

FCC RADIO TEST REPORT

FCC ID	:	APYHRO00304
Equipment	:	Smart phone
Brand Name	:	SHARP
Model Name	:	APYHRO00304
Applicant	:	SHARP CORPORATION
		1 Takumi-Cho, Sakai-Ku, Sakai-Shi, Osaka 590-8522, Japan
Manufacturer	:	SHARP CORPORATION
		1 Takumi-Cho, Sakai-Ku, Sakai-Shi, Osaka 590-8522, Japan
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Sep. 07, 2021 and testing was started from Oct. 09, 2021 and completed on Oct. 14, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	8
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
3	Test	Result	10
	3.1	Output Power Measurement	10
	3.2	Radiated Band Edges and Spurious Emission Measurement	11
	3.3	Antenna Requirements	15
4	List o	of Measuring Equipment	16
5	Unce	rtainty of Evaluation	17
Арр	pendix	x A. Conducted Test Results	
Арр	pendix	x B. Radiated Spurious Emission	
Арр	pendix	x C. Radiated Spurious Emission Plots	
Арр	pendix	x D. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR190730-01A	01	Initial issue of report	Oct. 28, 2021
FR190730-01A	02	Revise applicant information	Nov. 01, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	-	See Note
-	15.247(a)(1)	Hopping Channel Separation	-	See Note
-	15.247(a)(1)	Dwell Time of Each Channel	-	See Note
-	15.247(a)(1)	20dB Bandwidth	-	See Note
-	2.1049	99% Occupied Bandwidth	-	See Note
3.1	15.247(b)(1)	Peak Output Power	Pass	-
-	15.247(d)	Conducted Band Edges	-	See Note
-	15.247(d)	Conducted Spurious Emission	-	See Note
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 7.26 dB at 34.850 MHz
-	15.207	AC Conducted Emission -		See Note
3.3	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note: The RF circuit, output power level and antenna performance is the same in Bluetooth function across all two FCC ID APYHRO00303 and APYHRO00304, since the change, only verify RF output power and radiated spurious emission test data the worst mode was reported in this report.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Keven Cheng Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac, Wi-Fi 5GHz 802.11a/n/ac, NFC, and GNSS.

Product Specification subjective to this standard				
	WWAN			
	<ant.0>: PIFA Antenna</ant.0>			
	<ant.1>: PIFA Antenna</ant.1>			
Antonno Tuno	<ant.2>: PIFA Antenna</ant.2>			
Antenna Type	WLAN: Loop Antenna			
	Bluetooth: Loop Antenna			
	GPS/Glonass/BDS/Galileo: PIFA Antenna			
	NFC: Loop Antenna			
Antenna information				

2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-1.36
Remark: The above EUT's information	on was declared by	manufacturer. Please refer to Comments and

Explanations in report summary.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
Test Sile NO.	TH02-HY
Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
Test Sile NO.	03CH20-HY (TAF Code: 3786)
Remark	The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory.

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

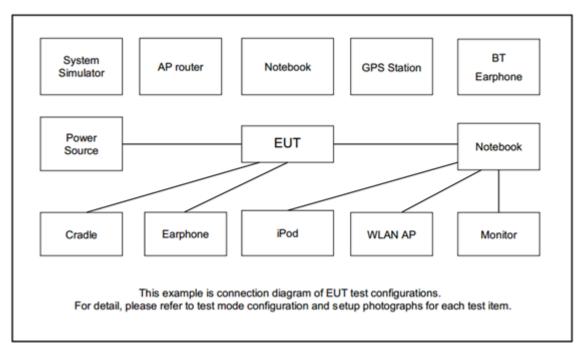
- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Test Configuration of Equipment Under Test 2

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

: Nov. 01, 2021


2.2 Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X Plane as worst plane and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item		Data Rate / Modulation				
Radiated		Bluetooth BR 1Mbps GFSK				
Test Ca	ases	Mode 1: CH78_2480 MHz				
Remark:	: For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, an no other significantly frequencies found in conducted spurious emission.					

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Earphone	NOKIA	WH-108	N/A	Unshielded, 1.5m	N/A
2.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

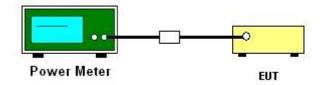
The RF test items, utility "QRCT Ver.4.0.00158.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Measure the conducted output power with cable loss and record the results in the test report.
- 4. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

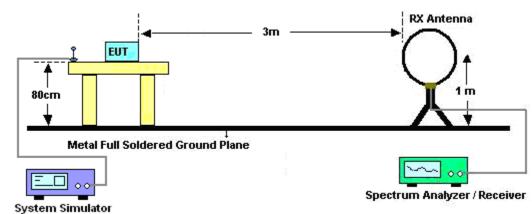
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 - 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

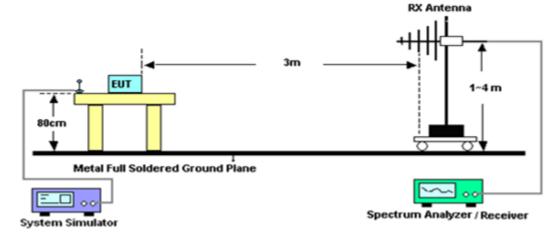
3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

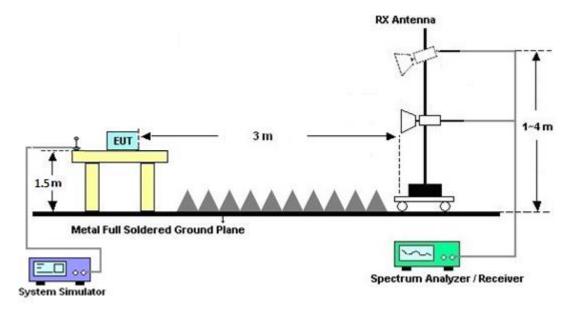
3.2.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1GHz was performed by adjusting the antenna tower from 1m to 4m and by rotating the turn table from 0degree to 360 degree to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1GHz was performed by adjusting the antenna tower from 1m to 4m and by rotating the turn table from 0degree to 360 degree to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6dB margin against average limit line, the position is marked as "-".

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.81dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.2.4 Test Setup


For radiated test below 30MHz

For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.2.7 Duty Cycle

Please refer to Appendix D.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receicver	Keysight	N9010B	MY60240520	10Hz~44GHz	Dec. 02, 2020	Oct. 12, 2021~ Oct. 14, 2021	Dec. 01, 2021	Radiation (03CH20-HY)
Preamplifier	COM-POWER	PAM-103	18020201	1MHz-1000MHz	Jan. 04, 2021	Oct. 12, 2021~ Oct. 14, 2021	Jan. 03, 2022	Radiation (03CH20-HY)
Amplifier	EMCI	EMC118A45S E	980792	N/A	Nov. 16, 2020	Oct. 12, 2021~ Oct. 14, 2021	Nov. 15, 2021	Radiation (03CH20-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 11, 2020	Oct. 12, 2021~ Oct. 14, 2021	Dec. 10, 2021	Radiation (03CH20-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Oct. 12, 2021~ Oct. 14, 2021	Jan. 03, 2022	Radiation (03CH20-HY)
Bilog Antenna	TESEQ	CBL 6111D&00802 N1D01N-06	55606 & 08	30MHz~1GHz	Oct. 22, 2020	Oct. 12, 2021~ Oct. 14, 2021	Oct. 21, 2021	Radiation (03CH20-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	002360	1GHz-18GHz	Nov. 03, 2020	Oct. 12, 2021~ Oct. 14, 2021	Nov. 02, 2021	Radiation (03CH20-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00991	18GHz-40GHz	May 12, 2021	Oct. 12, 2021~ Oct. 14, 2021	May 11, 2022	Radiation (03CH20-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN27	1.53GHz Low Pass Filter	May 25, 2021	Oct. 12, 2021~ Oct. 14, 2021	May 24, 2022	Radiation (03CH20-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN8	N/A	Mar. 26, 2021	Oct. 12, 2021~ Oct. 14, 2021	Mar. 25, 2022	Radiation (03CH20-HY)
Filter	Wainwright	WHKX8-6090- 7000-18000-40 SS	SN99	N/A	Nov. 05, 2020	Oct. 12, 2021~ Oct. 14, 2021	Nov. 04, 2021	Radiation (03CH20-HY)
Hygrometer	TECPEL	DTM-303B	TP200728	N/A	Mar. 09, 2021	Oct. 12, 2021~ Oct. 14, 2021	Mar. 08, 2022	Radiation (03CH20-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	519229/2,804 015/2,804027 /2	N/A	Jan. 20, 2021	Oct. 12, 2021~ Oct. 14, 2021	Jan. 19, 2022	Radiation (03CH20-HY)
Software	Audix	E3 6.2009-8-24	RK-002156	N/A	N/A	Oct. 12, 2021~ Oct. 14, 2021	N/A	Radiation (03CH20-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Oct. 12, 2021~ Oct. 14, 2021	N/A	Radiation (03CH20-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Oct. 12, 2021~ Oct. 14, 2021	N/A	Radiation (03CH20-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Oct. 12, 2021~ Oct. 14, 2021	N/A	Radiation (03CH20-HY)
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 01, 2021	Oct. 09, 2021	Feb. 28, 2022	Conducted (TH02-HY)
Power Meter	Agilent	E4416A	GB41292344	N/A	Jan. 14, 2021	Oct. 09, 2021	Jan. 13, 2022	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Jan. 14, 2021	Oct. 09, 2021	Jan. 13, 2022	Conducted (TH02-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101565	10Hz ~ 40GHz	Nov. 13, 2020	Oct. 09, 2021	Nov. 12, 2021	Conducted (TH02-HY)
BT Base Station	Rohde & Schwarz	СВТ	101135	BT 3.0	Sep. 15, 2020	Oct. 09, 2021	Sep. 14, 2022	Conducted (TH02-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2021	Oct. 09, 2021	Mar. 16, 2022	Conducted (TH02-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	3.9 dB
of 95% (U = 2Uc(y))	3.9 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.8 dB
of 95% (U = 2Uc(y))	4.0 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.5 dB
of 95% (U = 2Uc(y))	4.5 dB

Report Number : FR190730-01A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Jacob Yu	Temperature:	22.9~24.9	°C
Test Date:	2021/10/9	Relative Humidity:	50.4~52.4	%

	<u>TEST RESULTS DATA</u> Peak Power Table										
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result						
	0	1	12.15	20.97	Pass						
DH1	39	1	11.84	20.97	Pass						
-	78 0	1	11.81 11.61	20.97 20.97	Pass Pass						
2DH1	39	1	11.32	20.97	Pass						
	78	1	11.22	20.97	Pass						
	0	1	11.88	20.97	Pass						
3DH1	39	1	11.58	20.97	Pass	•					
	78	1	11.53	20.97	Pass	l					

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)										
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)						
	0	1	12.08	5.15						
DH1	39	1	12.00	5.15						
	78	1	11.74	5.15						
	0	1	9.76	5.08						
2DH1	39	1	9.39	5.08						
	78	1	9.29	5.08						
	0	1	9.83	5.08						
3DH1	39	1	9.43	5.08						
Ī	78	1	9.37	5.08						

Appendix B. Radiated Spurious Emission

Test Engineer :	JC Liang	Temperature :	20~21°C
rest Engineer .		Relative Humidity :	60~67%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	104.5	-	-	104.55	27.62	8.55	36.22	114	106	Р	н
	*	2480	79.69	-	-	-	-	-	-	-	-	А	Н
		2483.52	53.19	-20.81	74	53.22	27.63	8.56	36.22	114	106	Р	Н
		2483.52	28.38	-25.62	54	-	-	-	-	-	-	А	Н
рт													Н
BT													н
CH 78 2480MHz	*	2480	102.3	-	-	102.35	27.62	8.55	36.22	382	86	Ρ	V
240010112	*	2480	77.49	-	-	-	-	-	-	-	-	А	V
		2483.56	51.21	-22.79	74	51.24	27.63	8.56	36.22	382	86	Р	V
		2483.56	26.4	-27.6	54	-	-	-	-	-	-	А	V
													V
													V
	1. No	o other spurious	s found.										
Remark		results are PA		eak and	Average lim	it line.							

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		4960	43.2	-30.8	74	35.19	32.74	12.82	37.55	-	-	P	Н
		4960	18.39	-35.61	54	-	-	-	-	-	-	Α	Н
		7440	45.87	-28.13	74	32.64	36.32	15.36	38.45	-	-	Р	Н
BT		7440	21.06	-32.94	54	-	-	-	-	-	-	А	Н
CH 78 2480MHz		4960	42.75	-31.25	74	34.74	32.74	12.82	37.55	-	-	Ρ	V
240010172		4960	17.94	-36.06	54	-	-	-	-	-	-	А	V
		7440	46.25	-27.75	74	33.02	36.32	15.36	38.45	-	-	Ρ	V
		7440	21.44	-32.56	54	-	-	-	-	-	-	А	V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against F	eak and	Average lim	it line.							
	3. Th	e emission pos	sition marked	l as "-" m	ieans no sus	pected em	ission foun	d with sul	fficient ma	rgin aga	ainst limit	t line o	r
	no	ise floor only.											

2.4GHz 2400~2483.5MHz BT (Harmonic @ 3m)

Emission below 1GHz

						BT (LF)							
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table		Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (Ρ/Δ)	(H/\/)
		30.97	22.55	-17.45	40	33.17	24.13	0.97	35.72	-	-	P	н
		88.2	22.9	-20.6	43.5	42.54	14.41	1.62	35.67	-	-	Р	н
		351.07	25.06	-20.94	46	36.43	20.48	3.25	35.1	-	-	Р	Н
		633.34	29.51	-16.49	46	33.06	26.34	4.41	34.3	-	-	Р	Н
		729.37	31.53	-14.47	46	33.05	27.68	4.76	33.96	-	-	Р	Н
		951.5	35.11	-10.89	46	31.82	30.81	5.62	33.14	-	-	Р	Н
													Н
													Н
													Н
													н
2.4GHz													Н
BT		34.85	32.74	-7.26	40	45.3	22.12	1.04	35.72	-	-	Р	H V
LF		67.83	29.62	-10.38	40	45.5 51.74	12.12	1.39	35.72	-	-	P	V
		88.2	26.07	-17.43	43.5	45.71	14.41	1.62	35.67	-	-	P	V
		562.53	28.22	-17.78	46	32.29	26.29	4.17	34.53	-	-	Р	V
		745.86	32.58	-13.42	46	33.58	28.08	4.82	33.9	-	-	Р	V
		950.53	34.62	-11.38	46	31.4	30.76	5.61	33.15	-	-	Р	V
													V
													V
													V
													V
													V
													V
		o other spurious		.,									
Remark		l results are PA ne emission pos	-			nected or	vission four	d with out	fficient mo	rain occ	inet limi	lino a	\r.
		ie emission pos ise floor only.	Short marked	ias - 11	ieans no sus	pected eff	11221011 1001	u with SU	incient ma	ryin aga	unst IIIIII		u.
	10	noo noor only.											

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

For Peak Limit @ 2390MHz:

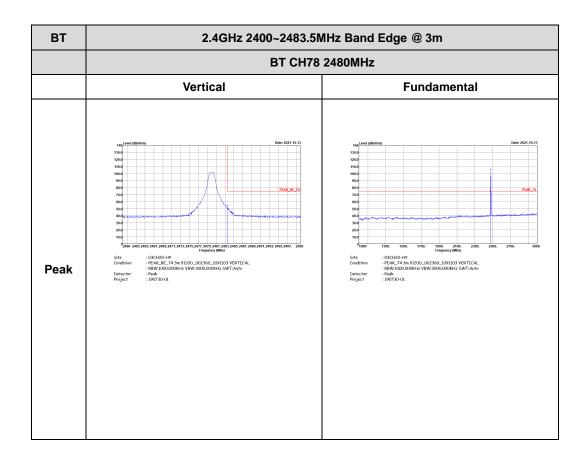
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

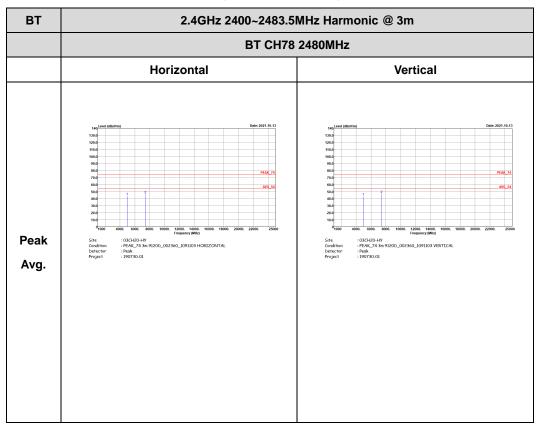
Appendix C. Radiated Spurious Emission Plots

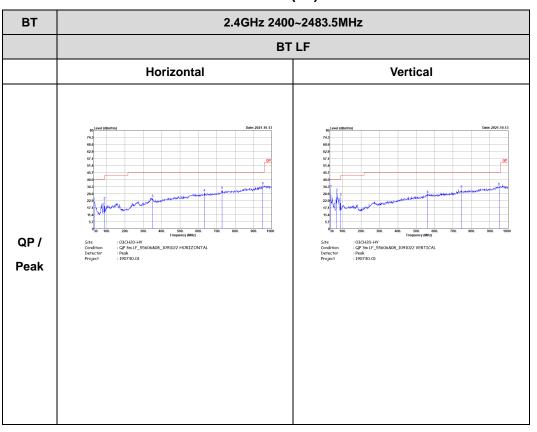

Test Engineer :	JC Liang	Temperature :	20~21°C
		Relative Humidity :	60~67%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	2.4GHz 2400~2483.5MHz Band Edge @ 3m				
	BT CH78 2480MHz				
	Horizontal	Fundamental			
Peak	<text></text>	Image:			




2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

Emission below 1GHz

2.4GHz BT (LF)

Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channe	on time (Count Pulses) Plot on Channel 39		
Kyrjajt Spectrum Analyzer - Swept SA. SPORE.INT Karl Bit Persea. 1990 Ac SPORE.INT Marker 1 & 2.87500 ms NFE FRO: Fast →→ IfGint.ov SPORE.INT Article 199 Ac Article 19	Marker Select Marker	U RL INFPERSE 50.0 AC SINCE SINCE ALLON OFF 0745356 PMO(13, 2021) Video BW 1.0 MHz NFE PNO: Fest →→→ IFGsinLow FAtten: 20 dB MKr1 39,00 ms	W Res BW 1.0 MHz
10 detaile Ref 116.99 dBpV -0.03 dB	Normal	10 dBidiv Ref 116.99 dBµV 103.97 dBµV	ideo BW 1.0 MHz <u>Man</u>
	Delta	97.0 VBW:3 97.0 Auto	dB RBW 1.0 Man
	Fixed⊳	77.0 Span:3	dB RBW 106 Man
Center 2.480000000 GHz Span 0 Hz Span 0 Hz Res EW 1.0 MHz #VEW 1.0 MHz Sweep 10.00 ms (1001 pts) MOR MODE TRC SCL X Y Function Function worth MOR MODE TRC SCL X Y Function worth Function worth	Off	570	Control in,-3 dB]
2 N 1 t 1.315 ms 10.391 dBuV 3 A4 1 t (Δ) 3.745 ms (Δ) 0.02 dB N 1 t 1.315 ms 10.3.91 dBuV 5	Properties►	≫ o <mark>r af h^{all}edgep des hand is gailifte i the delta the stand of the stand of the stand of the stand of the stand ≫ o</mark>	
	More 1 of 2	Center 2.480000000 GHz Res BW 1.0 MHz #VBW 1.0 MHz Sweep 100.0 ms (1001 pts)	

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.875 / 100 = 5.75 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.81 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.875 ms x 20 channels = 57.5 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.5 ms] = 2 hops Thus, the maximum possible ON time:

2.875 ms x 2 = 5.75 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.75 \text{ ms}/100 \text{ ms}) = -24.81 \text{ dB}$