

FCC RADIO TEST REPORT

FCC ID	:	APYHRO00310
Equipment	:	Smart phone
Brand Name	:	SHARP
Model Name	:	APYHRO00310
Applicant	:	SHARP CORPORATION
		1 Takumi-cho, Sakai-ku, Sakai City Osaka, Japan 590-8522
Manufacturer	:	SHARP CORPORATION
		1 Takumi-Cho, Sakai-Ku, Sakai-Shi, Osaka 590-8522, Japan
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Jan. 17, 2022 and testing was performed from Feb. 25, 2022 to Mar. 11, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. Wensan Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	of this test report	3
Sur	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
3	Test	Result	10
	3.1	Output Power Measurement	10
	3.2	Radiated Band Edges and Spurious Emission Measurement	11
	3.3	Antenna Requirements	15
4	List o	of Measuring Equipment	16
5	Unce	rtainty of Evaluation	17
Арр	pendix	x A. Conducted Test Results	
Арр	oendix	x B. Radiated Spurious Emission	
Арр	oendix	x C. Radiated Spurious Emission Plots	
Арр	oendix	x D. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR211502-01B	01	Initial issue of report	Mar. 18, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(2)	6dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.247(b)(3)	Output Power	Pass	-
-	15.247(e)	Power Spectral Density	Not Required	-
-	15.247(d)	Conducted Band Edges and Spurious Emission	Not Required	-
3.2	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	4.61 dB under the limit at 2500.000 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.3	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note:

1. Not required means after assessing, test items are not necessary to carry out.

2. The RF circuit, output power level and antenna performance is the same in Bluetooth function across all two FCC ID APYHRO00309 and APYHRO00310, since the change, only verify RF output power and radiated spurious emission test data the worst mode was reported in this report.

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if

measurement uncertainty is include in test results. 2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Keven Cheng Report Producer: Amy Chen

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac, Wi-Fi 5GHz 802.11a/n/ac, NFC and GNSS

Product Feature				
Antenna Type	WWAN			
	<ant. 0="">: Monopole Antenna</ant.>			
	<ant. 1="">: PIFA Antenna</ant.>			
	<ant. 2="">: Monopole Antenna</ant.>			
	WLAN: Loop Antenna			
	Bluetooth: Loop Antenna			
	GPS / Glonass / BDS / Galileo: PIFA Antenna			
	NFC: Loop Antenna			
Antenna information				

2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-1.36				
Remark: The EUT's information abo	ove is declared by	manufacturer.	Please r	refer to	Comments	and

Explanations in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory				
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855				
Test Site No.	Sporton Site No.				
	TH05-HY, 03CH16-HY				

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
2400-2483.5 MHz	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418 29 2420 30	29	2460
	9		30	2462
	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

		Summary table of Test Cases
Test Item		Data Rate / Modulation
		Bluetooth – LE / GFSK
	Mode 1:	Bluetooth Tx CH00_2402 MHz_1Mbps
Conducted	Mode 2:	Bluetooth Tx CH19_2440 MHz_1Mbps
	Mode 3:	Bluetooth Tx CH39_2480 MHz_1Mbps
Test Cases	Mode 4:	Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5:	Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6:	Bluetooth Tx CH39_2480 MHz_2Mbps
Padiatod	Mode 1:	Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 2:	Bluetooth Tx CH19_2440 MHz_2Mbps
Test Cases	Mode 3:	Bluetooth Tx CH39_2480 MHz_2Mbps

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Earphone	Nokia	WH-108	FCC DoC	Unshielded,1.5m	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Version 4.0.194.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Average Output Power

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.2.4 Test Setup

For radiated test below 30MHz

Spectrum Analyzer / Receiver

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.2.6 Test Results of Radiated Spurious Emissions (above 18GHz)

For frequency above 18GHz, the pre-scanned result is 20dB lower than the limit line is not reported.

3.2.7 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.2.8 Duty Cycle

Please refer to Appendix D.

3.2.9 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 07, 2021	Mar. 04, 2022~ Mar. 11, 2022	Sep. 06, 2022	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz to 1GHz	Oct. 09, 2021	Mar. 04, 2022~ Mar. 11, 2022	Oct. 08, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02114	1G~18GHz	Aug. 04, 2021	Mar. 04, 2022~ Mar. 11, 2022	Aug. 03, 2022	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1G	Jul. 05, 2021	Mar. 04, 2022~ Mar. 11, 2022	Jul. 04, 2022	Radiation (03CH16-HY)
Amplifier	EMCI	EMC051845S E	980729	1-18GHz	Jul. 09, 2021	Mar. 04, 2022~ Mar. 11, 2022	Jul. 08, 2022	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 09, 2021	Mar. 04, 2022~ Mar. 11, 2022	Dec. 08, 2022	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY57290111	3Hz~26.5GHz	Dec. 15, 2021	Mar. 04, 2022~ Mar. 11, 2022	Dec. 14, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11680/4PE	NA	Aug. 28, 2021	Mar. 04, 2022~ Mar. 11, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11688/4PE	NA	Aug. 28, 2021	Mar. 04, 2022~ Mar. 11, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300-57 57	NA	Aug. 28, 2021	Mar. 04, 2022~ Mar. 11, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Mar. 04, 2022~ Mar. 11, 2022	N/A	Radiation (03CH16-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Mar. 04, 2022~ Mar. 11, 2022	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Mar. 04, 2022~ Mar. 11, 2022	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Mar. 04, 2022~ Mar. 11, 2022	N/A	Radiation (03CH16-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 16, 2021	Feb. 25, 2022	Nov. 15, 2022	Conducted (TH05-HY)
Power Meter	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 16, 2021	Feb. 25, 2022	Dec. 15, 2022	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	932001	N/A	Sep. 30, 2021	Feb. 25, 2022	Sep. 29, 2022	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	846202	300MHz~40GHz	Sep. 30, 2021	Feb. 25, 2022	Sep. 29, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 30, 2021	Feb. 25, 2022	Aug. 29, 2022	Conducted (TH05-HY)
Switch Control Manframe	E-IUSTRUME NT	ETF-1405-0	EC1900067 (BOX7)	N/A	Aug. 12, 2021	Feb. 25, 2022	Aug. 11, 2022	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	E 9 dP			
of 95% (U = 2Uc(y))	5.6 UB			

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5 0 dP
of 95% (U = 2Uc(y))	5.2 dB

Report Number : FR211502-01B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Hank Hsu	Temperature:	21~25	°C
Test Date:	2022/2/25	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)						
BLE	1Mbps	1	0	2402	6.00						
BLE	1Mbps	1	19	2440	6.90						
BLE	1Mbps	1	39	2480	7.60						

Report Number : FR211502-01B

TEST RESULTS DATA Average Power Table											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)						
BLE	2Mbps	1	0	2402	6.00						
BLE	2Mbps	1	19	2440	6.90						
BLE	2Mbps	1	39	2480	7.60						

Appendix B. Radiated Spurious Emission

Tost Engineer :	Andy Yang, Karl Hou, and Wilson Wu	Temperature :	20~25°C
rest Engineer .	Andy Tang, Rai Liou, and Wilson Wu	Relative Humidity :	50~60%

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	100.79	-	-	84.68	27.78	18.38	30.05	356	52	Р	Н
	*	2480	99.62	-	-	83.51	27.78	18.38	30.05	356	52	А	Н
		2499.4	57.24	-16.76	74	40.96	27.9	18.42	30.04	356	52	Ρ	Н
		2500	49.39	-4.61	54	33.11	27.9	18.42	30.04	356	52	А	Н
													Н
BLE													Н
CH 39	*	2480	100.46	-	-	84.35	27.78	18.38	30.05	102	80	Р	V
240011112	*	2480	99.15	-	-	83.04	27.78	18.38	30.05	102	80	Α	V
		2490.04	56.91	-17.09	74	40.71	27.84	18.4	30.04	102	80	Р	V
		2494.52	48.98	-5.02	54	32.74	27.87	18.41	30.04	102	80	А	V
													V
													V
Remark	1. No 2. All	o other spurious results are PA	s found. SS against F	eak and	Average lim	it line.							

BIE	Noto	Eroquopov	Loval	Over	Limit	Bood	Antonno	Dath	Broomn	Ant	Tabla	Book	Pol
BLC	Note	Frequency	Levei	Limit	Linn		Factor	Loss	Factor	Pos	Pos	Δνα	POI.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	40.31	-33.69	74	50.45	33.02	12.28	55.44	-	-	Ρ	Н
		7440	45.9	-28.1	74	49.15	36.22	16.2	55.67	-	-	Ρ	Н
		12120	49.21	-24.79	74	44.27	38.98	20.7	54.74	-	-	Р	н
		12120	40.5	-13.5	54	35.56	38.98	20.7	54.74	-	-	А	н
		14475	48.35	-25.65	74	40.27	40.4	22	54.32	-	-	Р	Н
		14475	42.78	-11.22	54	34.7	40.4	22	54.32	-	-	А	н
		17985	52.99	-21.01	74	41.66	42.88	25.04	56.59	-	-	Р	н
		17985	42.81	-11.19	54	31.48	42.88	25.04	56.59	-	-	А	н
													Н
													Н
DIE													Н
													Н
2480MHz		4960	40.01	-33.99	74	50.15	33.02	12.28	55.44	-	-	Р	V
		7440	45.82	-28.18	74	49.07	36.22	16.2	55.67	-	-	Р	V
		11205	49.71	-24.29	74	46.16	39.01	19.76	55.22	-	-	Р	V
		11205	39.25	-14.75	54	35.7	39.01	19.76	55.22	-	-	А	V
		14475	48.95	-25.05	74	40.87	40.4	22	54.32	-	-	Р	V
		14475	42.51	-11.49	54	34.43	40.4	22	54.32	-	-	А	V
		17880	53.02	-20.98	74	42.56	41.96	25.02	56.52	-	-	Р	V
		17880	44.82	-9.18	54	34.36	41.96	25.02	56.52	-	-	А	V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
	2. All results are PASS against Peak and Average limit line.												
Remark	3. Th	ne emission pos	sition marked	as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											
	4. Th	ne emission lev	el close to 18	BGHz is (checked that	the avera	ge emissior	n level is i	noise floor	only.			

BLE (Harmonic @ 3m)

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		158.04	21.06	-22.44	43.5	34.18	16.76	2.37	32.25	-	-	Р	Н
		195.87	21.21	-22.29	43.5	36.01	14.94	2.51	32.25	-	-	Р	Н
		316.15	22.67	-23.33	46	32.26	19.53	3.15	32.27	-	-	Р	Н
		404.42	23.91	-22.09	46	30.57	22.23	3.5	32.39	-	-	Р	Н
		549.92	26.44	-19.56	46	29.5	25.23	4.11	32.4	-	-	Р	Н
		796.3	34.38	-11.62	46	33.78	27.97	4.89	32.26	-	-	Р	н
													Н
													Н
													H
													H
2.4GHz													н
BLE		00.07	00.44	40.00	10	45.00	11.00	4.00					
LF		60.07	26.11	-13.89	40	45.02	11.99	1.39	32.29	-	-	Р	V
		187.14	21.47	-22.03	43.5	30.44	14.83	2.43	32.23	-	-	P	V
		282.2	21.73	-24.27	40	32.04	18.95	3.01	32.21	-	-	Р	V
		469.41	25	-21	46	30.04	23.58	3.78	32.4	-	-	Р	V
		713.85	28.75	-17.25	46	29.7	26.83	4.6	32.38	-	-	Р	V
		796.3	34.13	-11.87	46	33.53	27.97	4.89	32.26	-	-	Р	V
													V
													V
													V
													V
													V
	4 NI		e fermed										V
	1. NO 2 Al	l results are PA	S against li	mit line									
Remark	3. Th	ne emission pos	sition marked	l as "-" m	ieans no sus	pected em	nission foun	d and em	ission leve	el has at	least 60	lB mai	rgin
	ag	ainst limit or er	nission is no	ise floor	only.	•							5
					-								

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Radiated Spurious Emission Plots

Tost Engineer -	Andy Yang, Karl Hou, and Wilson Wu	Temperature :	20~25°C
Test Engineer .	Anuy Tang, Kan nou, anu wiison wu	Relative Humidity :	50~60%

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Emission below 1GHz

2.4GHz BLE (LF)

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth –LE for 2Mbps	32.91	206	4.85	10kHz

						r - Swept SA	um Analyzer	pect	ght !
Marker	07:34:07 AM Mar 04, 2022 TRACE 1 2 3 4 5 6	ype: RMS	#Avg T	SENSE:IN		50 Ω AC	RF !		_
SelectMa	DET P P P P P			#Atten: 10 dB	PNO: Fast +++ IFGain:Low	NFE			
	Mkr4 574.0 μs 83.92 dBμV					6.99 dBµV	Ref 106		div
N			03∆4	1Δ2	\$ ²				
	A BIRMANDA	Maharinte	WAA	actions of Madeus		alitaka manalami	uyyelahan		
F									
	Span 0 Hz .000 ms (1001 pts)	Sweep 2		8.0 MHz	#VBW	00 GHz	:000000 /IHz	2.48	r 3 W
	EUNCTION VALUE	FUNCTION WIDTH	FUNCTION	Y 0.22 dB	206.0 µs (Δ)	х	sel t (Δ)	TRC 1	DE 2
Prope	E			83.92 dBµV 0.26 dB 83.92 dBµV	574.0 μs 626.0 μs (Δ) 574.0 μs		t t (Δ) t		4