

FCC TEST REPORT

REPORT NO.: RF950417H01

MODEL NO.: RT7D70

RECEIVED: April 21, 2006

TESTED: April 25, 2006

ISSUED: May 3, 2006

APPLICANT: NMB Technologies Corporation.

ADDRESS: 9730 Independence Ave, Chatsworth CA,91311

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien,

Taiwan, R.O.C.

This test report consists of 51 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, A2LA or any government agencies. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

TABLE OF CONTENTS

1	CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
3	GENERAL INFORMATION	6
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	7
3.3	TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:	8
3.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	9
3.5	DESCRIPTION OF SUPPORT UNITS	10
3.6	CONFIGURATION OF SYSTEM UNDER TEST	10
4	TEST PROCEDURES AND RESULTS	.11
4.1	CONDUCTED EMISSION MEASUREMENT	.11
4.2	NUMBER OF HOPPING FREQUENCY USED	.11
4.2.1	LIMIT OF HOPPING FREQUENCY USED	11
4.2.2	TEST INSTRUMENTS	11
4.2.3	TEST PROCEDURES	12
4.2.4	DEVIATION FROM TEST STANDARD	12
4.2.5	TEST SETUP	13
4.2.6	TEST RESULTS	13
4.3	DWELL TIME ON EACH CHANNEL	15
4.3.1	LIMIT OF DWELL TIME USED	15
4.3.2	TEST INSTRUMENTS	15
4.3.3	TEST PROCEDURES	16
4.3.4	DEVIATION FROM TEST STANDARD	16
4.3.5	TEST SETUP	16
4.3.6	TEST RESULTS	17
4.4	CHANNEL BANDWIDTH	21
4.4.1	TEST INSTRUMENTS	21
4.4.2	TEST PROCEDURE	22
4.4.3	DEVIATION FROM TEST STANDARD	22
4.4.4	TEST SETUP	22
4.4.5	EUT OPERATING CONDITION	22
4.4.6	TEST RESULTS	23
4.5	HOPPING CHANNEL SEPARATION	26
4.5.1	LIMIT OF HOPPING CHANNEL SEPARATION	26

4.5.2	TEST INSTRUMENTS	26
4.5.3	TEST PROCEDURES	27
4.5.4	DEVIATION FROM TEST STANDARD	27
4.5.5	TEST SETUP	27
4.5.6	TEST RESULTS	28
4.6	MAXIMUM PEAK OUTPUT POWER	31
4.6.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	31
4.6.2	INSTRUMENTS	31
4.6.3	TEST PROCEDURES	32
4.6.4	TEST SETUP	32
4.6.5	EUT OPERATING CONDITION	32
4.6.6	TEST RESULTS	33
4.7	RADIATED EMISSION MEASUREMENT	36
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	36
4.7.2	TEST INSTRUMENTS	37
4.7.3	TEST PROCEDURES	38
4.7.4	DEVIATION FROM TEST STANDARD	38
4.7.5	TEST SETUP	39
4.7.6	TEST RESULTS	40
4.8	BAND EDGES MEASUREMENT	44
4.8.1	LIMITS OF BAND EDGES MEASUREMENT	44
4.8.2	TEST INSTRUMENTS	44
4.8.3	TEST PROCEDURE	44
4.8.4	DEVIATION FROM TEST STANDARD	44
4.8.5	EUT OPERATING CONDITION	45
4.8.6	TEST RESULTS	45
4.9	ANTENNA REQUIREMENT	48
4.9.1	STANDARD APPLICABLE	48
4.9.2	ANTENNA CONNECTED CONSTRUCTION	48
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	49
6	INFORMATION ON THE TESTING LABORATORIES	50
APPE	NDIX-A	A-1

CERTIFICATION

PRODUCT: Cordless Keyboard

BRAND NAME: Dell

> RT7D70 MODEL NO.:

APPLICANT: NMB Technologies Corporation.

TESTED DATE: April 25, 2006

TEST ITEM: MASS-PRODUCTION

STANDARDS: 47 CFR Part 15, Subpart C (Section 15.247),

ANSI C63.4-2003

The above equipment (Model: RT7D70) has been tested by Advance Data **Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY: Carol Liao, DATE: May 3, 2006

(Carol Liao)

Hank Ching

TECHNICAL ACCEPTANCE

DATE: May 3, 2006 Responsible for RF (Hank Chung)

APPROVED BY: DATE: May 3, 2006

(May Chen, Deputy Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: 47 CFR	Part 15,	Subpart C
Standard Section	Test Type and Limit	Result	REMARK
15.207	AC Power Conducted Emission	NA	Power supply is 3VDC from batteries
15.247(a)(1) (I)-(ii)	Number of Hopping Frequency Used Spec.: At least 75 channels	PASS	Meet the requirement of limit
15.247(a)(1) (ii)	Dwell Time on Each Channel Spec. : Max. 0.4 second within 31.6 second	PASS	Meet the requirement of limit
15.247(a)(1) (I)-(ii)	Hopping Channel Separation Spec.: Min. 25 kHz or two-thirds of 20 dB bandwidth, which ever is greater	PASS	Meet the requirement of limit
15.247(a)(2)	Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System Spec.: Max. 1 MHz	PASS	Meet the requirement of limit
15.247(b)	Maximum Peak Output Power Spec.: max. 125mW	PASS	Meet the requirement of limit
	Transmitter Radiated Emissions		Meet the requirement of limit
15.247(c)	Spec.: Table 15.209	PASS	Minimum passing margin is –17.50dB at 750.0MHz
15.247(c)	Band Edge Measurement	PASS	Meet the requirement of limit

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Cordless Keyboard
MODEL NO.	RT7D70
FCC ID	AQ6-7D70
POWER SUPPLY	3VDC from batteries
MODULATION TYPE	GFSK
MODULATION TECHNOLOGY	FHSS
FREQUENCY RANGE	2402MHz ~ 2480MHz
NUMBER OF CHANNEL	79
OUTPUT POWER	1.968mW
ANTENNA TYPE	PCB antenna with –3.4dBi antenna gain
DATA CABLE	NA
I/O PORTS	NA
ASSOCIATED DEVICES	NA

NOTE:

1. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Seventy-nine channels are provided to this EUT.

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2431	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.3 TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:

EUT configure		Applicable to			Description
mode	PLC	RE<1G	RE≥1G	APCM	Bescription
-	Х	√	√	√	Modulation Type: GFSK

Where PLC: Power Line Conducted Emission RE<1G RE: Radiated Emission below 1GHz
RE≥1G: Radiated Emission above 1GHz APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
0 to 78	78	FHSS	GFSK	DH5

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available	Tested	Modulation	Modulation	Packet Type
Channel	Channel	Technology	Type	
0 to 78	0,39,78	FHSS	GFSK	DH5

Bandedge Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
0 to 78	0, 78	FHSS	GFSK	DH5

Antenna Port Conducted Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

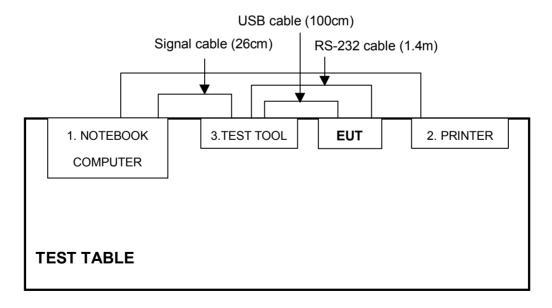
Following channel(s) was (were) selected for the final test as listed below.

Available	Tested	Modulation	Modulation	Packet
Channel	Channel	Technology	Type	Type
0 to 78	0, 39, 78	FHSS	GFSK	DH5

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a Cordless Keyboard. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: FCC Part 15, Subpart C. (15.247) ANSI C63.4: 2003 All test items have been performed and recorded as per the above standards.

3.5 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
	NOTEBOOK	D !!	DD041	TW-0791UH-12800-	500 B 0
1	COMPUTER	Dell	PP01L	0CK-3735	FCC DoC
2	PRINTER	HP	C2642A	MY79F1C3MZ	B94C2642X
3	TEST TOOL	Microlink	NA	NA	NA

No.	Signal cable description
1	NA
2	1.7 m braid shielded wire, terminated with DB25 and Centronics connector via metallic frame, w/o core.
3	NA

Note: 1. All power cords of the above support units are unshielded (1.8m).

3.6 CONFIGURATION OF SYSTEM UNDER TEST

NOTE: 1. Please refer to the photos of test configuration in Item 5 also.

4 TEST PROCEDURES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

NA

4.2 NUMBER OF HOPPING FREQUENCY USED

4.2.1 LIMIT OF HOPPING FREQUENCY USED

At least 75 hopping frequencies, and should be equally spaced.

4.2.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100037	May. 26, 2006

Note:

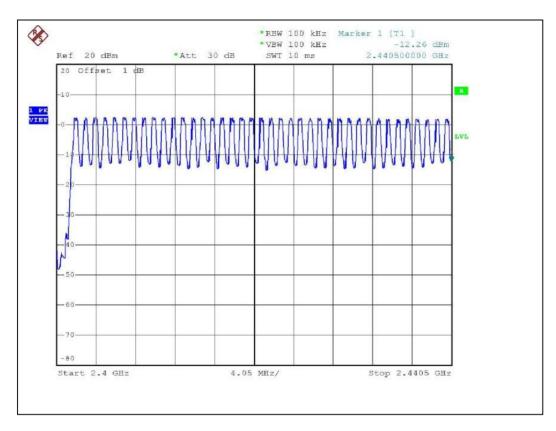
- 1. The measurement uncertainty is 226Hz, which is calculated as per the document ETSI TR 100 028.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

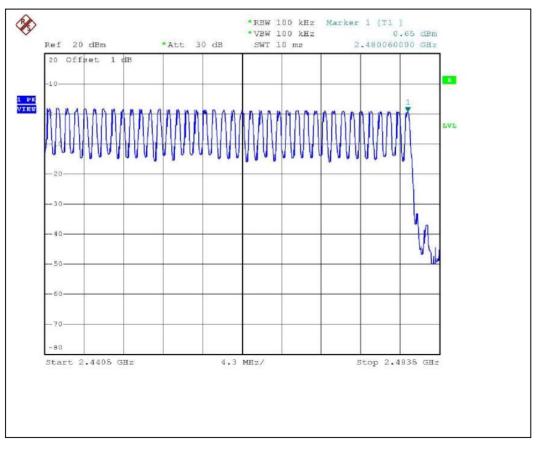
4.2.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation


4.2.5 TEST SETUP



4.2.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.3 DWELL TIME ON EACH CHANNEL

4.3.1 LIMIT OF DWELL TIME USED

For FHSS, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 31.6 second period. For hybrid systems, the average time of occupancy on any frequency should not exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

4.3.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100037	May. 26, 2006

Note:

- 1. The measurement uncertainty is 226Hz, which is calculated as per the document ETSI TR 100 028
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

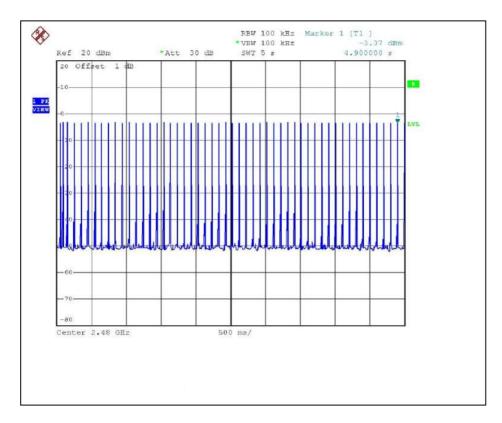
4.3.3 TEST PROCEDURES

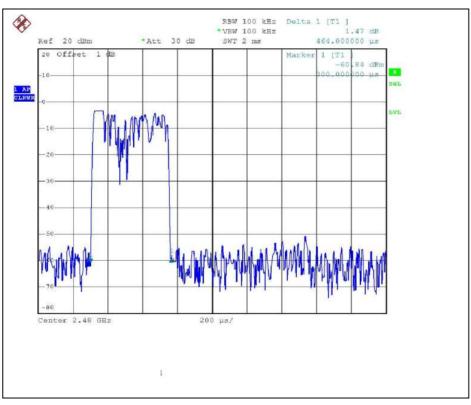
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

4.3.4 DEVIATION FROM TEST STANDARD

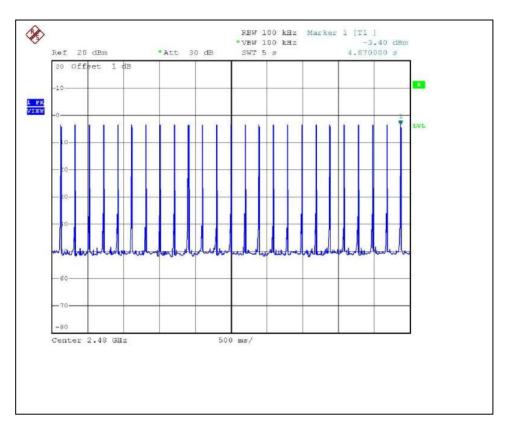
No deviation

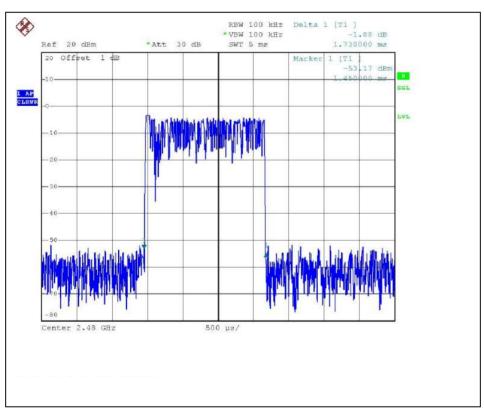
4.3.5 TEST SETUP

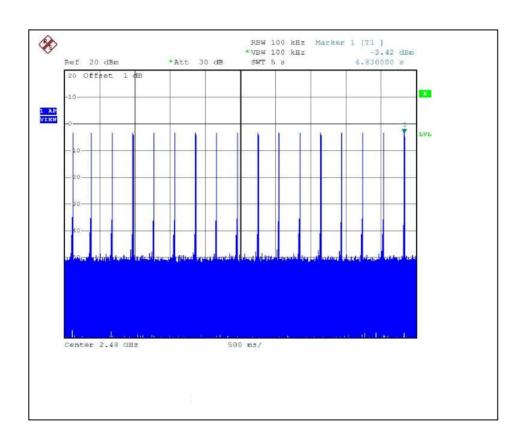

4.3.6 TEST RESULTS

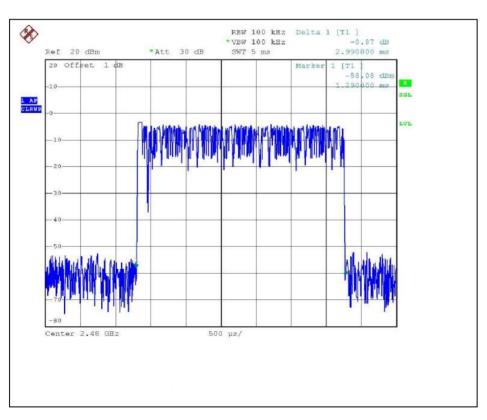

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	53 (times / 5 sec) *6.32=334.96 times	0.464	155.42	400
DH3	31 (times / 5 sec) *6.32=195.92 times	1.730	273.34	400
DH5	17 (times / 5 sec) *6.32=107.44 times	2.990	321.25	400

Test plots of the transmitting time slot are shown on next three pages.


DH1




DH3



DH5

4.4 CHANNEL BANDWIDTH

4.4.1 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100037	May. 26, 2006

Note:

- 1. The measurement uncertainty is 226Hz, which is calculated as per the document ETSI TR 100 028
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.4.2 TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

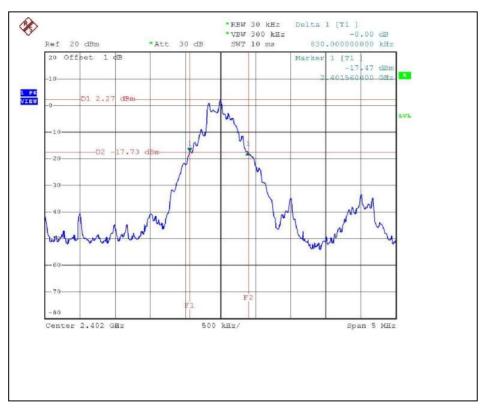
4.4.3 DEVIATION FROM TEST STANDARD

No deviation

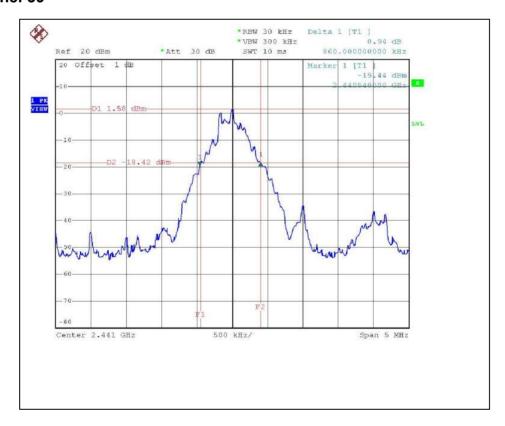
4.4.4 TEST SETUP

4.4.5 EUT OPERATING CONDITION

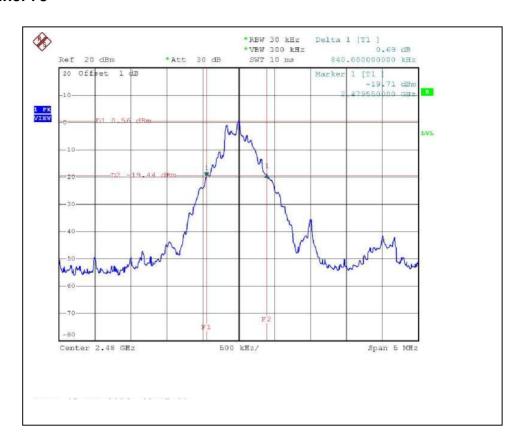
The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.4.6 TEST RESULTS

ENVIRONMENTAL CONDITIONS	22deg. C, 68%RH, 968 hPa	INPUT POWER (SYSTEM)	120Vac, 60 Hz
TESTED BY	Rex Huang		


CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (kHz)
0	2402	830
39	2441	860
78	2480	840

Channel 0



Channel 39

Channel 78

4.5 HOPPING CHANNEL SEPARATION

4.5.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25 kHz or two-thirds of 20dB hopping channel bandwidth (whichever is greater).

4.5.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100037	May. 26, 2006

Note:

- 1. The measurement uncertainty is 226Hz, which is calculated as per the document ETSI TR 100 028.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURES

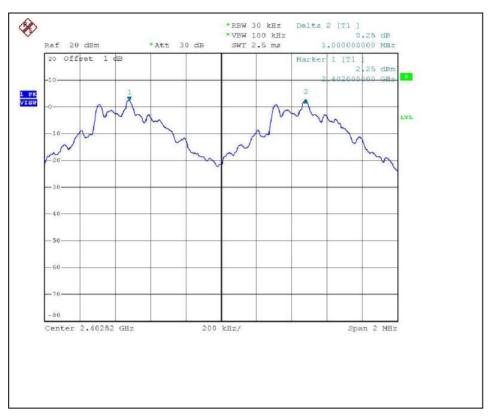
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

4.5.4 DEVIATION FROM TEST STANDARD

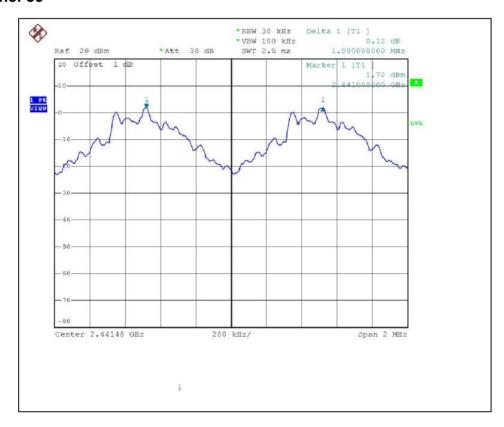
No deviation

4.5.5 TEST SETUP

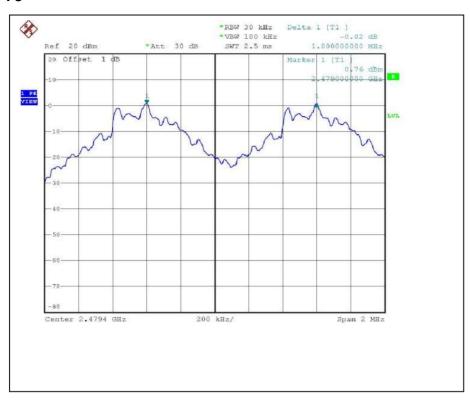
4.5.6 TEST RESULTS


ENVIRONMENTAL CONDITIONS	22deg. C, 68%RH, 968 hPa	INPUT POWER (SYSTEM)	120Vac, 60 Hz
TESTED BY	Rex Huang		

Channel	Frequency (MHz)	Adjacent Channel Separation	Minimum Limit (kHz)	Pass / Fail
0	2402	1.000MHz	553.33	PASS
39	2441	1.000MHz	573.33	PASS
78	2480	1.000MHz	560.00	PASS


The minimum limit is two-thirds of 20dB bandwidth. Test results please refer to next three pages.

Channel 0



Channel 39

Channel 78

4.6 MAXIMUM PEAK OUTPUT POWER

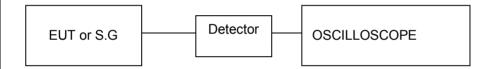
4.6.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 125mW.

4.6.2 INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Nov. 23, 2006
Agilent SIGNAL GENERATOR	E8257C	MY43320668	Dec. 07, 2006
TEKTRONIX OSCILLOSCOPE	TDS380	B016335	Jun. 22, 2006
NARDA DETECTOR	4503A	FSCM99899	NA

NOTE:


The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURES

- 1. A detector was used on the output port of the EUT. An oscilloscope was used to read the peak response of the detector.
- 2. Replaced the EUT by the signal generator. The center frequency of the S.G was adjusted to the center frequency of the measured channel.
- 3. Adjusted the power to have the same peak reading on oscilloscope. Record the power level.

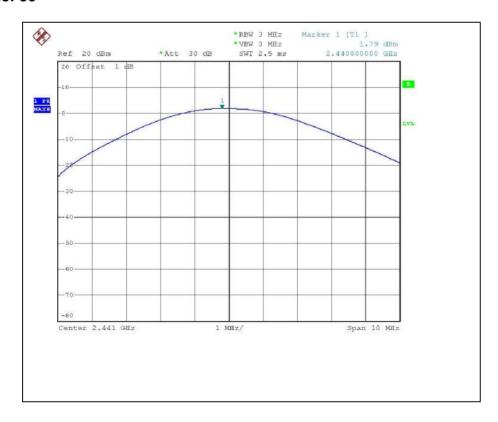
4.6.4 TEST SETUP

4.6.5 EUT OPERATING CONDITION

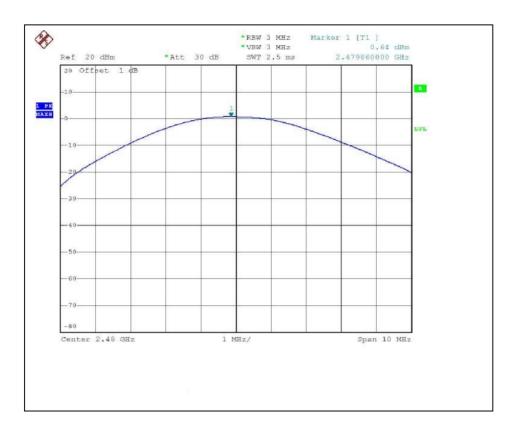
The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.6.6 TEST RESULTS

ENVIRONMENTAL CONDITIONS	22deg. C, 68%RH, 968 hPa	INPUT POWER (SYSTEM)	120Vac, 60 Hz
TESTED BY	Rex Huang		


CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (mW)	PASS/FAIL
0	2402	1.968	2.94	125	PASS
39	2441	1.510	1.79	125	PASS
78	2480	1.159	0.64	125	PASS

Channel 0



Channel 39

Channel 78

4.7 RADIATED EMISSION MEASUREMENT

4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ADVANTEST Spectrum Analyzer	R3271A	85060311	July 07, 2006
HP Pre_Amplifier	8449B	3008A01922	Oct. 02, 2006
ROHDE & SCHWARZ Test Receiver	ESCS30	100287	Dec. 08, 2006
CHASE Broadband Antenna	VULB9168	138	Dec. 21, 2006
Schwarzbeck Horn_Antenna	BBHA9120	D124	Dec. 11, 2006
Schwarzbeck Horn_Antenna	BBHA 9170	BBHA9170153	Jan. 05, 2007
SCHWARZBECK Biconical Antenna	VHBA9123	459	Jun. 26, 2006
SCHWARZBECK Periodic Antenna	UPA6108	1148	Jun. 26, 2006
RF Switches (ARNITSU)	CS-201	1565157	NA
RF CABLE (Chaintek) 1GHz-20GHz	SF102	22054-2	Nov. 16. 2006
RF Cable(RICHTEC)	9913-30M	STCCAB-30M- 1GHz-021	Jul. 16, 2006
Software	ADT_Radiated_V 5.14	NA	NA
CHANCE MOST Antenna Tower	AT-100	0203	NA
CHANCE MOST Turn Table	TT-100	0203	NA

Note: 1. The calibration interval of the above test instruments is 12 months (36 months for Periodic Antenna) and the calibrations are traceable to NML/ROC and NIST/USA.

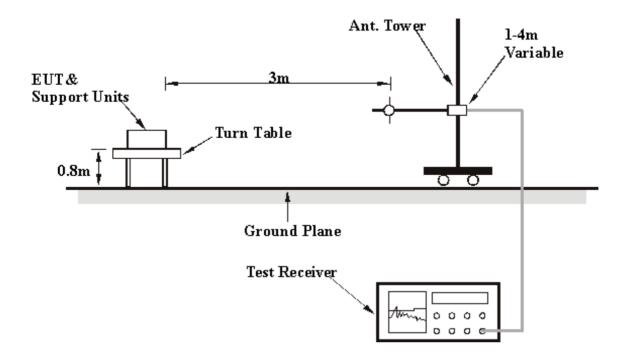
Periodic Antenna) and the calibrations are traceable to NML/ROC and NIST/USA.
 The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
 The test was performed in ADT Open Site No. C.
 The FCC Site Registration No. is 656396.
 The VCCI Site Registration No. is R-1626.
 The CANADA Site Registration No. is IC 4824-3.
 The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Radiated emissions (30MHz-1GHz)	2.98 dB
Radiated emissions (1GHz ~18GHz)	2.21 dB
Radiated emissions (18GHz ~20GHz)	1.88 dB

4.7.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.7.6 TEST RESULTS

CHANNEL	78	FREQUENCY RANGE	Below 1GHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak
ENVIRONMENTAL CONDITIONS	25 deg. C, 65%RH, 968 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	200.00	23.50 QP	43.50	-20.00	1.16 H	14	17.40	6.10
2	250.07	19.40 QP	46.00	-26.60	1.25 H	1	10.40	9.00
3	300.00	19.50 QP	46.00	-26.50	1.32 H	21	7.30	12.20
4	400.00	20.90 QP	46.00	-25.10	1.40 H	40	4.80	16.20
5	500.00	22.10 QP	46.00	-23.90	1.25 H	153	1.10	21.00
6	750.00	28.50 QP	46.00	-17.50	1.37 H	285	5.40	23.10

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Freq. (MHz)	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor	
	(1411.12)	(dBuV/m)	(aba v/iii)	(45)	(m)	(Degree)	(dBuV)	(dB/m)	
1	199.99	22.10 QP	43.50	-21.40	1.00 V	1	10.50	11.60	
2	250.01	24.80 QP	46.00	-21.20	1.00 V	261	11.00	13.80	
3	300.31	25.40 QP	46.00	-20.60	1.00 V	254	8.50	16.80	
4	400.48	27.40 QP	46.00	-18.60	1.00 V	331	8.30	19.00	
5	499.99	24.80 QP	46.00	-21.20	1.00 V	343	3.00	21.80	
6	750.00	25.20 QP	46.00	-20.80	1.27 V	1	-2.10	27.30	

- Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
 Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

CHANNEL	Channel 0	FREQUENCY RANGE	1 ~25GHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz		Peak(PK) Average (AV)
ENVIRONMENTAL CONDITIONS	25 deg. C, 65%RH, 968 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	37.90 PK	74.00	-36.10	1.69 H	243	8.20	29.70
1	2390.00	7.90 AV	54.00	-46.10	1.69 H	243	-21.80	29.70
2	*2402.00	89.90 PK			1.69 H	243	60.10	29.80
2	*2402.00	59.90 AV			1.69 H	243	30.10	29.80
3	4804.00	47.70 PK	74.00	-26.30	1.04 H	38	12.70	35.00
3	4804.00	17.70 AV	54.00	-36.30	1.04 H	38	-17.30	35.00
4	7206.00	53.70 PK	74.00	-20.30	1.46 H	335	13.20	40.40
4	7206.00	23.70 AV	54.00	-30.30	1.46 H	335	-16.80	40.40

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MHz)	Level	(dBuV/m)	_	Height	Angle	Value	Factor
	(IVIF1Z)	(dBuV/m)	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	2390.00	39.50 PK	74.00	-34.50	1.30 V	350	9.80	29.70
1	2390.00	9.50 AV	54.00	-44.50	1.30 V	350	-20.20	29.70
2	*2402.00	91.50 PK			1.30 V	350	61.70	29.80
2	*2402.00	61.50 AV			1.30 V	350	31.70	29.80
3	4804.00	50.40 PK	74.00	-23.60	1.20 V	219	15.40	35.00
3	4804.00	20.40 AV	54.00	-33.60	1.20 V	219	-14.60	35.00
4	7206.00	55.30 PK	74.00	-18.70	1.00 V	213	14.80	40.40
4	7206.00	25.30 AV	54.00	-28.70	1.00 V	213	-15.20	40.40

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625*5 per 247 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30dB
- 7. Average value = peak reading -20log(duty cycle)

CHANNEL	Channel 39	FREQUENCY RANGE	1 ~25GHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak(PK) Average (AV)
ENVIRONMENTAL CONDITIONS	25 deg. C, 65%RH, 968 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2441.00	88.90 PK			1.80 H	240	59.00	29.90	
1	*2441.00	58.90 AV			1.80 H	240	29.00	29.90	
2	4882.00	51.40 PK	74.00	-22.60	1.20 H	228	16.00	35.30	
2	4882.00	21.40 AV	54.00	-32.60	1.20 H	228	-14.00	35.30	
3	7323.00	50.10 PK	74.00	-23.90	1.13 H	240	9.40	40.70	
3	7323.00	20.10 AV	54.00	-33.90	1.13 H	240	-20.60	40.70	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3M								
No.	Freq. (MHz)	Emission Level	Limit (dBuV/m)	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor	
	(IVIITZ)	(dBuV/m)	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2441.00	92.90 PK			1.08 V	9	63.00	29.90	
1	*2441.00	62.90 AV			1.08 V	9	33.00	29.90	
2	4882.00	52.60 PK	74.00	-21.40	1.20 V	215	17.20	35.30	
2	4882.00	22.60 AV	54.00	-31.40	1.20 V	215	-12.80	35.30	
3	7323.00	49.60 PK	74.00	-24.40	1.16 V	211	8.90	40.70	
3	7323.00	19.60 AV	54.00	-34.40	1.16 V	211	-21.10	40.70	

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625*5 per 247 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30dB
- 7. Average value = peak reading -20log(duty cycle)

CHANNEL	Channel 78	FREQUENCY RANGE	1 ~25GHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak(PK) Average (AV)
ENVIRONMENTAL CONDITIONS	25 deg. C, 65%RH, 968 hPa	TESTED BY	Sky Liao

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	89.00 PK			1.74 H	238	58.90	30.10
1	*2480.00	59.00 AV			1.74 H	238	28.90	30.10
2	2483.50	42.50 PK	74.00	-31.50	1.74 H	238	12.40	30.10
2	2483.50	12.50 AV	54.00	-41.50	1.74 H	238	-17.60	30.10
3	4960.00	51.40 PK	74.00	-22.60	1.00 H	353	15.70	35.70
3	4960.00	21.40 AV	54.00	-32.60	1.00 H	353	-14.30	35.70
4	7440.00	51.60 PK	74.00	-22.40	1.25 H	240	10.60	40.90
4	7440.00	21.60 AV	54.00	-32.40	1.25 H	240	-19.40	40.90

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	91.50 PK			1.04 V	13	61.40	30.10
1	*2480.00	61.50 AV			1.04 V	13	31.40	30.10
2	2483.50	56.30 PK	74.00	-17.70	1.04 V	13	26.20	30.10
2	2483.50	26.30 AV	54.00	-27.70	1.04 V	13	-3.80	30.10
3	4960.00	52.70 PK	74.00	-21.30	1.32 V	212	17.00	35.70
3	4960.00	22.70 AV	54.00	-31.30	1.32 V	212	-13.00	35.70
4	7440.00	51.10 PK	74.00	-22.90	1.28 V	215	10.10	40.90
4	7440.00	21.10 AV	54.00	-32.90	1.28 V	215	-19.90	40.90

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625*5 per 247 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30dB
- 7. Average value = peak reading -20log(duty cycle)

4.8 BAND EDGES MEASUREMENT

4.8.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Nov. 23, 2006

NOTE:

- 1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 DEVIATION FROM TEST STANDARD

No deviation

4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 TEST RESULTS

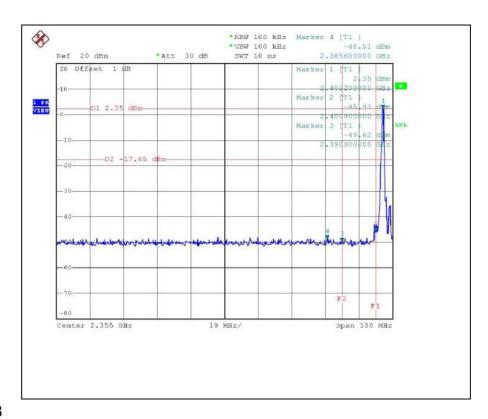
The spectrum plots are attached on the following 2 pages. D2 line indicates the highest level, D1 line indicates the 20dB offset below D2. It shows compliance with the requirement in part 15.247(C).

Note - The delta method is only used up to 2 MHz away from the restricted bandage, The radiated emissions which located in other restricted frequency band, the result, please refer to 4.2.

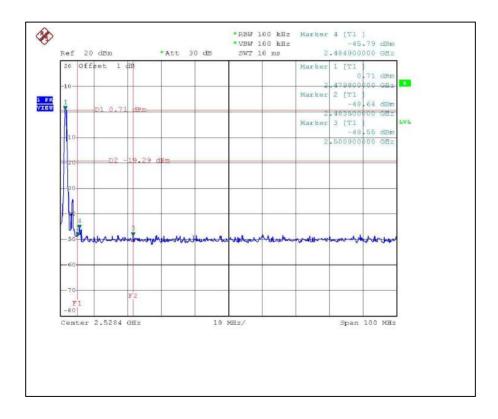
NOTE (Peak):

The band edge emission plot on the following first page show 51.97dB delta between carrier maximum power and local maximum emission in restrict band (2.3900GHz). The emission of carrier strength list in the test result of channel 0 at the item 4.2 is 91.50dBuV/m, so the maximum field strength in restrict band is 91.50-51.97=39.53dBuV/m which is under 74 dBuV/m limit.

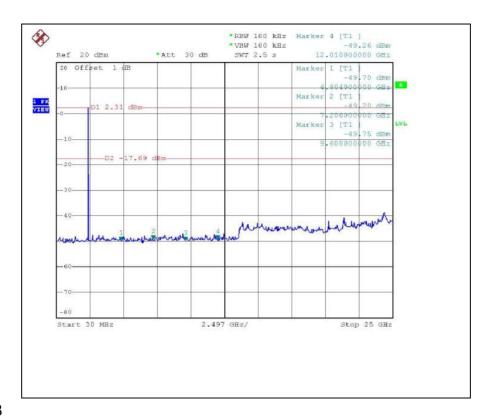
The band edge emission plot on the following first page shows 49.35dB delta between carrier maximum power and local maximum emission in restrict band (2.4835GHz). The emission of carrier strength list in the test result of channel 78 at the item 4.2 is 91.50dBuV/m, so the maximum field strength in restrict band is 91.50-49.35=42.15dBuV/m which is under 74 dBuV/m limit.


NOTE (Average):

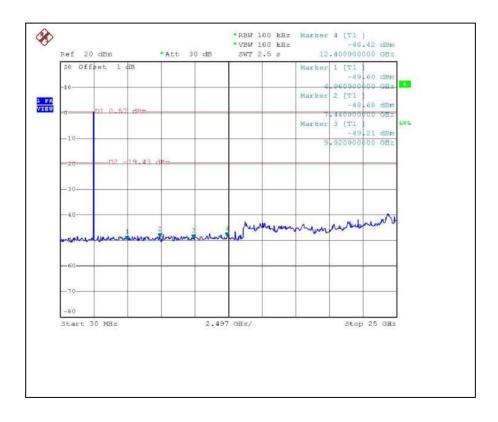
The band edge emission plot on the following second page shows 51.97 dB delta between carrier maximum power and local maximum emission in restrict band (2.3900GHz). The emission of carrier strength list in the test result of channel 0 at the item 4.2 is 61.50dBuV/m, so the maximum field strength in restrict band is 61.50-51.97=9.53dBuV/m which is under 54 dBuV/m limit.


The band edge emission plot on the following second page shows 49.35dB delta between carrier maximum power and local maximum emission in restrict band (2.4835GHz). The emission of carrier strength list in the test result of channel 78 at the item 4.2 is 61.50dBuV/m, so the maximum field strength in restrict band is 61.50-49.35=12.15dBuV/m which is under 54 dBuV/m limit.

CH₀



CH78



CH₀

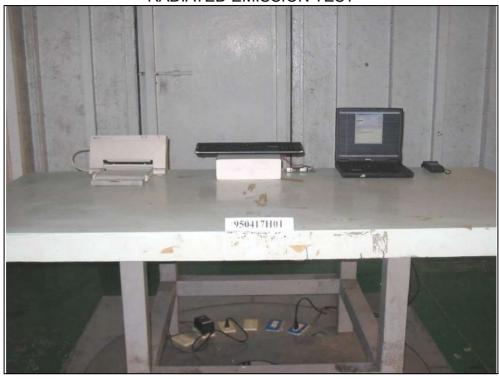
CH78

4.9 ANTENNA REQUIREMENT

4.9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


4.9.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is PCB antenna without connector.	The maximum
Gain of the antenna is –3.4dBi.	

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

RADIATED EMISSION TEST

6 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025:

USA FCC, UL, A2LA Germany TUV Rheinland

Japan VCCI Norway NEMKO

Canada INDUSTRY CANADA, CSA

R.O.C. CNLA, BSMI, DGT

Netherlands Telefication

Singapore PSB, GOST-ASIA (MOU)

Russia CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26052943 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Email: service@adt.com.tw
Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

APPENDIX-A

MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO

THE EUT BY THE LAB No any modifications are made to the EUT by the lab during the test.