

FCC EMI TEST REPORT

FCC ID	:	APYHRO00285
Equipment	:	Smart phone
Brand Name	:	SHARP
Applicant	:	SHARP CORPORATION
		2-13-1, HACHIHONMATSU-IIDA, HIGASHI-HIROSHIMA-SHI, HIROSHIMA PREFECTURE 739-0192, JAPAN
Manufacturer	:	SHARP CORPORATION 1 Takumi-Cho, Sakai-Ku, Sakai-Shi, Osaka 590-8522, Japan
Standard	:	FCC 47 CFR FCC Part 15 Subpart B Class B

The product was received on May 04, 2020 and testing was started from May 13, 2020 and completed on May 19, 2020. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Su	nmary	/ of Test Result	4
1.	Gene	ral Description	5
	1.1. 1.2. 1.3. 1.4.	Modification of EUT	5 5
2.	Test	Configuration of Equipment Under Test	
	2.1. 2.2. 2.3. 2.4.	Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup	7 7
3.	Test I	Result	9
	3.1. 3.2.	Test of AC Conducted Emission Measurement	1
4.	List o	of Measuring Equipment1	3
5.	Unce	rtainty of Evaluation1	4
Ар	pendix	A. AC Conducted Emission Test Result	

Appendix B. Radiated Emission Test Result

Appendix C. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FC021246-01	01	Initial issue of report	May 22, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.107	AC Conducted Emission	Pass	Under limit 8.58 dB at 0.175 MHz
3.2	15.109	Radiated Emission	Pass	Under limit 10.29 dB at 442.250 MHz

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Dara Chiu

Report Producer: Vivian Hsu

1. General Description

1.1. Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, and GNSS

Product Specification subjective to this standard				
	WWAN: PIFA Antenna			
Antonno Tuno	WLAN: PIFA Antenna			
Antenna Type	Bluetooth: PIFA Antenna			
	GPS/Glonass/BDS: PIFA Antenna			

1.2. Modification of EUT

No modifications are made to the EUT during all test items.

1.3. Test Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
	CO05-HY		
Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Test Site Location			
	Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868		

FCC designation No.: TW1093 and TW1098

1.4. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B Class B
- ANSI C63.4-2014

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2. Test Configuration of Equipment Under Test

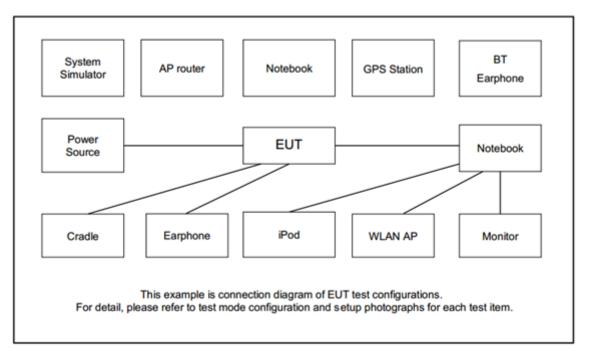
2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items	Function Type
	Mode 1: WCDMA Band V Idle + Bluetooth Link + WLAN (2.4GHz) Link + Camera (Front) + Earphone + SD Card + USB Cable (Charging from Adapter)
AC Conducted	Mode 2: WCDMA Band V Idle + Bluetooth Link + WLAN (5GHz) Link + Camera (Rear) + Earphone + SD Card + USB Cable (Charging from Adapter)
Emission	Mode 3: WCDMA Band V Idle + Bluetooth Idle + WLAN (2.4GHz) Idle + MPEG4 - Earphone + SD Card + USB Cable (Charging from Adapter)
	Mode 4: WCDMA Band V Idle + Bluetooth Idle + WLAN (5GHz) Idle + GPS Rx - Earphone + SD Card + USB Cable (Data Link with Notebook)
	Mode 1: WCDMA Band V Idle + Bluetooth Link + WLAN (2.4GHz) Link + Camera (Front) + Earphone + SD Card + USB Cable (Charging from Adapter)
Radiated	Mode 2: WCDMA Band V Idle + Bluetooth Link + WLAN (5GHz) Link + Camera (Rear) + Earphone + SD Card + USB Cable (Charging from Adapter)
Emissions	Mode 3: WCDMA Band V Idle + Bluetooth Idle + WLAN (2.4GHz) Idle + MPEG4 - Earphone + SD Card + USB Cable (Charging from Adapter)
	Mode 4: WCDMA Band V Idle + Bluetooth Idle + WLAN (5GHz) Idle + GPS Rx - Earphone + SD Card + USB Cable (Data Link with Notebook)

1. The worst case of AC is mode 4; only the test data of this mode was reported.

2. The worst case of RE is mode 4; only the test data of this mode was reported.


 For radiation emission after pre-scanned the cellular band between 30MHz ~ 960MHz (WCDMA Band V); only the worst case for cellular band test data of this mode was reported.

4. Data Link with Notebook means data application transferred mode between EUT and Notebook.

TEL : 886-3-327-3456	Page Number	: 6 of 14
FAX : 886-3-328-4978	Issued Date	: May 22, 2020
Report Template No.: BU5-FD15B Version 2.5	Report Version	: 01

2.2. Connection Diagram of Test System

2.3. Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
5.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
6.	iPod	Apple	A1199	FCC DoC	Shielded, 1.2 m	N/A
7.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
8.	Notebook	Dell	Latitude 3400	FCC DOC	N/A	AC I/P : Unshielded, 1.2m DC O/P : Shielded, 1.8m
9.	Notebook	Dell	Latitude 5480	FCC DoC	N/A	AC I/P : Unshielded, 1.2m DC O/P : Shielded, 1.8m
10.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
11.	Adapter	Sharp	DSA-10PFL-05FUS 050200 a	FCC DoC	N/A	N/A

: May 22, 2020

2.4. EUT Operation Test Setup

The EUT was in WCDMA idle mode during the testing. The EUT was synchronized with the BCCH, and had been continuous receiving mode by setting paging reorganization of the system simulator.

At the same time, the EUT was attached to the Bluetooth earphone or WLAN AP, and the following programs installed in the EUT were programmed during the test:

- 1. Data application is transferred between Laptop and EUT via USB cable.
- 2. Execute "GPS Test" to make the EUT receive continuous signals from GPS station.
- 3. Execute "Video player" to play MPEG4 files.
- 4. Turn on camera to capture images.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

3.1.1. Limits of AC Conducted Emission

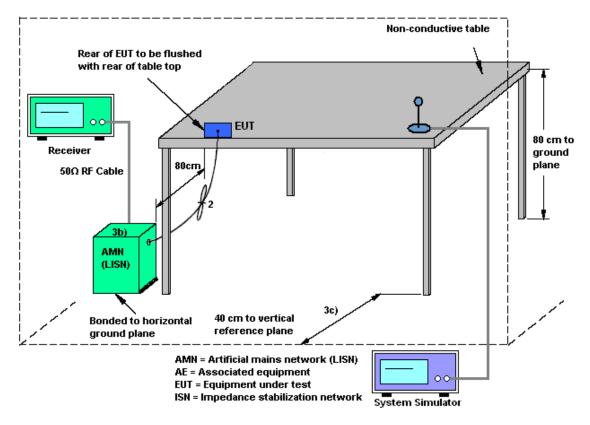
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

<Class B>

Frequency of emission	Conducted limit (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency.

3.1.2. Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3. Test Procedure

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4. Test Setup

3.1.5. Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2. Test of Radiated Emission Measurement

3.2.1. Limit of Radiated Emission

The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

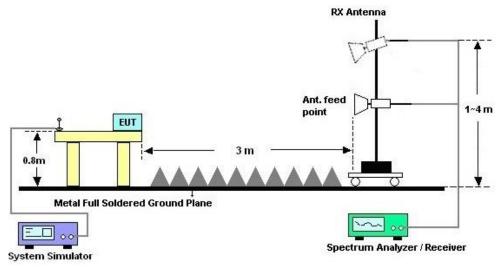
<Class B>

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2. Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.2.3. Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level

3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.2.5. Test Result of Radiated Emission

Please refer to Appendix B.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Amplifier	SONOMA	310N	187311	9kHz~1GHz	Oct. 22, 2019	May 16, 2020~ May 18, 2020	Oct. 21, 2020	Radiation (03CH10-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35413 & 02	30MHz~1GHz	Feb. 11, 2020	May 16, 2020~ May 18, 2020	Feb. 10, 2021	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1325	1GHz~18GHz	Oct. 09, 2019	May 16, 2020~ May 18, 2020	Oct. 08, 2020	Radiation (03CH10-HY)
Preamplifier	Jet-Power	JAP00101800- 30-10P	160118550004	1GHz~18GHz	Sep. 27, 2019	May 16, 2020~ May 18, 2020	Sep. 26, 2020	Radiation (03CH10-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200485	10Hz~44GHz	Feb. 10, 2020	May 16, 2020~ May 18, 2020	Feb. 09, 2021	Radiation (03CH10-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	May 16, 2020~ May 18, 2020	N/A	Radiation (03CH10-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	May 16, 2020~ May 18, 2020	N/A	Radiation (03CH10-HY)
Turn Table	EMEC	TT 2200	N/A	0~360 Degree	N/A	May 16, 2020~ May 18, 2020	N/A	Radiation (03CH10-HY)
Software	Audix	E3 6.2009-8-24	RK-001042	N/A	N/A	May 16, 2020~ May 18, 2020	N/A	Radiation (03CH10-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290045	20MHz~8.4GHz	Jan. 18, 2020	May 16, 2020~ May 18, 2020	Jan. 17, 2021	Radiation (03CH10-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104 / 102	MY11692/4PE, MY11693/4PE, MY2855/2	30MHz~1GHz	Nov. 07, 2019	May 16, 2020~ May 18, 2020	Nov. 06, 2020	Radiation (03CH10-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104 / 102	MY11692/4PE, MY11693/4PE, MY2855/2	1GHz~18GHz	Nov. 07, 2019	May 16, 2020~ May 18, 2020	Nov. 06, 2020	Radiation (03CH10-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 13, 2020~ May 19, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 15, 2019	May 13, 2020~ May 19, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 07, 2019	May 13, 2020~ May 19, 2020	Nov. 06, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 20, 2019	May 13, 2020~ May 19, 2020	Nov. 19, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 15, 2019	May 13, 2020~ May 19, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 13, 2020~ May 19, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	May 13, 2020~ May 19, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	May 13, 2020~ May 19, 2020	Jan. 01, 2021	Conduction (CO05-HY)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

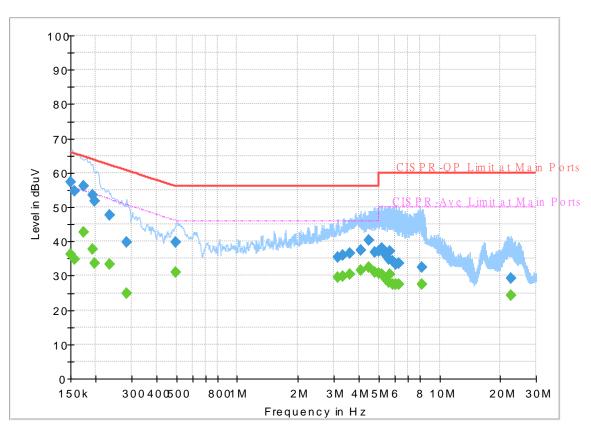
Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confi	dence
of 95% (U = 2Uc(y))	4.8

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	5.3



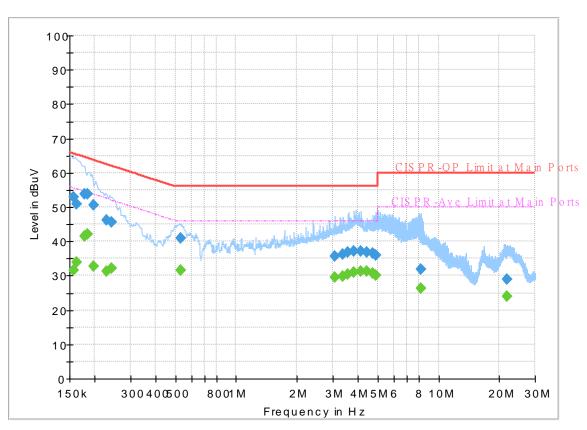
Appendix A. AC Conducted Emission Test Results

Test Engineer :	Heward Huong	Temperature :	21~26 ℃
rest Engineer.		Relative Humidity :	38~42%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 021246-01 Mode 4 Power From System Line

FullSpectrum


Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		36.35	56.00	19.65	L1	OFF	19.5
0.150000	57.29		66.00	8.71	L1	OFF	19.5
0.156750		34.76	55.63	20.87	L1	OFF	19.5
0.156750	54.62		65.63	11.01	L1	OFF	19.5
0.174750		42.60	54.73	12.13	L1	OFF	19.5
0.174750	56.15		64.73	8.58	L1	OFF	19.5
0.192660		37.72	53.92	16.20	L1	OFF	19.5
0.192660	53.41		63.92	10.51	L1	OFF	19.5
0.198150		33.53	53.69	20.16	L1	OFF	19.5
0.198150	51.72		63.69	11.97	L1	OFF	19.5
0.232800		33.36	52.35	18.99	L1	OFF	19.5
0.232800	47.59		62.35	14.76	L1	OFF	19.5
0.284640		24.94	50.68	25.74	L1	OFF	19.5
0.284640	39.74		60.68	20.94	L1	OFF	19.5
0.498750		30.90	46.02	15.12	L1	OFF	19.5
0.498750	39.76		56.02	16.26	L1	OFF	19.5
3.153840		29.44	46.00	16.56	L1	OFF	19.6
3.153840	35.43		56.00	20.57	L1	OFF	19.6
3.338250		29.97	46.00	16.03	L1	OFF	19.6
3.338250	36.07		56.00	19.93	L1	OFF	19.6
3.588000		30.43	46.00	15.57	L1	OFF	19.6

3.588000	36.62		56.00	19.38	L1	OFF	19.6
4.075980		31.50	46.00	14.50	L1	OFF	19.6
4.075980	37.49		56.00	18.51	L1	OFF	19.6
4.483500		32.51	46.00	13.49	L1	OFF	19.6
4.483500	40.46		56.00	15.54	L1	OFF	19.6
4.787520		30.99	46.00	15.01	L1	OFF	19.6
4.787520	36.95		56.00	19.05	L1	OFF	19.6
4.994250		30.57	46.00	15.43	L1	OFF	19.6
4.994250	37.11		56.00	18.89	L1	OFF	19.6
5.187750		30.53	50.00	19.47	L1	OFF	19.6
5.187750	37.91		60.00	22.09	L1	OFF	19.6
5.401500		29.08	50.00	20.92	L1	OFF	19.6
5.401500	35.93		60.00	24.07	L1	OFF	19.6
5.598870		28.21	50.00	21.79	L1	OFF	19.7
5.598870	34.92		60.00	25.08	L1	OFF	19.7
5.702280		30.48	50.00	19.52	L1	OFF	19.7
5.702280	37.24		60.00	22.76	L1	OFF	19.7
5.910000		27.42	50.00	22.58	L1	OFF	19.7
5.910000	34.11		60.00	25.89	L1	OFF	19.7
6.107010		27.44	50.00	22.56	L1	OFF	19.7
6.107010	33.24		60.00	26.76	L1	OFF	19.7
6.308250		27.62	50.00	22.38	L1	OFF	19.7
6.308250	33.70		60.00	26.30	L1	OFF	19.7
8.142000		27.40	50.00	22.60	L1	OFF	19.7
8.142000	32.59		60.00	27.41	L1	OFF	19.7
22.555770		24.36	50.00	25.64	L1	OFF	19.8
22.555770	29.17		60.00	30.83	L1	OFF	19.8

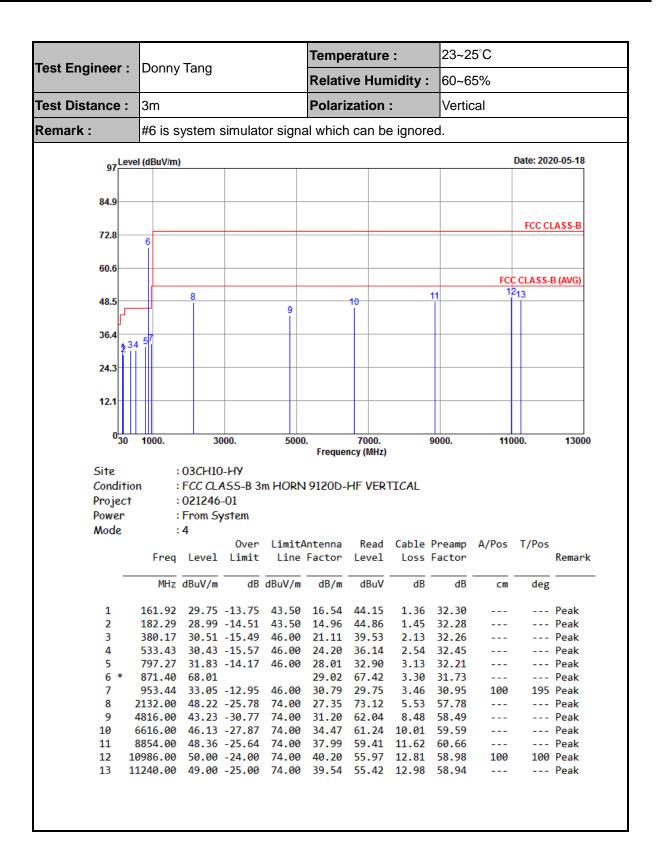
EUT Information

Report NO : Test Mode : Test Voltage : Phase : 021246-01 Mode 4 Power From System Neutral

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.156750		31.70	55.63	23.93	Ν	OFF	19.5
0.156750	52.81		65.63	12.82	N	OFF	19.5
0.162960		33.85	55.31	21.46	Ν	OFF	19.5
0.162960	51.01		65.31	14.30	Ν	OFF	19.5
0.177000		41.58	54.63	13.05	Ν	OFF	19.5
0.177000	53.77		64.63	10.86	Ν	OFF	19.5
0.183750		42.01	54.31	12.30	Ν	OFF	19.5
0.183750	53.88		64.31	10.43	Ν	OFF	19.5
0.197250		32.76	53.73	20.97	Ν	OFF	19.5
0.197250	50.60		63.73	13.13	Ν	OFF	19.5
0.229020		31.20	52.49	21.29	Ν	OFF	19.5
0.229020	46.19		62.49	16.30	Ν	OFF	19.5
0.242250		32.19	52.02	19.83	Ν	OFF	19.5
0.242250	45.50		62.02	16.52	Ν	OFF	19.5
0.532410		31.53	46.00	14.47	Ν	OFF	19.5
0.532410	41.03		56.00	14.97	Ν	OFF	19.5
3.081750		29.41	46.00	16.59	Ν	OFF	19.6
3.081750	35.55		56.00	20.45	Ν	OFF	19.6
3.354000		29.96	46.00	16.04	Ν	OFF	19.6
3.354000	36.15		56.00	19.85	Ν	OFF	19.6
3.581700		30.47	46.00	15.53	Ν	OFF	19.6


3.581700	36.75		56.00	19.25	Ν	OFF	19.6
3.822000		31.10	46.00	14.90	Ν	OFF	19.6
3.822000	37.07		56.00	18.93	Ν	OFF	19.6
4.132500		31.25	46.00	14.75	Ν	OFF	19.6
4.132500	37.24		56.00	18.76	Ν	OFF	19.6
4.405650		31.15	46.00	14.85	Ν	OFF	19.6
4.405650	36.74		56.00	19.26	Ν	OFF	19.6
4.724430		30.76	46.00	15.24	Ν	OFF	19.6
4.724430	36.62		56.00	19.38	Ν	OFF	19.6
4.917210		30.04	46.00	15.96	Ν	OFF	19.7
4.917210	36.09		56.00	19.91	Ν	OFF	19.7
8.189250		26.31	50.00	23.69	Ν	OFF	19.8
8.189250	31.81		60.00	28.19	Ν	OFF	19.8
21.799500		24.00	50.00	26.00	Ν	OFF	19.9
21.799500	28.96		60.00	31.04	Ν	OFF	19.9

Appendix B. Radiated Emission Test Result

Foot English	~~~·	Denry	Tona			Tempe	erature	:	23~2	5°C		
fest Engine	eer :	Donny	Tang			Relati	ve Hun	nidity :	60~6	5%		
lest Distan	ice :	3m				Polari	zation	:	Horiz	ontal		
Remark :		#6 is s	ystem :	simulat	or signa	al which	n can be	e ignor	ed.			
	97	vel (dBuV/m		1							Date: 202	20-05-18
8	4.9											
7	2.8										FCC CI	LASS-B
	2.0	6										
6	0.6									FCI	C CLASS-I	R (AVG)
									11		13	
4	8.5		8		9		0					
-	F	3										
3	6.4	4 5										
2	1 3											
24	4.3											
4	24			1								
1	2.1											
1.												
1.	2.1 0 ₃₀	1000.	30	000.	5000		7000.		9000.	110	000.	13000
	030				5000		7000. ncy (MHz)		9000.	110	000.	13000
Si	0 <mark>30</mark> te	:	03CH10)-НУ		Freque	ncy (MHz)			110	000.	13000
Sit Co	030 te	ion :	03CH10 FCC CL/)-НУ 455-В 3	5000 m HORN	Freque	ncy (MHz)	RIZONT		110	000.	13000
Sit Co Pro	0 ₃₀ te onditi	ion : t :	03CH10 FCC CL/ 021246)-НУ 455-В 3 -01		Freque	ncy (MHz)	RIZONT		110	000.	13000
Sit Co Pro Po	0 ₃₀ te ondit ojec	ion : t :	03CH10 FCC CL/)-НУ 455-В 3 -01		Freque	ncy (MHz)	RIZONT		110	000.	13000
Sit Co Pro Po	0 ₃₀ te onditi	ion : t :	03CH10 FCC CL/ 021246 From Sy)-HY 455-B 3 -01 /stem		Freque	ncy (MHz) HF HOR					13000
Sit Co Pro Po	0 ₃₀ te ondit ojec	ion : t :	03CH10 FCC CL/ 021246 From Sy)-HY ASS-B3 -01 ystem Over	m HORN LimitA	Freque	ncy (MHz) HF HOR Read	Cable	AL			13000 Remark
Sit Co Pro Po	0 ₃₀ te ondit ojec	ion : t : Freq	03CH10 FCC CL/ 021246 From Sy 4 Level)-HY ASS-B3 -01 ystem Over Limit	m HORN LimitA Line	Freque 9120D- Intenna Factor	NCY (MHZ) HF HOR Read Level	Cable Loss	AL Preamp Factor	A/Pos	T/Pos	
Sit Co Pr Po Ma	0 ₃₀ te ondit ojec ower ode	ion : t : Freq MHz	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m	0-HY ASS-B3 -01 ystem Over Limit dB	m HORN LimitA Line dBuV/m	Freques 9120D- Antenna Factor dB/m	Read Level dBuV	Cable Loss dB	AL Preamp Factor dB		T/Pos 	Remark
Sit Co Pr Po Ma	0 30 te onditi ojec ower ode	ion : t : Freq MHz 185.20	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m 26.42	0-HY 455-B 3 -01 ystem Over Limit 	m HORN LimitA Line dBuV/m 43.50	Freques 9120D- Antenna Factor dB/m 14.89	HF HOR Read Level dBuV 42.34	Cable Loss dB 1.46	AL Preamp Factor dB 32.27	A/Pos cm	T/Pos deg	Remark Peak
Sit Co Pr Po Ma	030 te onditi ojec wer ode	ion : t : Freq MHz 185.20 376.29	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m 26.42 34.38	0-HY 455-B 3 -01 ystem Uver Limit -17.08 -11.62	m HORN LimitA Line dBuV/m 43.50 46.00	Freques 9120D- Antenna Factor dB/m 14.89 21.03	HF HOR Read Level dBuV 42.34 43.49	Cable Loss dB 1.46 2.12	Preamp Factor dB 32.27 32.26	A/Pos 	T/Pos 	Remark Peak Peak
Sit Co Pr Po Ma	030 te onditi ojec wer ode	ion : t : Freq MHz 185.20 376.29 442.25	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m 26.42 34.38 35.71	0-HY 455-B 3 -01 ystem Uver Limit -17.08 -11.62 -10.29	m HORN LimitA Line dBuV/m 43.50 46.00 46.00	Freque 9120D- Antenna Factor dB/m 14.89 21.03 23.07	Read Level dBuV 42.34 43.49 42.67	Cable Loss dB 1.46 2.12 2.31	AL Preamp Factor dB 32.27 32.26 32.34	A/Pos 	T/Pos 	Remark Peak Peak Peak
Sit Co Pre Po Ma	0 30 te onditiojec wer ode 1 2 3 4	ion : t : Freq MHz 185.20 376.29 442.25 532.46	03CH10 FCC CL/ 021246 From 5 4 Level dBuV/m 26.42 34.38 35.71 29.38	0-HY 455-B 3 -01 ystem Uver Limit -17.08 -11.62 -10.29 -16.62	m HORN LimitA Line dBuV/m 43.50 46.00 46.00 46.00	Freques 9120D- Antenna Factor dB/m 14.89 21.03 23.07 24.17	Read Level dBuV 42.34 43.49 42.67 35.12	Cable Loss dB 1.46 2.12 2.31 2.54	Preamp Factor dB 32.27 32.26 32.34 32.45	A/Pos 	T/Pos 	Remark Peak Peak Peak Peak Peak
Sii Co Pr Po Ma	030 te onditi ojec ower ode 1 2 3 4 5	ion : t : Freq MHz 185.20 376.29 442.25 532.46 842.86	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m 26.42 34.38 35.71 29.38 30.78	0-HY 455-B 3 -01 ystem Uver Limit -17.08 -11.62 -10.29 -16.62	m HORN LimitA Line dBuV/m 43.50 46.00 46.00	Freques 9120D- Antenna Factor dB/m 14.89 21.03 23.07 24.17 28.80	Read Level dBuV 42.34 43.49 42.67 35.12 30.66	Cable Loss dB 1.46 2.12 2.31 2.54 3.24	AL Preamp Factor dB 32.27 32.26 32.34 32.45 31.92	A/Pos 	T/Pos deg 129 	Remark Peak Peak Peak Peak Peak Peak
Sit Co Pr Po Ma	030 te onditi ojec wer ode 1 2 3 4 5 6 *	ion : t : Freq MHz 185.20 376.29 442.25 532.46 842.86 871.40	03CH10 FCC CL/ 021246 From 5 4 Level dBuV/m 26.42 34.38 35.71 29.38 30.78 66.65	0-HY 455-B 3 -01 ystem Uver Limit -17.08 -11.62 -10.29 -16.62 -15.22	m HORN LimitA Line dBuV/m 43.50 46.00 46.00 46.00	Freques 9120D- Antenna Factor dB/m 14.89 21.03 23.07 24.17 28.80 29.02	Read Level dBuV 42.34 43.49 42.67 35.12 30.66 66.06	Cable Loss dB 1.46 2.12 2.31 2.54 3.24 3.30	Preamp Factor dB 32.27 32.26 32.34 32.45 31.92 31.73	A/Pos 	T/Pos deg 129 	Remark Peak Peak Peak Peak Peak Peak Peak
Sit Co Pr Po Ma	030 te onditi ojec wer ode 1 2 3 4 5 6 * 7	ion : t : Freq MHz 185.20 376.29 442.25 532.46 842.86 871.40 954.41	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m 26.42 34.38 35.71 29.38 30.78 66.65 31.91	0-HY 455-B 3 -01 ystem 0ver Limit -17.08 -11.62 -10.29 -16.62 -15.22 -14.09	m HORN LimitA Line dBuV/m 43.50 46.00 46.00 46.00 46.00	Freques 9120D- Antenna Factor dB/m 14.89 21.03 23.07 24.17 28.80 29.02 30.82	Read Level dBuV 42.34 43.49 42.67 35.12 30.66 66.06 28.57	Cable Loss dB 1.46 2.12 2.31 2.54 3.24 3.30 3.46	Preamp Factor dB 32.27 32.26 32.34 32.45 31.92 31.73 30.94	A/Pos 	T/Pos deg 129 	Remark Peak Peak Peak Peak Peak Peak Peak
Sit Co Pr Ma	030 te ojec ower ode 1 2 3 4 5 6 * 7 8	ion : t : Freq MHz 185.20 376.29 442.25 532.46 842.86 871.40 954.41 2124.00	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m 26.42 34.38 35.71 29.38 30.78 66.65 31.91 44.78	0-HY 455-B 3 -01 ystem 0ver Limit -17.08 -11.62 -10.29 -16.62 -15.22 -14.09 -29.22	m HORN LimitA Line dBuV/m 43.50 46.00 46.00 46.00 46.00 74.00	Freques 9120D- Antenna Factor dB/m 14.89 21.03 23.07 24.17 28.80 29.02 30.82 27.24	Read Level dBuV 42.34 43.49 42.67 35.12 30.66 66.06 28.57 69.81	Cable Loss dB 1.46 2.12 2.31 2.54 3.24 3.30 3.46 5.52	Preamp Factor dB 32.27 32.26 32.34 32.45 31.92 31.73 30.94 57.79	A/Pos cm 100 	T/Pos deg 129 	Remark Peak Peak Peak Peak Peak Peak Peak Pea
Sii Co Pr Ma	030 te ojec ower ode 1 2 3 4 5 6 * 7 8 9	ion : t : Freq MHz 185.20 376.29 442.25 532.46 842.86 871.40 954.41 2124.00 4492.00	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m 26.42 34.38 35.71 29.38 30.78 66.65 31.91 44.78 43.70	0-HY ASS-B 3 -01 ystem 0ver Limit -17.08 -17.08 -11.62 -10.29 -16.62 -15.22 -14.09 -29.22 -30.30	m HORN LimitA Line dBuV/m 43.50 46.00 46.00 46.00 46.00 74.00 74.00	Freque 9120D- Antenna Factor dB/m 14.89 21.03 23.07 24.17 28.80 29.02 30.82 27.24 30.57	Read Level dBuV 42.34 43.49 42.67 35.12 30.66 66.06 28.57 69.81 63.54	Cable Loss dB 1.46 2.12 2.31 2.54 3.24 3.30 3.46 5.52 8.06	Preamp Factor dB 32.27 32.26 32.34 32.45 31.92 31.73 30.94 57.79 58.47	A/Pos cm 100 	T/Pos deg 129 	Remark Peak Peak Peak Peak Peak Peak Peak Pea
Sit Co Pr Ma	030 te ojec: ower ode 1 2 3 4 5 6 * 7 8 9 0	ion : t : Freq MHz 185.20 376.29 442.25 532.46 842.86 871.40 954.41 2124.00 4492.00 6398.00	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m 26.42 34.38 35.71 29.38 30.78 66.65 31.91 44.78 43.70 46.63	-HY ASS-B 3 -01 ystem Uver Limit -17.08 -17.08 -11.62 -10.29 -16.62 -15.22 -14.09 -29.22 -30.30 -27.37	m HORN LimitA Line dBuV/m 43.50 46.00 46.00 46.00 46.00 74.00 74.00 74.00	Freques 9120D- Antenna Factor dB/m 14.89 21.03 23.07 24.17 28.80 29.02 30.82 27.24 30.57 33.69	Read Level dBuV 42.34 43.49 42.67 35.12 30.66 66.06 28.57 69.81 63.54 62.47	Cable Loss dB 1.46 2.12 2.31 2.54 3.24 3.30 3.46 5.52 8.06 9.92	Preamp Factor dB 32.27 32.26 32.34 32.45 31.92 31.73 30.94 57.79 58.47 59.45	A/Pos cm 100 	T/Pos deg 129 	Remark Peak Peak Peak Peak Peak Peak Peak Pea
Sit Co Pro Ma 1	030 te onditi ojec ower ode 1 2 3 4 5 6 * 7 8 9 0 1	ion : t : Freq MHz 185.20 376.29 442.25 532.46 842.86 871.40 954.41 2124.00 4492.00 6398.00 8736.00	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m 26.42 34.38 35.71 29.38 30.78 66.65 31.91 44.78 43.70 46.63 49.66	0-HY ASS-B 3 -01 ystem 0ver Limit -17.08 -11.62 -10.29 -16.62 -15.22 -14.09 -29.22 -30.30 -27.37 -24.34	m HORN LimitA Line dBuV/m 43.50 46.00 46.00 46.00 46.00 46.00 74.00 74.00 74.00 74.00	Freques 9120D- Antenna Factor dB/m 14.89 21.03 23.07 24.17 28.80 29.02 30.82 27.24 30.57 33.69 37.67	Read Level dBuV 42.34 43.49 42.67 35.12 30.66 66.06 28.57 69.81 63.54 62.47 60.83	Cable Loss dB 1.46 2.12 2.31 2.54 3.24 3.30 3.46 5.52 8.06 9.92 11.63	AL Preamp Factor dB 32.27 32.26 32.34 32.45 31.92 31.73 30.94 57.79 58.47 59.45 60.47	A/Pos cm 100 	T/Pos deg 129 	Remark Peak Peak Peak Peak Peak Peak Peak Pea
Sit Co Pro Ma 1 1	030 te onditi ojec ower ode 1 2 3 4 5 5 6 * 7 8 9 .0 1 2	ion : t : Freq MHz 185.20 376.29 442.25 532.46 842.86 871.40 954.41 2124.00 4492.00 6398.00	03CH10 FCC CL/ 021246 From Sy 4 Level dBuV/m 26.42 34.38 35.71 29.38 30.78 66.65 31.91 44.78 43.70 46.63 49.66 50.92	0-HY ASS-B 3 -01 ystem 0ver Limit -17.08 -11.62 -10.29 -16.62 -15.22 -14.09 -29.22 -30.30 -27.37 -24.34 -23.08	m HORN LimitA Line dBuV/m 43.50 46.00 46.00 46.00 46.00 46.00 74.00 74.00 74.00 74.00 74.00	Freques 9120D- Intenna Factor dB/m 14.89 21.03 23.07 24.17 28.80 29.02 30.82 27.24 30.57 33.69 37.67 39.84	Read Level dBuV 42.34 43.49 42.67 35.12 30.66 28.57 69.81 63.54 62.47 60.83 58.54	Cable Loss dB 1.46 2.12 2.31 2.54 3.24 3.30 3.46 5.52 8.06 9.92 11.63 12.51	AL Preamp Factor dB 32.27 32.26 32.34 32.45 31.73 30.94 57.79 58.47 59.45 60.47 59.97	A/Pos cm 100 	T/Pos deg 129 108	Remark Peak Peak Peak Peak Peak Peak Peak Pea

