.0	+0.1	+0.0	39.2	50.0	-10.8	Black
			+0.2								
45 1	1.597M	28.6	+9.9	+0.3	+0.0	+0.1	+0.0	39.1	50.0	-10.9	Black
Ave	e		+0.2								
46 1	7.995M	28.3	+9.9	+0.3	+0.1	+0.3	+0.0	39.1	50.0	-10.9	Black
			+0.2								
47 43	38.699k	25.8	+9.9	+0.0	+0.0	+0.1	+0.0	35.9	47.1	-11.2	Black
			+0.1								
48 4	15.890k	34.4	+9.9	+0.0	+0.0	+0.1	+0.0	44.5	57.5	-13.0	Black
QP			+0.1								
^ 4	15.890k	35.0	+9.9	+0.0	+0.0	+0.1	+0.0	45.1	47.5	-2.4	Black
			+0.1								
50 1	2.396M	35.3	+9.9	+0.3	+0.0	+0.1	+0.0	45.8	60.0	-14.2	Black
QP			+0.2								
^ 1	2.396M	38.0	+9.9	+0.3	+0.0	+0.1	+0.0	48.5	50.0	-1.5	Black
			+0.2								
52 59	99.825k	30.7	+9.9	+0.0	+0.0	+0.1	+0.0	40.8	56.0	-15.2	Black
QP			+0.1								
^ 59	99.825k	33.6	+9.9	+0.0	+0.0	+0.1	+0.0	43.7	46.0	-2.3	Black
			+0.1								
54 1	1.597M	34.2	+9.9	+0.3	+0.0	+0.1	+0.0	44.7	60.0	-15.3	Black
QP			+0.2								
^ 1	1.597M	36.8	+9.9	+0.3	+0.0	+0.1	+0.0	47.3	50.0	-2.7	Black
			+0.2								

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 96813 Date: 6/25/2015
Test Type: Conducted Emissions Time: 16:13:24
Tested By: Hieu Song Nguyenpham Sequence#: 32

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

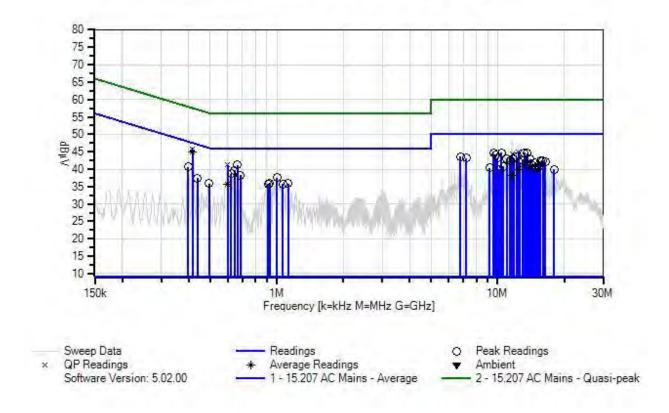
Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: ANSI C 63.4


The EUT is a Compact Sensor. It is powered by AC/DC adapter which sits next to it. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: Zigbee on TX

Page 25 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 32 Date: 6/25/2015 15,207 AC Mains - Average Test Lead: 120V 60Hz White

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	3/31/2015	3/31/2017
T2	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T3	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN00493	50uH LISN-L1 (L) Loss W/O European Adapter	3816/NM	3/4/2015	3/4/2017
T4	AN00493	50uH LISN-L(2) N Loss W/O European Adapter	3816/NM	3/4/2015	3/4/2017
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T5	ANP05258	High Pass Filter	HE9615-150K- 50-720B	11/14/2014	11/14/2016

Measur	ement Data:		eading list	ted by ma	ırgin.			Test Lead	d: White		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	415.244k	34.2	+9.9	+0.0	+0.0	+0.7	+0.0	44.9	47.5	-2.6	White
	Ave		+0.1								
2	664.860k	30.6	+9.8	+0.0	+0.0	+0.7	+0.0	41.2	46.0	-4.8	White
			+0.1								
3	13.193M	33.6	+9.9	+0.3	+0.0	+0.7	+0.0	44.7	50.0	-5.3	White
			+0.2								
4	10.400M	33.6	+9.9	+0.2	+0.0	+0.8	+0.0	44.7	50.0	-5.3	White
	2 7003 7		+0.2								****
5	9.598M	33.5	+9.9	+0.2	+0.0	+0.8	+0.0	44.6	50.0	-5.4	White
	12 500) 5	22.4	+0.2	. 0. 2	. 0. 0		. 0. 0	44.5	50.0		****
6	13.589M	33.4	+9.9	+0.3	+0.0	+0.7	+0.0	44.5	50.0	-5.5	White
	0.70714	22.0	+0.2	+0.2		.0.0	.0.0	44.1	50.0	7.0	3371 '4
7	9.797M	33.0	+9.9	+0.2	+0.0	+0.8	+0.0	44.1	50.0	-5.9	White
8	(42.7711-	29.1	+0.2	+0.0	+0.0	+0.7	+0.0	39.7	46.0	-6.3	White
8	643.771k	29.1	+9.8 +0.1	+0.0	+0.0	+0.7	+0.0	39.7	46.0	-0.3	wnite
9	6.797M	32.6	+9.9	+0.2	+0.0	+0.8	+0.0	43.6	50.0	-6.4	White
,	0.7971 v 1	32.0	+0.1	10.2	10.0	10.8	10.0	43.0	30.0	-0.4	W IIILE
10	12.193M	32.4	+9.9	+0.3	+0.0	+0.7	+0.0	43.5	50.0	-6.5	White
10	12.175141	32.4	+0.2	10.5	10.0	10.7	10.0	43.3	50.0	-0.5	vv inte
11	7.193M	32.1	+9.9	+0.2	+0.0	+0.8	+0.0	43.1	50.0	-6.9	White
	7.175111	32.1	+0.1	0.2	. 0.0	. 0.0	. 0.0	13.1	20.0	0.5	***************************************
12	9.995M	32.0	+9.9	+0.2	+0.0	+0.8	+0.0	43.1	50.0	-6.9	White
		*	+0.2								
13	10.995M	31.8	+9.9	+0.3	+0.0	+0.8	+0.0	43.0	50.0	-7.0	White
			+0.2								
14	11.797M	31.9	+9.9	+0.3	+0.0	+0.7	+0.0	43.0	50.0	-7.0	White
			+0.2								

15	13.995M	31.8	+9.9	+0.3	+0.0	+0.7	+0.0	42.9	50.0	-7.1	White
16	397.249k	29.9	+0.2	+0.0	+0.0	+0.7	+0.0	40.6	47.9	-7.3	White
10	391.249K	29.9	+0.1	10.0	10.0	10.7	10.0	40.0	47.3	-1.3	WIIILE
17	620.501k	28.0	+9.9	+0.0	+0.0	+0.7	+0.0	38.7	46.0	-7.3	White
1,	020.50111	20.0	+0.1	. 0.0	. 0.0	. 0.7	0.0	30.7	10.0	7.5	***************************************
18	15.995M	31.4	+9.9	+0.3	+0.0	+0.7	+0.0	42.5	50.0	-7.5	White
			+0.2								
19	11.391M	31.3	+9.9	+0.3	+0.0	+0.7	+0.0	42.4	50.0	-7.6	White
			+0.2								
20	12.995M	31.3	+9.9	+0.3	+0.0	+0.7	+0.0	42.4	50.0	-7.6	White
			+0.2								
21	683.040k	27.7	+9.8	+0.0	+0.0	+0.7	+0.0	38.3	46.0	-7.7	White
22	15 50014	21.0	+0.1	+0.2		.0.7		40.2	50.0	7.7	3371 '4
22	15.598M	31.2	+9.9	+0.3	+0.0	+0.7	+0.0	42.3	50.0	-7.7	White
23	16.391M	31.0	+0.2	+0.3	+0.0	+0.7	+0.0	42.1	50.0	-7.9	White
23	10.391101	31.0	+0.2	10.3	10.0	10.7	10.0	42.1	30.0	-1.9	WIIILE
24	12.589M	30.8	+9.9	+0.3	+0.0	+0.7	+0.0	41.9	50.0	-8.1	White
	12.30)111	30.0	+0.2	. 0.5	. 0.0	. 0.7	. 0.0	11.7	50.0	0.1	vv inte
25	14.797M	30.5	+9.9	+0.3	+0.1	+0.7	+0.0	41.7	50.0	-8.3	White
			+0.2								
26	1.001M	26.6	+9.9	+0.1	+0.0	+0.7	+0.0	37.5	46.0	-8.5	White
			+0.2								
27	13.391M	30.2	+9.9	+0.3	+0.0	+0.7	+0.0	41.3	50.0	-8.7	White
			+0.2								
28	13.788M	30.1	+9.9	+0.3	+0.0	+0.7	+0.0	41.2	50.0	-8.8	White
20	1420114	20.0	+0.2	10.2	+0.1	.07	100	41.0	50.0	0.0	XX71. : 4 -
29	14.391M	29.8	+9.9 +0.2	+0.3	+0.1	+0.7	+0.0	41.0	50.0	-9.0	White
30	15.193M	29.9	+9.9	+0.3	+0.0	+0.7	+0.0	41.0	50.0	-9.0	White
30	13.193IVI	29.9	+0.2	10.5	10.0	10.7	10.0	41.0	30.0	- 9.0	WIIILE
31	10.598M	29.7	+9.9	+0.2	+0.0	+0.8	+0.0	40.8	50.0	-9.2	White
			+0.2				•••				,, =====
32	15.391M	29.5	+9.9	+0.3	+0.0	+0.7	+0.0	40.6	50.0	-9.4	White
			+0.2								
33	437.972k	26.7	+9.9	+0.0	+0.0	+0.7	+0.0	37.4	47.1	-9.7	White
			+0.1								
34	9.193M	29.3	+9.9	+0.2	+0.0	+0.8	+0.0	40.3	50.0	-9.7	White
2.5	14.0073.5	20.1	+0.1	10.2	10.1	10.7	10.0	40.2	50.0	0.7	33.71. 14
35	14.995M	29.1	+9.9 +0.2	+0.3	+0.1	+0.7	+0.0	40.3	50.0	-9.7	White
36	14.589M	29.0	+0.2	+0.3	+0.1	+0.7	+0.0	40.2	50.0	-9.8	White
30	17.507111	49.0	+0.2	10.3	0.1	10.7	10.0	40.∠	50.0	- 2.0	VV IIILE
37	12.395M	28.9	+9.9	+0.3	+0.0	+0.7	+0.0	40.0	50.0	-10.0	White
	Ave	_0.,	+0.2	3.5	3.0	J.,				-0.0	
38	928.237k	25.2	+9.9	+0.1	+0.0	+0.7	+0.0	36.0	46.0	-10.0	White
			+0.1								
39	1.124M	25.1	+9.8	+0.1	+0.0	+0.7	+0.0	35.9	46.0	-10.1	White
			+0.2								
40	17.995M	28.6	+9.9	+0.3	+0.1	+0.8	+0.0	39.9	50.0	-10.1	White
			+0.2								

Page 28 of 126 Report No.: 96813-12A

41	10.193M	28.8	+9.9	+0.2	+0.0	+0.8	+0.0	39.9	50.0	-10.1	White
			+0.2								
42	915.479k	25.0	+9.9	+0.1	+0.0	+0.7	+0.0	35.8	46.0	-10.2	White
			+0.1								
43	495.421k	25.1	+9.9	+0.0	+0.0	+0.7	+0.0	35.9	46.1	-10.2	White
			+0.2								
44	1.064M	24.9	+9.9	+0.1	+0.0	+0.7	+0.0	35.8	46.0	-10.2	White
			+0.2								
45	599.780k	25.0	+9.9	+0.0	+0.0	+0.7	+0.0	35.7	46.0	-10.3	White
	Ave		+0.1								
46		35.0	+9.9	+0.0	+0.0	+0.7	+0.0	45.7	57.5	-11.8	White
	OP	20.0	+0.1	0.0	0.0	0.,	0.0	,	07.0	11.0	***************************************
^		35.6	+9.9	+0.0	+0.0	+0.7	+0.0	46.3	47.5	-1.2	White
	113.211K	33.0	+0.1	. 0.0	. 0.0	. 0.7	. 0.0	10.5	17.5	1.2	** 11110
48	11.595M	27.0	+9.9	+0.3	+0.0	+0.7	+0.0	38.1	50.0	-11.9	White
70	Ave	27.0	+0.2	10.5	10.0	10.7	10.0	30.1	30.0	-11.7	vv iiite
49		30.5	+9.9	+0.0	+0.0	+0.7	+0.0	41.2	56.0	-14.8	White
49		30.3	+0.1	±0.0	±0.0	+0.7	+0.0	41.2	30.0	-14.0	w iiite
^	QP	22.7		١. ٥. ٥	10.0	.0.7		444	46.0	1.6	XX71 *4
	599.780k	33.7	+9.9	+0.0	+0.0	+0.7	+0.0	44.4	46.0	-1.6	White
			+0.1								
51		33.8	+9.9	+0.3	+0.0	+0.7	+0.0	44.9	60.0	-15.1	White
	QP		+0.2								
^	12.395M	37.5	+9.9	+0.3	+0.0	+0.7	+0.0	48.6	50.0	-1.4	White
			+0.2								
53	11.595M	33.1	+9.9	+0.3	+0.0	+0.7	+0.0	44.2	60.0	-15.8	White
	QP		+0.2								
^		35.3	+9.9	+0.3	+0.0	+0.7	+0.0	46.4	50.0	-3.6	White
			+0.2								
			* *-								

Test Setup Photo(s)

15.247(a)(2) 6dB Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc. Specification: OBW Set up

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

T CST Equi	Pintentt				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI C63.5	3115	1/23/2013	1/23/2015
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

OBW set up

Application: Putty version 0.64 for ZigBee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C, Relative Humidity: 39 %, Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi Method: KDB 558074 v03r02 section 8.1

RBW=100kHz VBW=300kHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: BLE on TX Mode

Page 31 of 126 Report No.: 96813-12A

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc. Specification: OBW Set up

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI	3115	1/23/2013	1/23/2015
		C63.5			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

OBW set up

Application: Putty version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

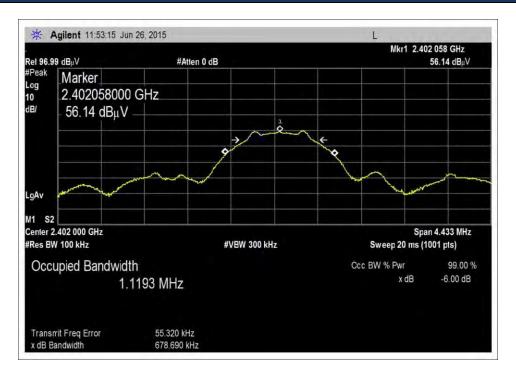
Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

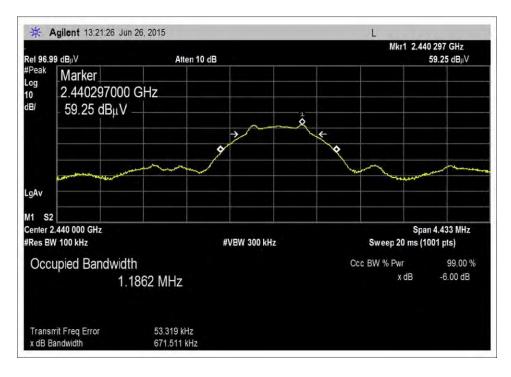
Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi Method: KDB 558074 v03r02 section 8.1

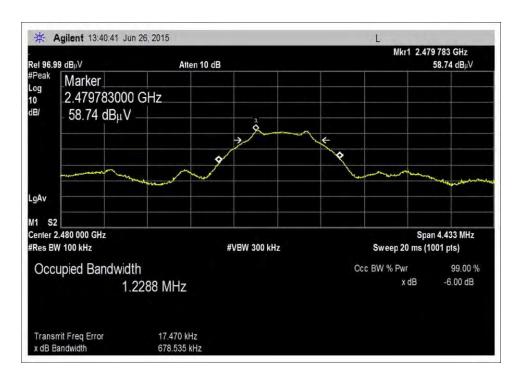
RBW=100kHz VBW=300kHz


The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

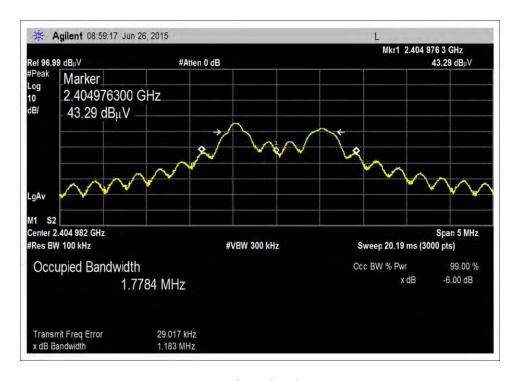
Note: Zigbee on TX Mode

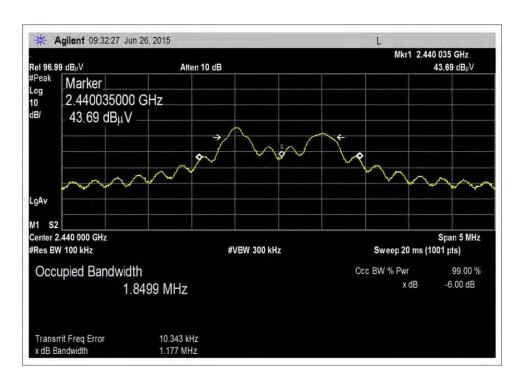

Page 32 of 126 Report No.: 96813-12A

Test Data



Low Channel, Bluetooth

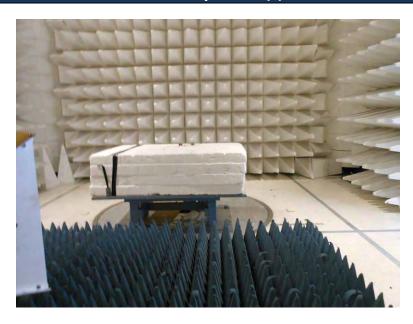

Middle Channel, Bluetooth

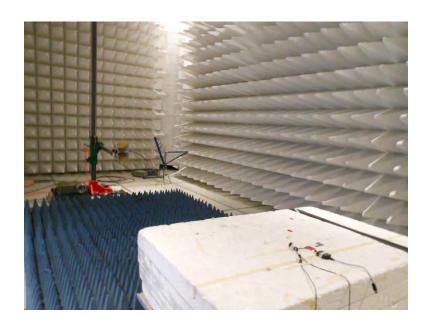


High Channel, Bluetooth

Low Channel, Zigbee

Middle Channel, Zigbee





High Channel, Zigbee

Test Setup Photo(s)

15.247(b)(3) Output Power

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(b)(3) Output Power

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Scan Time: 13:49:13
Tested By: Hieu Song Nguyenpham Sequence#: 36

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Fundamental of the EUT

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: 558074 D01 DTS Meas Guidance v03r02 section 9.1.1

RBW=3MHz VBW=8MHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving. The EUT is ceiling-mounted equipment. There is only a requirement to measure two orthogonals.

Note:

BLE on TX

X axis- Direct to Antenna

Page 38 of 126 Report No.: 96813-12A

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
1	2440.276M	60.2	+28.7	+1.2	+2.6		+0.0	92.7	125.2	-32.5	Horiz
2	2479.580M	59.9	+28.8	+1.2	+2.6		+0.0	92.5	125.2	-32.7	Horiz
3	2402.360M	57.6	+28.6	+1.2	+2.6		+0.0	90.0	125.2	-35.2	Horiz
4	2440.276M	54.2	+28.7	+1.2	+2.6		+0.0	86.7	125.2	-38.5	Vert
5	2479.580M	53.8	+28.8	+1.2	+2.6		+0.0	86.4	125.2	-38.8	Vert
6	2402.360M	49.2	+28.6	+1.2	+2.6		+0.0	81.6	125.2	-43.6	Vert

Frequency (MHz)	Measured Power in Watt	Power Limit in Watt	Pass/Fail
2402.360			
Low Channel	3.0000E-04	1.00	Pass
(Horizontal)			
2402.360			
Low Channel	4.3363E-05	1.00	Pass
(Vertical)			
2440.276			
Middle Channel	5.5863E-04	1.00	Pass
(Horizontal)			
2440.276			
Middle Channel	1.4032E-04	1.00	Pass
(Vertical)			
2479.580			
High Channel	5.3348E-04	1.00	Pass
(Horizontal)			
2479.580			
High Channel	1.3095E-04	1.00	Pass
(Vertical)			

A formula converts Radiated Method to Conducted Method

dBm (conducted power) = dBuV/m +20*LOG D -104.77 - Gain (dBi)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(b)(3) Output Power

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Scan Time: 11:21:51
Tested By: Hieu Song Nguyenpham Sequence#: 35

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Emission

Fundamental of the EUT

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: 558074 D01 DTS Meas Guidance v03r02 section 9.1.1

RBW=3MHz VBW=8MHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving. The EUT is ceiling-mounted equipment. There is only a requirement to measure two orthogonals.

Note:

BLE on TX

Y axis- Upward to Ceiling

Page 41 of 126 Report No.: 96813-12A

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	ırement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m \\$	dB	Ant
1	2440.036M	57.2	+28.7	+1.2	+2.6		+0.0	89.7	125.2	-35.5	Vert
2	2440.036M	56.1	+28.7	+1.2	+2.6		+0.0	88.6	125.2	-36.6	Horiz
3	2479.784M	55.8	+28.8	+1.2	+2.6		+0.0	88.4	125.2	-36.8	Vert
4	2402.132M	55.9	+28.6	+1.2	+2.6		+0.0	88.3	125.2	-36.9	Vert
5	2479.784M	55.1	+28.8	+1.2	+2.6		+0.0	87.7	125.2	-37.5	Horiz
6	2402.132M	54.8	+28.6	+1.2	+2.6		+0.0	87.2	125.2	-38.0	Horiz

Frequency (MHz)	Measured Power in Watt	Power Limit in Watt	Pass/Fail
2402.132			
Low Channel	1.5744E-04	1.00	Pass
(Horizontal)			
2402.132			
Low Channel	2.0282E-04	1.00	Pass
(Vertical)			
2440.036			
Middle Channel	2.1733E-04	1.00	Pass
(Horizontal)			
2440.036			
Middle Channel	2.7998E-04	1.00	Pass
(Vertical)			
2479.784			
High Channel	1.7665E-04	1.00	Pass
(Horizontal)			
2479.784			
High Channel	2.0755E-04	1.00	Pass
(Vertical)			

A formula converts Radiated Method to Conducted Method

dBm (conducted power) = dBuV/m +20*LOG D -104.77 - Gain (dBi)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(b)(3) Output Power

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Scan Time: 09:58:09
Tested By: Hieu Song Nguyenpham Sequence#: 31

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Fundamental of the EUT

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: 558074 D01 DTS Meas Guidance v03r02 section 9.1.1

RBW=3MHz VBW=8MHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving. The EUT is ceiling-mounted equipment. There is only a requirement to measure two orthogonals.

Note:

Zigbee on TX

X axis- Direct to Antenna

Page 44 of 126 Report No.: 96813-12A

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
1	2404.628M	64.3	+28.6	+1.2	+2.6		+0.0	96.7	125.2	-28.5	Horiz
2	2439.424M	64.1	+28.7	+1.2	+2.6		+0.0	96.6	125.2	-28.6	Horiz
3	2439.424M	63.8	+28.7	+1.2	+2.6		+0.0	96.3	125.2	-28.9	Vert
4	2479.580M	63.0	+28.8	+1.2	+2.6		+0.0	95.6	125.2	-29.6	Horiz
5	2404.628M	62.5	+28.6	+1.2	+2.6		+0.0	94.9	125.2	-30.3	Vert
6	2479.580M	61.5	+28.8	+1.2	+2.6		+0.0	94.1	125.2	-31.1	Vert

Frequency (MHz)	Measured Power in Watt	Power Limit in Watt	Pass/Fail
2404.628			
Low Channel	1.4032E-03	1.00	Pass
(Horizontal)			
2404.628			
Low Channel	9.2709E-04	1.00	Pass
(Vertical)			
2439.424			
Middle Channel	1.3713E-03	1.00	Pass
(Horizontal)			
2439.424			
Middle Channel	1.2797E-03	1.00	Pass
(Vertical)			
2479.580			
High Channel	1.0892E-03	1.00	Pass
(Horizontal)			
2479.580			
High Channel	7.7112E-04	1.00	Pass
(Vertical)			

A formula converts Radiated Method to Conducted Method

dBm (conducted power) = dBuV/m +20*LOG D -104.77 - Gain (dBi)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(b)(3) Output Power

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Scan Time: 10:42:09
Tested By: Hieu Song Nguyenpham Sequence#: 34

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Fundamental of the EUT

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: 558074 D01 DTS Meas Guidance v03r02 section 9.1.1

RBW=3MHz VBW=8MHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving. The EUT is ceiling-mounted equipment. There is only a requirement to measure two orthogonals.

Note:

Zigbee on TX

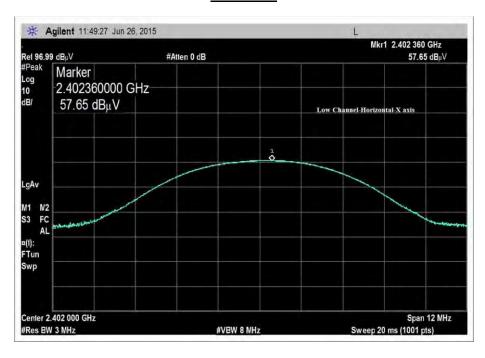
Y axis- Upward to Ceiling

Page 47 of 126 Report No.: 96813-12A

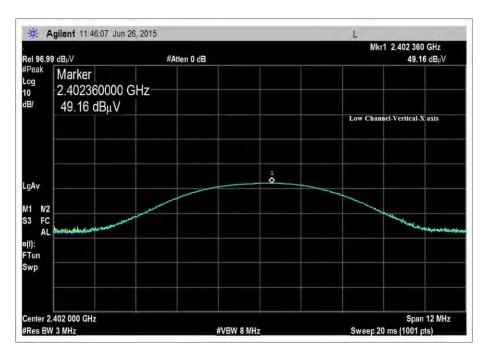
ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	Horn Antenna- 3115		12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	eading lis	ted by ma	argin.	rgin. Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2439.340M	62.2	+28.7	+1.2	+2.6		+0.0	94.7	125.2	-30.5	Horiz
2	2404.592M	61.9	+28.6	+1.2	+2.6		+0.0	94.3	125.2	-30.9	Horiz
3	2479.388M	61.0	+28.8	+1.2	+2.6		+0.0	93.6	125.2	-31.6	Vert
4	2439.340M	60.8	+28.7	+1.2	+2.6		+0.0	93.3	125.2	-31.9	Vert
5	2479.388M	59.7	+28.8	+1.2	+2.6		+0.0	92.3	125.2	-32.9	Horiz
6	2404.592M	59.7	+28.6	+1.2	+2.6		+0.0	92.1	125.2	-33.1	Vert

Frequency (MHz)	Measured Power in Watt	Power Limit in Watt	Pass/Fail
2404.592			
Low Channel	8.0746E-04	1.00	Pass
(Horizontal)			
2404.592			
Low Channel	4.8654E-04	1.00	Pass
(Vertical)			
2439.340			
Middle Channel	8.8536E-04	1.00	Pass
(Horizontal)			
2439.340			
Middle Channel	6.4139E-04	1.00	Pass
(Vertical)			
2479.388			
High Channel	5.0947E-04	1.00	Pass
(Horizontal)			
2479.388			
High Channel	6.8726E-04	1.00	Pass
(Vertical)			

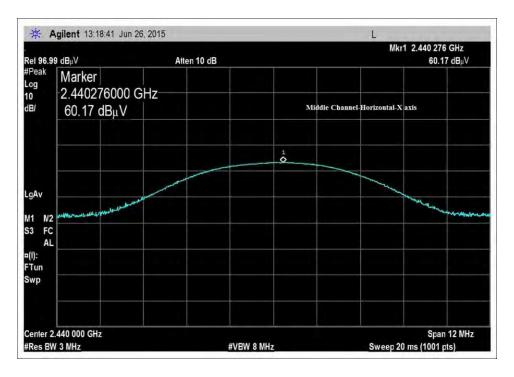

A formula converts Radiated Method to Conducted Method

dBm (conducted power) = dBuV/m +20*LOG D -104.77 – Gain (dBi)

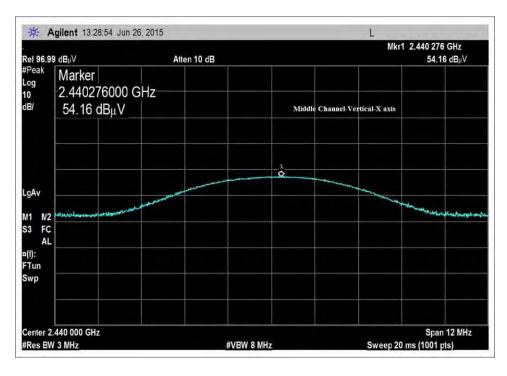


Test Plot(s)

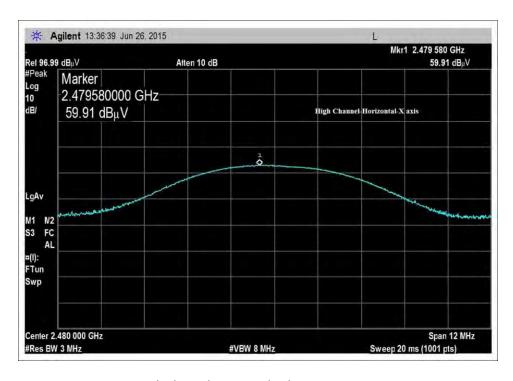
Bluetooth



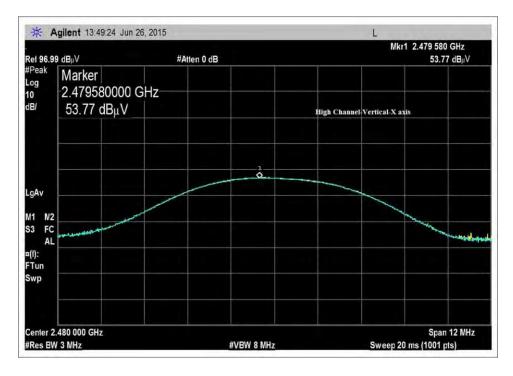
Low Channel-Horizontal Polarization, X-Axis



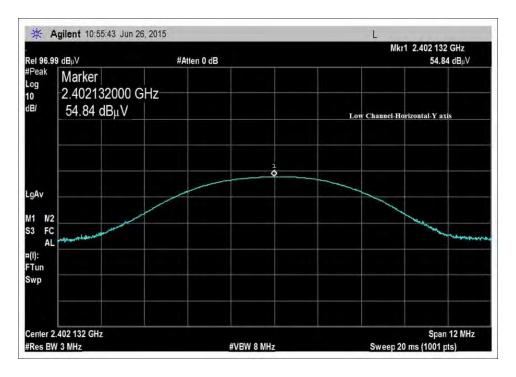
Low Channel-Vertical Polarization, X-Axis



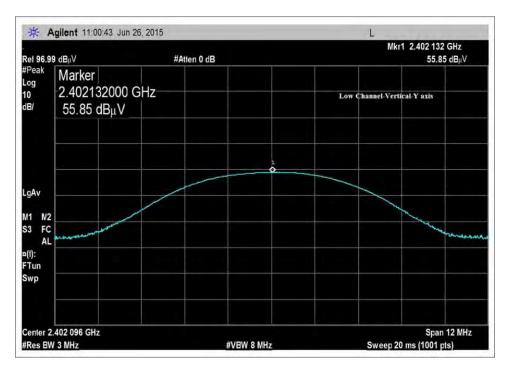
Middle Channel-Horizontal Polarization, X-Axis



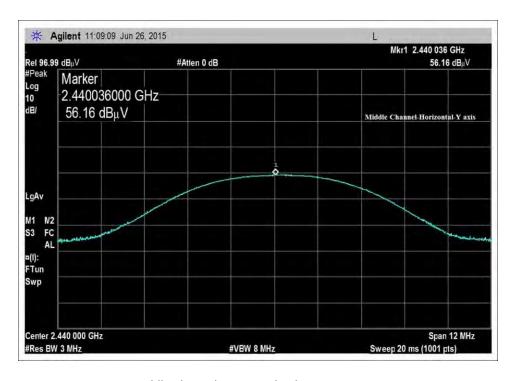
Middle Channel-Vertical Polarization, X-Axis



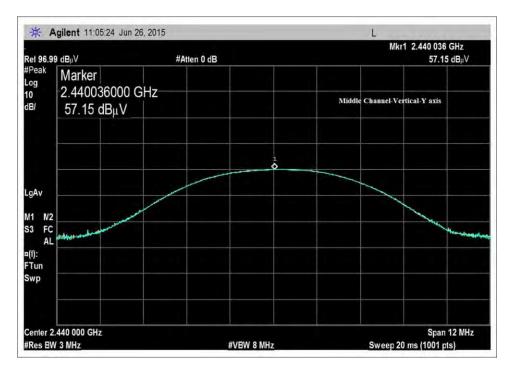
High Channel-Horizontal Polarization, X-Axis



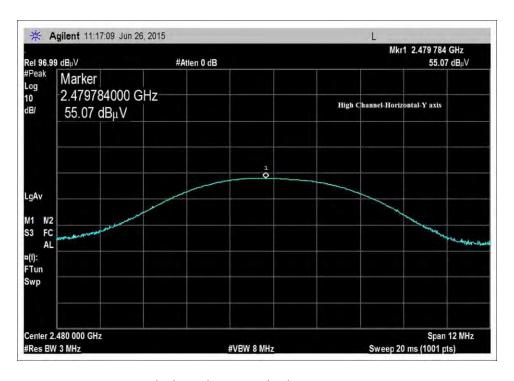
High Channel-Vertical Polarization, X-Axis



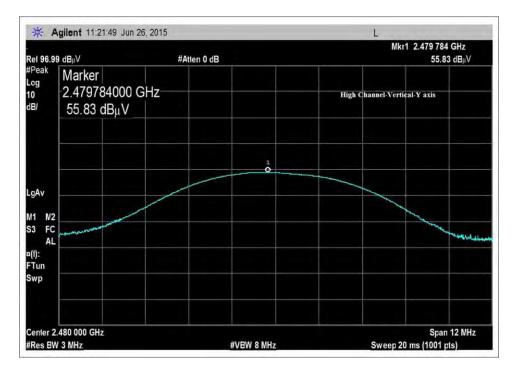
Low Channel-Horizontal Polarization, Y-Axis



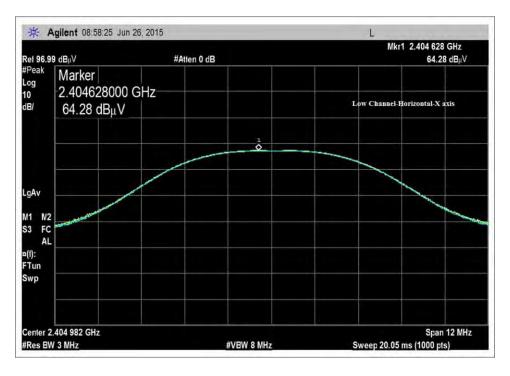
Low Channel-Vertical Polarization, Y-Axis

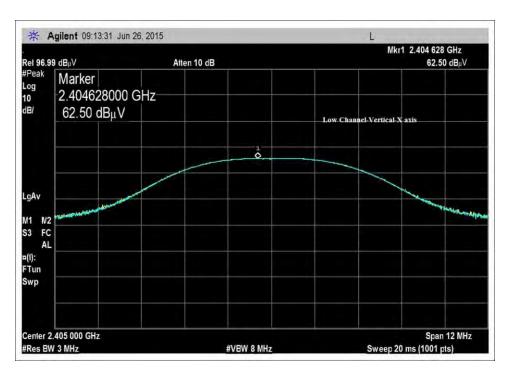


Middle Channel-Horizontal Polarization, Y-Axis

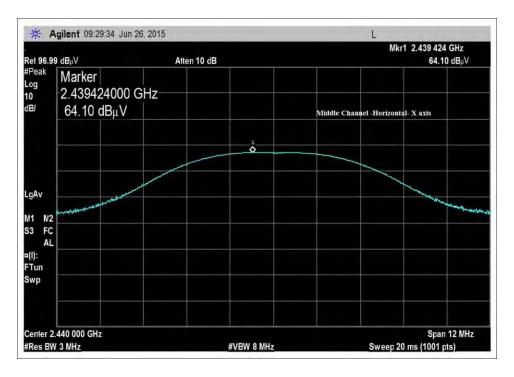


Middle Channel-Vertical Polarization, Y-Axis

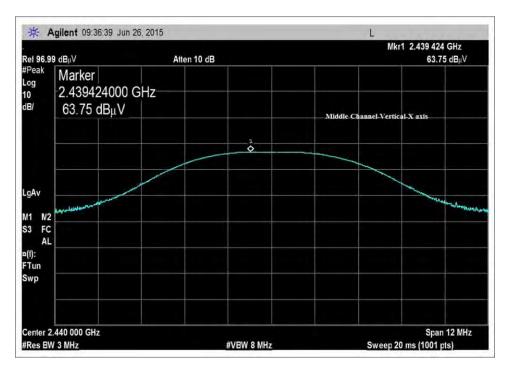

High Channel-Horizontal Polarization, Y-Axis


High Channel-Vertical Polarization, Y-Axis

Zigbee

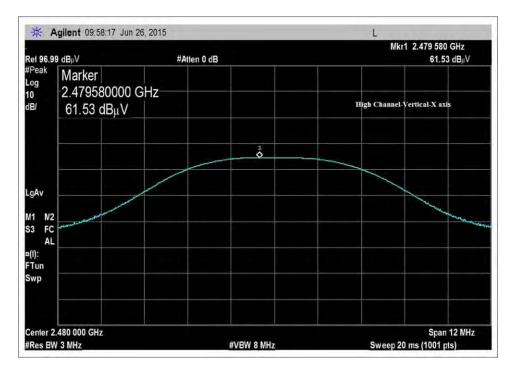


Low Channel-Horizontal Polarization, X Axis

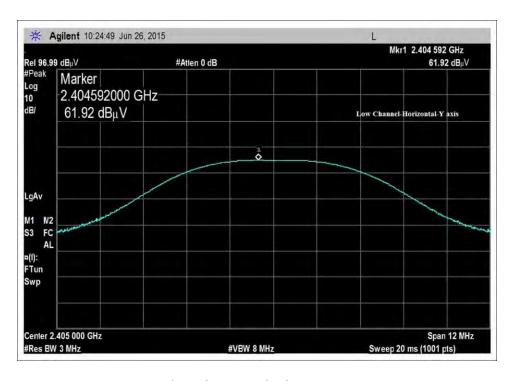


Low Channel-Vertical Polarization, X-Axis

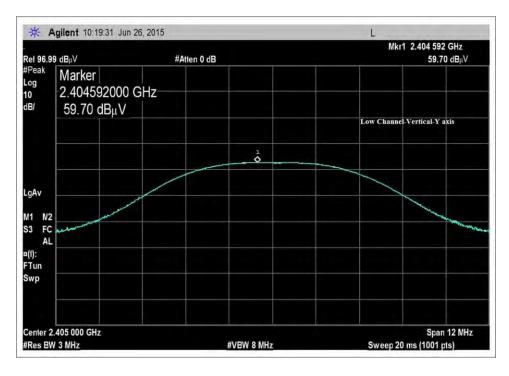
Middle Channel-Horizontal, X-Axis



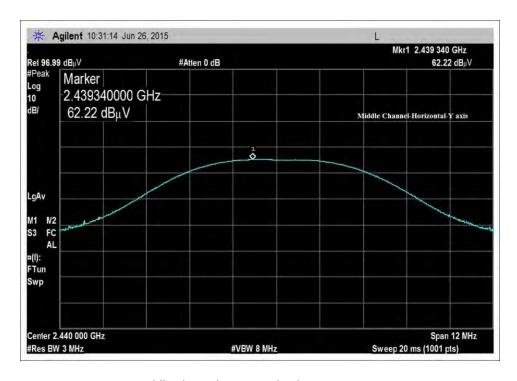
Middle Channel – Vertical Polarization, X-Axis



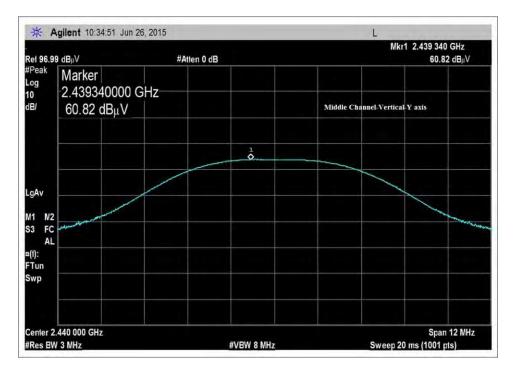
High Channel-Horizontal Polarization, X-Axis



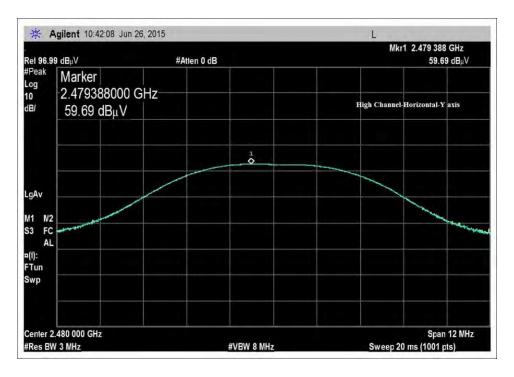
High Channel-Vertical Polarization, X-Axis



Low Channel-Horizontal Polarization, Y-Axis

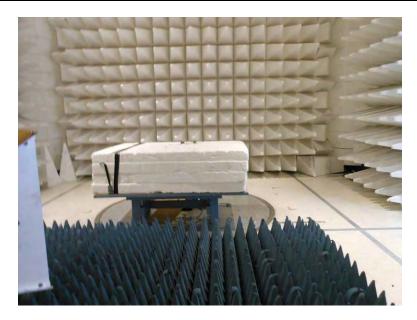


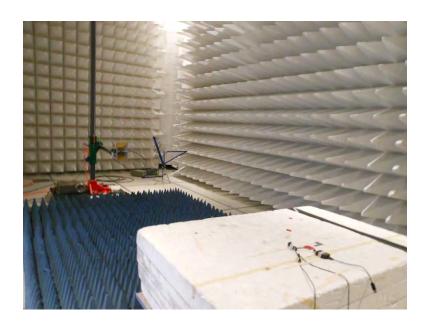
Low Channel-Vertical Polarization, Y-Axis



Middle Channel-Horizontal Polarization, Y-Axis

Middle Channel-Vertical Polarization, Y-Axis


High Channel-Horizontal Polarization, Y-Axis


High Channel-Vertical Polarization, Y-Axis

Test Setup Photo(s)

Front View

Back View

X-Axis

Y-Axis

15.247(e) Power Spectral Density

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)
Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Scan Time: 13:51:22
Tested By: Hieu Song Nguyenpham Sequence#: 37

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Power Spectrum Density

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C, Relative Humidity: 39 %, Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi Method: KDB 558074 v03r02 section 10.2

RBW= 100kHz VBW= 300kHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX

X axis- Direct to Antenna is the worst orthogonal.

Page 64 of 126 Report No.: 96813-12A

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measi	ırement Data:	Re	eading lis	ted by ma	argin.		Te	st Distanc	e: 3 Meters	S	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
1	2440.303M	59.2	+28.7	+1.2	+2.6		+0.0	91.7	103.2	-11.5	Horiz
2	2479.806M	59.0	+28.8	+1.2	+2.6		+0.0	91.6	103.2	-11.6	Horiz
3	2402.291M	57.1	+28.6	+1.2	+2.6		+0.0	89.5	103.2	-13.7	Horiz
4	2479.806M	52.9	+28.8	+1.2	+2.6		+0.0	85.5	103.2	-17.7	Vert
5	2440.303M	52.4	+28.7	+1.2	+2.6		+0.0	84.9	103.2	-18.3	Vert
6	2402.291M	48.1	+28.6	+1.2	+2.6		+0.0	80.5	103.2	-22.7	Vert

Page 65 of 126 Report No.: 96813-12A

Frequency (MHz)	Measured Power in dBm/100kHz	Power Limit in dBm/3kHz	Pass/Fail
2402.291			
Low Channel	-5.729	8.00	Pass
(Horizontal)			
2402.291			
Low Channel	-14.729	8.00	Pass
(Vertical)			
2440.303			
Middle Channel	-4.129	8.00	Pass
(Horizontal)			
2440.303			
Middle Channel	-10.329	8.00	Pass
(Vertical)			
2479.806			
High Channel	-3.629	8.00	Pass
(Horizontal)			
2479.806			
High Channel	-9.729	8.00	Pass
(Vertical)			

A formula converts Radiated Method to Conducted Method

dBm (conducted power) = dBuV/m +20*LOG D -104.77 – Gain (dBi)

Page 66 of 126 Report No.: 96813-12A

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: Under #: 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)

Work Order #: 96813 Date: 6/26/2015

Test Type: Radiated Scan Time: 09:59:39

Tested By: Hieu Song Nguyenpham Sequence#: 33

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Power Spectrum Density

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi Method: KDB 558074 v03r02 section 10.2

RBW=100kHz VBW=300kHz

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving

Note:

Zigbee on TX

X axis- Direct to Antenna is the worst orthogonal

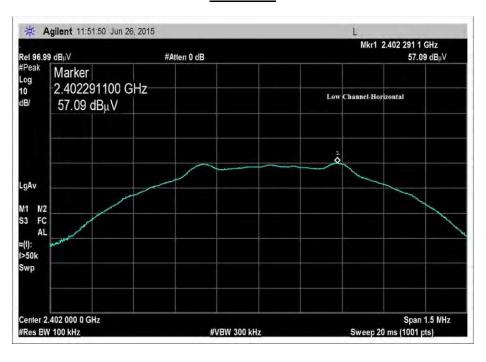
Page 67 of 126 Report No.: 96813-12A

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-	3115	12/2/2014	12/2/2016
		ANSI C63.5			
		Calibration			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

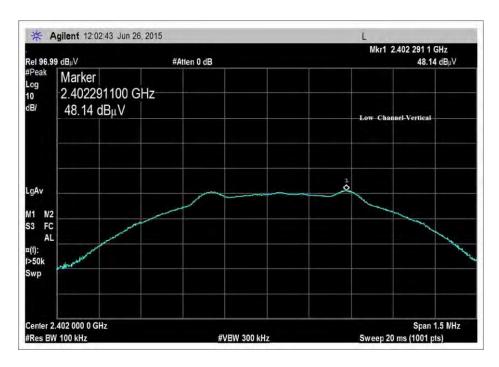
Measi	ırement Data:	Reading listed by margin.				Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
1	2439.512M	62.4	+28.7	+1.2	+2.6		+0.0	94.9	103.2	-8.3	Horiz
2	2404.510M	62.4	+28.6	+1.2	+2.6		+0.0	94.8	103.2	-8.4	Horiz
3	2439.512M	61.9	+28.7	+1.2	+2.6		+0.0	94.4	103.2	-8.8	Vert
4	2479.518M	61.1	+28.8	+1.2	+2.6		+0.0	93.7	103.2	-9.5	Horiz
5	2404.510M	60.7	+28.6	+1.2	+2.6		+0.0	93.1	103.2	-10.1	Vert
6	2479.518M	60.0	+28.8	+1.2	+2.6		+0.0	92.6	103.2	-10.6	Vert

Frequency (MHz)	Measured Power in dBm/100kHz	Power Limit in dBm/3kHz	Pass/Fail
Low Channel (Horizontal)	-0.429	8.00	Pass
Low Channel (Vertical)	-2.129	8.00	Pass
Middle Channel (Horizontal)	-0.329	8.00	Pass
Middle Channel (Vertical)	-0.829	8.00	Pass
High Channel (Horizontal)	-1.529	8.00	Pass
High Channel (Vertical)	-2.629	8.00	Pass

A formula converts Radiated Method to Conducted Method

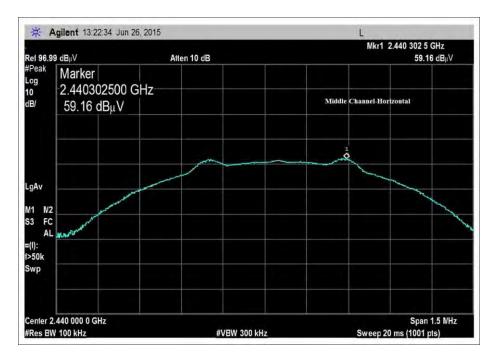

dBm (conducted power) = dBuV/m +20*LOG D -104.77 - Gain (dBi)

Page 69 of 126 Report No.: 96813-12A

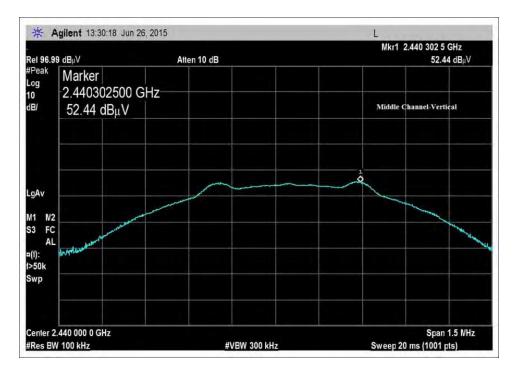


Test Plot(s)

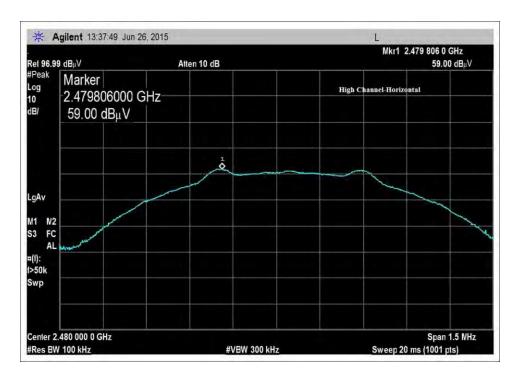
Bluetooth



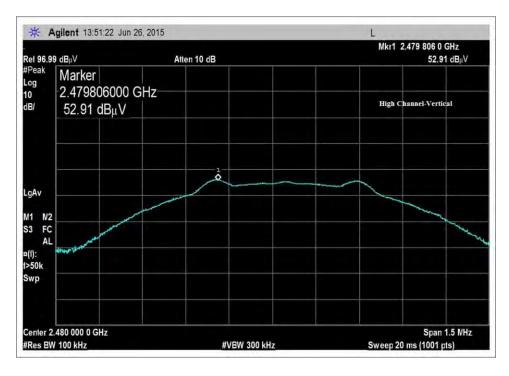
Low Channel-Horizontal Polarization



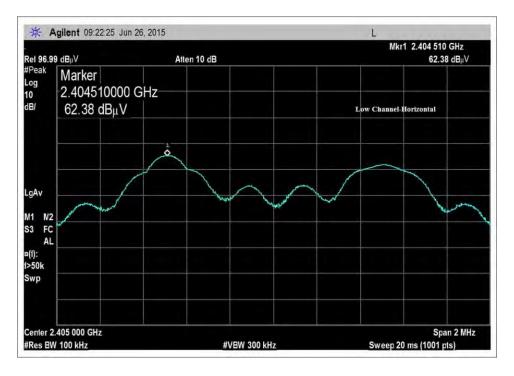
Low Channel-Vertical Polarization

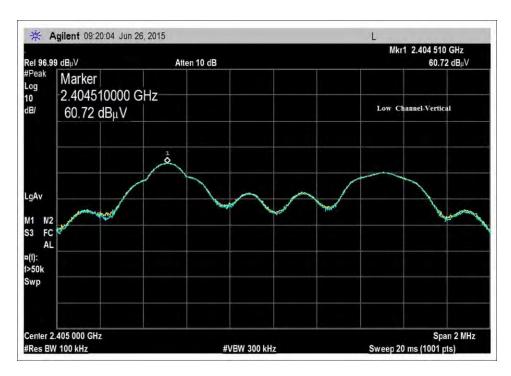


Middle Channel-Horizontal Polarization

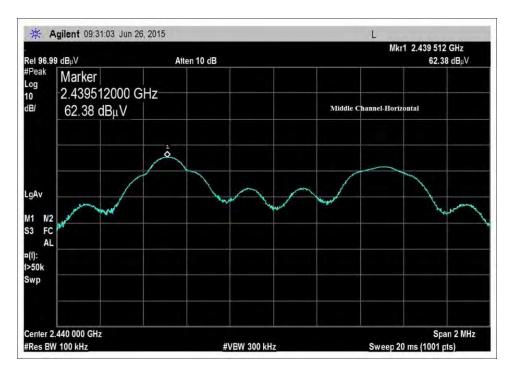


Middle Channel-Vertical Polarization

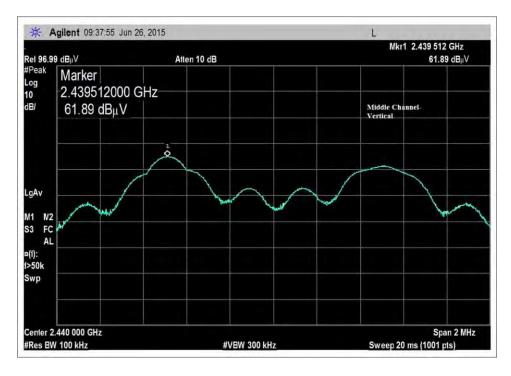

High Channel-Horizontal Polarization


High Channel-Vertical Polarization

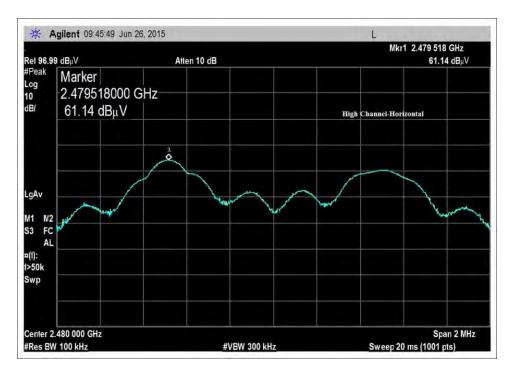
Zigbee



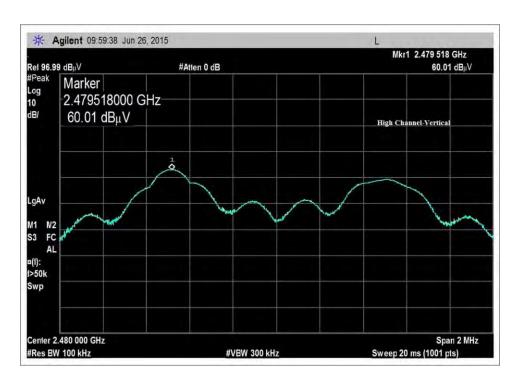
Low Channel-Horizontal Polarization



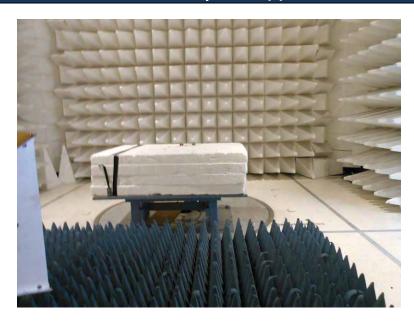
Low Channel-Vertical Polarization

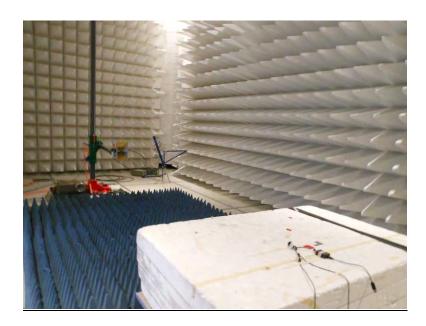


Middle Channel-Horizontal Polarization



Middle Channel-Vertical Polarization


High Channel-Horizontal Polarization



High Channel-Vertical Polarization

Test Setup Photo(s)

15.247(d) RF Conducted Emissions & Band Edge

Note: The EUT has an integral antenna.

15.247(d) Radiated Emissions & Band Edge

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/2/2015
Test Type: Radiated Scan Time: 09:46:37
Tested By: Hieu Song Nguyenpham Sequence#: 110

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

Radiated Frequency Emission Frequency Range: 9kHz to 1000MHz Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

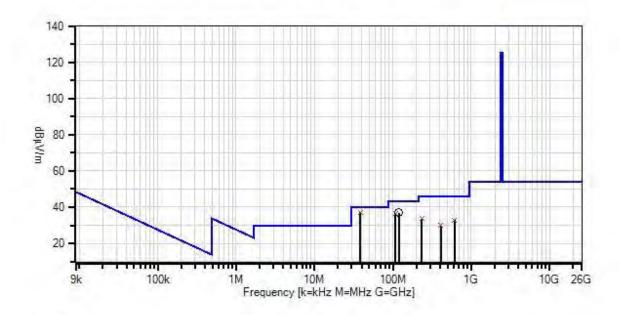
Frequency range of measurement = 9 kHz - 1 GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

Low Channel

Page 78 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 110 Date: 7/2/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings QP Readings

Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings * Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measurem	ient Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1 3 QP	38.431M	51.0	-29.3 +0.2	+14.5	+0.5	+0.2	+0.0	37.1	40.0	-2.9	Vert
^ 3	38.431M	60.5	-29.3 +0.2	+14.5	+0.5	+0.2	+0.0	46.6	40.0	+6.6	Vert
3 12	20.044M	52.5	-29.1 +0.4	+11.8	+1.0	+0.3	+0.0	36.9	43.5	-6.6	Vert
4 10 QP	08.084M	53.1	-29.1 +0.4	+10.9	+0.9	+0.2	+0.0	36.4	43.5	-7.1	Vert
^ 10	08.084M	59.4	-29.1 +0.4	+10.9	+0.9	+0.2	+0.0	42.7	43.5	-0.8	Vert
6 23 QP	33.561M	48.0	-28.5 +0.6	+11.7	+1.4	+0.5	+0.0	33.7	46.0	-12.3	Horiz
^ 23	33.561M	61.5	-28.5 +0.6	+11.7	+1.4	+0.5	+0.0	47.2	46.0	+1.2	Horiz
8 61 QP	15.296M	38.3	-29.8 +1.1	+19.7	+2.5	+1.0	+0.0	32.8	46.0	-13.2	Horiz
^ 63	15.296M	52.1	-29.8 +1.1	+19.7	+2.5	+1.0	+0.0	46.6	46.0	+0.6	Horiz
10 40 QP	08.553M	38.8	-29.1 +0.9	+16.6	+2.0	+0.7	+0.0	29.9	46.0	-16.1	Horiz
^ 40	08.553M	58.7	-29.1 +0.9	+16.6	+2.0	+0.7	+0.0	49.8	46.0	+3.8	Horiz

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 09:05:23
Tested By: Hieu Song Nguyenpham Sequence#: 72

Software: EMITest 5.02.00

Equipment Tested:

Equipment Testeur				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

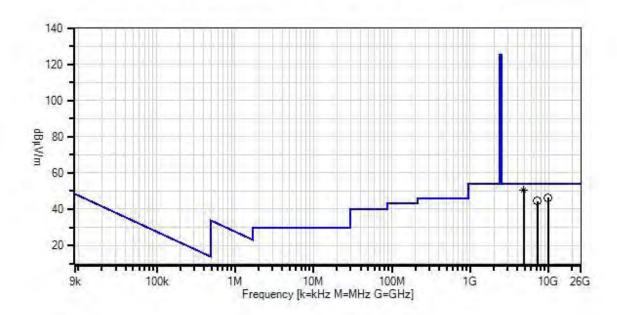
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

Low Channel

Page 81 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 72 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
× QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157 Horn Antenna- ANSI C63.5 Calibration		3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
Т3	AN03114	Preamp	AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143	Cable	32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
T6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
Т7	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

Meas	urement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4804.616M	65.4	+33.2	+1.7	-57.8	+2.9	+0.0	50.3	54.0	-3.7	Horiz
	Ave		+3.6	+1.1	+0.2						
/	4804.616M	71.6	+33.2	+1.7	-57.8	+2.9	+0.0	56.5	54.0	+2.5	Horiz
			+3.6	+1.1	+0.2						
3	9834.933M	50.6	+39.2	+2.4	-57.6	+4.3	+0.0	46.2	54.0	-7.8	Horiz
			+5.4	+1.7	+0.2						
4	7209.860M	55.3	+35.9	+2.0	-58.3	+3.6	+0.0	44.5	54.0	-9.5	Horiz
			+4.5	+1.3	+0.2						

Page 83 of 126 Report No.: 96813-12A

Customer: **Enlighted, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/2/2015
Test Type: Radiated Scan Time: 10:24:09
Tested By: Hieu Song Nguyenpham Sequence#: 113

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission Frequeny Range: 9kHz to 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

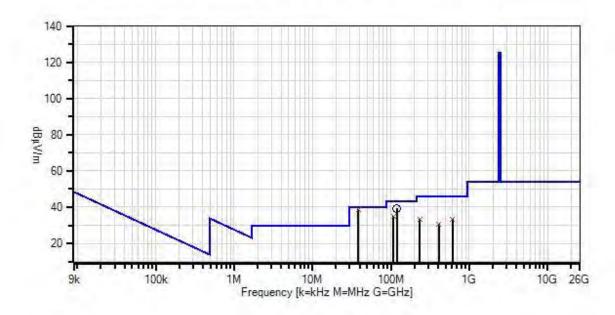
Frequency range of measurement = 9 kHz- 1GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

Middle Channel

Page 84 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 113 Date: 7/2/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

- Readings
 × QP Readings
- ▼ Ambient
 - 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings
 Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	gin. Test Distance: 3 Meters		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	38.513M	52.6	-29.3	+14.5	+0.5	+0.2	+0.0	38.7	40.0	-1.3	Vert	
	QP		+0.2									
^	38.513M	60.0	-29.3 +0.2	+14.5	+0.5	+0.2	+0.0	46.1	40.0	+6.1	Vert	
3	120.139M	54.8	-29.1 +0.4	+11.8	+1.0	+0.3	+0.0	39.2	43.5	-4.3	Vert	
4	108.043M QP	51.6	-29.1 +0.4	+10.9	+0.9	+0.2	+0.0	34.9	43.5	-8.6	Vert	
^	_	58.5	-29.1 +0.4	+10.9	+0.9	+0.2	+0.0	41.8	43.5	-1.7	Vert	
6	615.212M QP	38.9	-29.8 +1.1	+19.7	+2.5	+1.0	+0.0	33.4	46.0	-12.6	Horiz	
^	615.212M	51.6	-29.8 +1.1	+19.7	+2.5	+1.0	+0.0	46.1	46.0	+0.1	Horiz	
8	233.589M QP	47.7	-28.5 +0.6	+11.7	+1.4	+0.5	+0.0	33.4	46.0	-12.6	Horiz	
^	-	61.8	-28.5 +0.6	+11.7	+1.4	+0.5	+0.0	47.5	46.0	+1.5	Horiz	
10	408.536M QP	39.6	-29.1 +0.9	+16.6	+2.0	+0.7	+0.0	30.7	46.0	-15.3	Horiz	
^	408.536M	57.9	-29.1 +0.9	+16.6	+2.0	+0.7	+0.0	49.0	46.0	+3.0	Horiz	

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 09:53:15
Tested By: Hieu Song Nguyenpham Sequence#: 75

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequeny Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

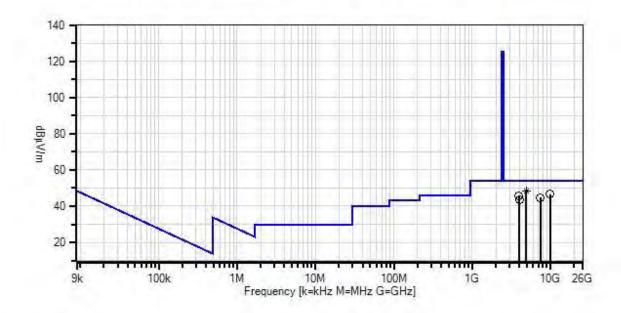
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

Middle Channel

Page 87 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 75 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

- ReadingsQP Readings
- ▼ Ambient
 - 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
Т3	AN03114	Preamp	AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143	Cable	32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
T6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
Т7	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

Measi	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4880.562M	62.9	+33.4	+1.7	-57.6	+2.9	+0.0	48.2	54.0	-5.8	Horiz
	Ave		+3.6	+1.1	+0.2						
^	4880.562M	69.5	+33.4	+1.7	-57.6	+2.9	+0.0	54.8	54.0	+0.8	Horiz
			+3.6	+1.1	+0.2						
3	9813.845M	51.0	+39.1	+2.4	-57.6	+4.3	+0.0	46.5	54.0	-7.5	Horiz
			+5.4	+1.7	+0.2						
4	3923.282M	63.5	+32.5	+1.5	-58.9	+2.5	+0.0	45.6	54.0	-8.4	Vert
			+3.2	+1.0	+0.3						
5	7384.302M	54.4	+36.6	+2.1	-58.3	+3.6	+0.0	44.6	54.0	-9.4	Horiz
			+4.6	+1.4	+0.2						
6	4015.237M	61.6	+32.3	+1.5	-59.0	+2.6	+0.0	43.5	54.0	-10.5	Vert
			+3.2	+1.0	+0.3						

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/2/2015
Test Type: Radiated Scan Time: 10:51:08
Tested By: Hieu Song Nguyenpham Sequence#: 116

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission Frequeny Range: 9kHz to 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

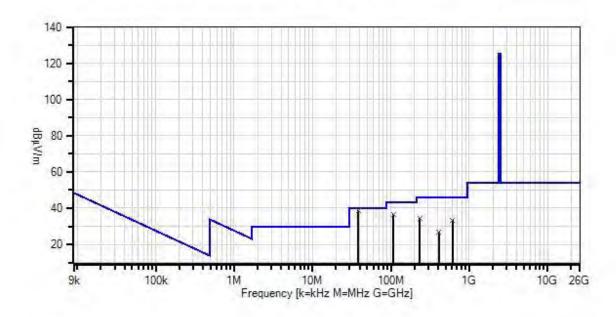
Frequency range of measurement = 9 kHz- 1GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

High Channel

Page 90 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 116 Date: 7/2/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings
 Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measi	irement Data:	<u> </u>			argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1		52.7	-29.3	+14.5	+0.5	+0.2	+0.0	38.8	40.0	-1.2	Vert
	QP		+0.2								
^	38.513M	60.2	-29.3 +0.2	+14.5	+0.5	+0.2	+0.0	46.3	40.0	+6.3	Vert
3		53.4	-29.1 +0.4	+10.9	+0.9	+0.2	+0.0	36.7	43.5	-6.8	Vert
^	QP 108.083M	58.7	-29.1 +0.4	+10.9	+0.9	+0.2	+0.0	42.0	43.5	-1.5	Vert
5	233.688M QP	48.9	-28.5 +0.6	+11.7	+1.4	+0.5	+0.0	34.6	46.0	-11.4	Horiz
^	•	61.9	-28.5 +0.6	+11.7	+1.4	+0.5	+0.0	47.6	46.0	+1.6	Horiz
7	615.159M QP	38.8	-29.8 +1.1	+19.7	+2.5	+1.0	+0.0	33.3	46.0	-12.7	Horiz
^	615.159M	50.8	-29.8 +1.1	+19.7	+2.5	+1.0	+0.0	45.3	46.0	-0.7	Horiz
9	409.099M QP	35.7	-29.1 +0.9	+16.6	+2.0	+0.7	+0.0	26.8	46.0	-19.2	Vert
^	409.099M	54.7	-29.1 +0.9	+16.6	+2.0	+0.7	+0.0	45.8	46.0	-0.2	Vert

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 10:26:17
Tested By: Hieu Song Nguyenpham Sequence#: 78

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequeny Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

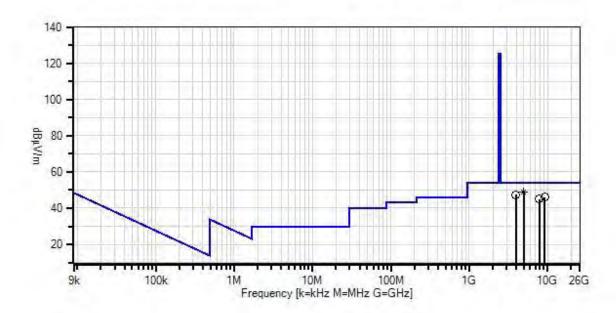
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

BLE on TX


X axis- Direct to Antenna is the worst orthogonal

High Channel

Page 93 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 78 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
× QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

- Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	T1 AN02157 Horn Antenna- ANSI C63.5 Calibration		3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
Т3	AN03114	Preamp	AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143	Cable	32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
Т6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
Т7	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

Measi	irement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4959.570M	63.3	+33.5	+1.7	-57.3	+2.9	+0.0	49.0	54.0	-5.0	Horiz
	Ave		+3.6	+1.1	+0.2						
^	4959.570M	66.6	+33.5	+1.7	-57.3	+2.9	+0.0	52.3	54.0	-1.7	Horiz
			+3.6	+1.1	+0.2						
3	3955.591M	65.3	+32.4	+1.5	-58.9	+2.5	+0.0	47.3	54.0	-6.7	Horiz
			+3.2	+1.0	+0.3						
4	9156.593M	50.8	+38.2	+2.3	-56.6	+4.2	+0.0	46.0	54.0	-8.0	Horiz
			+5.2	+1.6	+0.3						
5	7854.020M	53.9	+36.6	+2.2	-57.8	+3.8	+0.0	45.0	54.0	-9.0	Horiz
			+4.7	+1.4	+0.2						

Page 95 of 126 Report No.: 96813-12A

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 15:07:47
Tested By: Hieu Song Nguyenpham Sequence#: 93

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission Frequeny Range: 9kHz to 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

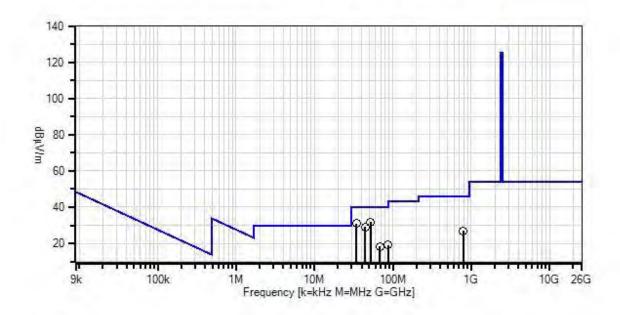
Frequency range of measurement = 9 kHz- 1GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

Low Channel

Page 96 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 93 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings
 Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Т	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	51.968M	51.6	-29.3	+8.5	+0.6	+0.2	+0.0	31.8	40.0	-8.2	Vert
			+0.2								
2	34.166M	42.5	-29.3	+16.9	+0.5	+0.2	+0.0	31.0	40.0	-9.0	Vert
			+0.2								
3	44.561M	45.7	-29.3	+11.6	+0.6	+0.3	+0.0	29.1	40.0	-10.9	Vert
			+0.2								
4	797.414M	29.0	-29.5	+21.9	+2.9	+1.2	+0.0	26.8	46.0	-19.2	Horiz
			+1.3								
5	87.859M	38.3	-29.2	+8.7	+0.8	+0.3	+0.0	19.2	40.0	-20.8	Horiz
			+0.3								
6	67.918M	40.1	-29.3	+6.2	+0.7	+0.2	+0.0	18.2	40.0	-21.8	Horiz
			+0.3								

Customer: **Enlighted, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 11:03:42
Tested By: Hieu Song Nguyenpham Sequence#: 81

Software: EMITest 5.02.00

Equipment Tested:

Equipment Testeur				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequeny Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

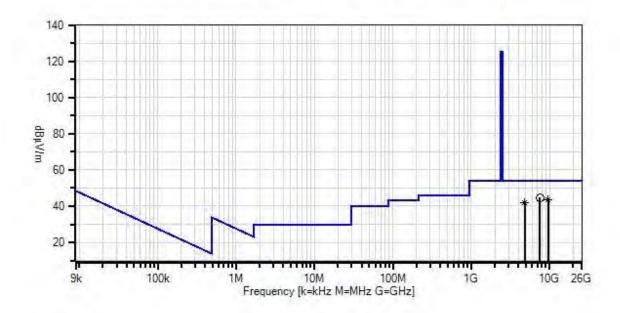
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

Low Channel

Page 99 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 81 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T3	AN03114	Preamp	AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143	Cable	32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
Т6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
T7	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	7496.139M	54.5	+36.6	+2.1	-58.3	+3.7	+0.0	44.8	54.0	-9.2	Horiz
			+4.6	+1.4	+0.2						
2	9618.035M	48.2	+38.6	+2.4	-57.2	+4.3	+0.0	43.4	54.0	-10.6	Horiz
	Ave		+5.3	+1.6	+0.2						
^	9618.035M	57.5	+38.6	+2.4	-57.2	+4.3	+0.0	52.7	54.0	-1.3	Horiz
			+5.3	+1.6	+0.2						
4	4811.028M	57.2	+33.2	+1.7	-57.8	+2.9	+0.0	42.1	54.0	-11.9	Horiz
	Ave		+3.6	+1.1	+0.2						
^	4811.028M	64.5	+33.2	+1.7	-57.8	+2.9	+0.0	49.4	54.0	-4.6	Horiz
			+3.6	+1.1	+0.2						

Page 101 of 126 Report No.: 96813-12A

Customer: **Enlighted, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 15:31:24
Tested By: Hieu Song Nguyenpham Sequence#: 96

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission Frequeny Range: 9kHz to 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

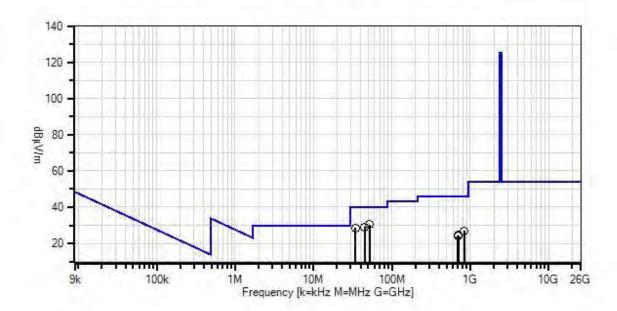
Frequency range of measurement = 9 kHz- 1GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

Middle Channel

Page 102 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 96 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
× QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

 Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measu	rement Data:	Re	ading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	52.305M	50.2	-29.3	+8.4	+0.6	+0.2	+0.0	30.3	40.0	-9.7	Vert
			+0.2								
2	45.066M	45.9	-29.3	+11.4	+0.6	+0.3	+0.0	29.1	40.0	-10.9	Vert
			+0.2								
3	34.503M	40.3	-29.3	+16.7	+0.5	+0.2	+0.0	28.6	40.0	-11.4	Vert
			+0.2								
4	837.114M	28.7	-29.4	+22.4	+3.0	+1.0	+0.0	27.0	46.0	-19.0	Horiz
			+1.3								
5	698.748M	28.7	-29.7	+20.5	+2.8	+1.0	+0.0	24.5	46.0	-21.5	Horiz
			+1.2								
6	703.419M	28.3	-29.7	+20.6	+2.9	+1.0	+0.0	24.3	46.0	-21.7	Horiz
			+1.2								

Page 104 of 126 Report No.: 96813-12A

Customer: Enlighted, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: Date: 7/1/2015 96813 Test Type: **Radiated Scan** Time: 11:25:14 Tested By: Hieu Song Nguyenpham Sequence#: 84

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequeny Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

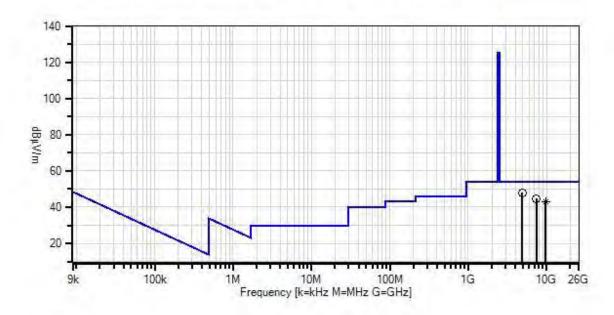
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

Middle Channel

Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 84 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.02.00

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T3	AN03114	Preamp	AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143	Cable	32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
Т6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
T7	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m \\$	dB	Ant
	1 4878.805M	62.7	+33.4	+1.7	-57.6	+2.9	+0.0	48.0	54.0	-6.0	Horiz
			+3.6	+1.1	+0.2						
	2 7394.243M	54.4	+36.6	+2.1	-58.3	+3.7	+0.0	44.7	54.0	-9.3	Vert
			+4.6	+1.4	+0.2						
3	3 9762.150M	47.9	+39.0	+2.4	-57.6	+4.3	+0.0	43.2	54.0	-10.8	Horiz
	Ave		+5.4	+1.6	+0.2						
,	^ 9762.150M	57.0	+39.0	+2.4	-57.6	+4.3	+0.0	52.3	54.0	-1.7	Horiz
			+5.4	+1.6	+0.2						

Page 107 of 126 Report No.: 96813-12A

Customer: **Enlighted, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 15:54:10
Tested By: Hieu Song Nguyenpham Sequence#: 99

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission Frequeny Range: 9kHz to 1000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

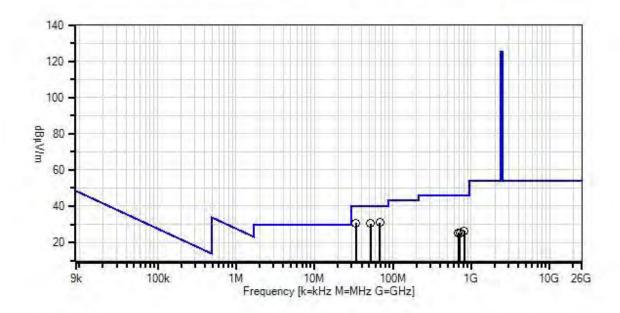
Frequency range of measurement = 9 kHz- 1GHz.

9 kHz - 150 kHz -> RBW=200 Hz VBW=200 Hz 150 kHz - 30 MHz -> RBW=9 kHz VBW=9 kHz 30 MHz - 1000MHz -> RBW=120 kHz VBW=120 kHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

High Channel

Page 108 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 99 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
× QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.02.00

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
	AN00432	Loop Antenna	6502	5/8/2015	5/8/2017
T2	AN00852	Biconilog Antenna	CBL 6111C	11/24/2014	11/24/2016
T3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP06691	Cable	PE3062-180	8/8/2014	8/8/2016
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Measui	rement Data:	Re	eading lis	ted by ma	argin.		Т	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	68.507M	52.8	-29.3	+6.2	+0.7	+0.2	+0.0	30.9	40.0	-9.1	Vert
			+0.3								
2	33.956M	42.0	-29.3	+17.0	+0.5	+0.2	+0.0	30.6	40.0	-9.4	Vert
			+0.2								
3	51.884M	50.3	-29.3	+8.5	+0.6	+0.2	+0.0	30.5	40.0	-9.5	Vert
			+0.2								
4	821.935M	28.3	-29.4	+22.2	+3.0	+1.1	+0.0	26.5	46.0	-19.5	Horiz
			+1.3								
5	691.743M	29.5	-29.7	+20.4	+2.8	+1.1	+0.0	25.3	46.0	-20.7	Horiz
			+1.2								
6	715.095M	28.9	-29.6	+20.7	+2.9	+1.0	+0.0	25.1	46.0	-20.9	Horiz
			+1.2								

Page 110 of 126 Report No.: 96813-12A

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: **Enlighted, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96813 Date: 7/1/2015
Test Type: Radiated Scan Time: 11:49:54
Tested By: Hieu Song Nguyenpham Sequence#: 87

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Spurious Emission

Frequeny Range: 1000MHz to 25000MHz

Application: PuTTy version 0.64 for Zigbee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for Zigbee= 0dBi

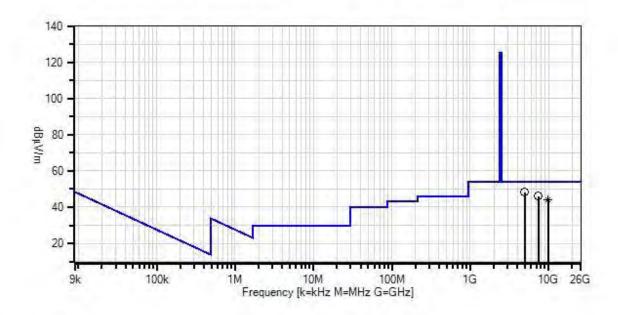
Method: KDB 558074 v03r02 section 12.1 and ANSI C63.4 2009

RBW=1MHz VBW=1MHz

The EUT is a Compact Sensor. The EUT is placed on 80cm Styrofoam table. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note:

Zigbee on TX


X axis- Direct to Antenna is the worst orthogonal

High Channel

Page 111 of 126 Report No.: 96813-12A

Enlighted, Inc WO#: 96813 Sequence#: 87 Date: 7/1/2015 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
× QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings
 Software Version: 5.02.00

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna- ANSI C63.5 Calibration	3115	12/2/2014	12/2/2016
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T3	AN03114	Preamp	AMF-7D- 00101800-30- 10P	4/22/2015	4/22/2017
T4	AN03143	Cable	32022-29094K- 144TC	3/18/2015	3/18/2017
	ANP00928	Cable	various	1/23/2014	1/23/2016
	ANP00929	Cable	various	1/23/2014	1/23/2016
T5	ANP06126	Cable	32022-29094K- 29094K-168TC	3/18/2015	3/18/2017
T6	ANP06712	Cable	32022-29094K- 29094K-48TC	9/18/2014	9/18/2016
T7	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016
	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	1/14/2015	1/14/2017
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	1/14/2015	1/14/2017

Ì	Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6	T7						
		MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
Γ	1	4959.643M	62.5	+33.5	+1.7	-57.3	+2.9	+0.0	48.2	54.0	-5.8	Horiz
				+3.6	+1.1	+0.2						
	2	7441.463M	55.6	+36.6	+2.1	-58.2	+3.7	+0.0	46.0	54.0	-8.0	Horiz
				+4.6	+1.4	+0.2						
	3	9917.927M	48.0	+39.5	+2.4	-57.7	+4.3	+0.0	43.8	54.0	-10.2	Horiz
		Ave		+5.4	+1.7	+0.2						
Γ	^	9917.927M	56.3	+39.5	+2.4	-57.7	+4.3	+0.0	52.1	54.0	-1.9	Horiz
				+5.4	+1.7	+0.2						

Page 113 of 126 Report No.: 96813-12A

Band Edge

Test Conditions/Setup

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc. Specification: Band edge

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI	3115	1/23/2013	1/23/2015
		C63.5			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
Т3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

Band edge set up

Application: Putty version 0.64 for ZigBee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi Method: KDB 558074 v03r02 section 13.2

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

Note: BLE on TX Mode

Page 114 of 126 Report No.: 96813-12A

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: Enlighted, Inc. Specification: Band edge

Work Order #: 96813 Date: 6/26/2015
Test Type: Radiated Measurement Time: 09:59:39
Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.02.00

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI	3115	1/23/2013	1/23/2015
		C63.5			
T2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
			29094K-72TC		
T3	ANP01210	Cable	FSJ1P-50A-4A	1/15/2015	1/15/2017
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Band edge set up

Application: Putty version 0.64 for ZigBee

Application: Smart RF Studio 7 version 2.1.0 for Bluetooth

Temperature: 22.3°C Humidity: 39 %

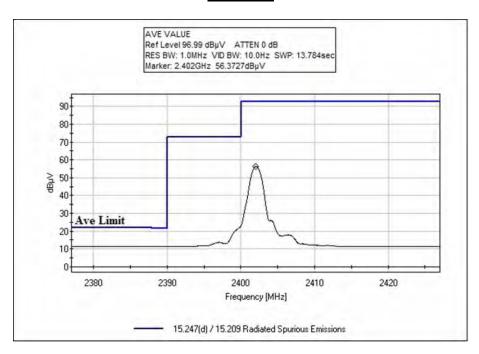
Atmospheric Pressure: 100.4 kPa

High Clock: 16MHz

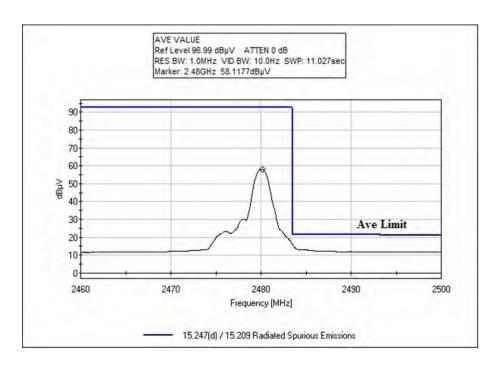
Transmit freq, Bluetooth = 2402MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel) Transmit freq, Zigbee = 2405MHz (Low Channel), 2440MHz (Middle Channel), 2480MHz (High Channel)

Gain of the antenna for Bluetooth= 0dBi Gain of the antenna for ZigBee= 0dBi Method: KDB 558074 v03r02 section 13.2

The EUT is a Compact Sensor. In order to monitor the EUT and control the EUT, the EUT is connected to the Laptop which is outside the chamber through the USB cable and use an application "PuTTy" for Zigbee and "Smart RF Studio 7" for Bluetooth. The EUT is set continuously transmitting or receiving.

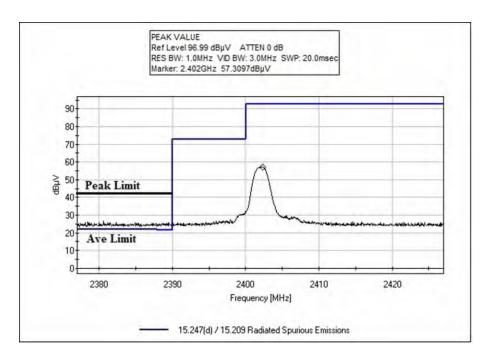

Note: Zigbee on TX Mode

Page 115 of 126 Report No.: 96813-12A

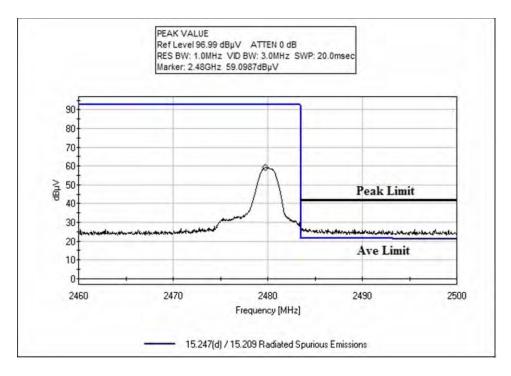


Test Data

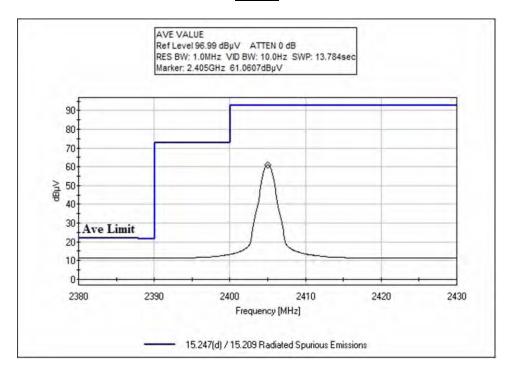
Bluetooth

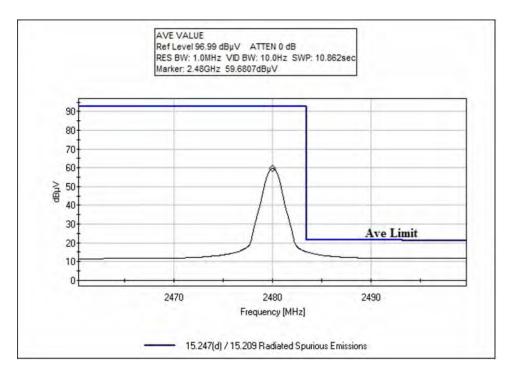


Low Channel

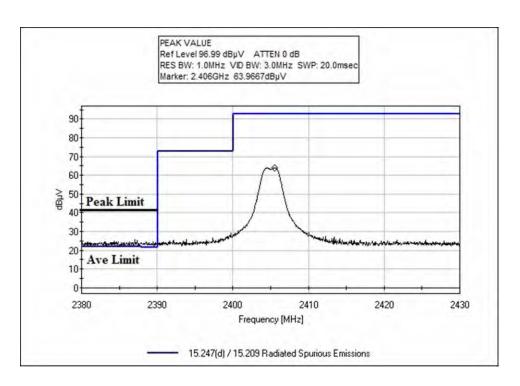


High Channel

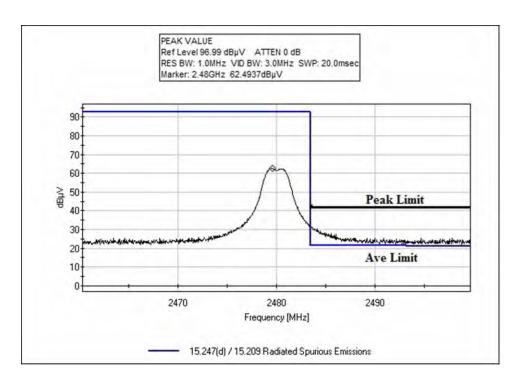

Low Channel


High Channel

Zigbee



Low Channel

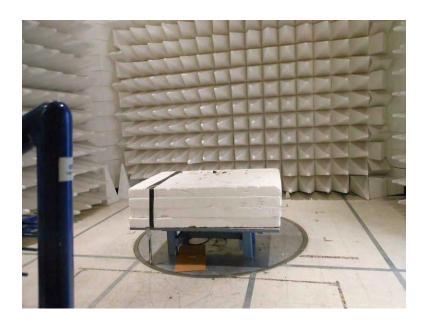


High Channel

Low Channel

High Channel

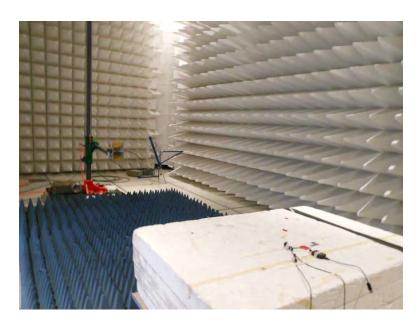
Test Setup Photo(s)



Front View, 9kHz-30MHz

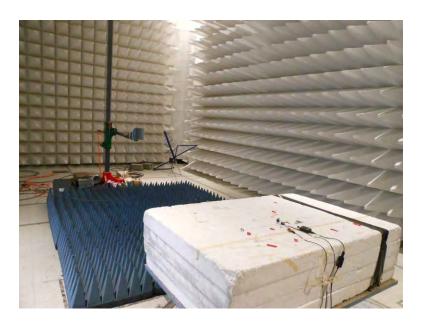
Back View, 9kHz-30MHz

Front View, 30MHz-1GHz

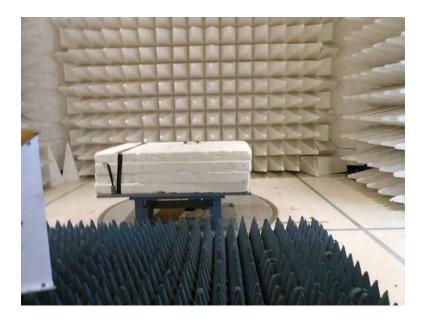


Back View, 30MHz-1GHz

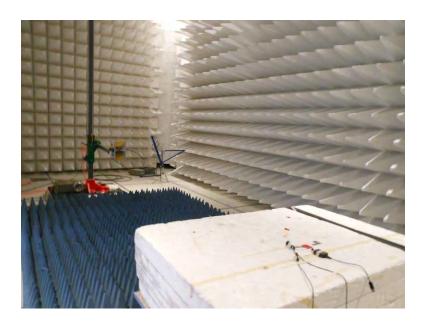
Front View, 1-12GHz



Back View, 1-12GHz



Front View, 12-25GHz



Back View, 12-25GHz

Front View, Band Edge

Back View, Band Edge

SUPPLEMENTAL INFORMATION

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 125 of 126 Report No.: 96813-12A

SAMPLE CALCULATIONS				
	Meter reading	(dBμV)		
+	Antenna Factor	(dB)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBμV/m)		

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 126 of 126 Report No.: 96813-12A