

EXHIBIT D

CKC TEST REPORT

CERTIFICATION TEST REPORT

FOR THE

KEYBOARD, RT66XXXXX

FCC/CISPR 22/85

CLASS B COMPLIANCE

DATE OF ISSUE: OCTOBER 28, 1998

PREPARED FOR:

NMB Technologies Inc. 9730 Independence Avenue Chatsworth, CA 91311

P.O. No: Q010979 W.O. No: 70019

Report No: FB98-144

DOCUMENTATION CONTROL:

MAIN

Tracy Phillips

Documentation Control Supervisor

CKC Laboratories, Inc.

PREPARED BY:

Tracy Phillips CKC Laboratories, Inc.

5473A Clouds Rest

Mariposa, CA 95338

Date of test: September 30, 1998 & October 1, 1998

APPROVED BY:

Dennis Ward

Director of Laboratories

CKC Laboratories, Inc.

This report contains a total of 30 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

Page: 1 of 30

Report No: FB98-144

TABLE OF CONTENTS

Administrative Information	د,
Summary Of Results	4
Equipment Under Test (EUT) Description	4
Measurement Uncertainty	4
Perinheral Devices	4
Report Of Measurements	ک
Table 1. Six High Radiated Emission Levels	
Table 2: Six High Conducted Emission Levels	0
Table A: List Of Test Eq. pment.	/
FIIT Setup	
Test Instrumentation And Analyzer Settings	9
Table B. Analyzer Bandwidth Settings Per Frequency Range	9
Spectrum Analyzer Detector Functions	10
Peak	10
Ouasi-Peak	10
Average	10
Test Methods	11
Padiated Emissions Testing	11
Conducted Emissions Testing	12
Commis Coloulations	12
Appendix A: Information About The Equipment Under Test	13
I/O Ports	
Cristal Oscillators	14
Printed Circuit Boards	14
Equipment Configuration Block Diagram	10
Photograph Showing Radiated Emissions	1 /
Photograph Showing Radiated Emissions	18
Photograph Showing Conducted Emissions	19
Photograph Showing Conducted Emissions	∠∪
Amendix D. Messurement Data Sheets	21

Page: 2 of 30 Report No: FB98-144 CKC Laboratories, Inc. has Certificates of Accreditation from the following agencies:

DATech (Germany); A2LA (USA); FCC (USA); VCCI (Japan); BCIQ (Taiwan); HOKLAS (Hong Kong).

CKC Laboratories, Inc. has Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); TUV Rheinland-Germany; TUV Rheinland-

Korea; TUV Rheinland-Russia; Radio Communication Agency (RA); NEMKO (Norway).

ADMINISTRATIVE INFORMATION

DATE OF TEST:

September 30, 1998 & October 1, 1998

PURPOSE OF TEST:

To demonstrate the compliance of the

Keyboard, RT66XXXXX, with the

requirements for FCC/CISPR 22/85 Class B

devices.

MANUFACTURER:

NMB Technologies Inc. 9730 Independence Avenue

Chatsworth, CA 91311

REPRESENTATIVE:

Bob Dickerman

TEST LOCATION:

CKC Laboratories, Inc.

110 Olinda Place Brea, CA 92621

TEST PERSONNEL:

Stu Yamamoto & Eddie Wong

TEST METHOD:

ANSI C63.4 1992

FREQUENCY RANGE TESTED:

150kHz - 1000MHz

EQUIPMENT UNDER TEST:

Keyboard

Manuf:

NMB Technologies, Inc.

Model:

RT66XXXXX

Serial:

FCC ID:

Pending

Page: 3 of 30 Report No: FB98-144

SUMMARY OF RESULTS

The NMB Technologies Inc. Keyboard, RT66XXXXX was tested in accordance with ANSI C63.4 (1992) for compliance with the Class B requirements of the FCC/CISPR 22/85 Rules.

As received, the above equipment was found to be fully compliant with the Class B limits of FCC/CISPR 22/85 for both radiated and conducted emissions.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Keyboard, Computer HID serial input device.

MEASUREMENT UNCERTAINTY

Associated with data in this report is a +4dB measurement uncertainty.

PERIPHERAL DEVICES

FCC ID: B94C2184X

The EUT was tested with the following peripheral devices:

Modem Computer Manuf:

Hayes Manuf: Intel Model: 6802US S100EDZ8FLC Model:

B10068023649 Serial: Serial: A05721230 FCC ID: BFJ9D9 6802US FCC ID: EJMBATTAHITI

Monitor Modem Manuf: HP Manuf: Hayes

Model: D2806B Model: 6802US KR54366896 Serial: A00768023303 Serial:

FCC ID: CSYSC-528UXH FCC ID: BFJ9D9 6802US

Mouse Printer

Manuf: Microsoft Manuf: HP Model: MUS9J Model: C2184A 0003468 Serial: Serial: CN5B21R1DM FCC ID: EMJMUSJP

Page: 4 of 30 Report No: FB98-144

REPORT OF MEASUREMENTS

The following Tables 1 and 2 report the six highest radiated and conducted emissions levels recorded during the tests performed on the Keyboard, RT66XXXXX. The data sheets from which these tables were compiled are contained in Appendix B.

	Table 1: Six Highest Radiated Emission Levels										
FREQUENCY MHz	METER READING dBµV	COF Ant dB	RECTION Amp	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES		
75.235	43.6	7.4	-28.1	1.9		24.8	30.0	-5.2	VQ		
110.575	37.1	14.0	-27.8	2.2		25.5	30.0	-4.5	VQ		
166.180	33.3	17.5	-28.0	2.9		25.7	30.0	-4.3	VQ		
168.001	32.8	17.5	-28.0	2.9		25.2	30.0	-4.8	VQ		
222.002	32.0	17.5	-28.0	3.2		24.7	30.0	-5.3	V		
731.216	29.6	22.6	-27.2	7.1		32.1	37.0	-4.9	НQ		

Test Method:

ANSI C63.4 1992

Spec Limit:

CISPR 22 Class B

Test Distance:

10 Meters

NOTES:

H = Horizontal Polarization

V = Vertical Polarization

N = No Polarization

D = Dipole Reading

Q = Quasi Peak Reading

A = Average Reading

COMMENTS: The EUT is a keyboard and is connected to the host computer. The computer also has a monitor, mouse, printer, and two modems connected. The EUT is continually sending H's to the computer, and the H's are being displayed on the monitor. Voltage to computer is 120 VAC 60 Hz. Temperature: 21°C Humidity: 50%.

Page: 5 of 30

Report No: FB98-144

Table 2: Six Highest Conducted Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	RECTIO dB	ON FACT	rors dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
2.991000	39.3	0.0				39.3	46.0	-6.7	В
3.032000	41.0	0.0	•			41.0	46.0	-5.0	В
3.239608	40.5	0.0				40.5	46.0	-5.5	w
5.023582	44.6	0.0				44.6	50.0	-5.4	w
5.526000	42.3	0.0				42.3	50.0	-7.7	В
6.252944	43.9	0.0				43.9	50.0	-6.1	w

Test Method: Spec Limit:

Test Distance:

ANSI C63.4 1992

CISPR 22 Class B

No Distance

NOTES:

Q = Quasi Peak Reading

A = Average Reading

B = Black Lead

W = White Lead

COMMENTS: The EUT is a keyboard and is connected to the host computer. The computer also has a monitor, mouse, printer, and two modems connected. The EUT is continually sending H's to the computer, and the H's are being displayed on the monitor. Voltage to computer is 120VAC 60 Hz. Temperature: 21°C Humidity: 64%.

Page: 6 of 30 Report No: FB98-144

TABLE A

LIST OF TEST EQUIPMENT Brea VCCI Acceptance No. R-301 & C-314

- Spectrum Analyzer, Hewlett Packard, Model No. 8568A, S/N 2049A01287. Display 85680A S/N 2106A02109.
- 2. Preamp, Hewlett Packard, Model No. 8447D, S/N 1937A02548.
- 3. Quasi-Peak Adapter, Hewlett Packard, Model No. 85650A, S/N 3303A01884.
- 4. Biconical Antenna, A & H Systems, Model No. SAS-200/540, S/N 220.
- 5. Log Periodic Antenna, A & H Systems, Model No. SAS-200/516, S/N 331.
- 6. LISN, Solar Electronics, Model No. 50 uH, S/N Brea #2.
- 7. Brea site calibration date: May 8, 1998. Brea site calibration due date: May 8, 1999.
- 8. Test software, EMI Test 2.91.

Page: 7 of 30 Report No: FB98-144

EUT SETUP

The equipment under test (EUT) and the peripherals listed were setup in a manner that represented their normal use, as shown in the setup photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany Table 1 for radiated emissions, and Table 2 for conducted emissions. Additionally, a complete description of all the ports and I/O cables is included on the information sheets contained in Appendix A.

During radiated emissions testing, the EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. This configuration is typical for radiated emissions testing of table top devices.

I/O cables were connected to the EUT and peripherals in the manner required for normal operation of the system. Excess cabling was bundled in the center in a serpentine fashion using 30-40 centimeter lengths.

During conducted emissions testing, the EUT was located 80 centimeters above the conducting ground plane on the same nonconducting table as was used for radiated testing. The metal plane was grounded to the earth through the green wire safety ground. Power to the host PC was provided via 3 meters of shielded power cable from a filter grounded to the metal plane to a LISN. The LISN was also grounded to the plane and attached to the LISN was a 4 ganged grounded outlet whose source was also shielded and 60 cm in length. All other objects were kept a minimum of 1 meter away from the EUT during the conducted test.

Page: 8 of 30 Report No: FB98-144

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the Keyboard, RT66XXXXX. For radiated measurements below 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. All antennas were located at a distance of 10 meters from the edge of the EUT. Conducted emissions tests required the use of the FCC type LISN's.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, a reference level of $100~dB\mu V$ and a vertical scale size of 10~dB per division were used. A 10~dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0~dB of attenuation, a reference level of $97~dB\mu V$, and a vertical scale of 10~dB per division.

TABLE B: A	NALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE
TEST	BEGINNING FREQUENCY ENDING FREQUENCY PANDAMENT

TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS RADIATED EMISSIONS	1771418	30 MHz	9 kHz
L RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz

Page: 9 of 30 Report No: FB98-144

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in Tables 1 and 2 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in Table 1 or Table 2. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the Keyboard, RT66XXXXXX.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP 85650A Quasi-Peak Adapter for the HP 8568B Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

<u>Average</u>

For frequencies below 30 MHz and exceeding 1 GHz, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

Page: 10 of 30 Report No: FB98-144

TEST METHODS

The radiated and conducted emissions data of the Keyboard, RT66XXXXX, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC/CISPR 22/85 Class B emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

Radiated Emissions Testing

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode, with the I/O cables and line cords facing the antenna. The frequency range of 30 MHz - 88 MHz was then scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks which were at or near the limit were recorded. The frequency range of 100 - 300 MHz was scanned in the same manner, using the biconical antenna, and the peaks recorded. Lastly, a scan of the FM band from 88 - 110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 - 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 - 1000 MHz was again scanned. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

For the final radiated scan, the equipment was again positioned with its I/O and power cables facing the antenna. A thorough scan of all frequencies was manually made using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation, antenna height and configuration of the peripherals and cables. Maximizing of the cables was achieved by monitoring the spectrum analyzer on a closed circuit television monitor while the EUT cables were being moved and rearranged on the EUT table for maximum emissions. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

Page: 11 of 30 Report No: FB98-144

Conducted Emissions Testing

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 150 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the six highest emissions readings in Tables 1 and 2. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula:

Meter reading (dBµV)

- + Antenna Factor (dB)
- + Cable Loss (dB)
- Distance Correction (dB)
- Pre-amplifier Gain (dB)
- = Corrected Reading($dB\mu V/m$)

This reading was then compared to the applicable specification limit to determine compliance. For conducted emissions, no correction factors were needed when 50 μ H LISN's were used.

Page: 12 of 30 Report No: FB98-144

APPENDIX A

INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Page: 13 of 30 Report No: FB98-144

INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Test Software/Firmware:

CRT was displaying: Scrolling "H's"

Power Supply Manufacturer: Power Supply Part Number: AC Line Filter Manufacturer: AC Line Filter Part Number:

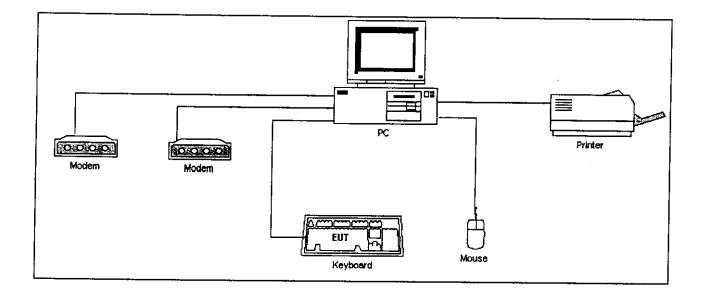
Line voltage used during testing:

I/O PORTS						
Type	#					
Serial, Keyboard	1					

CRYSTAL OSCILLATORS						
Туре	Freq In MHz					
RC Resonator (Clock)	4					

PRINTED CIRCUIT BOARDS								
Function	Model & Rev	Clocks, MHz	Layers	Location				
Logic Z86K15 MPU	3058-3069 Rev. A	4	1	Inside K/B				

Page: 14 of 30 Report No: FB98-144


CABLE INFORMATION

Cable #:	1	Cable(s) of this type:	1
Cable Type: Construction:		Shield Type:	
		Length In Meters:	
Connected To End (1): Connector At End (1):		Connected To End (2): Connector At End (2):	PCB
Shield Grounded At (1):	Chassis Ground	Shield Grounded At (2):	Chassis Ground
Part Number:		Number of Conductors:	4
Notes:	<u> </u>		

Page: 15 of 30 Report No: FB98-144

EQUIPMENT CONFIGURATION BLOCK DIAGRAM

NOTES:

Page: 16 of 30 Report No: FB98-144

APPENDIX B MEASUREMENT DATA SHEETS

Page: 21 of 30 Report No: FB98-144 Test Location: CKC LABORATORIES INC • 110 N. OLINDA PL. • BREA, CA 92823 • 714-993-6112

Customer: Specification:

NMB Technologies Inc. **CISPR 22 B RADIATED**

Date: Sep-30-98 Time: 18:29

Test Type:

Maximized Emissions

Sequence#: 1

Equipment:

Keyboard

Manufacturer:

NMB Technologies, Inc

Tested By: Stu Yamamoto

Model:

RT66XXXXX

S/N:

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Keyboard*	NMB Technologies, Inc	RT66XXXXX		

Support Devices:

Function	Manufacturer	Model #	S/N
Computer	Intel	S100EDZ8FLC	A05721230
Modem	Hayes	6802US	B10068023649
Modem	Hayes	6802US	A00768023303
Monitor	HP	D2806B	KR54366896
Printer	HP	C2184A	CN5B21R1DM
Mouse	Microsoft	MUS9J	0003468

Test Conditions / Notes:

The EUT is a keyboard and is connected to the host computer. The computer also has a monitor, mouse, printer, and two modems connected. The EUT is continually sending H's to the computer, and the H's are being displayed on the monitor. Voltage to computer is 120 VAC 60 Hz. Temperature: 21°C Humidity: 50%.

Mea:	easurement Data: Sorted by Margin				rgin		Te	est Distanc	e: 10 Meter	:s	
			Cable	Cable	Pream	BICON					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dΒ	dB	dB	$dB\mu V/m$	$dB\mu V/m$	dB	
	1 166.180	33.3	+2.4	+0.5	-28.0	+17.5	+0.0	25.7	30.0	-4.3	Vert
	Quasi Peak		+0.0								•
	non-keyboard	I									
	2 110.575	37.1	+1.9	+0.3	-27.8	+14.0	+0.0	25.5	30.0	-4.5	Vert
	Quasi Peak		+0.0								
	non-keyboard										
	3 168.001	32.8	+2.4	+0.5	-28.0	+17.5	+0.0	25.2	30.0	-4.8	Vert
	Quasi Peak		+0.0								
	non-keyboard										
- 4	731.216	29.6	+6.0	+1.1	-27.2	+0.0	+0.0	32.1	37.0	-4.9	Horiz
	Quasi Peak		+22.6								
	non-keyboard										
-	5 75.235	43.6	+1.6	+0.3	-28.1	+7.4	+0.0	24.8	30.0	-5.2	Vert
	Quasi Peak		+0.0								
	keyboard										

Page: 22 of 30

Report No: FB98-144

	5 110.571	36.4	+1.9	+0.3	-27.8	+13.9	+0.0	24.7	30.0	-5.3	Horiz
	Quasi Peak non-keyboard		+0.0								
	7 222.002	32.0	+2.8	+0.4	-28.0	+17.5	+0.0	24.7	20.0		
	212.002	52.0	+0.0	10.4	-20.0	₹17.3	+0.0	24.7	30.0	-5.3	Vert
	non-keyboard										
8		34.2	+2.0	+0.4	-27.7	+15.7	+0.0	24.6	30.0	-5.4	Horiz
	Quasi Peak		+0.0				٠.٠	27.0	50.0	-5.4	110112
	non-keyboard										
9		28.5	+6.0	+1.1	-27.2	+0.0	+0.0	31.0	37.0	-6.0	Vert
	Quasi Peak		+22.6								
	non-keyboard										
10	432.076	37.8	+4.4 +16.1	+0.8	-28.2	+0.0	+0.0	30.9	37.0	-6.1	Horiz
11		31.0	+2.8	+0.4	-28.0	+17.5	+0.0	23.7	30.0	-6.3	Horiz
	Quasi Peak		+0.0								
12	96.144	38.7	+1.7	+0.2	-28.0	+10.9	+0.0	23.5	30.0	-6.5	Vert
1.2	0.061		+0.0								
13	91.964	39.8	+1.7	+0.1	-28.1	+9.9	+0.0	23.4	30.0	-6.6	Vert
14	330.002	22.2	+0.0	0.5	20.0					····	
14	330.002	33.2	+3.6 +21.0	+0.5	-28.0	+0.0	+0.0	30.3	37.0	-6.7	Horiz
15	209.984	30.9	+21.0	+0.6	-28.1	+17.0	±0.0	- 22.1	20.0	- (0	
15	Quasi Peak	30.9	+0.0	+0.0	-28.1	+17.0	+0.0	23.1	30.0	-6.9	Vert
16	50.170	38.7	+1.2	+0.2	-27.9	+10.9	+0.0	23.1	30.0	-6.9	Vert
	••••	50.,	+0.0	. 0.2	-27.7	10.5	. 0.0	23.1	30.0	-0.9	ven
17	631.529	30.9	+5.4	+0.9	-27.6	+0.0	+0.0	30.0	37.0	-7.0	Vert
			+20.4			0.0		50.0	57.0	-7.0	VCI
18	198.004	30.9	+2.8	+0.7	-28.1	+16.7	+0.0	23.0	30.0	-7.0	Vert
	Quasi Peak		+0.0							,,,	
19	269.989	33.4	+3.3	+0.7	-28.0	+20.5	+0.0	29.9	37.0	-7.1	Vert
			+0.0								ŀ
20	129.042	31.6	+2.1	+0.4	-27.8	+16.4	+0.0	22.8	30.0	-7.2	Horiz
	Quasi Peak		+0.0								ļ
21	192.002	30.5	+2.7	+0.6	-28.0	+16.9	+0.0	22.7	30.0	-7.3	Vert
22	02.567	41.0	+0.0								
22	83.567	41.0	+1.6	+0.2	-28.2	+8.1	+0.0	22.7	30.0	-7.3	Vert
23	58.524	40.5	+0.0	10.2	20.1	10.6	100	- 22.7	700		
23	36.324	40.3	+0.0	+0.3	-28.1	+8.6	+0.0	22.7	30.0	-7.3	Vert
24	598.281	32.3	+5.1	+0.8	-27.7	+0.0	+0.0	29.6	37.0	-7.4	TT - d
	Quasi Peak	32.3	+19.1	10.0	-21.1	70.0	±0.0	29.0	37.0	-7.4	Horiz
25	66.884	41.1	+1.6	+0.3	-28.0	+7.6	+0.0	22.6	30.0	-7.4	Vert
	Quasi Peak	· - • •	+0.0				. 0.0	22.0	50.0	-/. -	A 611
26	150.007	30.1	+2.3	+0.6	-28.1	+17.6	+0.0	22.5	30.0	-7.5	Horiz
	Quasi Peak		+0.0				- · ·	.		,	
27	200.002	30.4	+2.8	+0.7	-28.1	+16.6	+0.0	22.4	30.0	-7.6	Horiz
	Quasi Peak		+0.0								
28	75.238	40.9	+1.6	+0.3	-28.1	+7.4	+0.0	22.1	30.0	-7.9	Horiz
			+0.0								i

Page: 23 of 30 Report No: FB98-144

- 20											
29	79.424	41.0	+1.6 +0.0	+0.3	-28.2	+7.4	+0.0	22.1	30.0	-7.9	Vert
30	598.289	31.7	+5.1 +19.1	+0.8	-27.7	+0.0	+0.0	29.0	37.0	-8.0	Vert
31 C	631.515 Juasi Peak	29.9	+5.4 +20.4	+0.9	-27.6	+0.0	+0.0	29.0	37.0	-8.0	Horiz
	192.019 uasi Peak	29.8	+2.7 +0.0	+0.6	-28.0	+16.9	+0.0	22.0	30.0	-8.0	Horiz
33	66.899	40.2	+1.6 +0.0	+0.3	-28.0	+7.6	+0.0	21.7	30.0	-8.3	Horiz
	180.001 uasi Peak	29.1	+2.6 +0.0	+0.5	-27.9	+17.3	+0.0	21.6	30.0	-8.4	Vert
35	330.020	31.3	+3.6 +21.0	+0.5	-28.0	+0.0	+0.0	28.4	37.0	-8.6	Vert
36	50.168	36.6	+1.2 +0.0	+0.2	-27.9	+10.9	+0.0	21.0	30.0	-9.0	Horiz
37	83.612	39.0	+1.6 +0.0	+0.2	-28.2	+8.1	+0.0	20.7	30.0	-9.3	Horiz
38	58.541	38.5	+1.4 +0.0	+0.3	-28.1	+8.6	+0.0	20.7	30.0	-9.3	Horiz
39	41.786	32.6	+1.1 +0.0	+0.1	-28.1	+14.8	+0.0	20.5	30.0	-9.5	Horiz

Page: 24 of 30 Report No: FB98-144 Test Location: CKC LABORATORIES INC • 110 N. OLINDA PL. • BREA, CA 92823 • 714-993-6112

Customer: Specification: NMB Technologies Inc. CISPR 22 B COND [AVE]

Date: Oct-01-98

Test Type:

Conducted Emissions

Time: 16:43

Equipment:

Keyboard

Sequence#: 11

Manufacturer:

NMB Technologies, Inc

Model:

RT66XXXXX

Tested By: Eddie Wong

S/N:

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Keyboard*	NMB Technologies, Inc	RT66XXXXX	

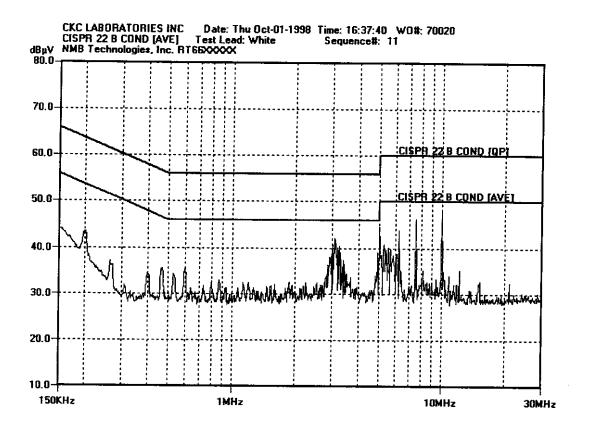
Support Devices:

Function	Manufacturer	Model #	S/N
Computer	Intel	S100EDZ8FLC	A05721230
Modem	Hayes	6802US	B10068023649
Modem	Hayes	6802US	A00768023303
Monitor	HP	D2806B	KR54366896
Printer	HP	C2184A	CN5B21R1DM
Mouse	Microsoft	MUS9J	0003468

Test Conditions / Notes:

The EUT is a keyboard and is connected to the host computer. The computer also has a monitor, mouse, printer, and two modems connected. The EUT is continually sending H's to the computer, and the H's are being displayed on the monitor. Voltage to computer is 120VAC 60 Hz. Temperature: 21°C Humidity: 64%.

Measurement Data:		,	Sorted by Margin					Test Lead: White			
#	Freq MHz	Rdng dBµV	ďΒ	dB	dB	dВ	Dist dB	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar
1	3.032	40.8				<u> </u>	+0.0	40.8	46.0	-5.2	White
2	5.024	44.6				, <u>. </u>	+0.0	44.6	50.0	-5.4	White
3	3.240	40.5		- 			+0.0	40.5	46.0	-5.5	White
4	3.170	40.1					+0.0	40.1	46.0	-5.9	White
5	6.253	43.9					+0.0	43.9	50.0	-6.1	White
6	2.997	39.8					+0.0	39.8	46.0	-6.2	White
7	3.205	39.4					+0.0	39.4	46.0	-6.6	White
8	3.064	39.2			· -	_	+0.0	39.2	46.0	-6.8	White
A	verage										


Page: 25 of 30

Report No: FB98-144

۸	3.061	42.1	+0.0	42.1	46.0	-3.9	White
10	3.280	39.2	+0.0	39.2	46.0	-6.8	White
11	4.949	39.1	+0.0	39.1	46.0	-6.9	White
12	2.957	38.3	+0.0	38.3	46.0	-7.7	White
13	2.922	38.1	+0.0	38.1	46.0	-7.9	White
14	3.136 erage	36.8	+0.0	36.8	46.0	-9.2	White
^	3.136	41.1	+0.0	41.1	46.0	-4.9	White
16	7.515	22.1	+0.0	22.1	50.0	-27.9	White
	егаде						
^	7.515	46.4	+0.0	46.4	50.0	-3.6	White
18	10.016	19.1	+0.0	19.1	50.0	-30.9	White
Av	erage						
^	10.016	48.3	+0.0	48.3	50.0	-1.7	White

Page: 26 of 30 Report No: FB98-144

Page: 27 of 30 Report No: FB98-144 Test Location: CKC LABORATORIES INC • 110 N. OLINDA PL. • BREA, CA 92823 • 714-993-6112

Customer: Specification: NMB Technologies Inc. CISPR 22 B COND [AVE]

Date: Oct-01-98 Time: 16:49

Test Type:

Conducted Emissions

Equipment:

Keyboard

Sequence#: 12

Manufacturer:

NMB Technologies, Inc

Model:

RT66XXXXX

Tested By: Eddie Wong

S/N:

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Keyboard*	NMB Technologies, Inc	RT66XXXXX	

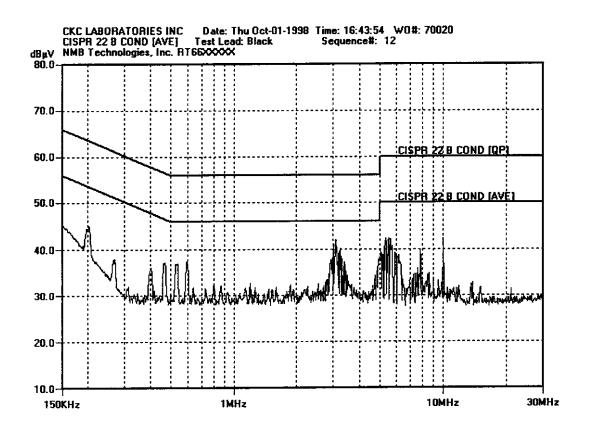
Support Devices:

Function	Manufacturer	Model #	S/N
Computer	Intel	S100EDZ8FLC	A05721230
Modem	Hayes	6802US	B10068023649
Modem	Hayes	6802US	A00768023303
Monitor	HP	D2806B	KR54366896
Printer	HP	C2184A	CN5B21R1DM
Mouse	Microsoft	MUS9J	0003468

Test Conditions / Notes:

The EUT is a keyboard and is connected to the host computer. The computer also has a monitor, mouse, printer, and two modems connected. The EUT is continually sending H's to the computer, and the H's are being displayed on the monitor. Voltage to computer is 120VAC 60 Hz. Temperature: 21°C Humidity: 64%.

Measur	ement Data:	· — —	Sorted by Margin					Test Lead: Black				
#	Freq MHz	Rdng dBµV	dB	dB	dB	dB	Dist dB	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar	
1	3.032	41.0					+0.0	41.0	46.0	-5.0	Black	
2	3.136	40.3					+0.0	40.3	46.0	-5.7	Black	
3	3.245	40.2					+0.0	40.2	46.0	-5.8	Black	
4	3.205	39.6	·	<u>-</u>	· ·		+0.0	39.6	46.0	-6.4	Black	
5	2.991	39.3					+0.0	39.3	46.0	-6.7	Black	
6	3.170	39.2					+0.0	39.2	46.0	-6.8	Black	
7 A	3.064 verage	38.7	 				+0.0	38.7	46.0	-7.3	Black	
^	3.064	42.0			# · · · · ·		+0.0	42.0	46.0	-4.0	Black	


Page: 28 of 30

Report No: FB98-144

	38.5	+0.0	38.5	46.0	-7.5	Black
10.016	42.3	+0.0	42.3	50.0	-7.7	Black
5.526	42.3	+0.0	42.3	50.0	-7.7	Black
5.324	42.2	+0.0	42.2	50.0	-7.8	Black
4.972	38.2	+0.0	38.2	46.0	-7.8	Black
5.610	42.1	+0.0	42.1	50.0	-7.9	Black
2.962	38.1	+0.0	38.1	46.0	-7.9	Black
3.309	37.9	+0.0	37.9	46.0	-8.1	Black
	5.526 5.324 4.972 5.610 2.962	5.526 42.3 5.324 42.2 4.972 38.2 5.610 42.1 2.962 38.1	5.526 42.3 +0.0 5.324 42.2 +0.0 4.972 38.2 +0.0 5.610 42.1 +0.0 2.962 38.1 +0.0	5.526 42.3 +0.0 42.3 5.324 42.2 +0.0 42.2 4.972 38.2 +0.0 38.2 5.610 42.1 +0.0 42.1 2.962 38.1 +0.0 38.1	5.526 42.3 +0.0 42.3 50.0 5.324 42.2 +0.0 42.2 50.0 4.972 38.2 +0.0 38.2 46.0 5.610 42.1 +0.0 42.1 50.0 2.962 38.1 +0.0 38.1 46.0	5.526 42.3 +0.0 42.3 50.0 -7.7 5.324 42.2 +0.0 42.2 50.0 -7.8 4.972 38.2 +0.0 38.2 46.0 -7.8 5.610 42.1 +0.0 42.1 50.0 -7.9 2.962 38.1 +0.0 38.1 46.0 -7.9

Page: 29 of 30 Report No: FB98-144

Page: 30 of 30 Report No: FB98-144