

Pektron Group Limited

Keyless Control Unit (KCU) A-0787G03 FCC 15.209:2017 Inductive Radio

Report # ELEM0035

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

Last Date of Test: September 11, 2017 Pektron Group Limited Model: Keyless Control Unit (KCU) A-0787G03

Radio Equipment Testing

Standards	
Specification	Method
FCC 15.209:2017	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.4	Field Strength of Fundamental	Yes	Pass	
6.4, 6.5	Spurious Radiated Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://portlandcustomer.element.com/ts/scope/scope.htm</u> <u>http://gsi.nist.gov/global/docs/cabs/designations.html</u>

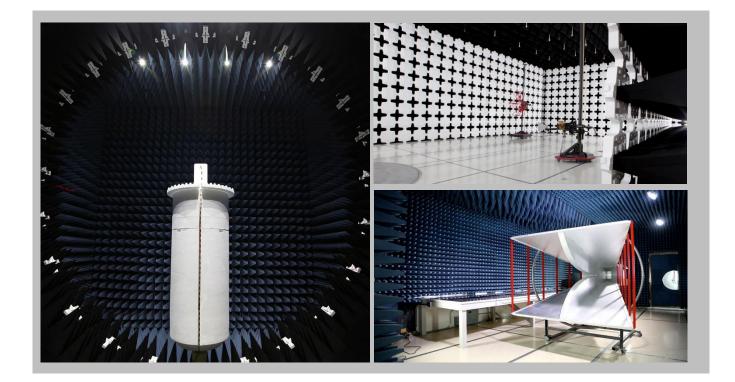
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES

California	Minnesota	New York	Oregon	Texas	Washington		
Labs OC01-17 41 Tesla	Labs MN01-08, MN10 9349 W Broadway Ave.	Labs NY01-04 4939 Jordan Rd.	Labs EV01-12 22975 NW Evergreen Pkwy	Labs TX01-09 3801 E Plano Pkwy	Labs NC01-05 19201 120 th Ave NE		
Irvine, CA 92618	Brooklyn Park, MN 55445	Elbridge, NY 13060	Hillsboro, OR 97124	Plano, TX 75074	Bothell, WA 98011		
(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600		
		NV	LAP				
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
		BS	MI				
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
		VC	CI				
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157		

Test Setup Block Diagrams

Antenna Port Conducted Measurements DC Block and Spectrum EUT Analyzer Attenuator **RF** Adapter **Coaxial Cable Near Field Test Fixture Measurements** Spectrum Near Field Analyzer Probe EUT **Coaxial Cable Spurious Radiated Emissions** Fully anechoic shielded enclosure above 1 GHz. Semi-anechoic below 1 GHz 3m Test Distance (No absorber on the floor). Preamp **Coaxial Cable** and EUT **Filters** Measurement Antenna Spectrum Analyzer Flush Mounted Turn table, Non-reflective foam table to support EUT

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Pektron Group Limited
Address:	Alfreton Road
City, State, Zip:	Derby DE21 4AP, Derbyshire, United Kingdom
Test Requested By:	Richard Squires-Thornton of Element Materials Technology
Model:	Keyless Control Unit (KCU) A-0787G03
First Date of Test:	September 7, 2017
Last Date of Test:	September 11, 2017
Receipt Date of Samples:	September 7, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

To provide control and monitoring functions to a vehicle

Testing Objective:

To demonstrate compliance of the inductive portion of the device to FCC Part 15.209 specifications.

Configuration ELEM0035-1

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
433MHz Radio Key Fob	Pektron Group Limited	Triumph Key Fob	None				
Keyless Control Unit	Pektron Group Limited	2502196	10000046				

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
0787 KCU Manual Test Set	Pektron Group Limited	None	None			
Host Laptop	Fujitsu	A530	YL9P194760			
Host Laptop Power Supply	Fujitsu	ADP-80NB A	11211689N			
DC Power Supply	Tekpower	TP6005E	187890			

Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
KCU Cable	No	2.0m	No	Keyless Control Unit	0787 KCU Manual Test Set			
Serial-USB Cable	Yes	1.6m	No	Host Laptop	0787 KCU Manual Test Set			
DC Cables	No	0.90m	No	DC Power Supply	0787 KCU Manual Test Set			

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	9/7/2017	Radiated	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
		Field	Tested as	No EMI suppression	Scheduled testing
2	9/11/2017	Strength of	delivered to	devices were added or	
		Fundamental	Test Station.	modified during this test.	was completed.

FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The

test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the

MODES OF OPERATION

Transmitting at 134kHz

specification limit.

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0035 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 9 kHz

Stop Frequency 30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna	EMCO	6502	AZB	8/22/2017	24 mo
Cable	Element	30MHz-6GHz RE Cables	OCB	7/12/2017	12 mo
Filter - Low Pass	Micro-Tronics	LPM50004	LFC	10/17/2016	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/17/2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.4, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF FUNDAMENTAL

				-		1	EmiR5 2017.07.11	PSA-ESCI 2017.06.01
-	Work Order:	ELEM0035		Date:	09/07/17	11	-k B	
	Project:	None	Tem	perature:	24 °C	- t	- K OT	1
	Job Site:	OC08	_	Humidity:	42.4% RH			
S	Serial Number:	10000046	Barome	tric Pres.:	1012 mbar	Tested	by: Mark Baytan	
	EUT:	Keyless Control Unit	KCU) A-078	37G03				
(Configuration:	1						
	Customer:	Pektron Group Limite	ed					
	Attendees:							
	EUT Power:	12VDC						
Ор	erating Mode:	Transmitting at 134kH	lz					
	Deviations:	None						
	Comments:	None						
Test S	Specifications				Test Met	hod		
FCC 1	5.209:2017					3.10:2013		
Ru	Jn # 1	Test Distance (m)	10	Antenna He	eight(s)	1 to 4(m)	Results	Pass
	aa [
	80							
	60							
	40							
dBuV/m								
dBu	20							
	0							
-:	20							
	40							
	0.00		0.01		MHz	0.10	■ PK ◆ A	1.00
							■ PK ◆ #	
					Polarity/			

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
(11172)	(0501)	(42)	(1101010)	(dogrood)	((00)			(05)	(aba t/m)	(0001)	(40)	Comments
0.134	48.4	10.2	1.1	360.0	10.0	0.0	Perp to EUT	AV	-59.1	-0.5	25.1	-25.6	EUT on Side
0.134	48.1	10.2	1.0	198.0	10.0	0.0	Perp to EUT	AV	-59.1	-0.8	25.1	-25.9	EUT Horz
0.134	43.4	10.2	1.0	108.0	10.0	0.0	Par to EUT	AV	-59.1	-5.5	25.1	-30.6	EUT on Side
0.134	42.9	10.2	1.0	102.0	10.0	0.0	Par to EUT	AV	-59.1	-6.0	25.1	-31.1	EUT Horz
0.134	39.7	10.2	3.6	84.0	10.0	0.0	Par to GND	AV	-59.1	-9.2	25.1	-34.3	EUT Horz
0.134	37.0	10.2	1.0	321.0	10.0	0.0	Par to EUT	AV	-59.1	-11.9	25.1	-37.0	EUT Vert
0.134	35.7	10.2	2.3	360.0	10.0	0.0	Par to GND	AV	-59.1	-13.2	25.1	-38.3	EUT Vert
0.136	34.4	10.2	1.0	283.0	10.0	0.0	Perp to EUT	AV	-59.1	-14.5	25.0	-39.5	EUT Vert
0.138	32.5	10.2	1.0	0.0	10.0	0.0	Par to GND	AV	-59.1	-16.4	24.8	-41.2	EUT on Side
0.134	48.1	10.2	1.1	360.0	10.0	0.0	Perp to EUT	PK	-59.1	-0.8	45.1	-45.9	EUT on Side
0.134	47.4	10.2	1.0	198.0	10.0	0.0	Perp to EUT	PK	-59.1	-1.5	45.1	-46.6	EUT Horz
0.134	43.5	10.2	1.0	108.0	10.0	0.0	Par to EUT	PK	-59.1	-5.4	45.1	-50.5	EUT on Side
0.134	42.7	10.2	1.0	102.0	10.0	0.0	Par to EUT	PK	-59.1	-6.2	45.1	-51.3	EUT Horz
0.134	39.2	10.2	3.6	84.0	10.0	0.0	Par to GND	PK	-59.1	-9.7	45.1	-54.8	EUT Horz
0.134	35.0	10.2	1.0	321.0	10.0	0.0	Par to EUT	PK	-59.1	-13.9	45.1	-59.0	EUT Vert
0.134	34.5	10.2	1.0	283.0	10.0	0.0	Perp to EUT	PK	-59.1	-14.4	45.1	-59.5	EUT Vert
0.132	33.5	10.2	2.3	360.0	10.0	0.0	Par to GND	PK	-59.1	-15.4	45.2	-60.6	EUT Vert
0.132	32.8	10.2	1.0	0.0	10.0	0.0	Par to GND	PK	-59.1	-16.1	45.2	-61.3	EUT on Side

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 134kHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0035 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 9 kHz

Stop Frequency 30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna	EMCO	6502	AZB	8/22/2017	24 mo
Cable	Element	30MHz-6GHz RE Cables	OCB	7/12/2017	12 mo
Filter - Low Pass	Micro-Tronics	LPM50004	LFC	10/17/2016	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/17/2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

SPURIOUS RADIATED EMISSIONS

					_			1		EmiR5 2017.07.11		PSA-ESCI 2017.
Wo	ork Order:		M0035		Date:		1/17		4	1 /	2	
	Project:		lone	Te	mperature:	24.8			-t-A	2 (-	7+-	
	Job Site:		C08		Humidity:		% RH				1	
Serial	Number:		00046		etric Pres.:	1015	mbar	-	Tested by:	Mark Bayta	an	
			Control Unit	(KCU) A-07	787G03							
Conf	iguration:	1										
C	Customer:	Pektron C	Group Limite	d								
Α	ttendees:	None										
EL	JT Power:	12VDC										
A		Transmitt	ing at 134kH	lz								
Operati	ing Mode:		3									
D	eviations:	None										
Co	omments:	Worst cas	se position-	EUT on Sid	de, RX Anter	nna Polarity	- Perp to E	EUT				
								•				
	fications						Test Meth					
C 15.20	9.2017						ANSI C63	10:2013				
Run #	2	Test D	istance (m)	10	Antenna	Height(s)		1 to 4(m)		Results	P	ass
~ [
80												
60												
40												
_												
20 20												
>												
n 20												
σ												
0												
0												
-20										•		
-40												
0.0	00			0.0	1			0.10				1.00
0.0	-			0.0		MHz		50				
										PK	AV	QP
							Dale 't (
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compare Spec. (dB)
0.403	28.9	10.1	1.0	221.0	10.0	0.0	Horz	AV	-59.1	-20.1	15.5	-35.6
0.267	32.4	10.1	4.0	41.0	10.0	0.0	Horz	AV	-59.1	-16.6	19.1	-35.7
0.400	41.5	10.1	1.0	221.0	10.0	0.0	Horz	PK	-59.1	-7.5	35.6	-43.1
000												

43.5

10.1

4.0

41.0

10.0

0.0

Horz

ΡK

-59.1

-5.5

0.268

-44.6

39.1

SPURIOUS RADIATED EMISSIONS

										EmiR5 2017.07.11		PSA-ESCI 2017.06.0
W	ork Order:	ELEM0			Date:	09/1	1/17		11		~	
	Project:	None		Ter	nperature:	24.8			1+	26	>+-	
	Job Site:	OC0			Humidity:	41.5%						
Seria	I Number:	100000	946	Barome	etric Pres.:	1015	mbar		Tested by:	Mark Bayta	an	
		Keyless Con	trol Unit (KCU) A-07	87G03							
Con	figuration:	1										
		Pektron Grou	up Limited									
	Attendees:											
E	UT Power:											
Operat	ting Mode:	Transmitting	at 134kH	Z								
D	eviations:	None										
с	comments:	Worst case p	oosition- E	EUT on Sid	e, RX Anter	nna Polarity	- Perp to E	EUT				
Fest Spec	ifications	[Test Meth	od				
-CC 15.20	9.2017	I					ANSI C63.					
Run #	3	Test Dista	ance (m)	10	Antenna	a Height(s)		1 to 4(m)		Results	P	ass
nun #	0	1051 0151		10	Antonno	ineight(0)		1 10 4(11)		ricoulto		
Γ												
80												
70												+-+
60												
_ 50												
Е 00												
m//ngb												
9												
30												
20												
20												
					••							
10					-							
0 -												
0.	1			1.0				10.0				100.0
						MHz				PK	◆ AV	• QP
							Polarity/					
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	External Attenuation	Transducer	Dotostar	Distance Adjustment	Adjusted	Spec. Limit	Compared t Spec.
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)	Туре	Detector	(dB)	(dBuV/m)	(dBuV/m)	(dB)
((,,	((()			(,)	(,,	(,	()
0.535	31.2	10.3		316.0	10.0	0.0	Horz	QP	-19.1	22.4	33.0	-10.6

(MHz)	Amplitude (dBuV)	Factor (dB)	Height (meters)	Azimuth (degrees)	Test Distance (meters)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)
0.535	31.2	10.3	1.0	316.0	10.0	0.0	Horz	QP	-19.1	22.4	33.0	-10.6
0.669	29.1	10.3	1.0	120.0	10.0	0.0	Horz	QP	-19.1	20.3	31.1	-10.8
0.936	25.7	10.5	1.7	119.0	10.0	0.0	Horz	QP	-19.1	17.1	28.2	-11.1
0.804	27.2	10.3	1.0	81.0	10.0	0.0	Horz	QP	-19.1	18.4	29.5	-11.1
1.070	24.3	10.6	1.0	126.0	10.0	0.0	Horz	QP	-19.1	15.8	27.0	-11.2
1.202	23.1	10.7	1.0	133.0	10.0	0.0	Horz	QP	-19.1	14.7	26.0	-11.3
1.340	22.1	10.7	1.0	5.0	10.0	0.0	Horz	QP	-19.1	13.7	25.1	-11.4