Tesla Motors, Inc.

TEST REPORT FOR

Key, 002

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.231 and RSS 210 Issue 8

Report No.: 92925-2

Date of issue: May 7, 2012

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

esting the Future

Ш

Ľ

0

RA

0

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
15.231(a) Timing	7
15.231(b) RF Power Output	9
-20dBc Occupied Bandwidth	11
15.231(b) Field Strength of Spurious Emissions	14
RSS-210	18
99% Bandwidth	
Supplemental Information	21
Measurement Uncertainty	21
Emissions Test Details	21

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Tesla Motors, Inc. 3500 Deer Creek Rd. Palo Alto, CA 94304 **REPORT PREPARED BY:**

Dianne Dudley CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Robert Cooper Customer Reference Number: 4700007287

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: Project Number: 92925

April 19, 2012 April 19-May 2, 2012

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Site Registration & Accreditation Information

Location	CB #	Taiwan	Canada	FCC	Japan
Fremont	US0082	SL2-IN-E-1148R	3082B-1	958979	R-2160 C-2332 T-228 G-522

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.231 and RSS 210 Issue 8

Description	Test Procedure/Method	Results
Timing	FCC Part 15 Subpart C Section 15.231(a)	Pass
RF Power Output	FCC Part 15 Subpart C Section 15.231(b) / ANSI C63.4: 2003	Pass
-20dB Occupied Bandwidth	FCC Part 15 Subpart C Section 15.231(b)	Pass
Field Strength of Spurious Emissions	FCC Part 15 Subpart C Section 15.231(b) / ANSI C63.4: 2003	Pass
99% Bandwidth	RSS 210 Issue 8	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

All testing except the Timing Plot were done using SN: 1. The timing plot was taken using SN: PC000036

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Key Manuf: Pektron PLC Model: 002 Serial: 1 and PC000036

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.231(a) Timing

Engineer Name: C. Nicklas

Test Equipment						
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due	
02668	Spectrum Analyzer	E4446A	Agilent	2/23/2011	2/23/2013	
P05299	Cable	RG214	Pasternack	3/6/2011	3/6/2013	
None	Loop Antenna	Loop	СКС	NCR	NCR	

NOTE: NCR = No Calibration Required. The Loop antenna is a pickup source only. The Spectrum analyzer is the device which makes the actual timing measurements and amplitude of the signal is not required. Therefore correction factors and calibration is not required for the loop antenna

<u>Test Data</u>

The timing plot is showing the EUT starting to transmit as the button is depressed with the transmission stopping after just under 600ms with no additional transmissions occurring until the button is again depressed.

15.231(b) RF Power Output

<u>Test Data</u>

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer: Specification:	Tesla Motors, Inc. 15.231(b) Fundamental Field Strength		
Work Order #:	92925	Date:	4/19/2012
Test Type:	Maximized Emissions	Time:	15:40:50
Equipment:	key	Sequence#:	12
Manufacturer:	Pektron PLC	Tested By:	C. Nicklas
Model:	002		
S/N:	1		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013
T1	ANP05299	Cable	RG214	3/6/2011	3/6/2013
T2	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T3	ANP05440	Cable		3/7/2011	3/7/2013
T4	AN00730	Preamp		1/31/2011	1/31/2013
T5	AN00852	Biconilog Antenna	CBL 6111C	11/16/2010	11/16/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Key*	Pektron PLC	002	1

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Maximized Data Fundamental Power		
Testing performed to ANSI C63.4: 2003		
Temperature: 21.8°C		
Humidity: 45%		
Atmospheric Pressure: 101.8 kPa		
The EUT orientation investigated in three orthogonals during preliminary investigation.	Data represents	Worst
Case Orthogonality. Maximized fundamental power testing performed with a fresh battery.		
The EUT is continuously transmitting		

Ext Attn: 0 dB

Measu	rement Data:	Re	eading list	ted by ma	irgin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	315.027M	85.9	+0.1	+0.5	+1.0	-27.4	+0.0	73.6	74.9	-1.3	Horiz
			+13.5								
2	315.021M	67.6	+0.1	+0.5	+1.0	-27.4	+0.0	55.3	74.9	-19.6	Vert
			+13.5				314				350

-20dBc Occupied Bandwidth

Test Conditions / Setup

Testing performed to ANSI C63.4: 2003

The EUT orientation investigated in three orthogonals during preliminary investigation. Data represents Worst Case Orthogonality. Maximized emissions testing performed with a fresh battery.

The EUT is continuously transmitting Temperature: 21.7-21.8°C

Humidity: 45%

Atmospheric Pressure: 101.8 kPa

Engineer Name: C. Nicklas

Test Equipment							
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due		
AN02668	Spectrum	E4446A	Agilent	2/23/2011	2/23/2013		
	Analyzer						
ANP05299	Cable	RG214	Pasternack	3/6/2011	3/6/2013		
ANP05300	Cable	RG214/U	Pasternack	3/7/2011	3/7/2013		
ANP05440	Cable		Pasternack	3/7/2011	3/7/2013		
AN00730	Preamp		HP	1/31/2011	1/31/2013		
AN00852	Biconilog Antenna	CBL 6111C	Schaffer	11/16/2010	11/16/2012		
AN00432	Loop Antenna	6502	EMCO	3/31/2011	3/31/2013		
ANP01210	Cable	FSJ1P-50A-4A	Andrews	3/15/2011	3/15/2013		
ANP05843	Cable	32022-2-29094K-48TC	AtroLab	7/30/2010	7/30/2012		
AN03302	Cable		AstroLab	3/21/2012	3/21/2014		
AN02810	Preamp	83051A	HP	1/7/2012	1/7/2014		
AN02157	Horn Antenna-	3115	EMCO	1/17/2011	1/17/2013		
	ANSI C63.5						

<u>Test Data</u>

15.231(b) Field Strength of Spurious Emissions

<u>Test Data Sheets</u>

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249 - 1170

Customer:	Tesla Motors, Inc.					
Specification:	15.231(b) Spurious Field Strength (315 MHz Transmitter)					
Work Order #:	92925	Date:	4/19/2012			
Test Type:	Radiated Scan	Time:	15:21:33			
Equipment:	key	Sequence#:	7			
Manufacturer:	Pektron PLC	Tested By:	C. Nicklas			
Model:	002					
S/N:	1					

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013
T1	ANP05299	Cable	RG214	3/6/2011	3/6/2013
T2	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T3	ANP05440	Cable		3/7/2011	3/7/2013
T4	AN00730	Preamp		1/31/2011	1/31/2013
T5	AN00852	Biconilog Antenna	CBL 6111C	11/16/2010	11/16/2012
	AN00432	Loop Antenna	6502	3/31/2011	3/31/2013
T6	ANP01210	Cable	FSJ1P-50A-4A	3/15/2011	3/15/2013
T7	ANP05843	Cable	32022-2-29094K-	7/30/2010	7/30/2012
			48TC		
T8	AN03302	Cable		3/21/2012	3/21/2014
T9	AN02810	Preamp	83051A	1/7/2012	1/7/2014
T10	AN02157	Horn Antenna-ANSI	3115	1/17/2011	1/17/2013
		C63.5			

Equipment Under Test (* = EUT):								
Function	Manufacturer	Model #	S/N					
Key*	Pektron PLC	002	1					
Support Devices:								
Function	Manufacturer	Model #	S/N					

Test Conditions / Notes: Maximized Data 9kHz - 3.15GHz Testing performed to ANSI C63.4: 2003 Temperature: 21.7-21.8°C Humidity: 45% Atmospheric Pressure: 101.8 kPa The EUT orientation investigated in three

The EUT orientation investigated in three orthogonals during preliminary investigation. Data represents Worst Case Orthogonality. Maximized emissions testing performed with a fresh battery.

The EUT is continuously transmitting

No spurious emissions between 9kHz and 30MHz were found within 20dB below the limit.

Ext A	Attn: 0 dB										
Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2205.199M	47.1	+0.0	+0.0	+0.0	+0.0	+0.0	51.5	54.0	-2.5	Horiz
	Ave		+0.0	+2.7	+0.7	+1.0	360				
			-27.2	+27.2							
^	2205.199M	50.0	+0.0	+0.0	+0.0	+0.0	+0.0	54.4	54.0	+0.4	Horiz
			+0.0	+2.7	+0.7	+1.0					
			-27.2	+27.2							
3	1575.176M	51.4	+0.0	+0.0	+0.0	+0.0	+0.0	51.2	54.0	-2.8	Vert
	Ave		+0.0	+2.2	+0.6	+0.9	77				
			-28.4	+24.5							
^	1575.176M	53.2	+0.0	+0.0	+0.0	+0.0	+0.0	53.0	54.0	-1.0	Vert
			+0.0	+2.2	+0.6	+0.9	77				
			-28.4	+24.5							
5	2835.278M	41.8	+0.0	+0.0	+0.0	+0.0	+0.0	50.2	54.0	-3.8	Horiz
	Ave		+0.0	+3.1	+0.8	+1.2	129				
			-26.4	+29.7							
^	2835.278M	46.3	+0.0	+0.0	+0.0	+0.0	+0.0	54.7	54.0	+0.7	Horiz
			+0.0	+3.1	+0.8	+1.2	129				
			-26.4	+29.7							
7	945.089M	52.1	+0.3	+1.0	+2.0	-27.7	+0.0	49.7	55.6	-5.9	Vert
			+22.0	+0.0	+0.0	+0.0	74				129
			+0.0	+0.0							
8	1575.111M	48.2	+0.0	+0.0	+0.0	+0.0	+0.0	48.0	54.0	-6.0	Horiz
	Ave		+0.0	+2.2	+0.6	+0.9	202				
			-28.4	+24.5							
^	1575.111M	50.4	+0.0	+0.0	+0.0	+0.0	+0.0	50.2	54.0	-3.8	Horiz
			+0.0	+2.2	+0.6	+0.9	202				
			-28.4	+24.5							
10	2520.119M	43.3	+0.0	+0.0	+0.0	+0.0	+0.0	49.3	55.6	-6.3	Horiz
	Ave		+0.0	+2.9	+0.8	+1.1	360				
			-26.9	+28.1							
^	2520.119M	48.2	+0.0	+0.0	+0.0	+0.0	+0.0	54.2	55.6	-1.4	Horiz
			+0.0	+2.9	+0.8	+1.1	360				
<u> </u>		10.1	-26.9	+28.1	0.0	0.0	0.0				
12	2205.070M	43.1	+0.0	+0.0	+0.0	+0.0	+0.0	47.5	54.0	-6.5	Vert
			+0.0	+2.7	+0.7	+1.0	144				
			-27.2	+27.2							

13	2835.327M	37.2	+0.0	+0.0	+0.0	+0.0	+0.0	45.6	54.0	-8.4	Vert
	Ave		+0.0	+3.1	+0.8	+1.2	259				
			-26.4	+29.7							
^	2835.327M	43.2	+0.0	+0.0	+0.0	+0.0	+0.0	51.6	54.0	-2.4	Vert
			+0.0	+3.1	+0.8	+1.2	259				
			-26.4	+29.7							
15	945.086M	48.5	+0.3	+1.0	+2.0	-27.7	+0.0	46.1	55.6	-9.5	Horiz
			+22.0	+0.0	+0.0	+0.0	198				145
			+0.0	+0.0							
16	630.053M	47.9	+0.2	+0.8	+1.5	-27.1	+0.0	42.6	55.6	-13.0	Horiz
			+19.3	+0.0	+0.0	+0.0	105				129
			+0.0	+0.0							
17	630.062M	40.9	+0.2	+0.8	+1.5	-27.1	+0.0	35.6	55.6	-20.0	Vert
			+19.3	+0.0	+0.0	+0.0	333				150
			+0.0	+0.0							

CKC Laboratories, Inc. Date: 4/19/2012 Time: 15:21:33 Tesla Motors, Inc. WO#: 92925 15:231(b) Spurious Field Strength (315 MHz Transmitter) Test Distance: 3 Meters Sequence#: 7 Horiz O 3

RSS-210

99% Bandwidth

Test Conditions / Setup

The EUT orientation investigated in three orthogonals during preliminary investigation. Data represents Worst Case Orthogonality. Maximized emissions testing performed with a fresh battery. The EUT is continuously transmitting

Temperature: 21.7-21.8°C Humidity: 45% Atmospheric Pressure: 101.8 kPa

Engineer Name: C. Nicklas

Test Equipment										
Asset/Serial # Description Model Manufacturer Cal Date Cal Due										
AN02668	Spectrum	E4446A	Agilent	2/23/2011	2/23/2013					
	Analyzer									
ANP05299	Cable	RG214	Pasternack	3/6/2011	3/6/2013					
ANP05300	Cable	RG214/U	Pasternack	3/7/2011	3/7/2013					
ANP05440	Cable		Pasternack	3/7/2011	3/7/2013					
AN00730	Preamp		HP	1/31/2011	1/31/2013					
AN00852	Biconilog Antenna	CBL 6111C	Schaffer	11/16/2010	11/16/2012					
AN00432	Loop Antenna	6502	EMCO	3/31/2011	3/31/2013					
ANP01210	Cable	FSJ1P-50A-4A	Andrews	3/15/2011	3/15/2013					
ANP05843	Cable	32022-2-29094K-48TC	AtroLab	7/30/2010	7/30/2012					
AN03302	Cable		AstroLab	3/21/2012	3/21/2014					
AN02810	Preamp	83051A	HP	1/7/2012	1/7/2014					
AN02157	Horn Antenna-	3115	EMCO	1/17/2011	1/17/2013					
	ANSI C63.5									

<u>Test Data</u>

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter	
4.73 dB	Radiated Emissions	
3.34 dB	Mains Conducted Emissions	
3.30 dB	Disturbance Power	

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS								
Meter reading (dBµV)								
+	Antenna Factor	(dB)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBµV/m)						

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST BEGINNING FREQUENCY ENDING FREQUENCY BANDWIDTH SETTING							
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.