

TEST REPORT FOR WLAN TESTING

Report No.: SRTC2022-9004(F)-22080102(F)

Product Name: Smart Phone

Product ID: AEL013, AEL014, AEL15

Applicant: Sharp Corporation

Manufacturer: Sharp Corporation

Specification: FCC Part 15 Subpart C (2021)

FCC ID: APYHRO00319

The State Radio_monitoring_center Testing Center (SRTC) 15th Building, No.30 Shixing Street, Shijingshan District, Beijing, P.R.China Tel: 86-10-57996183 Fax: 86-10-57996388

CONTENTS

1. GENERAL INFORMATION	
 1.1 Notes of the test report 1.2 Information about the testing laboratory 1.3 Applicant's details 1.4 Manufacturer's details 1.5 Test Environment	
2 DESCRIPTION OF THE DEVICE UNDER TEST	3
 2.1Final Equipment Build Status	
3 REFERENCE SPECIFICATION	6
4 KEY TO NOTES AND RESULT CODES	6
5 RESULT SUMMARY	7
6 TEST RESULT	9
 6.1 Peak Power Output. 6.2 6dB Bandwidth 6.3 Transmitter Power Spectral Density 6.4 Conducted Out of band emission measurement 6.5 Band-edge measurement 6.6 Spurious Radiated Emissions 6.7 AC Power line Conducted Emission 	
 6.2 6dB Bandwidth. 6.3 Transmitter Power Spectral Density 6.4 Conducted Out of band emission measurement 6.5 Band-edge measurement 6.6 Spurious Radiated Emissions 	
 6.2 6dB Bandwidth 6.3 Transmitter Power Spectral Density 6.4 Conducted Out of band emission measurement 6.5 Band-edge measurement 6.6 Spurious Radiated Emissions 6.7 AC Power line Conducted Emission 	
 6.2 6dB Bandwidth. 6.3 Transmitter Power Spectral Density	

1. GENERAL INFORMATION

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC). The test results relate only to individual items of the samples which have been tested. The certification and accreditation identifiers used in this report shall not be applicable to the tested or calibrated samples thereof. The manufacturer shall not mark the tested samples or items (or a separate part of the item) with the identifiers of certification and accreditation to mislead relevant parties about the tested samples or items.

1.2 Information about the testing laboratory

Company:	The State Radio_monitoring_center Testing Center (SRTC)		
Test Site 1:	15th Building, No.30 Shixing Street, Shijingshan District		
Test Site 2:	No.80, Zhaojiachang, Beizang, Daxing District		
City:	Beijing		
Country or Region:	P.R.China		
Contacted person:	Liu Jia		
Tel:	+86 10 57996183		
Fax:	+86 10 57996388		
Email:	liujiaf@srtc.org.cn		
Designation Number:	CN1267		
Registration number:	239125		

1.3 Applicant's details

Company:	Sharp Corporation
Address:	1 Takumi-cho, Sakai-ku, Sakai City, Osaka 590-8522, Japan

1.4 Manufacturer's details

Company:	Sharp Corporation
Address:	1 Takumi-cho, Sakai-ku, Sakai City, Osaka 590-8522, Japan

1.5 Test Environment

Date of Receipt of test sample at SRTC:	2022-08-01
Testing Start Date:	2022-08-01
Testing End Date:	2022-09-01

Environmental Data:	Temperature (°C)	Humidity (%)	
Ambient	25	40	
Maximum Extreme	55		
Minimum Extreme	-10		
Normal Supply Voltage (V d.c.):	4.0		
Maximum Extreme Supply Voltage (V d.c.):): 4.0		
Minimum Extreme Supply Voltage (V d.c.):	3.7		

2 DESCRIPTION OF THE DEVICE UNDER TEST 2 1Einal Equipment Build Status

2.1Final Equipment Build Statu	5
Frequency Band:	2.412GHz~2.462GHz
Number of Channel For 20MHz:	11
Number of Channel For 40MHz:	7
	802.11b
Modulation Type:	802.11g
	802.11n (HT20/HT40)
Power Supply:	Battery / Charger
Software Revision:	A719G
Hardware Revision:	DVT(Remodeled to the equivalent of MP products)
	004401231250826
IMEI:	004401231252327
Antenna type:	Refer to Note
Antenna connector:	Refer to Note

Note: Antenna requirement (FCC part 15.203)

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

•The antenna(s) of the EUT are permanently attached.

•There are no provisions for connection to an external antenna.

Note: The antenna provides to the EUT, please refer to the following table:

Brand	Model	Antenna gain	Frequency band (GHz)	Antenna type	Connecter Type
N/A	N/A	-3.1dBi	2.4GHz~2.4835GHz	Inverted-F Antenna	N/A

The antenna gain is provided by the customer and involved in the calculation and influence of the test results. Our laboratory takes the value declared by the customer as the criterion, and the customer is responsible for the antenna gain value. Manufacturers ensure that their designs will not be modified by the user or third party's arbitrary antenna parameters and performance.

2.2 Description of Test Modes

11 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

2.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE	APPLICAB	LE TO			DESCRIPTION
MODE	RE ≥ 1G	RE<1G	PLC	APCM	-
-	\checkmark	\checkmark	\checkmark		-

Where

RE ≥ 1G: Radiated Emission above 1GHz RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with

antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
1 to 11	1/6/11 For HT20 3/6/9 For HT40	DBPSK/BPSK	1,6, 6.5,13.5 8.6,17.2

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
1 to 11	1/6/11 For HT20 3/6/9 For HT40	DBPSK/BPSK	1,6, 6.5,13.5 8.6,17.2

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
1 to 11	6	DBPSK	1

Antenna Port Conducted Measurement:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
1 to 11	1/6/11 For HT20 3/6/9 For HT40	DBPSK/BPSK	1,6, 6.5,13.5 8.6,17.2

2.3 EUT Operating conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

2.4 Support Equipment

The following support equipment was used to exercise the DUT during testing: N/A

<u>3 REFERENCE SPECIFICATION</u>

Specification	Version	Title
FCC part15 Subpart C	2021	Intentional radiators
ANSI C63.10	2013	Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB 558074D01 V05R02	April 2, 2019	Guidance for compliance measurements on Digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules

4 KEY TO NOTES AND RESULT CODES

Code	Meaning
PASS	Test result shows that the requirements of the relevant specification have been
17,00	met.
FAIL	Test result shows that the requirements of the relevant specification have not
	been met.
N/T	Test case is not tested.

No.	Test case	Reference	Verdict
1	Transmitter Output Power	15.247(b)(3)	Pass
2	6dB Bandwidth	15.247(a)(2)	Pass
3	Transmitter Power Spectral Density	15.247(e)	Pass
4	Conducted Out of band emission measurement	15.247(d)	Pass
5	Band Edge	15.247(d)	Pass
6	Antenna requirement	15.203	Pass(refer to section 2.1)

Test Site 1: 15th Building, No.30 Shixing Street, Shijingshan District

This Test Report Is Approved by: Mr. Peng Zhen	Review by: Mr. Li Bin
Tested and Issued by:	Approved date:
Mr. Du Wei	20220012
相威	20220913

No.	Test case	Reference	Verdict
7	Spurious Radiated Emissions	15.205/15.209	Pass
8	AC Power line Conducted Emission	15.207	Pass

Test Site 2: No.80, Zhaojiachang, Beizang, Daxing District

This Test Report Is Approved by: Mr. Liu Wei	Review by: Mr. Guo Yu
Tested and Issued by:	Approved date:
Mr. Dong Qifeng 董奇绎	20220913

6.1 Peak Power Output

6.2.1 Test limit

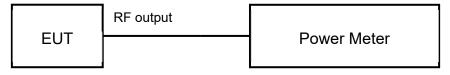
Part15.247 (b) (3) The maximum permissible conducted output power is 1 Watt.

6.2.2 Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 ANSI C63.10-2013 – Section 11.9.2.3.2 KDB 558074 D01 v05r02 – Section 8.3.1.3

6.2.3 Test Settings

Peak Power Measurement


The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Average Power Measurement

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

6.2.4 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.2.5 Test result

The test results are shown in Appendix A.

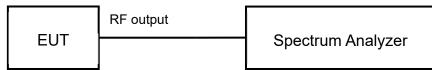
6.1.1 Test limit

Part15.247 (a) (2) The minimum permissible 6dB bandwidth is 500 kHz

6.1.2 Test Procedure Used

ANSI C63.10-2013 – Section 11.8.2 Option 2 KDB 558074 D01 v05r02 – Section 8.2

6.1.3 Test Settings


1. The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

2. RBW = 100 kHz

- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

6.1.4 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.1.5 Test result

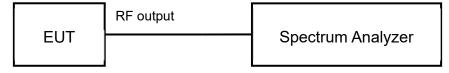
The test results are shown in Appendix A.

6.3 Transmitter Power Spectral Density

6.3.1 Test limit

Part15.247 (e) The maximum permissible power spectral density is 8.0dBm in any 3 kHz band.

6.3.2 Test Procedure Used


ANSI C63.10-2013 – Section 11.10.2 Method PKPSD KDB 558074 D01 v05r02 – Section 8.4

6.3.3 Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3 kHz
- 4. VBW = 10 kHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

6.3.4 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.3.5 Test result

The test results are shown in Appendix A.

6.4 Conducted Out of band emission measurement

6.4.1 Test limit

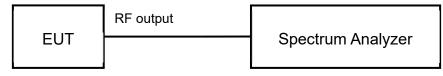
Part 15.247(d): The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100 kHz bandwidth.

6.4.2 Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.5

6.4.3 Reference level measurement Settings

Establish a reference level by using the following procedure:


- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 MHz
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 300 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

6.4.4 Test Settings

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 300 kHz.
- d) Detector = peak.
- e) Set span to encompass the spectrum to be examined
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level.

6.4.5 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.4.6 Test result

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement. The test results are shown in Appendix A.

6.5 Band-edge measurement

6.5.1 Test limit

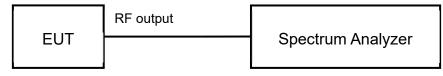
Part 15.247(d): The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100 kHz bandwidth.

6.5.2 Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.7.2

6.5.3 Reference level measurement Settings

Establish a reference level by using the following procedure:


- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 MHz
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 300 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

6.5.4 Test Settings

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 300 kHz.
- d) Detector = peak.
- e) Set span to encompass the spectrum to be examined
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level.

6.5.5 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.5.6 Test result

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement. The test results are shown in Appendix A.

6.6 Spurious Radiated Emissions

6.6.1 Test Description

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

6.6.2 Test limit

Part15.205, 15.209, 15.247(d)

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in below Table per Section 15.209. The spectrum shall be investigated from the lowest radio frequency signal generated in the device

	Field strength	Measured Distance
Frequency [MHz]	[µV/m]	[meters]
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3
Radiated Limits		

Part15.35(b):

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

Frequency [MHz]	Detector	Unit (dBµV/m)
30~88	Quasi-peak	40.0
88~216	Quasi-peak	43.5
216~960	Quasi-peak	46.0
960~1000	Quasi-peak	54.0
1000 \sim 5th harmonic of the highest frequency	Average	54.0
or 40GHz, whichever is lower	Peak	74.0

Conversion Radiated limits

ANSI C63.10-2013

For Radiated emission below 30MHz

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. Both X and Y axes of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Quasi-Peak Detect Function and recorded the reading with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer complied the following setting:

Frequency	RBW
9-150kHz	200-300Hz
0.15-30MHz	9-10kHz

2. Signals below 30MHz are not recorded in the report because they are lower than the limits by more than 20dB.

For Radiated emission above 30MHz

a. The EUT was placed on the top of a rotating table 0.8 meters (for $30MHz \sim 1GHz$) / 1.5 meters (for above 1GHz) above the ground in chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to quasi-peak detect function and recorded the reading with Maximum Hold Mode when the test frequency is below 1 GHz.

f. The test-receiver system was set to peak and average detector and recorded the reading with Maximum Hold Mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1GHz.

2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.

3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz. If duty cycle of test signal is < 98%, the duty factor need added to measured value.

4. All modes of operation were investigated and the worst-case emissions are reported.

6.6.4 Test Settings

Average Field Strength Measurements

Frequency	Detector
<1000MHz	Quasi-peak
>1000MHz	Peak and average

Peak Field Strength Measurements

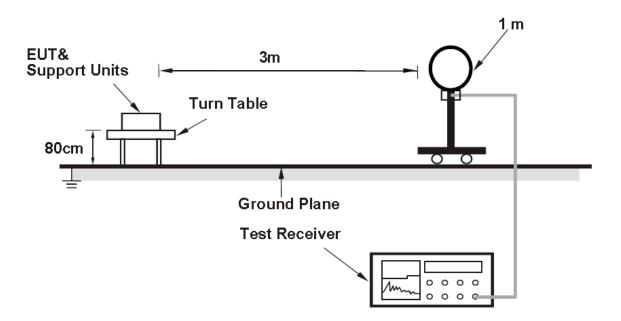
1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest

2. RBW is set depending on measurement frequency, as specified in following table

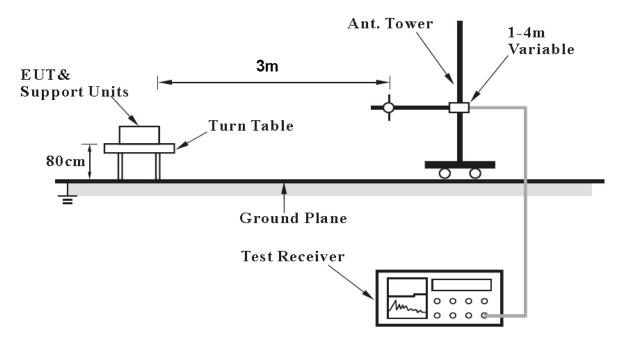
Frequency	RBW
9-150kHz	200-300Hz
0.15-30MHz	9-10kHz
30-1000MHz	100-120kHz
>1000MHz	1MHz

3. VBW = 3MHz

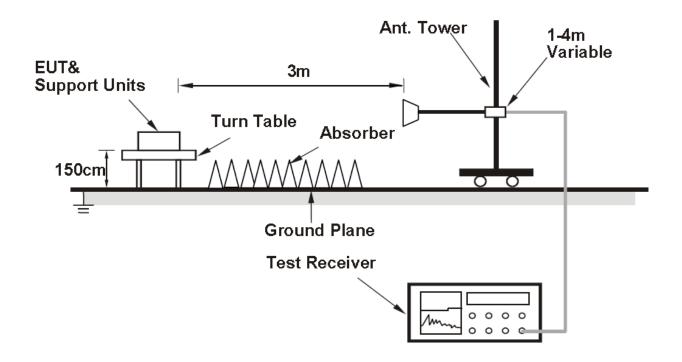
4. Detector = peak


5. Sweep time = auto couple

6. Trace mode = max hold


7. Trace was allowed to stabilize

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

6.6.6 Test result

The test results are shown in Appendix B.

6.7 AC Power line Conducted Emission

6.7.1 Test limit

FCC Part15.207

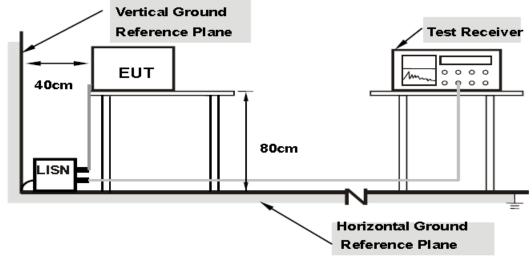
Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency.

The measurement is made according to ANSI C63.10-2013

6.7.2 Test Procedures

a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.


b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.

c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) were not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

The EUT shall test under the power AC120V/240V/60Hz.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.7.4 Test result

The test results are shown in Appendix B.

7 MEASUREMENT UNCERTAINTIES

Items	Uncertainty		
6dB Bandwidth	3kł	Ηz	
Peak power output	0.67	′dB	
Transmitter Power Spectral Density	0.75	idB	
Band edge compliance	1.20dB		
	30 MHz \sim 1GHz	2.83dB	
Conducted Out of band emission measurement	1GHz \sim 12.75GHz	2.50dB	
medsurement	12.75GHz \sim 25GHz	2.75dB	
	30 MHz \sim 200 MHz	4.88dB	
Spurious Padiated Emissions	200MHz \sim 1GHz	4.87dB	
Spurious Radiated Emissions	1GHz \sim 18GHz	4.58dB	
	18GHz~40GHz	4.35dB	
AC Power line Conducted Emission	3.92	dB	

8 TEST EQUIPMENTS

No.	Name/ Model	Manufacturer	S/N	Cal date	Cal Due date
1.	Spectrum Analyzer / FSV	ROHDE & SCHWARZ	101065	2022.06.21	2023.06.20
2.	Signal Analyzer / N9020A	Agilent	MY48010771	2022.05.18	2023.05.17
3.	Bluetooth Test Set / MT8852B	Anritsu	1329003	2022.06.21	2023.06.20
4.	Power Divider / 11667A	HP	19632	2022.06.21	2023.06.20
5.	Power Meter E4416A	Agilent	MY52370013	2022.04.13	2023.04.12
6.	Power Sensor E9323A	Agilent	MY52150008	2022.04.13	2023.04.12
7.	Signal Generator / SMBV100A	R&S	260910	2022.06.21	2023.06.20
8.	Temperature chamber / SH241	ESPEC	92013758	2022.06.21	2023.06.20
9.	Fully-Anechoic Chamber / 12.65m×8.03m×7.50m	FRANKONIA			
10.	Semi-Anechoic/Chamber / 23.18m×16.88m×9.60m	FRANKONIA			
11.	Turn table Diameter:1m	FRANKONIA			
12.	Turn table Diameter:5m	FRANKONIA			
13.	Antenna master FAC(MA4.0)	MATURO			
14.	Antenna master SAC(MA4.0)	MATURO			
15.	Shielding room / 9.080m×5.255m×3.525m	FRANKONIA			
16.	Double-Ridged Waveguide Horn Antenna / HF 907	R&S	100512	2022.06.21	2023.06.20
17.	Double-Ridged Waveguide Horn Antenna / HF 907	R&S	100513	2022.06.21	2023.06.20
18.	Ultra log antenna / HL562	R&S	100016	2022.06.21	2023.06.20
19.	Receive antenna /3160-09	SCHWARZ- BECK	002058-002	2022.06.21	2023.06.20
20.	EMI test receiver / ESI 40	R&S	100015	2022.06.21	2023.06.20
21.	EMI test receiver / ESCS30	R&S	100029	2022.06.21	2023.06.20
22.	Receive antenna / HL562	R&S	100167	2022.06.21	2023.06.20
23.	AMN / ENV216	R&S	3560.6550.12	2022.06.21	2023.06.20
24.	WLAN AP WIA3300-20	SKSpruce	8152017060700339		
25.	Notebook E470c	Lenovo	PF10UZW7		
26.	Loop Antenna	R&S	100340	2022.08.20	2023.08.20
27.	FCC auto test system / RT9200BW-2	Radiosky	V2.05	/	/
28.	EMI test software / EMC32	R&S	V10.20.01	/	/

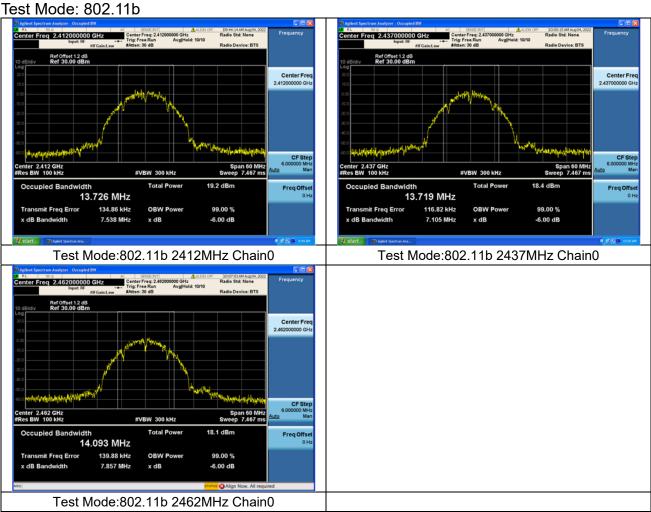
APPENDIX A – TEST DATA OF CONDUCTED EMISSION

Offset 10.94dB = Attenuator+ Temporary antenna connector loss+ Cable loss **Duty Cycle**

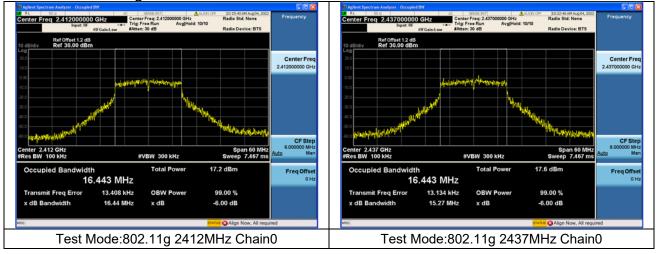
Modulation Type	Frequency (MHz)	Antenna	Duty Cycle	Correction Factor(dB)
802.11b	2412	Chain0	99.37%	0
802.11g	2412	Chain0	98.98%	0
802.11n HT20	2412	Chain0	98.69%	0
802.11n HT40	2422	Chain0	96.60%	0.15

Note: Correction Factor=10*log (1/Duty Cycle)

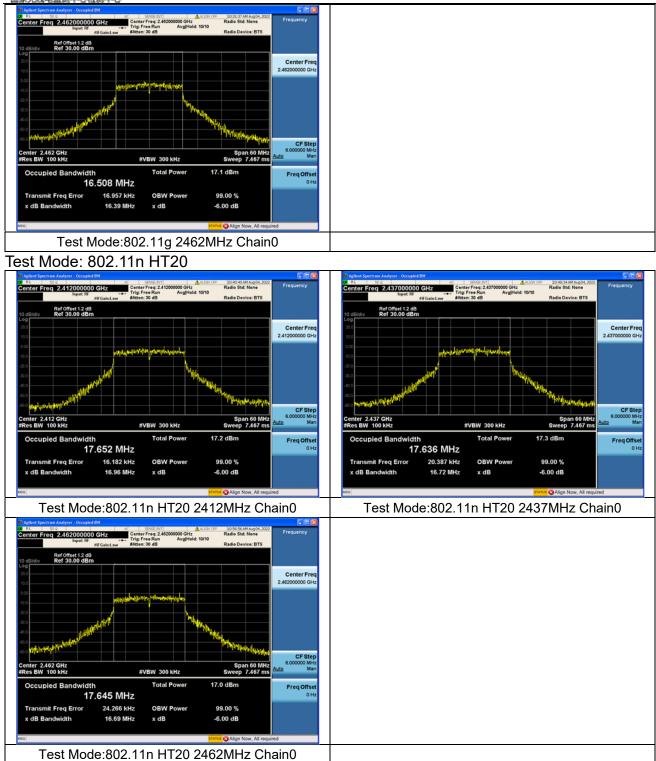
Conducted power


Test Mode	Tones/ RU Index	Freq(MHz)	Antenna	Peak power output (dBm)	Average power output (dBm)
802.11b	NA	2412	Chain0	16.82	13.79
802.11b	NA	2437	Chain0	17.06	14.02
802.11b	NA	2462	Chain0	16.68	13.63
802.11g	NA	2412	Chain0	22.18	13.51
802.11g	NA	2437	Chain0	22.22	13.55
802.11g	NA	2462	Chain0	21.82	13.17
802.11n HT20	NA	2412	Chain0	21.96	13.28
802.11n HT20	NA	2437	Chain0	22.09	13.36
802.11n HT20	NA	2462	Chain0	21.75	13.05
802.11n HT40	NA	2422	Chain0	22.20	13.36
802.11n HT40	NA	2437	Chain0	22.17	13.21
802.11n HT40	NA	2452	Chain0	22.17	13.24

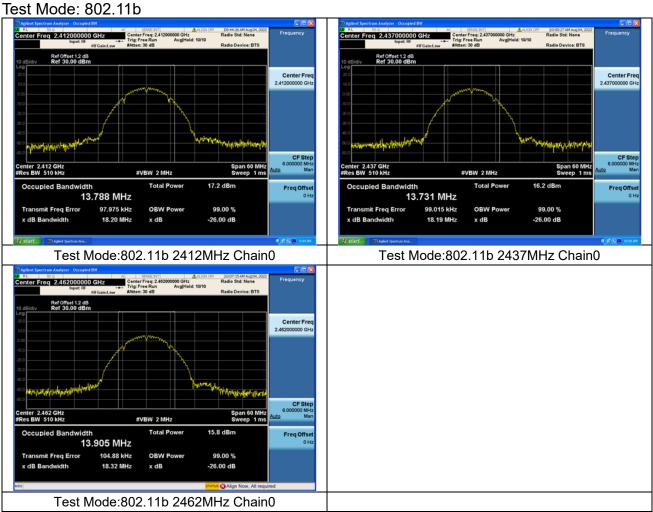
6dB Bandwidth


	6 dB bandwidth(MHz)			
Test Mode	Antenna	Channel No.1	Channel No.6	Channel No.11
		2412MHz	2437MHz	2462MHz
802.11b	Chain0	7.54	7.10	7.86
802.11g	Chain0	16.44	15.27	16.39
802.11n HT20	Chain0	16.96	16.72	16.69

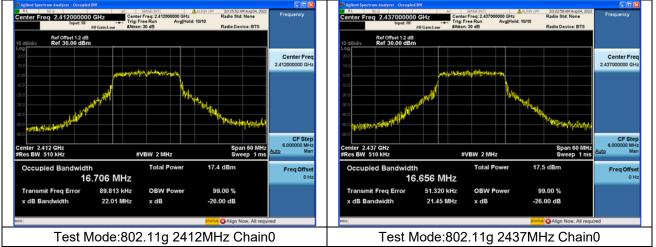
		6 dB bandwidth(MHz)			
Test Mode	Antenna	Channel No.3	Channel No.6	Channel No.9	
		2422MHz	2437MHz	2452MHz	
802.11n HT40	Chain0	35.79	35.75	36.37	



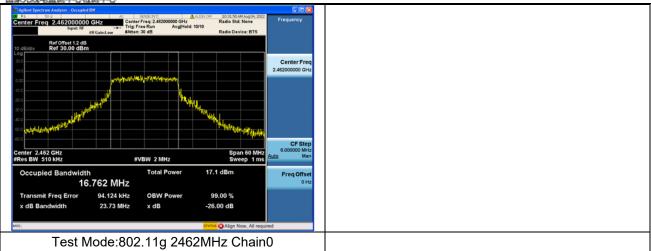
Test Mode: 802.11g

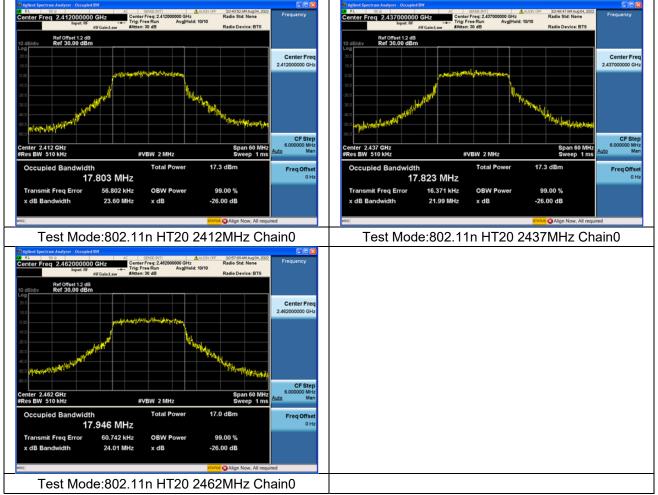

Test Mode: 802.11n HT40 Center Freq: 2.42200000 GHz Tria: Free Run Avg|Hold: 10/10 er Freq 2.422000000 GHz Radio Std: None 11:25:18 AM Aug 04 Radio Std: None er Freg 2.437000000 GHz Center Freq: 2.4 Trig: Free Run Radio Device: BT Ref Offset 1.2 dB Ref 30.00 dBm Ref Offset 1.2 dB Ref 30.00 dBm Center Fr 2.422000000 G Center Fre 2.437000000 GH CF Step 10.000000 MH Ma CF St 10.00 ter 2.437 GHz s BW 100 kHz r 2.422 GHz BW 100 kHz Span 100 MHz Sweep 12.4 ms Span 100 MHz Sweep 12.4 ms #VBW 300 kHz #VBW 300 kHz Total Powe 16.5 dBm Total Powe 16.2 dBm Occupied Bandwidt Freq Offse Occupied Bandwidt Freq Offs 36.121 MHz 36.143 MHz Transmit Freq Error 40.274 kHz OBW Power 99.00 % Transmit Freq Error 27.617 kHz OBW Power 99.00 % 35.79 MHz 35.75 MHz -6.00 dB x dB Bandwidth -6.00 dB x dB Bandwidth x dB x dB Test Mode:802.11n HT40 2422MHz Chain0 Test Mode:802.11n HT40 2437MHz Chain0 11:38:24 AM Aug 04 Radio Std: None enter Freq 2.452000000 GHz 0 GHz Radio Device: BTS Ref Offset 1.2 dB Ref 30.00 dBm Center Fre 2. CF Step 10.00 nter 2.452 GHz es BW 100 kHz Span 100 MHz Sweep 12.4 ms #VBW 300 kHz 16.4 dBn Total F Occupied Bandwidtl Freq Offs 36.272 MHz Transmit Freq Error -25.241 kHz OBW Power 99.00 % 36.37 MHz x dB Ban x dB -6.00 dB ith Test Mode:802.11n HT40 2452MHz Chain0

99% Bandwidth

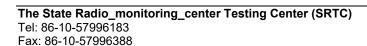

		99% bandwidth(MHz)			
Test Mode	Antenna	Channel No.1	Channel No.6	Channel No.11	
		2412MHz	2437MHz	2462MHz	
802.11b	Chain0	13.788	13.731	13.905	
802.11g	Chain0	16.706	16.656	16.762	
802.11n HT20	Chain0	17.803	17.823	17.946	

		99% bandwidth(MHz)		
Test Mode	Antenna	Channel No.3	Channel No.6	Channel No.9
		2422MHz	2437MHz	2452MHz
802.11n HT40	Chain0	36.157	36.053	36.272




Test Mode: 802.11g

Test Mode: 802.11n HT20



Test Mode: 802.11n HT40 er Freq 2.422000000 GHz 000 GHz Avg|Hold: 10/10 Radio Std: None 11:25:30 AM Aug 04 Radio Std: None Center Freq: 2.422 eg 2.437000000 GH: Radio Device: BTS Ref Offset 1.2 dB Ref 30.00 dBm Ref Offset 1.2 dB Ref 30.00 dBm Center Fre Center Fre 2.437000000 GH CF Step 10.000000 MH Ma CF St Span 100 MH Sweep 1 ms 10.0 er 2.437 GHz BW 510 kHz r 2.422 GHz BW 510 kHz Span 100 MH Sweep 1 m #VBW 2 MHz #VBW 2 MHz Total Powe 17.5 dBm Total Pov 17.3 dBm Occupied Bandwidt Freq Offse Occupied Bandy vidtl Freq Off 36.157 MHz 36.053 MHz Transmit Freq Error 135.02 kHz OBW Power 99.00 % Transmit Freq Error 97.392 kHz OBW Power 99.00 % 41.14 MHz 39.19 MHz -26.00 dB x dB Bandwidth -26.00 dB x dB Bandw idth x dB x dB Test Mode:802.11n HT40 2422MHz Chain0 Test Mode:802.11n HT40 2437MHz Chain0 11:38:38 AM Aug 04 Radio Std: None enter Freq 2.452000000 GHz Radio Device: BTS Ref Offset 1.2 dB Ref 30.00 dBm Center Fre CF Ster nter 2.452 GHz es BW 510 kHz Span 100 MHz Sweep 1 ms #VBW 2 MHz Occupied Bandwidth 36.272 MHz 17.3 dBm Total Po Freq Offs 41.375 kHz Transmit Freq Error OBW Power 99.00 % 40.80 MHz x dB Ba -26.00 dB x dB Test Mode:802.11n HT40 2452MHz Chain0

Transmitter Power Spectral Density

		Power Density(dBm)		
Test Mode	Antenna	Channel No.1	Channel No.6	Channel No.11
		2412MHz	2437MHz	2462MHz
802.11b	Chain0	-8.048	-7.142	-7.212
802.11g	Chain0	-9.018	-9.934	-9.690
802.11n HT20	Chain0	-11.172	-9.672	-10.575

	Power Density(dBm)			
Test Mode	Antenna	Channel No.3	Channel No.6	Channel No.9
		2422MHz	2437MHz	2452MHz
802.11n HT40	Chain0	-13.443	-13.008	-13.392

Test Mode:802.11g 2412MHz Chain0

Avg Type: Log-Pwr Avg[Hold: 100/100

mmmmm

AW

Span 20.00 MHz #Sweep 2.11 s (1001 pts)

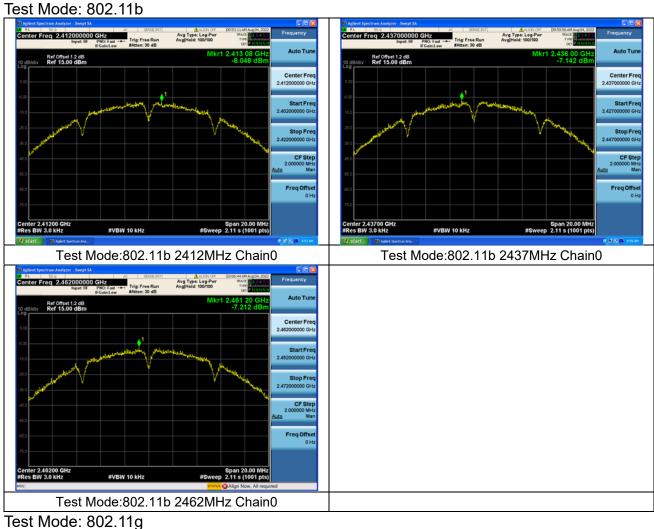
Trig: Free Ru

#VBW 10 kHz

•

Auto Tu

Center Fre


Start Fre

Stop Fre

CF St

Freq Offs

Span 20.00 MHz #Sweep 2.11 s (1001 pts)

Frequency

Auto Tur

Center Fr

artFr

Stop Fr

CF Ster

Freq Offs

r Freq 2.437000000 GHz

hrrage

Ref Offset 1.2 dB Ref 15.00 dBm

ter 2.43700 GHz s BW 3.0 kHz

Avg Type: Log-Pv Avg[Hold: 100/100

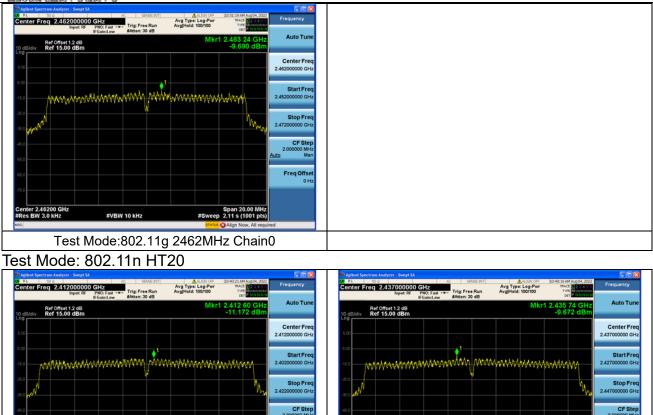
KANNY MANANA

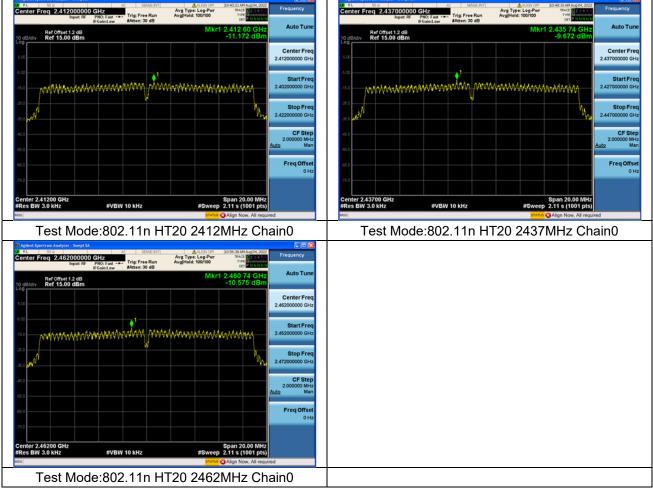
Test Mode:802.11g 2437MHz Chain0

Trig: Free Ru

mannin

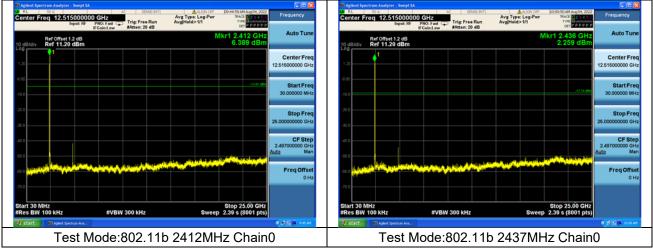
#VBW 10 kHz


nter Freq 2.412000000 GHz

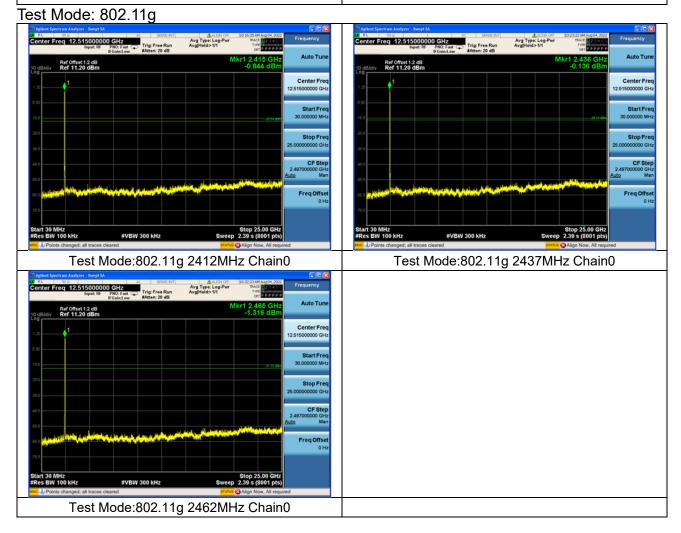

Ref Offset 1.2 dB Ref 15.00 dBm

er 2.41200 GHz BW 3.0 kHz

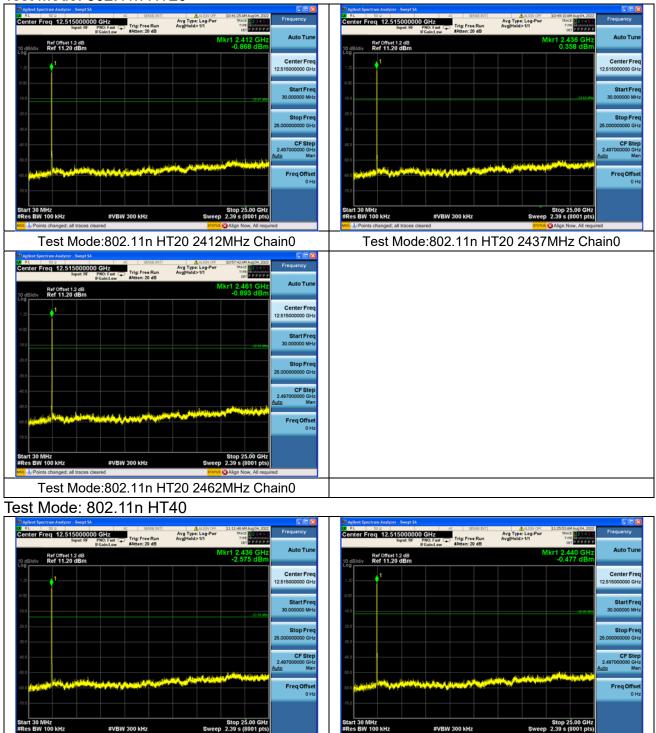
No.: SRTC2022-9004(F)-22080102(F) FCC ID: APYHRO00319



Test Mode: 802.11n HT40


Conducted Out of band emission measurement

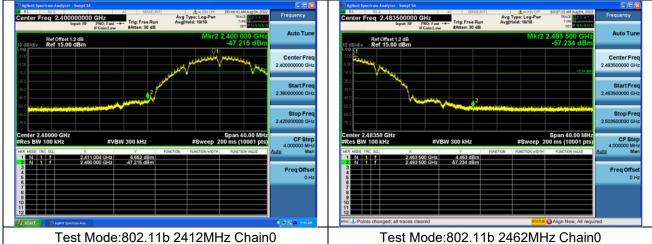
Test Mode: 802.11b

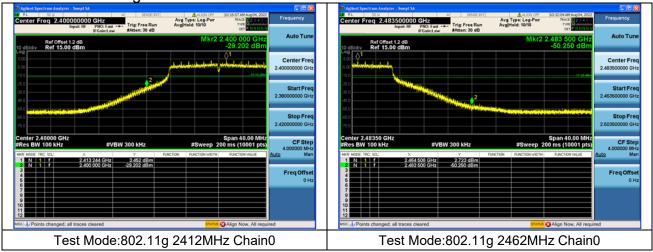


国人无效电量超十七位超十七		
J. Agilent Spectrum Analyzer - Swept SA U. R.L. 50 a Center Freq. 12.515000000 GHz	Avg Type: Log-Purr That 22 at 50 Avg Type: Log-Purr That 22 at 50 Avg Hidde 511	
Input IB PHO: Fast Trig: Free Run IFGaint.ow FAtten: 20 dB Ref Offset 12 dB 10 dBlaiv Ref 11.20 dBm	Mkr1 2.465 GHz 3.287 dBm	
	Center Freq 12.515000000 GHz	
80	4631 de Start Freq 30.000000 MHz	
d	Stop Freq 25.00000000 GHz	
	CF Step 2.49700000 GHz Auto Man	
a ganada tita ing antitita pada pipaganan kanada	Auto Man	
tart 30 MHz	Stop 25.00 GHz	
Res BW 100 kHz #VBW 300 kHz	Sweep 2.39 s (8001 pts)	
Test Mode:802.11b	2462MHz Chain0	

Test Mode: 802.11n HT20

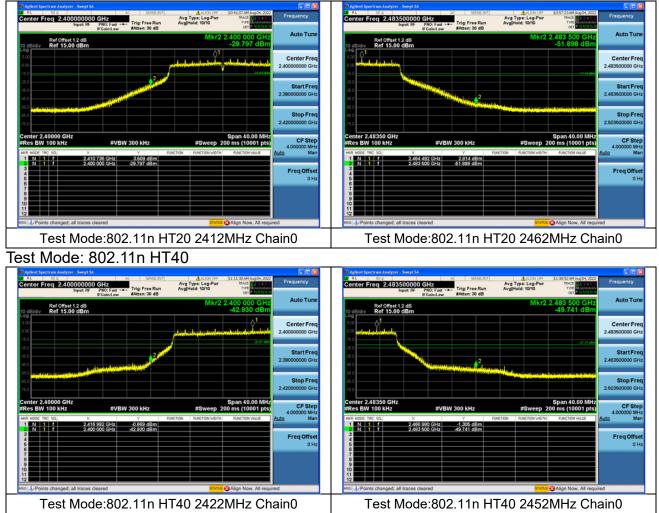
Test Mode:802.11n HT40 2422MHz Chain0


Test Mode:802.11n HT40 2437MHz Chain0


国家无效电量战中心恒战中心			
Bit Agricut Spectrum Analyzer - Swept SA Ac SDREBYT Bit Ac 500 Photo Fait Trig: Free Run Center Freq 12:515000000 CHz Trig: Free Run Trig: Free Run Input IB PHOto Fait Additional Action of the State Stat	Auton OFF b1:39:11 AM Augon, 2022 Avg Type: Log-Pwr TRACE Avg[Hold>1/1 Trift Log-Augon, 2022	Frequency	
Ref Offset 1.2 dB 10 dB/div Ref 11.20 dBm	Mkr1 2.452 GHz -4.813 dBm	Auto Tune	
		Center Freq 12.515000000 GHz	
-15.6	and the second s	Start Freq 30.000000 MHz	
30.0		Stop Freq 25.00000000 GHz	
		CF Step 2.497000000 GHz <u>Auto</u> Man	
40.0 Million and American Am American American A		Freq Offset 0 Hz	
Start 30 MHz #Res BW 100 kHz #VBW 300 kHz	Stop 25.00 GHz Sweep 2.39 s (8001 pts)		
Test Mode:802.11n H ⁻	T40 2452MHz Ch		

Band edge measurement

Test Mode: 802.11b



Test Mode: 802.11g

APPENDIX B – TEST DATA OF RADIATED EMISSION

Worst case(11b)

Radiated Emission Band Edge

The measurement results are obtained as described below:

Measure Level = Reading Level + Cable loss + Antenna factor Sample calculation: (87.70 dBuV/m) = $(53.70 \text{ dB}\mu\text{V}) + (8.90 \text{ dB}) + (25.10 \text{ dB})$, the corresponding frequency is 2412MHz.

Note: The scanned graph represents the maximum of both horizontal and vertical polarizations and is not a single horizontal or vertical polarization scan.

Note: There were no emissions above 18GHz found within 20dB of the limit. Thus the test result was not reported according to §15.31 (o)

The measurement results contain the correction factor of the duty cycle.

802.11b Carrier Frequency (MHz): 2412 Channel No.: 1 Test Mode: 802.11b Detector: Peak

Frequency (MHz)	Reading Level (dBuV)	Measure Level (dBuV/m)	Over Limit (dB)	Limit (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB)
2412.0	47.55	81.55	N/A	N/A	8.90	25.10
2390.0	5.33	39.33	-34.67	74.00	8.90	25.10

Detector: Average

Frequency (MHz)	Reading Level (dBuV)	Measure Level (dBuV/m)	Over Limit (dB)	Limit (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB)
2412.0	40.60	74.6	N/A	N/A	8.90	25.10
2390.0	-7.26	26.74	-27.26	54.00	8.90	25.10

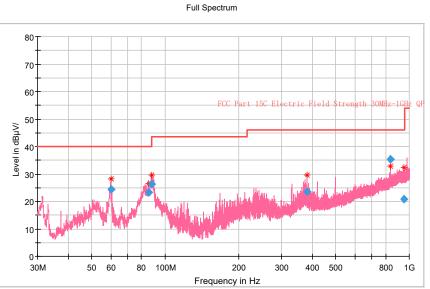
Carrier Frequency (MHz): 2462 Channel No.: 11 Test Mode: 802.11b Detector: Peak

Frequency (MHz)	Reading Level (dBuV)	Measure Level (dBuV/m)	Over Limit (dB)	Limit (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB)
2462.0	47.22	81.22	N/A	N/A	8.90	25.10
2483.5	6.34	40.34	-33.66	74.00	8.90	25.10

Detector: Average

Frequency (MHz)	Reading Level (dBuV)	Measure Level (dBuV/m)	Over Limit (dB)	Limit (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB)
2462.0	41.08	75.08	N/A	N/A	8.90	25.10
2483.5	-5.94	28.06	-25.94	54.00	8.90	25.10

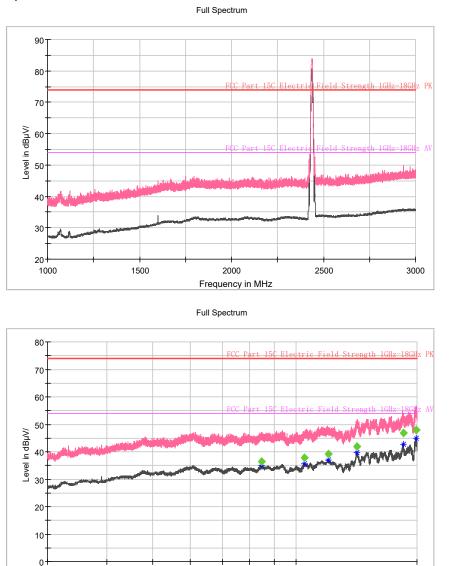
Sample Calculations Determining Spurious Emissions Levels


A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss. The measurement results are obtained as described below: Below 1GHz: QuasiPeak=Reading Value + A_{Rpl} Above 1GHz: MaxPeak=Reading MaxPeak + A_{Rpl} OR Average=Reading Average + A_{Rpl} Sample calculation: (17.45 dBµV/m) = (41.25 dBµV) + (-23.80 dB/m), the corresponding frequency is 148.437MHz. The worst case attitude: The mobile lay down.

Spurious Radiated Emissions below 30MHz:

There were no emissions from 9kHz to 30MHz found within 20dB of the limit. Thus, the test result was not reported according to §15.31 (o).

802.11b


Spurious Radiated Emissions from 30MHz to 1GHz: CH Middle (No.6)

Frequency (MHz)	Reading (dBuV)	QuasiPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	A _{Rpl} (dB)	Polarity
59.9245	45.24	24.44	40	15.56	-20.8	Vertical
85.387	48.27	23.37	40	16.63	-24.9	Vertical
87.812	50.42	26.42	40	13.58	-24	Vertical
380.9945	37.98	23.68	46	22.32	-14.3	Vertical
837.9615	39.84	35.44	46	10.56	-4.4	Vertical
950.9665	23.28	20.88	46	25.12	-2.4	Vertical

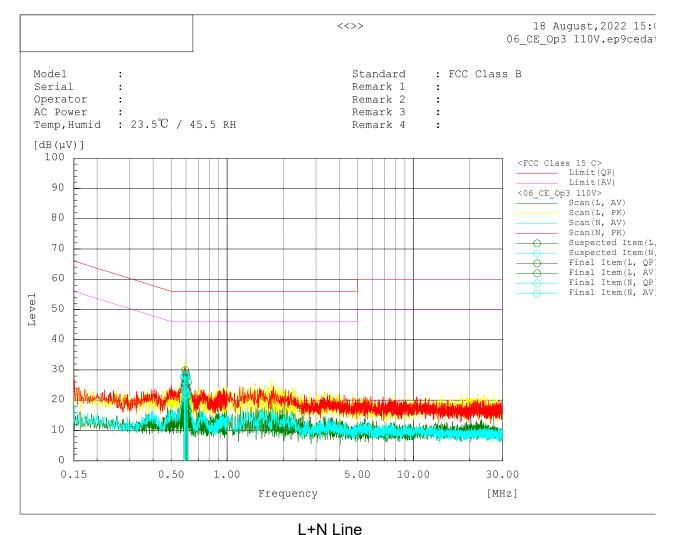
Spurious Radiated Emissions from 1GHz to 18GHz: CH Middle (No.6)

Frequency (MHz)	Reading MaxPeak (dBuV)	Reading Average (dBuV)	MaxPeak (dBuV/m)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	A _{Rpl} (dB)	Polarity
8462.5		56.51		36.31	54	17.69	-20.2	Vertical
10415.5		56.51		37.71	54	16.29	-18.8	Vertical
11697.5		55.75		39.15	54	14.85	-16.6	Vertical
13454		56.51		42.01	54	11.99	-14.5	Vertical
16833.5		59.23		46.83	54	7.17	-12.4	Vertical
17905.5		57.97		48.07	54	5.93	-9.9	Vertical

7 8 Frequency in Hz

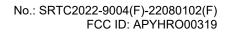
8 9 10G

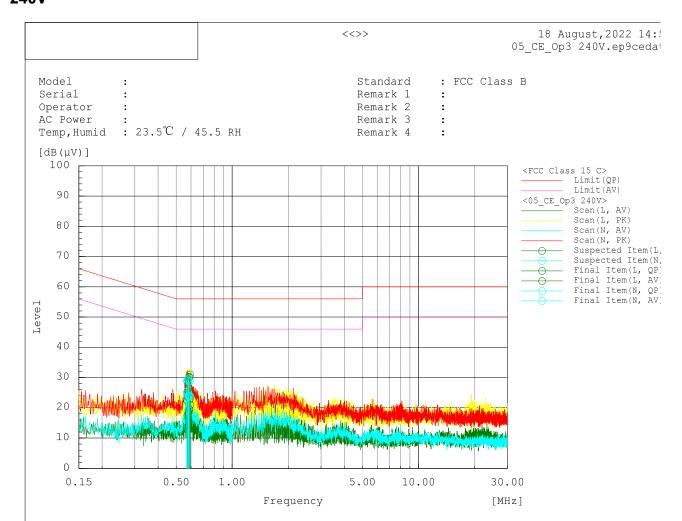
5G


6

3G

18G


AC Power line Conducted Emission 100V


MEASUREMENT RESULT:

Range	Frequency	Line	Readir	ng		Factor Level			Limit	Limit			Margin			Pass/Fail	
	MHz		dB(µV)		dB	dB dB(μV)			dB(µV)	dB(µV)			dB			
			QP	AV	PK		QP	AV	PK		QP	AV	PK	QP	AV	PK	
Band1	0.59	L	17.5	7.8		10	27.5	17.8			56	46		28.5	28.2		Pass
Band1	0.6	L	20	9.8		10	30	19.8			56	46		26	26.2		Pass
Band1	0.6	L	19	8.6		10	29	18.6			56	46		27	27.4		Pass
Band1	0.6	L	18.5	7.7		10	28.5	17.7			56	46		27.5	28.3		Pass
Band1	0.61	L	17.9	7		10	27.9	17			56	46		28.1	29		Pass
Band1	0.62	L	16	6.5		10	26	16.5			56	46		30	29.5		Pass
Band1	0.59	Ν	18.1	13		10	28.1	23.2			56	46		27.9	22.8		Pass
Band1	0.59	Ν	18.6	14		10	28.6	23.5			56	46		27.4	22.5		Pass
Band1	0.6	Ν	18.1	12		10	28.1	21.9			56	46		27.9	24.1		Pass
Band1	0.6	Ν	17.6	12		10	27.6	21.6			56	46		28.4	24.4		Pass
Band1	0.6	N	18.5	12		10	28.5	22.3			56	46		27.5	23.7		Pass
Band1	0.61	N	16.6	12		10	26.6	21.9			56	46		29.4	24.1		Pass

The State Radio_monitoring_center Testing Center (SRTC) Tel: 86-10-57996183 Fax: 86-10-57996388

L+N Line

MEAS	UREME	NT F	RESU	LT:													
Range	Frequency	Line	Readir	ng		Factor	Level			Limit	Limit Limit				ı		Pass/Fai
	MHz		dB(µV)		dB	lB dB(μV) d		dB(µV)	dB(µV)			dB				
			QP	AV	РК		QP	AV	РК		QP	AV	PK	QP	AV	РК	
Band1	0.57	N	19	13		10	29	23.4			56	46		27	22.6		Pass
Band1	0.58	Ν	19.2	13		10	29.2	23.3			56	46		26.8	22.7		Pass
Band1	0.58	Ν	19.6	14		10	29.6	23.9			56	46		26.4	22.1		Pass
Band1	0.58	Ν	19.7	14		10	29.7	24			56	46		26.3	22		Pass
Band1	0.59	Ν	18.9	13		10	28.9	23.4			56	46		27.1	22.6		Pass
Band1	0.59	N	18.7	14		10	28.7	23.8			56	46		27.3	22.2		Pass
Band1	0.57	L	18.6	7.4		10	28.6	17.4			56	46		27.4	28.6		Pass
Band1	0.58	L	19.4	8.2		10	29.4	18.2			56	46		26.6	27.8		Pass
Band1	0.58	L	19.7	8.3		10	29.7	18.3			56	46		26.3	27.7		Pass
Band1	0.59	L	20.3	9.5		10	30.3	19.5			56	46		25.7	26.5		Pass
Band1	0.59	L	20	9.5		10	30	19.5			56	46		26	26.5		Pass
Band1	0.59	L	21	11		10	31	21			56	46		25	25		Pass
Band1 Band1 Band1 Band1	0.58 0.58 0.59 0.59		19.4 19.7 20.3 20	8.2 8.3 9.5 9.5		10 10 10 10 10	29.4 29.7 30.3 30 31	18.2 18.3 19.5 19.5 21		enort	56 56 56 56	46 46 46 46		26.6 26.3 25.7 26	27.8 27.7 26.5 26.5		Pass Pass Pass Pass

---End of the test report---