

Report No.: FA971613



# **FCC SAR TEST REPORT**

FCC ID : APYHRO00276 Equipment : Smart phone

Brand Name : SHARP

Applicant : SHARP CORPORATION

2-13-1, Hachihonmatsu-lida,

Higashi-hiroshima-shi, Hiroshima pref. 739-0192, Japan

Manufacturer : SHARP CORPORATION

1 Takumi-Cho, Sakai-Ku, Sakai-Shi, Osaka 590-8522, Japan

**Standard** : FCC 47 CFR Part 2 (2.1093)

**ANSI/IEEE C95.1-1992** 

**IEEE 1528-2013** 

The product was received on Jul. 22, 2019 and testing was started from Jul. 26, 2019 and completed on Jul. 31, 2019. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Cona Huang / Deputy Manager

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page 1 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

# **Table of Contents**

| 1. Statement of Compliance                            |    |
|-------------------------------------------------------|----|
| 2. Guidance Applied                                   | 4  |
| 3. Equipment Under Test (EUT) Information             |    |
| 3.1 General Information                               | 5  |
| 3.2 General LTE SAR Test and Reporting Considerations |    |
| 4. RF Exposure Limits                                 | 7  |
| 4.1 Uncontrolled Environment                          |    |
| 4.2 Controlled Environment                            | 7  |
| 5. Specific Absorption Rate (SAR)                     | 8  |
| 5.1 Introduction                                      |    |
| 5.2 SAR Definition                                    |    |
| 6. System Description and Setup                       | 9  |
| 6.1 E-Field Probe                                     |    |
| 6.2 Data Acquisition Electronics (DAE)                |    |
| 6.3 Phantom                                           | 11 |
| 6.4 Device Holder                                     |    |
| 7. Measurement Procedures                             | 13 |
| 7.1 Spatial Peak SAR Evaluation                       | 13 |
| 7.2 Power Reference Measurement                       | 14 |
| 7.3 Area Scan                                         | 14 |
| 7.4 Zoom Scan                                         | 15 |
| 7.5 Volume Scan Procedures                            | 15 |
| 7.6 Power Drift Monitoring                            |    |
| 8. Test Equipment List                                |    |
| 9. System Verification                                | 17 |
| 9.1 Tissue Simulating Liquids                         | 17 |
| 9.2 Tissue Verification                               |    |
| 9.3 System Performance Check Results                  | 19 |
| 10. RF Exposure Positions                             | 20 |
| 10.1 Ear and handset reference point                  | 20 |
| 10.2 Definition of the cheek position                 | 21 |
| 10.3 Definition of the tilt position                  | 22 |
| 10.4 Body Worn Accessory                              | 23 |
| 10.5 Wireless Router                                  |    |
| 11. Conducted RF Output Power (Unit: dBm)             | 24 |
| 12. Antenna Location                                  |    |
| 13. SAR Test Results                                  | 39 |
| 13.1 Head SAR                                         | 41 |
| 13.2 Hotspot SAR                                      | 42 |
| 13.3 Body Worn Accessory SAR                          | 44 |
| 14. Simultaneous Transmission Analysis                | 45 |
| 14.1 Head Exposure Conditions                         | 46 |
| 14.2 Hotspot Exposure Conditions                      | 47 |
| 14.3 Body-Worn Accessory Exposure Conditions          | 48 |
| 15. Uncertainty Assessment                            | 49 |
| 16. References                                        |    |
| Appendix A. Plots of System Performance Check         |    |
| Appendix B. Plots of High SAR Measurement             |    |
| Appendix C. DASY Calibration Certificate              |    |
| Appendix D. Test Setup Photos                         |    |

# History of this test report

Report No. : FA971613

| Report No. | Version | Description             | Issued Date   |
|------------|---------|-------------------------|---------------|
| FA971613   | 01      | Initial issue of report | Aug. 20, 2019 |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |

TEL: 886-3-327-3456 Page 3 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for SHARP CORPORATION, Smart phone, are as follows.

Report No. : FA971613

|                    |                   | ŀ                        | Highest SAR Summar                              | у                            | Highest                                       |
|--------------------|-------------------|--------------------------|-------------------------------------------------|------------------------------|-----------------------------------------------|
| Equipment<br>Class | Frequency<br>Band | Head<br>(Separation 0mm) | Body-worn<br>(Separation 10mm)<br>1g SAR (W/kg) | Hotspot<br>(Separation 10mm) | Simultaneous<br>Transmission<br>1g SAR (W/kg) |
|                    | GSM850            | 0.17                     | 0.24                                            | 0.37                         | 3 - ( - 3)                                    |
|                    | GSM1900           | 0.08                     | 0.57                                            | 1.05                         |                                               |
| Licensed           | WCDMA V           | 0.15                     | 0.18                                            | 0.26                         | 1.05                                          |
|                    | LTE Band 5        | 0.10                     | 0.12                                            | 0.19                         |                                               |
|                    | LTE Band 12 / 17  | 0.07                     | 0.13                                            | 0.14                         |                                               |
| DTS                | 2.4GHz WLAN       | 0.58                     | 0.08                                            | 0.08                         | 1.05                                          |
| NII                | 5GHz WLAN         | 0.58                     | 0.08                                            |                              | 0.95                                          |
| DSS                | Bluetooth         | 0.15                     |                                                 |                              | 1.05                                          |
| Date of            | of Testing:       |                          | 2019/7/26 -                                     | ~ 2019/7/31                  |                                               |

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test.. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

Reviewed by: <u>Jason Wang</u> Report Producer: <u>Wan Liu</u>

## 2. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- · IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01

TEL: 886-3-327-3456 Page 4 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

# 3. Equipment Under Test (EUT) Information

## 3.1 General Information

|                                            | Product Feature & Specification                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Equipment Name</b>                      | Smart phone                                                                                                                                                                                                                                                                                                                                                                   |
| Brand Name                                 | SHARP                                                                                                                                                                                                                                                                                                                                                                         |
| FCC ID                                     | APYHRO00276                                                                                                                                                                                                                                                                                                                                                                   |
| IMEI Code                                  | 004401116784923                                                                                                                                                                                                                                                                                                                                                               |
| Wireless Technology and<br>Frequency Range | GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC: 13.56 MHz |
| Mode                                       | GSM/GPRS RMC/AMR 12.2Kbps HSDPA HSUPA LTE: QPSK, 16QAM, 64QAM WLAN: 802.11a/b/g/n/ac HT20 / HT40 / VHT20 / VHT40 / VHT80 Bluetooth BR/EDR/LE NFC:ASK                                                                                                                                                                                                                          |
|                                            | Class B – EUT cannot support Packet Switched and Circuit Switched Network                                                                                                                                                                                                                                                                                                     |
| mode                                       | simultaneously but can automatically switch between Packet and Circuit Switched Network.                                                                                                                                                                                                                                                                                      |
| EUT Stage                                  | Identical Prototype                                                                                                                                                                                                                                                                                                                                                           |
| Remark: 1. This device WLAN 2.4G           | Hz supports Hotspot operation and Bluetooth support tethering applications.                                                                                                                                                                                                                                                                                                   |

**Report No. : FA971613** 

TEL: 886-3-327-3456 Page 5 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 3.2 General LTE SAR Test and Reporting Considerations

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | Sur                                                                                               | nmarize                                   | d neces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sarv ite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ms addres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ssed in KD                                                                                                                                                                                                                                                                                                        | B 9412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25 D05 v02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r <b>05</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| FC(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C ID                                                                     |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O00276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                   |
| Equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uipment Name                                                             |                                                                                                   |                                           | Smart phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                   |
| Operating Frequency Range of each LTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |                                                                                                   |                                           | LTE Bar<br>LTE Bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd 5: 824<br>nd 12: 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.7 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 848.3 MHz<br>~ 715.3 MH<br>~ 713.5 MH                                                                                                                                                                                                                                                                             | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                   |
| Channel Bandwidth LTE Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |                                                                                                   |                                           | nd 12:1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hz, 5MHz, 1<br>Hz, 5MHz, 1<br>Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                   |
| upli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ink modulations                                                          | used                                                                                              |                                           | QPSK /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | / 64QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                   |
| LTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Voice / Data r                                                           | equirements                                                                                       |                                           | Voice ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                   |                                           | Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ole 6.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1: Maxim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | um Power                                                                                                                                                                                                                                                                                                          | Reduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion (MPR) f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or Power (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Class 1,                                                                                                                                                                                                                    | 2 and 3                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                   |                                           | Modu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | annel bandw                                                                                                                                                                                                                                                                                                       | idth / Tı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ansmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bandwidth (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (N <sub>RB</sub> )                                                                                                                                                                                                          | MPR (dB)                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                          |                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                   |                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MHz                                                                                                                                                                                                                                                                                                               | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHz                                                                                                                                                                                                                         | 1                                                                                                                 |
| LTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E MPR permane                                                            | ently built-in by de                                                                              | esign                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SK<br>QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > 5<br>≤ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | > 4<br>≤ 4                                                                                                                                                                                                                                                                                                        | > 8<br>≤ 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | > 12<br>≤ 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > 16<br>≤ 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > 18<br>≤ 18                                                                                                                                                                                                                | ≤ 1<br>≤ 1                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                   |                                           | 16 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | > 4                                                                                                                                                                                                                                                                                                               | > 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | > 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | > 18                                                                                                                                                                                                                        | ≤ 2                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ≤ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≤ 4                                                                                                                                                                                                                                                                                                               | ≤ 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ≤ 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 18                                                                                                                                                                                                                        | ≤ 2                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | > 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | > 4                                                                                                                                                                                                                                                                                                               | > 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | > 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | > 18                                                                                                                                                                                                                        | ≤ 3                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                   |                                           | 256 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             | ≤ 5                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E A-MPR                                                                  | RB configuration                                                                                  |                                           | A-MPR<br>(Maximu<br>A prope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | during :<br>um TTI)<br>erly cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAR testir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng and the pase statio                                                                                                                                                                                                                                                                                            | LTE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AR tests w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | as transmi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the SA                                                                                                                                                                                                                      | S_01 to disable all TTI frames  R and power                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | RB configuration                                                                                  |                                           | A-MPR<br>(Maximu<br>A prope<br>measure<br>not inclu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | during a<br>um TTI)<br>erly cor<br>ement; to<br>uded in to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAR testirnfigured between the sar testing the sar testing the sar testing testing the sar testing testing the sar testing testing testing the sar testing tes   | ng and the pase station spectrum play port.                                                                                                                                                                                                                                                                       | n simu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AR tests w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | as transmi<br>used for<br>ocation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the SA                                                                                                                                                                                                                      | all TTI frames                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ectrum plots for                                                         | Transm                                                                                            | ission (                                  | A-MPR<br>(Maximu<br>A prope<br>measure<br>not inclu<br>H, M, L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | during and the sum TTI) erly corement; the suded in the channe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAR testing figured between the sar record in the sar record LTE Ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng and the pase statio spectrum play port.  s and frequent 5                                                                                                                                                                                                                                                      | n simuots for o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AR tests was each RB allo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | used for ocation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the SA offset co                                                                                                                                                                                                            | all TTI frames  R and power onfiguration are                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ectrum plots for<br>Bandwidt                                             | Transm                                                                                            | ission (                                  | A-MPR (Maximu A propo<br>measure not inclu H, M, L) Bandwid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | during and the sum TTI) erly corement; to suded in to channe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAR testinnfigured behave she sar relations between the sar relations between the same states and saven the same same same same same same same sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pase stations spectrum play port.  s and frequent 5  Banco                                                                                                                                                                                                                                                        | n simulates for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AR tests was each RB allowing each LTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | used for ocation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ectrum plots for<br>Bandwidt<br>Ch. #                                    | Transm<br>th 1.4 MHz<br>Freq. (MHz)                                                               | ission (                                  | A-MPR<br>(Maximu<br>A propo<br>measure<br>not inclu<br>H, M, L)<br>Bandwid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | during aum TTI) erly conement; to the channe of the channe | SAR testin<br>nfigured be<br>herefore, s<br>he SAR re<br>I numbers<br>LTE Ban<br>z<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng and the case statio spectrum plo port. s and frequ id 5  Banc Ch. #                                                                                                                                                                                                                                            | n simulates for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AR tests was each RB allowing each LTI MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | used for ocation and  band  Ba  Ch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are  10 MHz Freq. (MHz)                                                   |
| Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ectrum plots for<br>Bandwidt<br>Ch. #<br>20407                           | Transm<br>th 1.4 MHz<br>Freq. (MHz)<br>824.7                                                      | ission (                                  | A-MPR<br>(Maximu<br>A propo<br>measure<br>not inclu<br>H, M, L)<br>Bandwid<br>n. #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | during aum TTI) erly corement; to the channe are the second are th | SAR testin<br>nfigured beherefore, see the SAR reconstruction in the same between the same behavior and the same | page station spectrum play port.  s and frequent of 5  Banco Ch. # 20425                                                                                                                                                                                                                                          | n simulates for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AR tests was each RB allowing each LTI MHz Freq. (MHz) 826.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | used for ocation and  E band  Ba  Ch. 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the SA offset co                                                                                                                                                                                                            | R and power onfiguration are  10 MHz Freq. (MHz) 829                                                              |
| Spe<br>L<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bandwidt Ch. # 20407 20525                                               | Transm h 1.4 MHz Freq. (MHz) 824.7 836.5                                                          | Ch 200                                    | A-MPR (Maximu A proportion propor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | during sum TTI) erly conement; tiuded in tiude | SAR testin<br>nfigured beherefore, see the SAR recommendation of the SAR | page stationspectrum playont.  s and frequent of 5  Banco Ch. #  20425 20525                                                                                                                                                                                                                                      | n simulates for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AR tests was each RB allowing each LTI  MHz  Treq. (MHz)  826.5  836.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | used for ocation and  band  Band  Ch. 204 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the SA offset co                                                                                                                                                                                                            | R and power onfiguration are  10 MHz Freq. (MHz) 829 836.5                                                        |
| Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ectrum plots for<br>Bandwidt<br>Ch. #<br>20407                           | Transm<br>th 1.4 MHz<br>Freq. (MHz)<br>824.7                                                      | Ch 200                                    | A-MPR<br>(Maximu<br>A propo<br>measure<br>not inclu<br>H, M, L)<br>Bandwid<br>n. #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | during sum TTI) erly conement; tiuded in tiude | SAR testinonfigured beherefore, she SAR re I numbers LTE Banz z (MHz) 25.5 66.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | page stationspectrum ploport.  s and frequilid 5  Banc Ch. # 20425 20525 20625                                                                                                                                                                                                                                    | n simulates for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AR tests was each RB allowing each LTI MHz Freq. (MHz) 826.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | used for ocation and  E band  Ba  Ch. 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the SA offset co                                                                                                                                                                                                            | R and power onfiguration are  10 MHz Freq. (MHz) 829                                                              |
| Spe<br>L<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bandwidt Ch. # 20407 20525 20643                                         | Transm h 1.4 MHz Freq. (MHz) 824.7 836.5                                                          | Ch 200 200 200 200 200 200 200 200 200 20 | A-MPR (Maximu A proportion propor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | during sum TTI) erly conement; tuded in tichanne with 3 MH Freq. 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAR testin<br>nfigured beherefore, see the SAR recommendation of the SAR | page stations spectrum ploport.  s and frequilid 5  Banc Ch. # 20425 20525 20625 d 12                                                                                                                                                                                                                             | n simulates for a sencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AR tests was each RB allowin each LTI  MHz  Freq. (MHz) 826.5 836.5 846.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | used for ocation and  band  Band  Ch. 204 205 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are  10 MHz Freq. (MHz) 829 836.5 844                                     |
| Spe<br>L<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bandwidt Ch. # 20407 20525 20643 Bandwidt                                | Transm th 1.4 MHz Freq. (MHz) 824.7 836.5 848.3                                                   | CH 200 200 200 200 200 200 200 200 200 20 | A-MPR<br>(Maximu<br>A propo<br>measure<br>not inclu<br>H, M, L)<br>Bandwid<br>n. #<br>415<br>525<br>635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | during jum TTI) erly corement; tuded in tichanne lith 3 MH Freq. 82 83 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAR testination of the same of   | page stations spectrum ploport.  s and frequilid 5  Banc Ch. # 20425 20525 20625 d 12                                                                                                                                                                                                                             | n simulates for a sencies senc | AR tests was each RB allowin each LTI  MHZ  Freq. (MHz) 826.5 836.5 846.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | used for ocation and  band  Band  Ch. 204 205 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are  10 MHz Freq. (MHz) 829 836.5 844                                     |
| Spe<br>L<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bandwidt Ch. # 20407 20525 20643                                         | Transm h 1.4 MHz Freq. (MHz) 824.7 836.5 848.3                                                    | Ch 200 200 Ch                             | A-MPR<br>(Maximu<br>A propo<br>measure<br>not inclu<br>H, M, L)<br>Bandwid<br>n. #<br>415<br>525<br>635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | during sum TTI) erly corement; tiuded in tichanne that 3 MH Freq. 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SAR testin<br>nfigured beherefore, see the SAR recommendation of the SAR | ng and the coase statio spectrum plo port. s and frequ d 5  Banc Ch. # 20425 20525 20625 d 12  Banc                                                                                                                                                                                                               | n simulates for a sencies senc | AR tests was each RB allowin each LTI  MHz  Freq. (MHz) 826.5 836.5 846.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | used for position and  band  Band  Ch. 204 205 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are  10 MHz Freq. (MHz) 829 836.5 844                                     |
| Spe<br>L<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bandwidt Ch. # 20407 20525 20643  Bandwidt Ch. #                         | Transm th 1.4 MHz Freq. (MHz) 824.7 836.5 848.3 th 1.4 MHz Freq. (MHz)                            | CH 200 200 200 CH 23                      | A-MPR<br>(Maximu<br>A propo<br>measure<br>not inclu<br>H, M, L)<br>Bandwid<br>n. #<br>415<br>525<br>635<br>Bandwid<br>n. #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | during sum TTI) erly corement; tuded in the channe lith 3 MH Freq. 82 83 84 lith 3 MH Freq. 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAR testin  Infigured beherefore, she SAR re  I numbers  LTE Ban  Z  (MHz)  2.5.5  36.5  47.5  LTE Ban  Z  (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng and the pase statio spectrum plo port. s and frequ d 5  Banc Ch. # 20425 20525 20625 d 12  Banc Ch. #                                                                                                                                                                                                          | n simulates for a sencies senc | AR tests was each RB allowing each LTI MHZ Freq. (MHz) 826.5 836.5 846.5 MHZ Freq. (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | used for ocation and  band  Band  Ch. 204 205 206  Band  Ch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are  10 MHz Freq. (MHz) 829 836.5 844  10 MHz Freq. (MHz)                 |
| Specific Spe | Bandwidt Ch. # 20407 20525 20643  Bandwidt Ch. # 23017                   | Transm th 1.4 MHz Freq. (MHz) 824.7 836.5 848.3 th 1.4 MHz Freq. (MHz) 699.7                      | CP 200 200 200 200 233 233                | A-MPR (Maximu A proportion for including the following the | during sum TTI) erly conement; tuded in the channe lith 3 MH Freq. 82 83 84 lith 3 MH Freq. 70 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAR testinonfigured beherefore, she SAR relationship in the SAR relationship i   | ng and the pase statio spectrum plo port. s and frequ ad 5  Banc Ch. # 20425 20525 20625 d 12  Banc Ch. # 23035                                                                                                                                                                                                   | n simulates for a sencies senc | AR tests was each RB allowing each LTi MHz Freq. (MHz) 826.5 836.5 846.5  MHz Freq. (MHz) 701.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | used for ocation and  E band  Ba Ch. 204 205 206  Ba Ch. 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are  10 MHz Freq. (MHz) 829 836.5 844  10 MHz Freq. (MHz) 704             |
| Spe<br>L<br>M<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bandwidt Ch. # 20407 20525 20643  Bandwidt Ch. # 23017 23095             | Transm th 1.4 MHz Freq. (MHz) 824.7 836.5 848.3 th 1.4 MHz Freq. (MHz) 699.7 707.5                | CP 200 200 200 200 233 233                | A-MPR (Maximu A proportion for including the following the | during sum TTI) erly conement; tuded in the channe lith 3 MH Freq. 82 83 84 lith 3 MH Freq. 70 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAR testinonfigured behave fore, she SAR re I numbers LTE Bancz (MHz) 25.5 66.5 LTE Bancz (MHz) 00.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng and the pase statio spectrum plo port. s and frequ d 5 Banc Ch. # 20425 20525 20625 d 12 Banc Ch. # 23035 23095 23155                                                                                                                                                                                          | n simulates for a sencies senc | AR tests was each RB allowed Ballowed B | used for ocation and  Barrier band  Barrier band  Ch. 204  205  206  Barrier band  230  230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are  10 MHz Freq. (MHz) 829 836.5 844  10 MHz Freq. (MHz) 704 707.5       |
| Spe<br>L<br>M<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bandwidt Ch. # 20407 20525 20643  Bandwidt Ch. # 23017 23095             | Transm th 1.4 MHz Freq. (MHz) 824.7 836.5 848.3 th 1.4 MHz Freq. (MHz) 699.7 707.5                | CP 200 200 200 200 233 233 233            | A-MPR (Maximu A proportion for incluent | during sum TTI) erly conement; tuded in the channe lith 3 MH Freq. 82 83 84 lith 3 MH Freq. 70 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAR testinonfigured behave fore, she SAR re I numbers LTE Bandz (MHz) 25.5 66.5 LTE Bandz (MHz) 00.5 07.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng and the pase statio spectrum plo port. s and frequ d 5 Banc Ch. # 20425 20525 20625 d 12 Banc Ch. # 23035 23095 23155                                                                                                                                                                                          | n simulates for a sencies senc | AR tests was each RB allowin each LTI  MHZ  MHZ  Freq. (MHz) 826.5 836.5 846.5  MHZ  Freq. (MHz) 701.5 707.5 713.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Base transmines transm | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are  10 MHz Freq. (MHz) 829 836.5 844  10 MHz Freq. (MHz) 704 707.5       |
| Spe<br>L<br>M<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bandwidt Ch. # 20407 20525 20643  Bandwidt Ch. # 23017 23095 23173       | Transm th 1.4 MHz Freq. (MHz) 824.7 836.5 848.3 th 1.4 MHz Freq. (MHz) 699.7 707.5 715.3          | CP 200 200 200 200 233 233 233            | A-MPR (Maximu A proportion for incluent H, M, L)  Bandwid A. #  415  525  635  Bandwid A. #  025  095  165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | during sum TTI) erly conement; tuded in the channe lith 3 MH Freq. 82 83 84 lith 3 MH Freq. 70 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAR testinonfigured behave fore, she SAR re I numbers LTE Bandz (MHz) 25.5 66.5 LTE Bandz (MHz) 00.5 07.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng and the pase statio spectrum ploport. s and frequence of the statio spectrum ploport. s and frequence of the statio spectrum ploport. s and frequence of the statio statio spectrum ploport. s and frequence of the statio spectrum ploport. # 20425   20525   20625   d 12   Banco Ch. # 23035   23155   d 17 | n simulates for a sencies senc | AR tests was each RB allowing each LTI  MHZ  MHZ  Freq. (MHz)  826.5  836.5  846.5  MHZ  Freq. (MHz)  701.5  707.5  713.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | used for ocation and  Barrier band  Barrier band  Ch. 204  205  206  Barrier band  230  230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are  10 MHz Freq. (MHz) 829 836.5 844  10 MHz Freq. (MHz) 704 707.5 711   |
| Spe<br>L<br>M<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bandwidt Ch. # 20407 20525 20643  Bandwidt Ch. # 23017 23095 23173  Chai | Transm th 1.4 MHz Freq. (MHz) 824.7 836.5 848.3 th 1.4 MHz Freq. (MHz) 699.7 707.5 715.3  Bandwid | CP 200 200 200 200 233 233 233            | A-MPR (Maximu A proportion for incluent H, M, L)  Bandwid h. # 415 525 635  Bandwid h. # 025 095 165  z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | during sum TTI) erly corement; tuded in tichanne with 3 MH Freq. 82 83 84 tth 3 MH Freq. 70 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAR testinonfigured behave fore, she SAR re I numbers LTE Bandz (MHz) 25.5 66.5 LTE Bandz (MHz) 00.5 07.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng and the pase statio spectrum ploport. s and frequence of the statio spectrum ploport. s and frequence of the statio spectrum ploport. s and frequence of the statio statio spectrum ploport. s and frequence of the statio spectrum ploport. # 20425   20525   20625   d 12   Banco Ch. # 23035   23155   d 17 | n simulates for or encies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AR tests was each RB allowing each LTI  MHZ Freq. (MHz) 826.5 836.5 846.5  MHz Freq. (MHz) 701.5 707.5 713.5  Bandwie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Base transmines transm | the SA offset co                                                                                                                                                                                                            | all TTI frames R and power onfiguration are  10 MHz Freq. (MHz) 829 836.5 844  10 MHz Freq. (MHz) 704 707.5 711   |
| Spe<br>L<br>M<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bandwidt Ch. # 20407 20525 20643  Bandwidt Ch. # 23017 23095 23173  Chai | Transm th 1.4 MHz Freq. (MHz) 824.7 836.5 848.3 th 1.4 MHz Freq. (MHz) 699.7 707.5 715.3  Bandwid | CP 200 200 200 200 233 233 233            | A-MPR (Maximu A proportion proportion of incluent) H, M, L)  Bandwid n. # 415 525 635  Bandwid n. # 025 095 165  z Freq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | during sum TTI) erly corement; to the channe with 3 MH Freq. 82 83 84 84 84 87 70 70 71 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 84 88 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAR testinonfigured behave fore, she SAR re I numbers LTE Bandz (MHz) 25.5 66.5 LTE Bandz (MHz) 00.5 07.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng and the pase statio spectrum ploport. s and frequence of the statio spectrum ploport. s and frequence of the statio spectrum ploport. s and frequence of the statio statio spectrum ploport. s and frequence of the statio spectrum ploport. # 20425   20525   20625   d 12   Banco Ch. # 23035   23155   d 17 | encies  dwidth f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AR tests willator was each RB allowing each LTI and the seach LTI and the seach LTI and the seach RB allowing each RB each  | Base transmines transm | tting on the SA offset confiset confise | all TTI frames  R and power porfiguration are  10 MHz Freq. (MHz) 829 836.5 844  10 MHz Freq. (MHz) 704 707.5 711 |

**Report No. : FA971613** 

 TEL: 886-3-327-3456
 Page 6 of 49

 FAX: 886-3-328-4978
 Issued Date : Aug. 20, 2019

## 4. RF Exposure Limits

## 4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA971613

## 4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

#### Limits for Occupational/Controlled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.4        | 8.0          | 20.0                           |

#### Limits for General Population/Uncontrolled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.08       | 1.6          | 4.0                            |

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: 886-3-327-3456 Page 7 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 5. Specific Absorption Rate (SAR)

## 5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

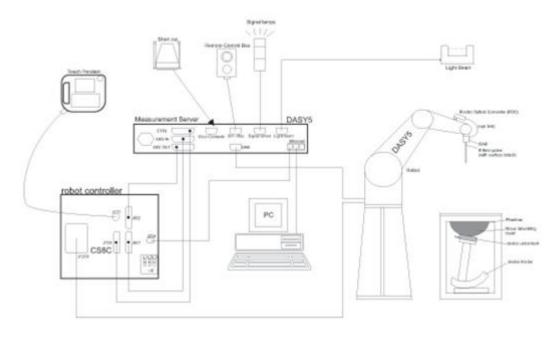
Report No.: FA971613

## 5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)


$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:  $\sigma$  is the conductivity of the tissue,  $\rho$  is the mass density of the tissue and E is the RMS electrical field strength.

TEL: 886-3-327-3456 Page 8 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 6. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:



Report No. : FA971613

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

TEL: 886-3-327-3456 Page 9 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 6.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

#### <ES3DV3 Probe>

| Construction  | Symmetric design with triangular core             |  |  |  |  |  |
|---------------|---------------------------------------------------|--|--|--|--|--|
|               | Interleaved sensors                               |  |  |  |  |  |
|               | Built-in shielding against static charges         |  |  |  |  |  |
|               | PEEK enclosure material (resistant to organic     |  |  |  |  |  |
|               | solvents, e.g., DGBE)                             |  |  |  |  |  |
| Frequency     | 10 MHz – 4 GHz;                                   |  |  |  |  |  |
|               | Linearity: ±0.2 dB (30 MHz – 4 GHz)               |  |  |  |  |  |
| Directivity   | ±0.2 dB in TSL (rotation around probe axis)       |  |  |  |  |  |
|               | ±0.3 dB in TSL (rotation normal to probe axis)    |  |  |  |  |  |
| Dynamic Range | 5 μW/g – >100 mW/g;                               |  |  |  |  |  |
|               | Linearity: ±0.2 dB                                |  |  |  |  |  |
| Dimensions    | Overall length: 337 mm (tip: 20 mm)               |  |  |  |  |  |
|               | Tip diameter: 3.9 mm (body: 12 mm)                |  |  |  |  |  |
|               | Distance from probe tip to dipole centers: 3.0 mm |  |  |  |  |  |



**Report No.: FA971613** 

## <EX3DV4 Probe>

| Construction  | Symmetric design with triangular core                |
|---------------|------------------------------------------------------|
|               | Built-in shielding against static charges            |
|               | PEEK enclosure material (resistant to organic        |
|               | solvents, e.g., DGBE)                                |
| Frequency     | 10 MHz – >6 GHz                                      |
|               | Linearity: ±0.2 dB (30 MHz – 6 GHz)                  |
| Directivity   | ±0.3 dB in TSL (rotation around probe axis)          |
|               | $\pm 0.5$ dB in TSL (rotation normal to probe axis)  |
| Dynamic Range | 10 μW/g – >100 mW/g                                  |
|               | Linearity: ±0.2 dB (noise: typically <1 µW/g)        |
| Dimensions    | Overall length: 337 mm (tip: 20 mm)                  |
|               | Tip diameter: 2.5 mm (body: 12 mm)                   |
|               | Typical distance from probe tip to dipole centers: 1 |
|               | mm                                                   |



## 6.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.



Fig 5.1 Photo of DAE

TEL: 886-3-327-3456 Page 10 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 6.3 Phantom

#### <SAM Twin Phantom>

| Shell Thickness   | 2 ± 0.2 mm;<br>Center ear point: 6 ± 0.2 mm             |     |
|-------------------|---------------------------------------------------------|-----|
| Filling Volume    | Approx. 25 liters                                       |     |
| Dimensions        | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 |
| Measurement Areas | Left Hand, Right Hand, Flat Phantom                     |     |

**Report No.: FA971613** 

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

#### <ELI Phantom>

| VEET I Halltonia |                                                  |  |
|------------------|--------------------------------------------------|--|
| Shell Thickness  | 2 ± 0.2 mm (sagging: <1%)                        |  |
| Filling Volume   | Approx. 30 liters                                |  |
| Dimensions       | Major ellipse axis: 600 mm<br>Minor axis: 400 mm |  |

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

TEL: 886-3-327-3456 Page 11 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 6.4 Device Holder

#### <Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.





Report No. : FA971613

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

#### <Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.



Mounting Device for Laptops

TEL: 886-3-327-3456 Page 12 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 7. Measurement Procedures

The measurement procedures are as follows:

#### <Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA971613

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

#### <SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

#### 7.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

TEL: 886-3-327-3456 Page 13 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 7.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA971613

## 7.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

|                                                                                                        | ≤ 3 GHz                                                                                                                                                | > 3 GHz                                                                                        |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm                                                                                                                                               | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$                                     |
| Maximum probe angle from probe axis to phantom surface normal at the measurement location              | 30° ± 1°                                                                                                                                               | 20° ± 1°                                                                                       |
|                                                                                                        | $\leq$ 2 GHz: $\leq$ 15 mm<br>2 – 3 GHz: $\leq$ 12 mm                                                                                                  | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$<br>$4 - 6 \text{ GHz:} \le 10 \text{ mm}$               |
| Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$                  | When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test | on, is smaller than the above,<br>must be $\leq$ the corresponding<br>device with at least one |

TEL: 886-3-327-3456 Page 14 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

#### 7.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA971613

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

|                                                                          |              |                                                                                       | ≤ 3 GHz                                                          | > 3 GHz                                                                                                                    |
|--------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Maximum zoom scan s                                                      | spatial reso | lution: Δx <sub>Zoom</sub> , Δy <sub>Zoom</sub>                                       | $\leq$ 2 GHz: $\leq$ 8 mm<br>2 – 3 GHz: $\leq$ 5 mm <sup>*</sup> | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$                                       |
|                                                                          | uniform      | grid: $\Delta z_{Zoom}(n)$                                                            | ≤ 5 mm                                                           | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$<br>$4 - 5 \text{ GHz: } \le 3 \text{ mm}$<br>$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface | graded       | Δz <sub>Zoom</sub> (1): between 1 <sup>st</sup> two points closest to phantom surface | ≤ 4 mm                                                           | 3 – 4 GHz: ≤ 3 mm<br>4 – 5 GHz: ≤ 2.5 mm<br>5 – 6 GHz: ≤ 2 mm                                                              |
|                                                                          |              |                                                                                       | ≤ 1.5·∆z                                                         | Zoom(n-1)                                                                                                                  |
| Minimum zoom scan<br>volume                                              | x, y, z      |                                                                                       | ≥ 30 mm                                                          | 3 – 4 GHz: ≥ 28 mm<br>4 – 5 GHz: ≥ 25 mm<br>5 – 6 GHz: ≥ 22 mm                                                             |

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

## 7.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

## 7.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

TEL: 886-3-327-3456 Page 15 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is  $\leq 1.4 \text{ W/kg}$ ,  $\leq 8 \text{ mm}$ ,  $\leq 7 \text{ mm}$  and  $\leq 5 \text{ mm}$  zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

## 8. Test Equipment List

| Manufacturan  | Name of Equipment               | Type/Model      | Carial Number | Calib         | ration        |
|---------------|---------------------------------|-----------------|---------------|---------------|---------------|
| Manufacturer  | Name of Equipment               | Type/Model      | Serial Number | Last Cal.     | Due Date      |
| SPEAG         | 750MHz System Validation Kit    | D750V3          | 1107          | Mar. 08, 2019 | Mar. 07, 2020 |
| SPEAG         | 835MHz System Validation Kit    | D835V2          | 4d167         | Mar. 08, 2019 | Mar. 07, 2020 |
| SPEAG         | 1900MHz System Validation Kit   | D1900V2         | 5d185         | Mar. 07, 2019 | Mar. 06, 2020 |
| SPEAG         | 2450MHz System Validation Kit   | D2450V2         | 736           | Aug. 31, 2018 | Aug. 30, 2019 |
| SPEAG         | 5GHz System Validation Kit      | D5GHzV2         | 1006          | Sep. 27, 2018 | Sep. 26, 2019 |
| SPEAG         | Data Acquisition Electronics    | DAE3            | 577           | Sep. 19, 2018 | Sep. 18, 2019 |
| SPEAG         | Data Acquisition Electronics    | DAE4            | 778           | May. 21, 2019 | May. 20, 2020 |
| SPEAG         | Data Acquisition Electronics    | DAE4            | 914           | Jun. 20, 2019 | Jun. 19, 2020 |
| SPEAG         | Dosimetric E-Field Probe        | ES3DV3          | 3270          | Sep. 24, 2018 | Sep. 23, 2019 |
| SPEAG         | Dosimetric E-Field Probe        | EX3DV4          | 3728          | Jan. 15, 2019 | Jan. 14, 2020 |
| SPEAG         | Dosimetric E-Field Probe        | EX3DV4          | 7515          | Oct. 03, 2018 | Oct. 02, 2019 |
| RCPTWN        | Thermometer                     | HTC-1           | TM685-1       | Nov. 12, 2018 | Nov. 11, 2019 |
| RCPTWN        | Thermometer                     | HTC-1           | TM560-2       | Nov. 12, 2018 | Nov. 11, 2019 |
| Anritsu       | Radio Communication Analyzer    | MT8821C         | 6201341950    | Apr. 21, 2019 | Apr. 20, 2020 |
| Agilent       | Wireless Communication Test Set | E5515C          | MY50267236    | Apr. 01, 2019 | Mar. 31, 2020 |
| R&S           | BT Base Station                 | CBT32           | 100522        | Mar. 18, 2019 | Mar. 17, 2020 |
| SPEAG         | Device Holder                   | N/A             | N/A           | N/A           | N/A           |
| R&S           | Signal Generator                | SMA100A         | 101091        | Jul. 03, 2019 | Jul. 02, 2020 |
| Agilent       | ENA Network Analyzer            | E5071C          | MY46104758    | Sep. 19, 2018 | Sep. 18, 2019 |
| SPEAG         | Dielectric Probe Kit            | DAK-3.5         | 1126          | Sep. 19, 2018 | Sep. 18, 2019 |
| LINE SEIKI    | Digital Thermometer             | DTM3000-spezial | 2942          | Dec. 07, 2018 | Dec. 06, 2019 |
| Anritsu       | Power Meter                     | ML2495A         | 1218006       | Oct. 08, 2018 | Oct. 07, 2019 |
| Anritsu       | Power Sensor                    | MA2411B         | 1207363       | Oct. 08, 2018 | Oct. 07, 2019 |
| Anritsu       | Power Meter                     | ML2495A         | 1419002       | May. 29, 2019 | May. 28, 2020 |
| Anritsu       | Power Sensor                    | MA2411B         | 1339124       | May. 29, 2019 | May. 28, 2020 |
| Anritsu       | Spectrum Analyzer               | MS2830A         | 6201396378    | Jun. 27, 2019 | Jun. 26, 2020 |
| Mini-Circuits | Power Amplifier                 | ZVE-8G+         | 070501814     | Oct. 08, 2018 | Oct. 07, 2019 |
| Mini-Circuits | Power Amplifier                 | ZHL-42W+        | 715701915     | May. 10, 2019 | May. 09, 2020 |
| ATM           | Dual Directional Coupler        | C122H-10        | P610410z-02   | No            | te 1          |
| Woken         | Attenuator 1                    | WK0602-XX       | N/A           | No            | te 1          |
| PE            | Attenuator 2                    | PE7005-10       | N/A           | No            | te 1          |
| PE            | Attenuator 3                    | PE7005- 3       | N/A           | No            | te 1          |

**Report No. : FA971613** 

#### **General Note:**

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

TEL: 886-3-327-3456 Page 16 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 9. System Verification

## 9.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2.







**Report No. : FA971613** 

Fig 10.2 Photo of Liquid Height for Body SAR

TEL: 886-3-327-3456 Page 17 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 9.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

**Report No. : FA971613** 

| Frequency<br>(MHz) | Water<br>(%) | Sugar<br>(%) | Cellulose<br>(%) | Salt<br>(%) | Preventol<br>(%) | DGBE<br>(%) | Conductivity<br>(σ) | Permittivity<br>(εr) |
|--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------|
| 750                | 41.1         | 57.0         | 0.2              | 1.4         | 0.2              | 0           | 0.89                | 41.9                 |
| 835                | 40.3         | 57.9         | 0.2              | 1.4         | 0.2              | 0           | 0.90                | 41.5                 |
| 900                | 40.3         | 57.9         | 0.2              | 1.4         | 0.2              | 0           | 0.97                | 41.5                 |
| 1800, 1900, 2000   | 55.2         | 0            | 0                | 0.3         | 0                | 44.5        | 1.40                | 40.0                 |
| 2450               | 55.0         | 0            | 0                | 0           | 0                | 45.0        | 1.80                | 39.2                 |
| 2600               | 54.8         | 0            | 0                | 0.1         | 0                | 45.1        | 1.96                | 39.0                 |

Simulating Liquid for 5GHz, Manufactured by SPEAG

| Ingredients        | (% by weight) |
|--------------------|---------------|
| Water              | 64~78%        |
| Mineral oil        | 11~18%        |
| Emulsifiers        | 9~15%         |
| Additives and Salt | 2~3%          |

#### <Tissue Dielectric Parameter Check Results>

| 1110000            | Dicicciii              | o i ai ai i i o c   | <u> </u>                          | Nesults/                   |                                          |                  |                                |           |           |
|--------------------|------------------------|---------------------|-----------------------------------|----------------------------|------------------------------------------|------------------|--------------------------------|-----------|-----------|
| Frequency<br>(MHz) | Liquid<br>Temp.<br>(℃) | Conductivity<br>(σ) | Permittivity<br>(ε <sub>r</sub> ) | Conductivity<br>Target (σ) | Permittivity<br>Target (ε <sub>r</sub> ) | Delta (σ)<br>(%) | Delta (ε <sub>r</sub> )<br>(%) | Limit (%) | Date      |
| 750                | 22.6                   | 0.888               | 41.556                            | 0.89                       | 41.90                                    | -0.22            | -0.82                          | ±5        | 2019/7/26 |
| 835                | 22.6                   | 0.871               | 43.154                            | 0.90                       | 41.50                                    | -3.22            | 3.99                           | ±5        | 2019/7/26 |
| 835                | 22.4                   | 0.904               | 42.981                            | 0.90                       | 41.50                                    | 0.44             | 3.57                           | ±5        | 2019/7/29 |
| 1900               | 22.6                   | 1.429               | 39.077                            | 1.40                       | 40.00                                    | 2.07             | -2.31                          | ±5        | 2019/7/30 |
| 2450               | 22.2                   | 1.807               | 39.000                            | 1.80                       | 39.20                                    | 0.39             | -0.51                          | ±5        | 2019/7/31 |
| 5250               | 22.5                   | 4.637               | 36.044                            | 4.71                       | 35.95                                    | -1.55            | 0.26                           | ±5        | 2019/7/30 |
| 5600               | 22.5                   | 4.972               | 35.584                            | 5.07                       | 35.50                                    | -1.93            | 0.24                           | ±5        | 2019/7/30 |

TEL: 886-3-327-3456 Page 18 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

**Report No. : FA971613** 

## 9.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

| Date      | Frequency<br>(MHz) | Input<br>Power<br>(mW) | Dipole<br>S/N     | Probe<br>S/N    | DAE<br>S/N | Measured<br>1g SAR<br>(W/kg) | Targeted<br>1g SAR<br>(W/kg) | Normalized<br>1g SAR<br>(W/kg) | Deviation<br>(%) |
|-----------|--------------------|------------------------|-------------------|-----------------|------------|------------------------------|------------------------------|--------------------------------|------------------|
| 2019/7/26 | 750                | 250                    | D750V3-1107       | EX3DV4 - SN3728 | DAE4 Sn778 | 2.15                         | 8.32                         | 8.6                            | 3.37             |
| 2019/7/26 | 835                | 250                    | D835V2-4d167      | EX3DV4 - SN3728 | DAE4 Sn778 | 2.34                         | 9.50                         | 9.36                           | -1.47            |
| 2019/7/29 | 835                | 250                    | D835V2-4d167      | EX3DV4 - SN3728 | DAE4 Sn778 | 2.40                         | 9.50                         | 9.6                            | 1.05             |
| 2019/7/30 | 1900               | 250                    | D1900V2-5d185     | ES3DV3 - SN3270 | DAE3 Sn577 | 9.85                         | 39.40                        | 39.4                           | 0.00             |
| 2019/7/31 | 2450               | 250                    | D2450V2-736       | EX3DV4 - SN7515 | DAE4 Sn914 | 13.70                        | 52.70                        | 54.8                           | 3.98             |
| 2019/7/30 | 5250               | 100                    | D5GHzV2-1006-5250 | EX3DV4 - SN7515 | DAE4 Sn914 | 7.68                         | 80.70                        | 76.8                           | -4.83            |
| 2019/7/30 | 5600               | 100                    | D5GHzV2-1006-5600 | EX3DV4 - SN7515 | DAE4 Sn914 | 8.58                         | 83.30                        | 85.8                           | 3.00             |

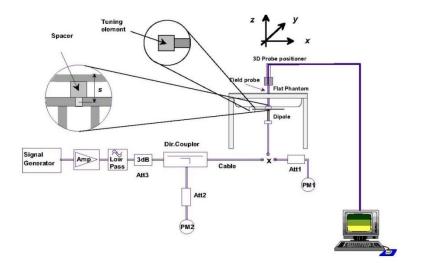





Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

TEL: 886-3-327-3456 Page 19 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## C SAR TEST REPORT Report No. : FA971613

## 10. RF Exposure Positions

## 10.1 Ear and handset reference point

Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

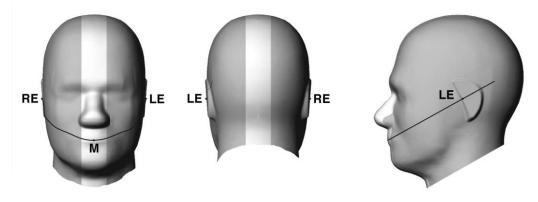



Fig 9.1.1 Front, back, and side views of SAM twin phantom

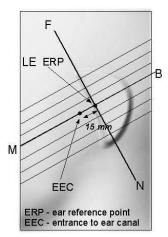



Fig 9.1.2 Close-up side view of phantom showing the ear region.

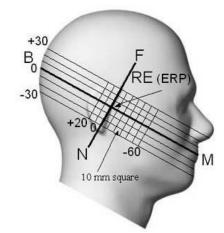



Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

TEL: 886-3-327-3456 Page 20 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 10.2 Definition of the cheek position

- Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output: however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. 6.
- While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report.

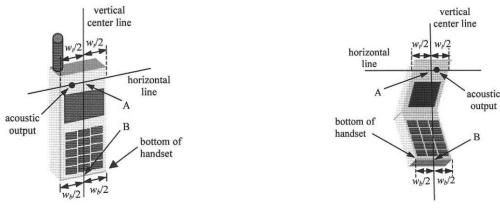



Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case

Fig 9.2.2 Handset vertical and horizontal reference lines-"clam-shell case"

Report No.: FA971613

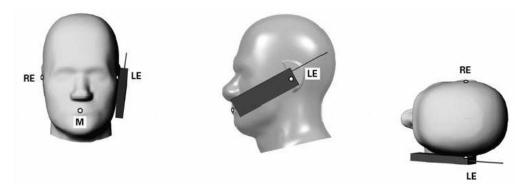



Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.

TEL: 886-3-327-3456 Page 21 of 49 FAX: 886-3-328-4978 Issued Date : Aug. 20, 2019

C SAR TEST REPORT Report No. : FA971613

## 10.3 Definition of the tilt position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- 3. Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point



Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

TEL: 886-3-327-3456 Page 22 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 10.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Report No.: FA971613

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

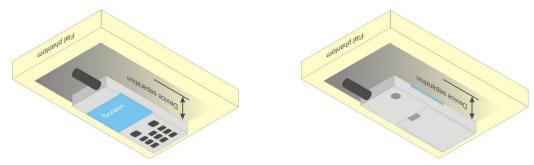



Fig 9.4 Body Worn Position

#### 10.5 Wireless Router

Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W  $\ge$  9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

TEL: 886-3-327-3456 Page 23 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 11. Conducted RF Output Power (Unit: dBm)

#### <GSM Conducted Power>

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

Report No.: FA971613

- 2. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 is considered as the primary mode.
- 3. Other configurations of GSM / GPRS are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode

| GSM850          | Burst Av | erage Pow | ver (dBm) | Tune-up | Frame-Av | erage Pov | ver (dBm) | Tune-up |
|-----------------|----------|-----------|-----------|---------|----------|-----------|-----------|---------|
| TX Channel      | 128      | 189       | 251       | Limit   | 128      | 189       | 251       | Limit   |
| Frequency (MHz) | 824.2    | 836.4     | 848.8     | (dBm)   | 824.2    | 836.4     | 848.8     | (dBm)   |
| GSM 1 Tx slot   | 32.02    | 32.05     | 31.92     | 33.50   | 23.02    | 23.05     | 22.92     | 24.50   |
| GPRS 1 Tx slot  | 32.06    | 32.09     | 31.94     | 33.50   | 23.06    | 23.09     | 22.94     | 24.50   |
| GPRS 2 Tx slots | 30.93    | 30.91     | 30.57     | 31.50   | 24.93    | 24.91     | 24.57     | 25.50   |
| GPRS 3 Tx slots | 29.42    | 29.09     | 29.10     | 29.70   | 25.16    | 24.83     | 24.84     | 25.44   |
| GPRS 4 Tx slots | 27.80    | 27.82     | 27.76     | 28.50   | 24.80    | 24.82     | 24.76     | 25.50   |

| GSM1900         | Burst Ave | erage Pow | er (dBm) | Tune-up | Frame-Av | erage Pov | wer (dBm) | Tune-up |
|-----------------|-----------|-----------|----------|---------|----------|-----------|-----------|---------|
| TX Channel      | 512       | 661       | 810      | Limit   | 512      | 661       | 810       | Limit   |
| Frequency (MHz) | 1850.2    | 1880      | 1909.8   | (dBm)   | 1850.2   | 1880      | 1909.8    | (dBm)   |
| GSM 1 Tx slot   | 29.00     | 28.85     | 28.92    | 30.50   | 20.00    | 19.85     | 19.92     | 21.50   |
| GPRS 1 Tx slot  | 29.01     | 28.87     | 28.94    | 30.50   | 20.01    | 19.87     | 19.94     | 21.50   |
| GPRS 2 Tx slots | 27.21     | 27.08     | 27.25    | 28.50   | 21.21    | 21.08     | 21.25     | 22.50   |
| GPRS 3 Tx slots | 25.36     | 25.19     | 25.30    | 26.70   | 21.10    | 20.93     | 21.04     | 22.44   |
| GPRS 4 Tx slots | 23.89     | 23.79     | 24.00    | 25.50   | 20.89    | 20.79     | 21.00     | 22.50   |

TEL: 886-3-327-3456 Page 24 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## <WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

Report No.: FA971613

A summary of these settings are illustrated below:

#### **HSDPA Setup Configuration:**

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting:
  - i. Set Gain Factors ( $\beta_c$  and  $\beta_d$ ) and parameters were set according to each
  - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
  - iii. Set RMC 12.2Kbps + HSDPA mode.
  - iv. Set Cell Power = -86 dBm
  - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
  - vi. Select HSDPA Uplink Parameters
  - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
  - viii. Set Ack-Nack Repetition Factor to 3
  - ix. Set CQI Feedback Cycle (k) to 4 ms
  - x. Set CQI Repetition Factor to 2
  - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

| Sub-test | βο                | βd                | βd<br>(SF) | βс/βа             | βнs<br>(Note1,<br>Note 2) | CM (dB)<br>(Note 3) | MPR (dB)<br>(Note 3) |
|----------|-------------------|-------------------|------------|-------------------|---------------------------|---------------------|----------------------|
| 1        | 2/15              | 15/15             | 64         | 2/15              | 4/15                      | 0.0                 | 0.0                  |
| 2        | 12/15<br>(Note 4) | 15/15<br>(Note 4) | 64         | 12/15<br>(Note 4) | 24/15                     | 1.0                 | 0.0                  |
| 3        | 15/15             | 8/15              | 64         | 15/8              | 30/15                     | 1.5                 | 0.5                  |
| 4        | 15/15             | 4/15              | 64         | 15/4              | 30/15                     | 1.5                 | 0.5                  |

- Note 1:  $\triangle_{ACK}$ ,  $\triangle_{NACK}$  and  $\triangle_{CQI} = 30/15$  with  $\beta_{hs} = 30/15 * \beta_c$ .
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA,  $\triangle$ ACK and  $\triangle$ NACK = 30/15 with  $\beta_{hs}$  = 30/15 \*  $\beta_c$ , and  $\triangle$ CQI = 24/15 with  $\beta_{hs}$  = 24/15 \*  $\beta_c$ .
- Note 3: CM = 1 for  $\beta_{\text{e}}/\beta_{\text{d}}$  =12/15,  $\beta_{\text{hs}}/\beta_{\text{e}}$ =24/15. For all other combinations of DPDCH, DPCCH and HSDPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the  $\beta_c/\beta_d$  ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c$  = 11/15 and  $\beta_d$  = 15/15.

Setup Configuration

TEL: 886-3-327-3456 Page 25 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## FCC SAR TEST REPORT

#### **HSUPA Setup Configuration:**

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting \*:
  - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
  - ii. Set the Gain Factors ( $\beta_c$  and  $\beta_d$ ) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No.: FA971613

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

| Sub-<br>test | βα                | βd                   | β <sub>d</sub><br>(SF) | βс/βа                | βнs<br>(Note1) | Вес         | β <sub>ed</sub><br>(Note 4)<br>(Note 5)              | β <sub>ed</sub><br>(SF) | β <sub>ed</sub><br>(Codes) | CM<br>(dB)<br>(Note<br>2) | MPR<br>(dB)<br>(Note<br>2)<br>(Note<br>6) | AG<br>Index<br>(Note<br>5) | E-<br>TFCI |
|--------------|-------------------|----------------------|------------------------|----------------------|----------------|-------------|------------------------------------------------------|-------------------------|----------------------------|---------------------------|-------------------------------------------|----------------------------|------------|
| 1            | 11/15<br>(Note 3) | 15/15<br>(Note<br>3) | 64                     | 11/15<br>(Note<br>3) | 22/15          | 209/2<br>25 | 1309/225                                             | 4                       | 1                          | 1.0                       | 0.0                                       | 20                         | 75         |
| 2            | 6/15              | 15/15                | 64                     | 6/15                 | 12/15          | 12/15       | 94/75                                                | 4                       | 1                          | 3.0                       | 2.0                                       | 12                         | 67         |
| 3            | 15/15             | 9/15                 | 64                     | 15/9                 | 30/15          | 30/15       | β <sub>ed</sub> 1: 47/15<br>β <sub>ed</sub> 2: 47/15 | 4                       | 2                          | 2.0                       | 1.0                                       | 15                         | 92         |
| 4            | 2/15              | 15/15                | 64                     | 2/15                 | 4/15           | 2/15        | 56/75                                                | 4                       | 1                          | 3.0                       | 2.0                                       | 17                         | 71         |
| 5            | 15/15             | 0                    | -                      | -                    | 5/15           | 5/15        | 47/15                                                | 4                       | 1                          | 1.0                       | 0.0                                       | 12                         | 67         |

- Note 1: For sub-test 1 to 4,  $\Delta_{\text{NACK}}$ ,  $\Delta_{\text{NACK}}$  and  $\Delta_{\text{CQI}}$  = 30/15 with  $\beta_{hs}$  = 30/15 \*  $\beta_c$  . For sub-test 5,  $\Delta_{\text{ACK}}$ ,  $\Delta_{\text{NACK}}$  and  $\Delta_{\text{CQI}}$  = 5/15 with  $\beta_{hs}$  = 5/15 \*  $\beta_c$  .
- Note 2: CM = 1 for  $\beta_c/\beta_d$  =12/15,  $\beta_{he}/\beta_c$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β<sub>d</sub>/β<sub>d</sub> ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β<sub>c</sub> = 10/15 and β<sub>d</sub> = 15/15.
- Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 5: βed can not be set directly; it is set by Absolute Grant Value.
- Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

**Setup Configuration** 

TEL: 886-3-327-3456 Page 26 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

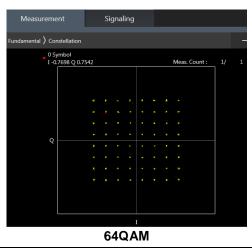
#### < WCDMA Conducted Power>

#### **General Note:**

1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

Report No. : FA971613

2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2kbps or when the highest reported SAR of the RMC12.2kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA, and according to the following RF output power, the output power results of the secondary modes (HSUPA, HSDPA) are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA.


|             | Band            |       | WCDMA V |       |                  |
|-------------|-----------------|-------|---------|-------|------------------|
| T.          | X Channel       | 4132  | 4182    | 4233  | Tune-up<br>Limit |
| R           | x Channel       | 4357  | 4407    | 4458  | (dBm)            |
| Fred        | juency (MHz)    | 826.4 | 836.4   | 846.6 |                  |
| 3GPP Rel 99 | AMR 12.2Kbps    | 23.78 | 23.87   | 23.92 | 24.50            |
| 3GPP Rel 99 | RMC 12.2Kbps    | 23.79 | 23.87   | 23.94 | 24.50            |
| 3GPP Rel 6  | HSDPA Subtest-1 | 22.81 | 22.87   | 22.97 | 23.50            |
| 3GPP Rel 6  | HSDPA Subtest-2 | 22.87 | 22.88   | 22.96 | 23.50            |
| 3GPP Rel 6  | HSDPA Subtest-3 | 22.35 | 22.38   | 22.49 | 23.00            |
| 3GPP Rel 6  | HSDPA Subtest-4 | 22.32 | 22.39   | 22.47 | 23.00            |
| 3GPP Rel 6  | HSUPA Subtest-1 | 22.85 | 22.90   | 22.88 | 23.50            |
| 3GPP Rel 6  | HSUPA Subtest-2 | 20.85 | 20.92   | 20.87 | 21.50            |
| 3GPP Rel 6  | HSUPA Subtest-3 | 21.87 | 21.93   | 21.87 | 22.50            |
| 3GPP Rel 6  | HSUPA Subtest-4 | 20.82 | 20.89   | 20.93 | 21.50            |
| 3GPP Rel 6  | HSUPA Subtest-5 | 22.90 | 22.90   | 22.90 | 23.50            |

TEL: 886-3-327-3456 Page 27 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## <LTE Conducted Power>

#### **General Note:**

- 1. Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.
- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 8. For LTE B5 / B12 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.
- 9. LTE band 17 SAR test was covered by Band 12; according to April 2015 TCB workshop, SAR test for overlapping LTE bands can be reduced if
  - a. the maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion
  - b. the channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band
- 10. According to 2017 TCB workshop, for 64 QAM and 16 QAM should be verified by checking the signal constellation with a call box to avoid incorrect maximum power levels due to MPR and other requirements associated with signal modulation, and the following figure is taken from the "Fundamental Measurement >> Modulation Analysis >> constellation" mode of the device connect to the MT8821C base station, therefore, the device 64QAM and 16QAM signal modulation are correct.





Report No.: FA971613

TEL: 886-3-327-3456 Page 28 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019



ATE David E

## <LTE Band 5>

| BW [MHz] | Modulation<br>Cha | RB Size  | RB Offset | Low         | Middle      | High        |               |      |
|----------|-------------------|----------|-----------|-------------|-------------|-------------|---------------|------|
| 10       | Chai              |          |           | Ch. / Freq. | Ch. / Freq. | Ch. / Freq. | Tune-up limit | MPR  |
| 10       |                   |          |           | 20450       | 20525       | 20600       | (dBm)         | (dB) |
| 10       | Frequenc          | cy (MHz) |           | 829         | 836.5       | 844         |               |      |
|          | QPSK              | 1        | 0         | 23.03       | 23.18       | 23.14       |               |      |
| 10       | QPSK              | 1        | 25        | 23.05       | 23.13       | 23.17       | 24            | 0    |
| 10       | QPSK              | 1        | 49        | 23.13       | 23.12       | 23.16       |               |      |
| 10       | QPSK              | 25       | 0         | 22.18       | 22.23       | 22.13       |               |      |
| 10       | QPSK              | 25       | 12        | 22.29       | 22.28       | 22.26       | 23            | 1    |
| 10       | QPSK              | 25       | 25        | 22.19       | 22.17       | 22.22       |               | •    |
| 10       | QPSK              | 50       | 0         | 22.15       | 22.25       | 22.10       |               |      |
| 10       | 16QAM             | 1        | 0         | 22.30       | 22.32       | 22.39       |               |      |
| 10       | 16QAM             | 1        | 25        | 22.47       | 22.47       | 22.49       | 23            | 1    |
| 10       | 16QAM             | 1        | 49        | 22.50       | 22.46       | 22.59       |               |      |
| 10       | 16QAM             | 25       | 0         | 21.30       | 21.33       | 21.24       |               |      |
| 10       | 16QAM             | 25       | 12        | 21.41       | 21.27       | 21.39       | 22            | 2    |
| 10       | 16QAM             | 25       | 25        | 21.30       | 21.18       | 21.43       | 22            | 2    |
| 10       | 16QAM             | 50       | 0         | 21.28       | 21.25       | 21.21       |               |      |
| 10       | 64QAM             | 1        | 0         | 21.33       | 21.40       | 21.37       |               |      |
| 10       | 64QAM             | 1        | 25        | 21.39       | 21.49       | 21.50       | 22            | 2    |
| 10       | 64QAM             | 1        | 49        | 21.50       | 21.39       | 21.49       |               |      |
| 10       | 64QAM             | 25       | 0         | 20.33       | 20.32       | 20.25       |               |      |
| 10       | 64QAM             | 25       | 12        | 20.35       | 20.34       | 20.44       | 24            | 2    |
| 10       | 64QAM             | 25       | 25        | 20.38       | 20.33       | 20.40       | 21            | 3    |
| 10       | 64QAM             | 50       | 0         | 20.36       | 20.28       | 20.31       |               |      |
|          | Chai              | nnel     |           | 20425       | 20525       | 20625       | Tune-up limit | MPR  |
| 1        | Frequenc          | cy (MHz) |           | 826.5       | 836.5       | 846.5       | (dBm)         | (dB) |
| 5        | QPSK              | 1        | 0         | 23.10       | 23.20       | 23.29       |               |      |
| 5        | QPSK              | 1        | 12        | 23.00       | 23.18       | 23.18       | 24            | 0    |
| 5        | QPSK              | 1        | 24        | 23.19       | 23.04       | 23.28       |               |      |
| 5        | QPSK              | 12       | 0         | 22.12       | 22.27       | 22.12       |               |      |
| 5        | QPSK              | 12       | 7         | 22.22       | 22.12       | 22.27       | 20            |      |
| 5        | QPSK              | 12       | 13        | 22.26       | 22.18       | 22.21       | 23            | 1    |
| 5        | QPSK              | 25       | 0         | 22.21       | 22.13       | 22.27       |               |      |
| 5        | 16QAM             | 1        | 0         | 22.50       | 22.41       | 22.58       |               |      |
| 5        | 16QAM             | 1        | 12        | 22.36       | 22.48       | 22.60       | 23            | 1    |
| 5        | 16QAM             | 1        | 24        | 22.46       | 22.47       | 22.58       |               |      |
| 5        | 16QAM             | 12       | 0         | 21.24       | 21.30       | 21.39       |               |      |
| 5        | 16QAM             | 12       | 7         | 21.25       | 21.24       | 21.29       | 00            | _    |
| 5        | 16QAM             | 12       | 13        | 21.25       | 21.30       | 21.38       | 22            | 2    |
| 5        | 16QAM             | 25       | 0         | 21.27       | 21.24       | 21.39       |               |      |
| 5        | 64QAM             | 1        | 0         | 21.34       | 21.40       | 21.52       |               |      |
| 5        | 64QAM             | 1        | 12        | 21.30       | 21.40       | 21.48       | 22            | 2    |
| 5        | 64QAM             | 1        | 24        | 21.33       | 21.28       | 21.59       |               |      |
| 5        | 64QAM             | 12       | 0         | 20.35       | 20.34       | 20.38       |               |      |
| 5        | 64QAM             | 12       | 7         | 20.35       | 20.31       | 20.40       |               |      |
| 5        | 64QAM             | 12       | 13        | 20.36       | 20.33       | 20.45       | 21            | 3    |
| 5        | 64QAM             | 25       | 0         | 20.35       | 20.28       | 20.31       |               |      |
|          | Cha               |          |           | 20415       | 20525       | 20635       | Tune-up limit | MPR  |
|          |                   |          |           | 825.5       | 836.5       | 847.5       | (dBm)         | (dB) |
|          | Frequenc          |          |           |             |             | 23.24       | , ,           |      |
|          | Frequenc          | 1        | _0        | 23.16       | 7.5 UD      |             |               |      |
| 3        | QPSK              | 1        | 0         | 23.16       | 23.06       |             | 24            | 0    |
| 3 3      | QPSK<br>QPSK      | 1        | 8         | 22.94       | 23.20       | 23.12       | 24            | 0    |
| 3        | QPSK              | 1        |           |             |             |             | 24            | 0    |

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 181113 Page 29 of 49 Issued Date : Aug. 20, 2019

Report No. : FA971613



| 3   | QPSK    | 8        | 7  | 22.12 | 22.21 | 22.21 |               |      |
|-----|---------|----------|----|-------|-------|-------|---------------|------|
| 3   | QPSK    | 15       | 0  | 22.14 | 22.07 | 22.19 |               |      |
| 3   | 16QAM   | 1        | 0  | 22.35 | 22.28 | 22.42 |               |      |
| 3   | 16QAM   | 1        | 8  | 22.30 | 22.35 | 22.43 | 23            | 1    |
| 3   | 16QAM   | 1        | 14 | 22.45 | 22.43 | 22.50 |               |      |
| 3   | 16QAM   | 8        | 0  | 21.13 | 21.20 | 21.37 |               |      |
| 3   | 16QAM   | 8        | 4  | 21.24 | 21.32 | 21.32 | 20            | 2    |
| 3   | 16QAM   | 8        | 7  | 21.25 | 21.28 | 21.16 | - 22          | 2    |
| 3   | 16QAM   | 15       | 0  | 21.24 | 21.19 | 21.25 |               |      |
| 3   | 64QAM   | 1        | 0  | 21.27 | 21.36 | 21.46 |               |      |
| 3   | 64QAM   | 1        | 8  | 21.19 | 21.40 | 21.48 | 22            | 2    |
| 3   | 64QAM   | 1        | 14 | 21.24 | 21.20 | 21.42 |               |      |
| 3   | 64QAM   | 8        | 0  | 20.35 | 20.26 | 20.28 |               |      |
| 3   | 64QAM   | 8        | 4  | 20.34 | 20.33 | 20.41 | 21            | 3    |
| 3   | 64QAM   | 8        | 7  | 20.29 | 20.22 | 20.29 |               |      |
| 3   | 64QAM   | 15       | 0  | 20.34 | 20.21 | 20.34 |               |      |
|     | Cha     | nnel     |    | 20407 | 20525 | 20643 | Tune-up limit | MPR  |
|     | Frequen | cy (MHz) |    | 824.7 | 836.5 | 848.3 | (dBm)         | (dB) |
| 1.4 | QPSK    | 1        | 0  | 22.98 | 23.09 | 23.07 |               | 0    |
| 1.4 | QPSK    | 1        | 3  | 23.00 | 22.97 | 23.06 |               |      |
| 1.4 | QPSK    | 1        | 5  | 22.89 | 23.11 | 23.09 | 24            |      |
| 1.4 | QPSK    | 3        | 0  | 23.11 | 23.00 | 23.02 | 24            | O    |
| 1.4 | QPSK    | 3        | 1  | 23.10 | 23.09 | 23.00 |               |      |
| 1.4 | QPSK    | 3        | 3  | 23.16 | 22.92 | 22.99 |               |      |
| 1.4 | QPSK    | 6        | 0  | 21.92 | 22.18 | 22.01 | 23            | 1    |
| 1.4 | 16QAM   | 1        | 0  | 22.14 | 21.89 | 21.94 |               |      |
| 1.4 | 16QAM   | 1        | 3  | 22.02 | 21.88 | 22.19 |               |      |
| 1.4 | 16QAM   | 1        | 5  | 22.00 | 21.95 | 22.06 | 23            | 1    |
| 1.4 | 16QAM   | 3        | 0  | 22.12 | 21.97 | 22.15 | 20            | •    |
| 1.4 | 16QAM   | 3        | 1  | 22.03 | 22.01 | 22.14 |               |      |
| 1.4 | 16QAM   | 3        | 3  | 22.01 | 21.99 | 22.04 |               |      |
| 1.4 | 16QAM   | 6        | 0  | 21.17 | 21.02 | 21.14 | 22            | 2    |
| 1.4 | 64QAM   | 1        | 0  | 21.09 | 20.95 | 21.07 |               |      |
| 1.4 | 64QAM   | 1        | 3  | 21.19 | 20.98 | 21.04 |               |      |
| 1.4 | 64QAM   | 1        | 5  | 21.04 | 20.90 | 21.13 | 22            | 2    |
| 1.4 | 64QAM   | 3        | 0  | 21.13 | 21.08 | 21.12 |               | _    |
| 1.4 | 64QAM   | 3        | 1  | 21.19 | 20.89 | 21.11 |               |      |
| 1.4 | 64QAM   | 3        | 3  | 20.95 | 21.13 | 21.09 |               |      |
| 1.4 | 64QAM   | 6        | 0  | 20.17 | 20.05 | 20.27 | 21            | 3    |

Report No. : FA971613

TEL: 886-3-327-3456 Page 30 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019



Report No. : FA971613

## <LTE Band 12>

| BW [MHz]                                  | Modulation                                                           | RB Size                                                             | RB Offset                               | Power<br>Low<br>Ch. / Freq.                                                                              | Power<br>Middle<br>Ch. / Freq.                                                                           | Power<br>High<br>Ch. / Freq.                                                                             | Tune-up limit          | MPR              |
|-------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|------------------|
|                                           | Cha                                                                  | nnel                                                                |                                         | 23060                                                                                                    | 23095                                                                                                    | 23130                                                                                                    | (dBm)                  | (dB)             |
|                                           | Frequenc                                                             | cy (MHz)                                                            |                                         | 704                                                                                                      | 707.5                                                                                                    | 711                                                                                                      | 1                      |                  |
| 10                                        | QPSK                                                                 | 1                                                                   | 0                                       | 23.05                                                                                                    | 22.96                                                                                                    | 23.08                                                                                                    |                        |                  |
| 10                                        | QPSK                                                                 | 1                                                                   | 25                                      | 23.16                                                                                                    | 23.08                                                                                                    | 23.17                                                                                                    | 24                     | 0                |
| 10                                        | QPSK                                                                 | 1                                                                   | 49                                      | 23.18                                                                                                    | 23.09                                                                                                    | 23.10                                                                                                    |                        |                  |
| 10                                        | QPSK                                                                 | 25                                                                  | 0                                       | 22.20                                                                                                    | 22.08                                                                                                    | 22.20                                                                                                    |                        |                  |
| 10                                        | QPSK                                                                 | 25                                                                  | 12                                      | 22.21                                                                                                    | 22.12                                                                                                    | 22.21                                                                                                    | 1                      |                  |
| 10                                        | QPSK                                                                 | 25                                                                  | 25                                      | 22.12                                                                                                    | 22.11                                                                                                    | 22.10                                                                                                    | 23                     | 1                |
| 10                                        | QPSK                                                                 | 50                                                                  | 0                                       | 22.22                                                                                                    | 22.11                                                                                                    | 22.14                                                                                                    |                        |                  |
| 10                                        | 16QAM                                                                | 1                                                                   | 0                                       | 22.45                                                                                                    | 22.34                                                                                                    | 22.47                                                                                                    |                        |                  |
| 10                                        | 16QAM                                                                | 1                                                                   | 25                                      | 22.49                                                                                                    | 22.45                                                                                                    | 22.48                                                                                                    | 23                     | 1                |
| 10                                        | 16QAM                                                                | 1                                                                   | 49                                      | 22.48                                                                                                    | 22.54                                                                                                    | 22.47                                                                                                    |                        |                  |
| 10                                        | 16QAM                                                                | 25                                                                  | 0                                       | 21.31                                                                                                    | 21.32                                                                                                    | 21.30                                                                                                    |                        |                  |
| 10                                        | 16QAM                                                                | 25                                                                  | 12                                      | 21.32                                                                                                    | 21.27                                                                                                    | 21.25                                                                                                    |                        |                  |
| 10                                        | 16QAM                                                                | 25                                                                  | 25                                      | 21.28                                                                                                    | 21.22                                                                                                    | 21.28                                                                                                    | 22                     | 2                |
| 10                                        | 16QAM                                                                | 50                                                                  | 0                                       | 21.26                                                                                                    | 21.26                                                                                                    | 21.21                                                                                                    |                        |                  |
| 10                                        | 64QAM                                                                | 1                                                                   | 0                                       | 21.30                                                                                                    | 21.38                                                                                                    | 21.40                                                                                                    |                        |                  |
| 10                                        | 64QAM                                                                | 1                                                                   | 25                                      | 21.48                                                                                                    | 21.42                                                                                                    | 21.33                                                                                                    | 22                     | 2                |
| 10                                        | 64QAM                                                                | 1                                                                   | 49                                      | 21.46                                                                                                    | 21.37                                                                                                    | 21.43                                                                                                    |                        |                  |
| 10                                        | 64QAM                                                                | 25                                                                  | 0                                       | 20.27                                                                                                    | 20.28                                                                                                    | 20.31                                                                                                    |                        |                  |
| 10                                        | 64QAM                                                                | 25                                                                  | 12                                      | 20.28                                                                                                    | 20.36                                                                                                    | 20.28                                                                                                    |                        |                  |
| 10                                        | 64QAM                                                                | 25                                                                  | 25                                      | 20.31                                                                                                    | 20.20                                                                                                    | 20.35                                                                                                    | 21                     | 3                |
| 10                                        | 64QAM                                                                | 50                                                                  | 0                                       | 20.27                                                                                                    | 20.20                                                                                                    | 20.23                                                                                                    |                        |                  |
|                                           | Cha                                                                  |                                                                     | J                                       | 23035                                                                                                    | 23095                                                                                                    | 23155                                                                                                    | Tune-up limit          | MPR              |
| Frequency (MHz)                           |                                                                      | 701.5                                                               | 707.5                                   | 713.5                                                                                                    | (dBm)                                                                                                    | (dB)                                                                                                     |                        |                  |
| 5                                         | QPSK                                                                 | 1                                                                   | 0                                       | 23.16                                                                                                    | 23.05                                                                                                    | 23.05                                                                                                    | 24                     | <u> </u>         |
| 5                                         | QPSK                                                                 | 1                                                                   | 12                                      | 23.06                                                                                                    | 23.11                                                                                                    | 23.19                                                                                                    |                        | 0                |
| 5                                         | QPSK                                                                 | 1                                                                   | 24                                      | 23.22                                                                                                    | 23.02                                                                                                    | 23.12                                                                                                    |                        |                  |
| 5                                         | QPSK                                                                 | 12                                                                  | 0                                       | 22.12                                                                                                    | 22.15                                                                                                    | 22.09                                                                                                    |                        |                  |
| 5                                         | QPSK                                                                 | 12                                                                  | 7                                       | 22.21                                                                                                    | 22.12                                                                                                    | 22.18                                                                                                    | 1                      |                  |
| 5                                         | QPSK                                                                 | 12                                                                  | 13                                      | 22.27                                                                                                    | 22.19                                                                                                    | 22.17                                                                                                    | 23                     | 1                |
| 5                                         | QPSK                                                                 | 25                                                                  | 0                                       | 22.25                                                                                                    | 22.13                                                                                                    | 22.05                                                                                                    | 1                      |                  |
| 5                                         | 16QAM                                                                | 1                                                                   | 0                                       | 22.50                                                                                                    | 22.32                                                                                                    | 22.37                                                                                                    |                        |                  |
| 5                                         | 16QAM                                                                | 1                                                                   | 12                                      | 22.45                                                                                                    | 22.44                                                                                                    | 22.56                                                                                                    | 23                     | 1                |
| 5                                         | 16QAM                                                                | 1                                                                   | 24                                      | 22.56                                                                                                    | 22.42                                                                                                    | 22.34                                                                                                    | I                      |                  |
| 5                                         | 16QAM                                                                | 12                                                                  | 0                                       | 21.31                                                                                                    | 21.30                                                                                                    | 21.22                                                                                                    |                        |                  |
| 5                                         | 16QAM                                                                | 12                                                                  | 7                                       | 21.31                                                                                                    | 21.33                                                                                                    | 21.29                                                                                                    | 1                      |                  |
|                                           | . 0 0,7 1111                                                         |                                                                     | ,                                       |                                                                                                          |                                                                                                          |                                                                                                          | 22                     | 2                |
| 5                                         | 16QAM                                                                | 12                                                                  | 13                                      | 21.41                                                                                                    | 21.20                                                                                                    | 21.31                                                                                                    |                        |                  |
| 5<br>5                                    | 16QAM<br>16QAM                                                       | 12<br>25                                                            | 13<br>0                                 | 21.41<br>21.38                                                                                           | 21.20<br>21.25                                                                                           | 21.31                                                                                                    |                        |                  |
| 5                                         | 16QAM                                                                | 25                                                                  | 0                                       | 21.38                                                                                                    | 21.25                                                                                                    | 21.09                                                                                                    |                        |                  |
| 5<br>5                                    | 16QAM<br>64QAM                                                       | 25<br>1                                                             | 0                                       | 21.38<br>21.32                                                                                           | 21.25<br>21.37                                                                                           | 21.09<br>21.35                                                                                           | 22                     | 2                |
| 5<br>5<br>5                               | 16QAM<br>64QAM<br>64QAM                                              | 25<br>1<br>1                                                        | 0<br>0<br>12                            | 21.38<br>21.32<br>21.37                                                                                  | 21.25<br>21.37<br>21.38                                                                                  | 21.09<br>21.35<br>21.45                                                                                  | 22                     | 2                |
| 5<br>5<br>5<br>5                          | 16QAM<br>64QAM<br>64QAM<br>64QAM                                     | 25<br>1<br>1<br>1                                                   | 0<br>0<br>12<br>24                      | 21.38<br>21.32<br>21.37<br>21.61                                                                         | 21.25<br>21.37<br>21.38<br>21.43                                                                         | 21.09<br>21.35<br>21.45<br>21.39                                                                         | 22                     | 2                |
| 5<br>5<br>5<br>5<br>5                     | 16QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM                            | 25<br>1<br>1<br>1<br>1                                              | 0<br>0<br>12<br>24<br>0                 | 21.38<br>21.32<br>21.37<br>21.61<br>20.37                                                                | 21.25<br>21.37<br>21.38<br>21.43<br>20.35                                                                | 21.09<br>21.35<br>21.45<br>21.39<br>20.31                                                                | -                      | 2                |
| 5<br>5<br>5<br>5<br>5                     | 16QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM                   | 25<br>1<br>1<br>1<br>1<br>12<br>12                                  | 0<br>0<br>12<br>24<br>0<br>7            | 21.38<br>21.32<br>21.37<br>21.61<br>20.37<br>20.47                                                       | 21.25<br>21.37<br>21.38<br>21.43<br>20.35<br>20.33                                                       | 21.09<br>21.35<br>21.45<br>21.39<br>20.31<br>20.33                                                       | 22                     | 2                |
| 5<br>5<br>5<br>5<br>5<br>5<br>5           | 16QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM          | 25<br>1<br>1<br>1<br>1<br>12<br>12<br>12                            | 0<br>0<br>12<br>24<br>0<br>7            | 21.38<br>21.32<br>21.37<br>21.61<br>20.37<br>20.47<br>20.52                                              | 21.25<br>21.37<br>21.38<br>21.43<br>20.35<br>20.33<br>20.26                                              | 21.09<br>21.35<br>21.45<br>21.39<br>20.31<br>20.33<br>20.30                                              | -                      |                  |
| 5<br>5<br>5<br>5<br>5                     | 16QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM | 25<br>1<br>1<br>1<br>1<br>12<br>12<br>12<br>12<br>25                | 0<br>0<br>12<br>24<br>0<br>7            | 21.38<br>21.32<br>21.37<br>21.61<br>20.37<br>20.47<br>20.52<br>20.33                                     | 21.25<br>21.37<br>21.38<br>21.43<br>20.35<br>20.33<br>20.26<br>20.22                                     | 21.09<br>21.35<br>21.45<br>21.39<br>20.31<br>20.33<br>20.30<br>20.20                                     | 21                     | 3                |
| 5<br>5<br>5<br>5<br>5<br>5<br>5           | 16QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM<br>64QAM | 25<br>1<br>1<br>1<br>12<br>12<br>12<br>12<br>25                     | 0<br>0<br>12<br>24<br>0<br>7            | 21.38<br>21.32<br>21.37<br>21.61<br>20.37<br>20.47<br>20.52<br>20.33<br>23025                            | 21.25<br>21.37<br>21.38<br>21.43<br>20.35<br>20.33<br>20.26<br>20.22<br>23095                            | 21.09<br>21.35<br>21.45<br>21.39<br>20.31<br>20.33<br>20.30<br>20.20<br>23165                            | 21 Tune-up limit       | 3<br>MPR         |
| 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5      | 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM                | 25<br>1<br>1<br>1<br>12<br>12<br>12<br>12<br>25<br>nnel             | 0<br>0<br>12<br>24<br>0<br>7<br>13      | 21.38<br>21.32<br>21.37<br>21.61<br>20.37<br>20.47<br>20.52<br>20.33<br>23025<br>700.5                   | 21.25<br>21.37<br>21.38<br>21.43<br>20.35<br>20.33<br>20.26<br>20.22<br>23095<br>707.5                   | 21.09<br>21.35<br>21.45<br>21.39<br>20.31<br>20.33<br>20.30<br>20.20<br>23165<br>714.5                   | 21                     | 3                |
| 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM Chai                 | 25<br>1<br>1<br>1<br>12<br>12<br>12<br>12<br>25<br>nnel<br>cy (MHz) | 0<br>0<br>12<br>24<br>0<br>7<br>13<br>0 | 21.38<br>21.32<br>21.37<br>21.61<br>20.37<br>20.47<br>20.52<br>20.33<br>23025<br>700.5<br>23.00          | 21.25<br>21.37<br>21.38<br>21.43<br>20.35<br>20.33<br>20.26<br>20.22<br>23095<br>707.5<br>23.00          | 21.09<br>21.35<br>21.45<br>21.39<br>20.31<br>20.33<br>20.30<br>20.20<br>23165<br>714.5<br>22.94          | 21 Tune-up limit (dBm) | 3<br>MPR<br>(dB) |
| 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>3 | 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM Chai                 | 25<br>1<br>1<br>1<br>12<br>12<br>12<br>25<br>nnel<br>cy (MHz)<br>1  | 0<br>0<br>12<br>24<br>0<br>7<br>13<br>0 | 21.38<br>21.32<br>21.37<br>21.61<br>20.37<br>20.47<br>20.52<br>20.33<br>23025<br>700.5<br>23.00<br>23.08 | 21.25<br>21.37<br>21.38<br>21.43<br>20.35<br>20.33<br>20.26<br>20.22<br>23095<br>707.5<br>23.00<br>23.04 | 21.09<br>21.35<br>21.45<br>21.39<br>20.31<br>20.33<br>20.30<br>20.20<br>23165<br>714.5<br>22.94<br>23.14 | 21 Tune-up limit       | 3<br>MPR         |
| 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5      | 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM Chai                 | 25<br>1<br>1<br>1<br>12<br>12<br>12<br>12<br>25<br>nnel<br>cy (MHz) | 0<br>0<br>12<br>24<br>0<br>7<br>13<br>0 | 21.38<br>21.32<br>21.37<br>21.61<br>20.37<br>20.47<br>20.52<br>20.33<br>23025<br>700.5<br>23.00          | 21.25<br>21.37<br>21.38<br>21.43<br>20.35<br>20.33<br>20.26<br>20.22<br>23095<br>707.5<br>23.00          | 21.09<br>21.35<br>21.45<br>21.39<br>20.31<br>20.33<br>20.30<br>20.20<br>23165<br>714.5<br>22.94          | 21 Tune-up limit (dBm) | 3<br>MPR<br>(dB) |

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 181113 Page 31 of 49 Issued Date: Aug. 20, 2019



| 3 QPSK 8 7 22.22 22.08 22.20      |               |      |
|-----------------------------------|---------------|------|
|                                   |               |      |
| 3 QPSK 15 0 22.07 22.21 22.00     |               |      |
| 3 16QAM 1 0 22.39 22.34           |               |      |
| 3 16QAM 1 8 22.39 22.46 22.49     | 23            | 1    |
| 3 16QAM 1 14 22.46 22.32 22.32    |               |      |
| 3 16QAM 8 0 21.32 21.24 21.21     |               |      |
| 3 16QAM 8 4 21.19 21.23 21.28     | 22            | 2    |
| 3 16QAM 8 7 21.36 21.20 21.20     | 22            |      |
| 3 16QAM 15 0 21.24 21.17 21.10    |               |      |
| 3 64QAM 1 0 21.41 21.26 21.24     |               |      |
| 3 64QAM 1 8 21.43 21.25 21.45     | 22            | 2    |
| 3 64QAM 1 14 21.37 21.27 21.29    |               |      |
| 3 64QAM 8 0 20.27 20.21 20.33     |               |      |
| 3 64QAM 8 4 20.37 20.25 20.25     | 24            | 3    |
| 3 64QAM 8 7 20.45 20.20 20.29     | 21            |      |
| 3 64QAM 15 0 20.35 20.19 20.21    |               |      |
| Channel 23017 23095 23173 7       | Tune-up limit | MPR  |
| Frequency (MHz) 699.7 707.5 715.3 | (dBm)         | (dB) |
| 1.4 QPSK 1 0 22.89 23.04 22.94    |               |      |
| 1.4 QPSK 1 3 22.96 23.14 23.02    |               | 0    |
| 1.4 QPSK 1 5 22.76 23.16 22.96    | 24            |      |
| 1.4 QPSK 3 0 23.07 22.82 23.09    | 24            |      |
| 1.4 QPSK 3 1 22.97 23.02 23.05    |               |      |
| 1.4 QPSK 3 3 23.15 22.92 22.83    |               |      |
| 1.4 QPSK 6 0 22.13 22.08 22.01    | 23            | 1    |
| 1.4 16QAM 1 0 22.22 22.01 22.02   |               |      |
| 1.4 16QAM 1 3 21.89 22.00 22.23   |               |      |
| 1.4 16QAM 1 5 21.92 21.92 22.05   | 23            | 1    |
| 1.4 16QAM 3 0 22.04 21.89 22.10   | 23            | •    |
| 1.4 16QAM 3 1 22.09 22.10 22.19   |               |      |
| 1.4 16QAM 3 3 21.97 21.96 22.01   |               |      |
| 1.4 16QAM 6 0 21.22 21.04 21.19   | 22            | 2    |
| 1.4 64QAM 1 0 21.13 20.91 21.18   |               |      |
| 1.4 64QAM 1 3 21.16 20.83 21.08   |               |      |
| 1.4 64QAM 1 5 21.21 20.82 21.11   | 22            | 2    |
| 1.4 64QAM 3 0 21.03 20.94 21.07   | 22            | 2    |
| 1.4 64QAM 3 1 21.23 20.77 21.04   |               |      |
| 1.4 64QAM 3 3 21.02 21.05 21.02   |               |      |
| 1.4 64QAM 6 0 20.25 20.03 20.22   | 21            | 3    |

Report No. : FA971613

TEL: 886-3-327-3456 Page 32 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019



| ا ار | TE | Rai | nd | 1 | 7~         |
|------|----|-----|----|---|------------|
| < L  | 16 | ВΝ  | nd |   | <i>ı</i> > |

| BW [MHz] | Modulation | RB Size  | RB Offset | Power<br>Low<br>Ch. / Freq. | Power<br>Middle<br>Ch. / Freq. | Power<br>High<br>Ch. / Freq. | Tune-up limit | MPR  |
|----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------|------|
|          | Cha        | nnel     |           | 23780                       | 23790                          | 23800                        | (dBm)         | (dB) |
|          | Frequenc   | cy (MHz) |           | 709                         | 710                            | 711                          |               |      |
| 10       | QPSK       | 1        | 0         | 22.88                       | 22.89                          | 22.91                        |               |      |
| 10       | QPSK       | 1        | 25        | 22.90                       | 22.87                          | 22.88                        | 24            | 0    |
| 10       | QPSK       | 1        | 49        | 22.98                       | 23.05                          | 22.96                        |               |      |
| 10       | QPSK       | 25       | 0         | 21.92                       | 21.92                          | 21.91                        |               |      |
| 10       | QPSK       | 25       | 12        | 21.93                       | 21.94                          | 21.94                        | 23            | 1    |
| 10       | QPSK       | 25       | 25        | 21.90                       | 21.91                          | 21.92                        |               | •    |
| 10       | QPSK       | 50       | 0         | 21.91                       | 21.90                          | 21.91                        |               |      |
| 10       | 16QAM      | 1        | 0         | 22.26                       | 22.25                          | 22.26                        |               |      |
| 10       | 16QAM      | 1        | 25        | 22.23                       | 22.23                          | 22.25                        | 23            | 1    |
| 10       | 16QAM      | 1        | 49        | 22.36                       | 22.30                          | 22.27                        |               |      |
| 10       | 16QAM      | 25       | 0         | 21.02                       | 21.02                          | 21.01                        |               |      |
| 10       | 16QAM      | 25       | 12        | 21.04                       | 21.03                          | 21.04                        | 22            | 2    |
| 10       | 16QAM      | 25       | 25        | 21.01                       | 21.02                          | 21.02                        | 22            | 2    |
| 10       | 16QAM      | 50       | 0         | 21.04                       | 21.04                          | 21.04                        |               |      |
| 10       | 64QAM      | 1        | 0         | 21.20                       | 21.18                          | 21.20                        |               |      |
| 10       | 64QAM      | 1        | 25        | 21.19                       | 21.16                          | 21.17                        | 22            | 2    |
| 10       | 64QAM      | 1        | 49        | 21.27                       | 21.24                          | 21.21                        |               |      |
| 10       | 64QAM      | 25       | 0         | 20.05                       | 20.05                          | 20.04                        |               |      |
| 10       | 64QAM      | 25       | 12        | 20.05                       | 20.06                          | 20.05                        | 21            | 3    |
| 10       | 64QAM      | 25       | 25        | 20.06                       | 20.05                          | 20.04                        | 21            |      |
| 10       | 64QAM      | 50       | 0         | 20.07                       | 20.06                          | 20.06                        |               |      |
|          | Cha        | nnel     |           | 23755                       | 23790                          | 23825                        | Tune-up limit | MPR  |
|          | Frequen    | cy (MHz) |           | 706.5                       | 710                            | 713.5                        | (dBm)         | (dB) |
| 5        | QPSK       | 1        | 0         | 22.91                       | 22.87                          | 22.94                        |               |      |
| 5        | QPSK       | 1        | 12        | 22.89                       | 22.85                          | 23.01                        | 24            | 0    |
| 5        | QPSK       | 1        | 24        | 22.90                       | 22.97                          | 23.03                        |               |      |
| 5        | QPSK       | 12       | 0         | 21.92                       | 21.91                          | 22.00                        |               |      |
| 5        | QPSK       | 12       | 7         | 21.96                       | 21.92                          | 22.11                        | 23            | 1    |
| 5        | QPSK       | 12       | 13        | 21.94                       | 21.89                          | 22.07                        |               | '    |
| 5        | QPSK       | 25       | 0         | 21.91                       | 21.91                          | 22.00                        |               |      |
| 5        | 16QAM      | 1        | 0         | 22.27                       | 22.22                          | 22.33                        |               |      |
| 5        | 16QAM      | 1        | 12        | 22.27                       | 22.21                          | 22.37                        | 23            | 1    |
| 5        | 16QAM      | 1        | 24        | 22.26                       | 22.31                          | 22.30                        |               |      |
| 5        | 16QAM      | 12       | 0         | 21.06                       | 21.01                          | 21.11                        |               |      |
| 5        | 16QAM      | 12       | 7         | 21.08                       | 21.05                          | 21.22                        | 22            | 2    |
| 5        | 16QAM      | 12       | 13        | 21.03                       | 20.99                          | 21.19                        |               | _    |
| 5        | 16QAM      | 25       | 0         | 21.02                       | 21.02                          | 21.10                        |               |      |
| 5        | 64QAM      | 1        | 0         | 21.24                       | 21.19                          | 21.24                        |               |      |
| 5        | 64QAM      | 1        | 12        | 21.19                       | 21.19                          | 21.30                        | 22            | 2    |
| 5        | 64QAM      | 1        | 24        | 21.21                       | 21.29                          | 21.29                        |               |      |
| 5        | 64QAM      | 12       | 0         | 20.10                       | 20.06                          | 20.17                        |               |      |
| 5        | 64QAM      | 12       | 7         | 20.14                       | 20.09                          | 20.28                        | 21            | 3    |
| 5        | 64QAM      | 12       | 13        | 20.10                       | 20.09                          | 20.26                        | <u> </u>      | 3    |
| 5        | 64QAM      | 25       | 0         | 20.05                       | 20.03                          | 20.11                        |               |      |

Report No. : FA971613

TEL: 886-3-327-3456 Page 33 of 49 FAX: 886-3-328-4978 Issued Date : Aug. 20, 2019

#### <WLAN Conducted Power>

#### **General Note:**

1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.

Report No.: FA971613

- 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band
- 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
  - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
  - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
  - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

TEL: 886-3-327-3456 Page 34 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## <2.4GHz WLAN>

|             | Mode                   | Channel | Frequency<br>(MHz) | Average power<br>(dBm) | Tune-Up<br>Limit | Duty Cycle % |
|-------------|------------------------|---------|--------------------|------------------------|------------------|--------------|
|             |                        | 1       | 2412               | 13.90                  | 14.00            |              |
|             | 802.11b 1Mbps          | 6       | 2437               | 13.60                  | 14.00            | 98.92        |
|             |                        | 11      | 2462               | 13.90                  | 14.00            |              |
|             | 802.11g 6Mbps          | 1       | 2412               | 11.80                  | 12.00            | 94.92        |
| 2.4GHz WLAN |                        | 6       | 2437               | 11.60                  | 12.00            |              |
|             |                        | 11      | 2462               | 11.90                  | 12.00            |              |
|             | 802.11n-HT20<br>MCS0   | 1       | 2412               | 11.60                  | 12.00            | 94.39        |
|             |                        | 6       | 2437               | 11.80                  | 12.00            |              |
|             |                        | 11      | 2462               | 11.80                  | 12.00            |              |
|             |                        | 1       | 2412               | 11.60                  | 12.00            |              |
|             | 802.11ac-VHT20<br>MCS0 | 6       | 2437               | 11.90                  | 12.00            | 94.39        |
|             | 300                    | 11      | 2462               | 11.80                  | 12.00            |              |

Report No. : FA971613

## <5GHz WLAN >

|             | Mode                   | Channel | Frequency<br>(MHz) | Average power (dBm) | Tune-Up<br>Limit | Duty Cycle % |
|-------------|------------------------|---------|--------------------|---------------------|------------------|--------------|
|             |                        | 36      | 5180               | 11.70               | 12.00            |              |
|             | 909 11a 6Mbna          | 40      | 5200               | 11.70               | 12.00            | 94.95        |
|             | 802.11a 6Mbps          | 44      | 5220               | 11.80               | 12.00            | 94.95        |
|             |                        | 48      | 5240               | 11.80               | 12.00            |              |
|             |                        | 36      | 5180               | 11.70               | 12.00            |              |
|             | 802.11n-HT20<br>MCS0   | 40      | 5200               | 11.70               | 12.00            | 04.42        |
|             |                        | 44      | 5220               | 11.80               | 12.00            | 94.13        |
| 5.2GHz WLAN |                        | 48      | 5240               | 11.80               | 12.00            |              |
|             | 802.11n-HT40<br>MCS0   | 38      | 5190               | 11.70               | 12.00            | 90.62        |
|             |                        | 46      | 5230               | 11.80               | 12.00            | 89.62        |
|             |                        | 36      | 5180               | 11.80               | 12.00            |              |
|             | 802.11ac-VHT20         | 40      | 5200               | 11.80               | 12.00            | 04.00        |
|             | MCS0                   | 44      | 5220               | 11.90               | 12.00            | 94.88        |
|             |                        | 48      | 5240               | 11.90               | 12.00            |              |
|             | 802.11ac-VHT40         | 38      | 5190               | 11.80               | 12.00            | 00.05        |
|             | MCS0                   | 46      | 5230               | 11.90               | 12.00            | 90.05        |
|             | 802.11ac-VHT80<br>MCS0 | 42      | 5210               | 11.80               | 12.00            | 88.02        |

TEL: 886-3-327-3456 Page 35 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

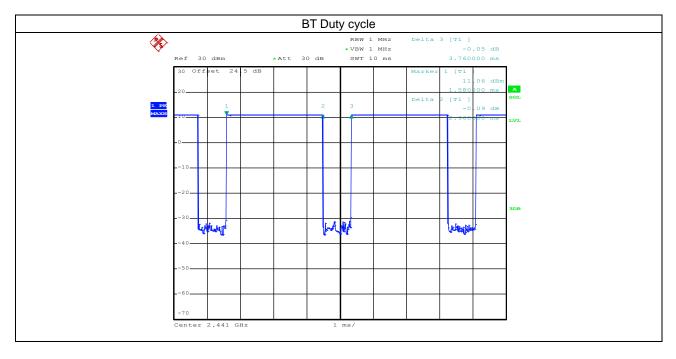
Report No. : FA971613

|             | Mode                   | Channel | Frequency<br>(MHz) | Average power<br>(dBm) | Tune-Up<br>Limit | Duty Cycle % |
|-------------|------------------------|---------|--------------------|------------------------|------------------|--------------|
|             |                        | 52      | 5260               | 11.60                  | 12.00            |              |
|             | 902 11a 6Mbna          | 56      | 5280               | 11.60                  | 12.00            | 94.95        |
|             | 802.11a 6Mbps          | 60      | 5300               | 11.80                  | 12.00            | 94.95        |
|             |                        | 64      | 5320               | 11.60                  | 12.00            |              |
|             |                        | 52      | 5260               | 11.60                  | 12.00            |              |
|             | 802.11n-HT20<br>MCS0   | 56      | 5280               | 11.60                  | 12.00            | 94.13        |
|             |                        | 60      | 5300               | 11.80                  | 12.00            |              |
| 5.3GHz WLAN |                        | 64      | 5320               | 11.60                  | 12.00            |              |
|             | 802.11n-HT40<br>MCS0   | 54      | 5270               | 11.60                  | 12.00            | 89.62        |
|             |                        | 62      | 5310               | 11.80                  | 12.00            | 09.02        |
|             |                        | 52      | 5260               | 11.70                  | 12.00            |              |
|             | 802.11ac-VHT20         | 56      | 5280               | 11.70                  | 12.00            | 94.88        |
|             | MCS0                   | 60      | 5300               | 11.90                  | 12.00            | 94.00        |
|             |                        | 64      | 5320               | 11.70                  | 12.00            |              |
|             | 802.11ac-VHT40         | 54      | 5270               | 11.70                  | 12.00            | 90.05        |
|             | MCS0                   | 62      | 5310               | 11.90                  | 12.00            | 90.05        |
|             | 802.11ac-VHT80<br>MCS0 | 58      | 5290               | 11.60                  | 12.00            | 88.02        |

|             | Mode                   | Channel | Frequency<br>(MHz) | Average power (dBm) | Tune-Up<br>Limit | Duty Cycle % |
|-------------|------------------------|---------|--------------------|---------------------|------------------|--------------|
|             |                        | 100     | 5500               | 11.70               | 12.00            |              |
|             |                        | 116     | 5580               | 11.80               | 12.00            |              |
|             | 802.11a 6Mbps          | 124     | 5620               | 11.70               | 12.00            | 94.95        |
|             |                        | 132     | 5660               | 11.70               | 12.00            |              |
|             |                        | 144     | 5720               | 11.70               | 12.00            |              |
|             |                        | 100     | 5500               | 11.70               | 12.00            |              |
|             |                        | 116     | 5580               | 11.80               | 12.00            |              |
|             | 802.11n-HT20<br>MCS0   | 124     | 5620               | 11.80               | 12.00            | 94.13        |
|             | WCGO                   | 132     | 5660               | 11.80               | 12.00            |              |
|             |                        | 144     | 5720               | 11.70               | 12.00            |              |
|             |                        | 102     | 5510               | 11.60               | 12.00            |              |
|             | 802.11n-HT40<br>MCS0   | 110     | 5550               | 11.50               | 12.00            |              |
| 5.5GHz WLAN |                        | 126     | 5630               | 11.50               | 12.00            | 89.62        |
|             |                        | 134     | 5670               | 11.80               | 12.00            |              |
|             |                        | 142     | 5710               | 11.70               | 12.00            |              |
|             |                        | 100     | 5500               | 11.80               | 12.00            |              |
|             | 000 44 \// 1700        | 116     | 5580               | 11.90               | 12.00            |              |
|             | 802.11ac-VHT20<br>MCS0 | 124     | 5620               | 11.90               | 12.00            | 94.88        |
|             | WCGO                   | 132     | 5660               | 11.90               | 12.00            |              |
|             |                        | 144     | 5720               | 11.80               | 12.00            |              |
|             |                        | 102     | 5510               | 11.70               | 12.00            |              |
|             |                        | 110     | 5550               | 11.60               | 12.00            |              |
|             | 802.11ac-VHT40<br>MCS0 | 126     | 5630               | 11.60               | 12.00            | 90.05        |
|             | IVICOU                 | 134     | 5670               | 11.90               | 12.00            |              |
|             |                        | 142     | 5710               | 11.80               | 12.00            |              |
|             |                        | 106     | 5530               | 11.90               | 12.00            |              |
|             | 802.11ac-VHT80<br>MCS0 | 122     | 5610               | 11.60               | 12.00            | 88.02        |
|             | IVICOU                 | 138     | 5690               | 11.70               | 12.00            |              |

TEL: 886-3-327-3456 Page 36 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

### <2.4GHz Bluetooth>


| Mode     | Channel       | Frequency | Average power (dBm) |       |       |  |  |  |  |
|----------|---------------|-----------|---------------------|-------|-------|--|--|--|--|
| Mode     | Channel       | (MHz)     | 1Mbps               | 2Mbps | 3Mbps |  |  |  |  |
|          | CH 00         | 2402      | 9.81                | 7.85  | 7.87  |  |  |  |  |
| BR / EDR |               |           | 10.52               | 8.10  | 8.10  |  |  |  |  |
|          |               |           | 9.51                | 7.51  | 7.51  |  |  |  |  |
|          | Tune-up Limit |           | 11.5                | 11.5  | 11.5  |  |  |  |  |

**Report No. : FA971613** 

| Mode | Channel       | Frequency | Average power (dBm) |       |  |  |  |
|------|---------------|-----------|---------------------|-------|--|--|--|
| Mode | Gildille      | (MHz)     | 1Mbps               | 2Mbps |  |  |  |
|      | CH 00         | 2402      | 4.80                | 4.70  |  |  |  |
| LE   | CH 19         | 2440      | 5.80                | 5.70  |  |  |  |
|      | CH 39         | 2480      | 5.80                | 5.70  |  |  |  |
|      | Tune-up Limit |           | 6.1                 | 6.1   |  |  |  |

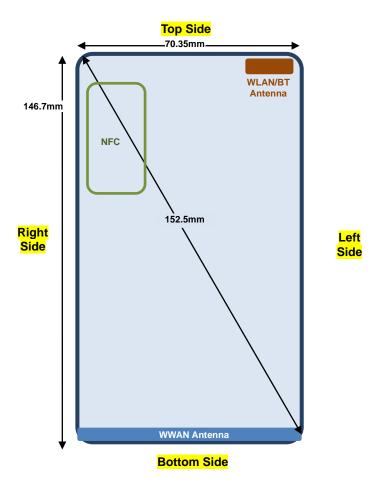
#### **General Note:**

1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps due to its highest average power and duty cycle is 77.13% considered in SAR testing, and the duty cycle would be scaled to theoretical 83.3% in reported SAR calculation.



#### <Test Exclusion for Hotspot and Body-worn>

| Bluetooth Max Power (dBm) | Separation Distance (mm) | Frequency (GHz) | exclusion thresholds |
|---------------------------|--------------------------|-----------------|----------------------|
| 11.5                      | 10                       | 2.48            | 2.23                 |


#### Note:

Per KDB 447498 D01v06, a distance of 10 mm is applied to determine SAR test exclusion. The test exclusion threshold is 2.23 which  $\leq 3$ , SAR testing is not required for hotspot and body-worn condition.

TEL: 886-3-327-3456 Page 37 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

## 12. Antenna Location

#### <Mobile Phone>



**Report No. : FA971613** 

Back View

| Distance of the Antenna to the EUT surface/edge               |                       |        |       |        |        |        |  |  |  |  |  |  |  |
|---------------------------------------------------------------|-----------------------|--------|-------|--------|--------|--------|--|--|--|--|--|--|--|
| Antennas Back Front Top Side Bottom Side Right Side Left Side |                       |        |       |        |        |        |  |  |  |  |  |  |  |
| WWAN Main                                                     | ≤ 25mm                | ≤ 25mm | >25mm | ≤ 25mm | ≤ 25mm | ≤ 25mm |  |  |  |  |  |  |  |
| BT&WLAN                                                       | BT&WLAN ≤ 25mm ≤ 25mm |        |       |        |        |        |  |  |  |  |  |  |  |

| Positions for SAR tests; Hotspot mode |                                                               |     |     |     |     |     |  |  |  |  |  |  |  |  |
|---------------------------------------|---------------------------------------------------------------|-----|-----|-----|-----|-----|--|--|--|--|--|--|--|--|
| Antennas                              | Antennas Back Front Top Side Bottom Side Right Side Left Side |     |     |     |     |     |  |  |  |  |  |  |  |  |
| WWAN Main                             | Yes                                                           | Yes | No  | Yes | Yes | Yes |  |  |  |  |  |  |  |  |
| BT&WLAN                               | Yes                                                           | Yes | Yes | No  | No  | Yes |  |  |  |  |  |  |  |  |

#### **General Note:**

 Referring to KDB 941225 D06 v02r01, when the overall device length and width are ≥ 9cm\*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge

TEL: 886-3-327-3456 Page 38 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

### 13. SAR Test Results

#### **General Note:**

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
  - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA971613

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)\*Tune-up Scaling Factor
- d. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)\* Duty Cycle scaling factor \* Tune-up scaling factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
  - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
  - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
  - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 4. Per KDB 648474 D04v01r03, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required.

#### **GSM Note:**

- 1. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 is considered as the primary mode.
- Other configurations of GSM / GPRS are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode.

#### **UMTS Note:**

- 1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".
- 2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2kbps or when the highest reported SAR of the RMC12.2kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA, and according to the following RF output power, the output power results of the secondary modes (HSUPA, DC-HSDPA) are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA.

TEL: 886-3-327-3456 Page 39 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019



#### FCC SAR TEST REPORT

#### LTE Note:

 Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.

Report No.: FA971613

- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 6. For LTE B12 / B5 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.
- 7. LTE band 17 SAR test was covered by Band 12; according to TCB workshop, SAR test for overlapping LTE bands can be reduced if
  - a. The maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion.
  - b. The channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band.

#### **WLAN Note:**

- 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. Per KDB 248227 D01v02r02, U-NII-1 SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.
- 3. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- 4. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 5. During SAR testing the WLAN transmission was verified using a spectrum analyzer.

TEL: 886-3-327-3456 Page 40 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

# 13.1 Head SAR

# <GSM SAR>

| Plot<br>No. | Band    | Mode              | Test<br>Position | Gap<br>(mm) | Ch. | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|---------|-------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
| 01          | GSM850  | GPRS (4 Tx slots) | Right Cheek      | 0mm         | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | -0.12                  | 0.147                        | 0.172                        |
|             | GSM850  | GPRS (4 Tx slots) | Right Tilted     | 0mm         | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | -0.01                  | 0.050                        | 0.058                        |
|             | GSM850  | GPRS (4 Tx slots) | Left Cheek       | 0mm         | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | -0.07                  | 0.134                        | 0.157                        |
|             | GSM850  | GPRS (4 Tx slots) | Left Tilted      | 0mm         | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | -0.16                  | 0.060                        | 0.070                        |
| 02          | GSM1900 | GPRS (4 Tx slots) | Right Cheek      | 0mm         | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | -0.06                  | 0.058                        | 0.082                        |
|             | GSM1900 | GPRS (4 Tx slots) | Right Tilted     | 0mm         | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | 0.12                   | 0.047                        | 0.066                        |
|             | GSM1900 | GPRS (4 Tx slots) | Left Cheek       | 0mm         | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | 0.16                   | 0.038                        | 0.054                        |
|             | GSM1900 | GPRS (4 Tx slots) | Left Tilted      | 0mm         | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | 0.12                   | 0.045                        | 0.064                        |

**Report No. : FA971613** 

### <WCDMA SAR>

| Plot<br>No. | Band    | Mode         | Test<br>Position | Gap<br>(mm) | Ch.  | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|---------|--------------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
| 03          | WCDMA V | RMC 12.2Kbps | Right Cheek      | 0mm         | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | 0.06                   | 0.135                        | 0.154                        |
|             | WCDMA V | RMC 12.2Kbps | Right Tilted     | 0mm         | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | -0.09                  | 0.045                        | 0.051                        |
|             | WCDMA V | RMC 12.2Kbps | Left Cheek       | 0mm         | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | -0.14                  | 0.115                        | 0.131                        |
|             | WCDMA V | RMC 12.2Kbps | Left Tilted      | 0mm         | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | -0.14                  | 0.040                        | 0.046                        |

### <LTE SAR>

| Plot<br>No. | Band        | BW<br>(MHz) | Modulation | RB<br>Size | RB<br>offset | Test<br>Position | Gap<br>(mm) | Ch.   | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
| 04          | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Right Cheek      | 0mm         | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | -0.1                   | 0.086                        | 0.104                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Right Cheek      | 0mm         | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | 0.03                   | 0.068                        | 0.080                        |
|             | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Right Tilted     | 0mm         | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | -0.12                  | 0.035                        | 0.042                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Right Tilted     | 0mm         | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | 0.04                   | 0.029                        | 0.034                        |
|             | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Left Cheek       | 0mm         | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | -0.11                  | 0.072                        | 0.087                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Left Cheek       | 0mm         | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | 0.07                   | 0.063                        | 0.074                        |
|             | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Left Tilted      | 0mm         | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | 0.15                   | 0.022                        | 0.027                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Left Tilted      | 0mm         | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | -0.16                  | 0.017                        | 0.020                        |
| 05          | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Right Cheek      | 0mm         | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | -0.17                  | 0.056                        | 0.069                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Right Cheek      | 0mm         | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | -0.17                  | 0.041                        | 0.050                        |
|             | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Right Tilted     | 0mm         | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | -0.16                  | 0.034                        | 0.042                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Right Tilted     | 0mm         | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | 0.03                   | 0.026                        | 0.032                        |
|             | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Left Cheek       | 0mm         | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | -0.05                  | 0.050                        | 0.062                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Left Cheek       | 0mm         | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | 0                      | 0.038                        | 0.047                        |
|             | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Left Tilted      | 0mm         | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | -0.1                   | 0.036                        | 0.044                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Left Tilted      | 0mm         | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | 0.06                   | 0.024                        | 0.029                        |

TEL: 886-3-327-3456 Page 41 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

### <WLAN SAR>

| Plot<br>No. | Band       | Mode                | Test<br>Position | Gap<br>(mm) | Ch. | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Cyclo | Duty<br>Cycle<br>Scaling<br>Factor | Drift | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|------------|---------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------------|-------|------------------------------|------------------------------|
| 06          | WLAN2.4GHz | 802.11b 1Mbps       | Right Cheek      | 0mm         | 1   | 2412           | 13.90                     | 14.00                     | 1.023                        | 98.92 | 1.011                              | 0.11  | 0.562                        | 0.581                        |
|             | WLAN2.4GHz | 802.11b 1Mbps       | Right Tilted     | 0mm         | 1   | 2412           | 13.90                     | 14.00                     | 1.023                        | 98.92 | 1.011                              | 0.17  | 0.501                        | 0.518                        |
|             | WLAN2.4GHz | 802.11b 1Mbps       | Left Cheek       | 0mm         | 1   | 2412           | 13.90                     | 14.00                     | 1.023                        | 98.92 | 1.011                              | 0.14  | 0.300                        | 0.310                        |
|             | WLAN2.4GHz | 802.11b 1Mbps       | Left Tilted      | 0mm         | 1   | 2412           | 13.90                     | 14.00                     | 1.023                        | 98.92 | 1.011                              | 0.06  | 0.326                        | 0.337                        |
|             | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Right Cheek      | 0mm         | 58  | 5290           | 11.60                     | 12.00                     | 1.096                        | 88.02 | 1.136                              | 0.18  | 0.245                        | 0.305                        |
| 07          | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Right Tilted     | 0mm         | 58  | 5290           | 11.60                     | 12.00                     | 1.096                        | 88.02 | 1.136                              | 0     | 0.373                        | 0.465                        |
|             | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Left Cheek       | 0mm         | 58  | 5290           | 11.60                     | 12.00                     | 1.096                        | 88.02 | 1.136                              | -0.03 | 0.264                        | 0.329                        |
|             | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Left Tilted      | 0mm         | 58  | 5290           | 11.60                     | 12.00                     | 1.096                        | 88.02 | 1.136                              | 0.01  | 0.159                        | 0.198                        |
| 08          | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Right Cheek      | 0mm         | 106 | 5530           | 11.90                     | 12.00                     | 1.023                        | 88.02 | 1.136                              | 0.11  | 0.499                        | 0.580                        |
|             | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Right Tilted     | 0mm         | 106 | 5530           | 11.90                     | 12.00                     | 1.023                        | 88.02 | 1.136                              | 0.13  | 0.374                        | 0.435                        |
|             | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Left Cheek       | 0mm         | 106 | 5530           | 11.90                     | 12.00                     | 1.023                        | 88.02 | 1.136                              | 0.18  | 0.090                        | 0.105                        |
|             | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Left Tilted      | 0mm         | 106 | 5530           | 11.90                     | 12.00                     | 1.023                        | 88.02 | 1.136                              | 0.12  | 0.085                        | 0.099                        |

**Report No. : FA971613** 

### <Bluetooth SAR>

| Plot<br>No. | Band      | Mode  | Test<br>Position | Gap<br>(mm) | Ch. | Freq.<br>(MHz) | Power | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Cycle |       | Drift | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|-----------|-------|------------------|-------------|-----|----------------|-------|---------------------------|------------------------------|-------|-------|-------|------------------------------|------------------------------|
| 09          | Bluetooth | 1Mbps | Right Cheek      | 0mm         | 39  | 2441           | 10.52 | 11.50                     | 1.253                        | 77.13 | 1.080 | 0.16  | 0.109                        | 0.148                        |
|             | Bluetooth | 1Mbps | Right Tilted     | 0mm         | 39  | 2441           | 10.52 | 11.50                     | 1.253                        | 77.13 | 1.080 | 0.07  | 0.092                        | 0.125                        |
|             | Bluetooth | 1Mbps | Left Cheek       | 0mm         | 39  | 2441           | 10.52 | 11.50                     | 1.253                        | 77.13 | 1.080 | -0.07 | 0.055                        | 0.074                        |
|             | Bluetooth | 1Mbps | Left Tilted      | 0mm         | 39  | 2441           | 10.52 | 11.50                     | 1.253                        | 77.13 | 1.080 | 0.03  | 0.054                        | 0.073                        |

## 13.2 Hotspot SAR

### <GSM SAR>

| Plot<br>No. | Band    | Mode              | Test<br>Position | Gap<br>(mm) | Ch. | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|---------|-------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
|             | GSM850  | GPRS (4 Tx slots) | Front            | 10mm        | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | -0.13                  | 0.205                        | 0.240                        |
|             | GSM850  | GPRS (4 Tx slots) | Back             | 10mm        | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | 0.01                   | 0.190                        | 0.222                        |
|             | GSM850  | GPRS (4 Tx slots) | Left Side        | 10mm        | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | -0.12                  | 0.180                        | 0.211                        |
| 10          | GSM850  | GPRS (4 Tx slots) | Right Side       | 10mm        | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | -0.12                  | 0.317                        | 0.371                        |
|             | GSM850  | GPRS (4 Tx slots) | Bottom Side      | 10mm        | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | -0.05                  | 0.103                        | 0.120                        |
|             | GSM1900 | GPRS (4 Tx slots) | Front            | 10mm        | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | 0.03                   | 0.403                        | 0.569                        |
|             | GSM1900 | GPRS (4 Tx slots) | Back             | 10mm        | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | -0.03                  | 0.204                        | 0.288                        |
|             | GSM1900 | GPRS (4 Tx slots) | Left Side        | 10mm        | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | -0.15                  | 0.086                        | 0.121                        |
|             | GSM1900 | GPRS (4 Tx slots) | Right Side       | 10mm        | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | 0.01                   | 0.434                        | 0.613                        |
| 11          | GSM1900 | GPRS (4 Tx slots) | Bottom Side      | 10mm        | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | -0.12                  | 0.743                        | 1.050                        |
|             | GSM1900 | GPRS (4 Tx slots) | Bottom Side      | 10mm        | 512 | 1850.2         | 23.89                     | 25.50                     | 1.449                        | -0.13                  | 0.647                        | 0.937                        |
|             | GSM1900 | GPRS (4 Tx slots) | Bottom Side      | 10mm        | 661 | 1880           | 23.79                     | 25.50                     | 1.483                        | -0.18                  | 0.614                        | 0.910                        |

TEL: 886-3-327-3456 Page 42 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019



### <WCDMA SAR>

| Plot<br>No. | Band    | Mode         | Test<br>Position | Gap<br>(mm) | Ch.  | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|---------|--------------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
|             | WCDMA V | RMC 12.2Kbps | Front            | 10mm        | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | -0.03                  | 0.155                        | 0.176                        |
|             | WCDMA V | RMC 12.2Kbps | Back             | 10mm        | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | 0.05                   | 0.149                        | 0.170                        |
|             | WCDMA V | RMC 12.2Kbps | Left Side        | 10mm        | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | -0.02                  | 0.118                        | 0.134                        |
| 12          | WCDMA V | RMC 12.2Kbps | Right Side       | 10mm        | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | -0.05                  | 0.225                        | 0.256                        |
|             | WCDMA V | RMC 12.2Kbps | Bottom Side      | 10mm        | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | 0.09                   | 0.086                        | 0.098                        |

Report No. : FA971613

### <LTE SAR>

| Plot<br>No. | Band        | BW<br>(MHz) | Modulation | RB<br>Size | RB<br>offset | Test<br>Position | Gap<br>(mm) | Ch.   | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
|             | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Front            | 10mm        | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | -0.02                  | 0.099                        | 0.120                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Front            | 10mm        | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | 0.08                   | 0.095                        | 0.112                        |
|             | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Back             | 10mm        | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | 0.01                   | 0.101                        | 0.122                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Back             | 10mm        | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | 0                      | 0.087                        | 0.103                        |
|             | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Left Side        | 10mm        | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | 0.04                   | 0.084                        | 0.101                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Left Side        | 10mm        | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | 0                      | 0.075                        | 0.089                        |
| 13          | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Right Side       | 10mm        | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | 0.04                   | 0.153                        | 0.185                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Right Side       | 10mm        | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | 0.02                   | 0.131                        | 0.155                        |
|             | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Bottom Side      | 10mm        | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | -0.07                  | 0.059                        | 0.071                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Bottom Side      | 10mm        | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | 0.07                   | 0.046                        | 0.054                        |
|             | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Front            | 10mm        | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | -0.02                  | 0.101                        | 0.125                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Front            | 10mm        | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | -0.02                  | 0.076                        | 0.093                        |
|             | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Back             | 10mm        | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | 0.06                   | 0.071                        | 0.088                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Back             | 10mm        | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | 0.03                   | 0.052                        | 0.064                        |
|             | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Left Side        | 10mm        | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | 0.1                    | 0.065                        | 0.080                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Left Side        | 10mm        | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | 0.07                   | 0.049                        | 0.060                        |
| 14          | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Right Side       | 10mm        | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | -0.01                  | 0.111                        | 0.137                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Right Side       | 10mm        | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | 0.06                   | 0.083                        | 0.102                        |
|             | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Bottom Side      | 10mm        | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | -0.01                  | 0.034                        | 0.042                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Bottom Side      | 10mm        | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | -0.04                  | 0.025                        | 0.031                        |

#### <WLAN SAR>

| Plot<br>No. | Band       | Mode          | Test<br>Position | Gap<br>(mm) | Ch. | Freq.<br>(MHz) | Power | Tune-Up<br>Limit<br>(dBm) |       | Cyclo |       | Deiff | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|------------|---------------|------------------|-------------|-----|----------------|-------|---------------------------|-------|-------|-------|-------|------------------------------|------------------------------|
| 15          | WLAN2.4GHz | 802.11b 1Mbps | Front            | 10mm        | 1   | 2412           | 13.90 | 14.00                     | 1.023 | 98.92 | 1.011 | -0.12 | 0.075                        | 0.078                        |
|             | WLAN2.4GHz | 802.11b 1Mbps | Back             | 10mm        | 1   | 2412           | 13.90 | 14.00                     | 1.023 | 98.92 | 1.011 | 0.07  | 0.062                        | 0.064                        |
|             | WLAN2.4GHz | 802.11b 1Mbps | Left Side        | 10mm        | 1   | 2412           | 13.90 | 14.00                     | 1.023 | 98.92 | 1.011 | -0.12 | 0.041                        | 0.042                        |
|             | WLAN2.4GHz | 802.11b 1Mbps | Top Side         | 10mm        | 1   | 2412           | 13.90 | 14.00                     | 1.023 | 98.92 | 1.011 | 0.15  | 0.049                        | 0.051                        |

TEL: 886-3-327-3456 Page 43 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

# 13.3 Body Worn Accessory SAR

#### <GSM SAR>

| Plot<br>No. | Band    | Mode              | Test<br>Position | Gap<br>(mm) | Ch. | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|---------|-------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
| 16          | GSM850  | GPRS (4 Tx slots) | Front            | 10mm        | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | -0.13                  | 0.205                        | 0.240                        |
|             | GSM850  | GPRS (4 Tx slots) | Back             | 10mm        | 189 | 836.4          | 27.82                     | 28.50                     | 1.169                        | 0.01                   | 0.190                        | 0.222                        |
| 17          | GSM1900 | GPRS (4 Tx slots) | Front            | 10mm        | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | 0.03                   | 0.403                        | 0.569                        |
|             | GSM1900 | GPRS (4 Tx slots) | Back             | 10mm        | 810 | 1909.8         | 24.00                     | 25.50                     | 1.413                        | -0.03                  | 0.204                        | 0.288                        |

**Report No. : FA971613** 

#### <WCDMA SAR>

| Plot<br>No. | Band    | Mode         | Test<br>Position | Gap<br>(mm) | Ch.  | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|---------|--------------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
| 18          | WCDMA V | RMC 12.2Kbps | Front            | 10mm        | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | -0.03                  | 0.155                        | 0.176                        |
|             | WCDMA V | RMC 12.2Kbps | Back             | 10mm        | 4233 | 846.6          | 23.94                     | 24.50                     | 1.138                        | 0.05                   | 0.149                        | 0.170                        |

#### <LTE SAR>

| Plot<br>No. | Band        | BW<br>(MHz) | Modulation | RB<br>Size | RB<br>offset | Test<br>Position | Gap<br>(mm) | Ch.   | Freq.<br>(MHz) | Average<br>Power<br>(dBm) | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|
|             | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Front            | 10mm        | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | -0.02                  | 0.099                        | 0.120                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Front            | 10mm        | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | 0.08                   | 0.095                        | 0.112                        |
| 19          | LTE Band 5  | 10M         | QPSK       | 1          | 0            | Back             | 10mm        | 20525 | 836.5          | 23.18                     | 24.00                     | 1.208                        | 0.01                   | 0.101                        | 0.122                        |
|             | LTE Band 5  | 10M         | QPSK       | 25         | 12           | Back             | 10mm        | 20525 | 836.5          | 22.28                     | 23.00                     | 1.180                        | 0                      | 0.087                        | 0.103                        |
| 20          | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Front            | 10mm        | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | -0.02                  | 0.101                        | 0.125                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Front            | 10mm        | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | -0.02                  | 0.076                        | 0.093                        |
|             | LTE Band 12 | 10M         | QPSK       | 1          | 49           | Back             | 10mm        | 23095 | 707.5          | 23.09                     | 24.00                     | 1.233                        | 0.06                   | 0.071                        | 0.088                        |
|             | LTE Band 12 | 10M         | QPSK       | 25         | 12           | Back             | 10mm        | 23095 | 707.5          | 22.12                     | 23.00                     | 1.225                        | 0.03                   | 0.052                        | 0.064                        |

#### <WLAN SAR>

| Plot<br>No. | Band       | Mode                | Test<br>Position | Gap<br>(mm) | Ch. | Freq.<br>(MHz) | Power | Tune-Up<br>Limit<br>(dBm) | Tune-up<br>Scaling<br>Factor | Cycle | Duty<br>Cycle<br>Scaling<br>Factor | Drift | Measured<br>1g SAR<br>(W/kg) | Reported<br>1g SAR<br>(W/kg) |
|-------------|------------|---------------------|------------------|-------------|-----|----------------|-------|---------------------------|------------------------------|-------|------------------------------------|-------|------------------------------|------------------------------|
| 21          | WLAN2.4GHz | 802.11b 1Mbps       | Front            | 10mm        | 1   | 2412           | 13.90 | 14.00                     | 1.023                        | 98.92 | 1.011                              | -0.12 | 0.075                        | 0.078                        |
|             | WLAN2.4GHz | 802.11b 1Mbps       | Back             | 10mm        | 1   | 2412           | 13.90 | 14.00                     | 1.023                        | 98.92 | 1.011                              | 0.07  | 0.062                        | 0.064                        |
| 22          | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Front            | 10mm        | 58  | 5290           | 11.60 | 12.00                     | 1.096                        | 88.02 | 1.136                              | -0.1  | 0.066                        | 0.082                        |
|             | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Back             | 10mm        | 58  | 5290           | 11.60 | 12.00                     | 1.096                        | 88.02 | 1.136                              | 0     | 0.001                        | 0.001                        |
| 23          | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Front            | 10mm        | 106 | 5530           | 11.90 | 12.00                     | 1.023                        | 88.02 | 1.136                              | 0     | 0.025                        | 0.029                        |
|             | WLAN5GHz   | 802.11ac-VHT80 MCS0 | Back             | 10mm        | 106 | 5530           | 11.90 | 12.00                     | 1.023                        | 88.02 | 1.136                              | 0     | 0.001                        | 0.001                        |

TEL: 886-3-327-3456 Page 44 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

### 14. Simultaneous Transmission Analysis

| NO. | Simultaneous Transmission   | Portable Handset |           |         |  |  |  |  |
|-----|-----------------------------|------------------|-----------|---------|--|--|--|--|
| NO. | Configurations              | Head             | Body-worn | Hotspot |  |  |  |  |
| 1.  | WWAN + WLAN2.4GHz           | Yes              | Yes       | Yes     |  |  |  |  |
| 2.  | WWAN + Bluetooth            | Yes              | Yes       | Yes     |  |  |  |  |
| 3.  | WWAN + WLAN5GHz             | Yes              | Yes       |         |  |  |  |  |
| 4.  | WWAN + WLAN5GHz + Bluetooth | Yes              | Yes       |         |  |  |  |  |

#### **General Note:**

- This device WLAN 2.4GHz supports Hotspot operation and Bluetooth support tethering applications.
- 2. 2.4GHz WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 3. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment.

Report No.: FA971613

- 4. The Scaled SAR summation is calculated based on the same configuration and test position.
- For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v06 based on the formula below.
  - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[ $\sqrt{f(GHz)/x}$ ] W/kg for test separation distances  $\leq$  50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
  - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
  - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

| Bluetooth | Exposure Position    | Hotspot / Body worn |
|-----------|----------------------|---------------------|
| Max Power | Test separation      | 10 mm               |
| 11.5dBm   | Estimated SAR (W/kg) | 0.297W/kg           |

TEL: 886-3-327-3456 Page 45 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019



14.1 Head Exposure Conditions

|          |           |                      | 1                | 2                | 3                | 4                | 1+2              | 1+3              | 1+4              | 1+3+4            |
|----------|-----------|----------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 1AWW     | N Band    | Exposure<br>Position | WWAN             | 2.4GHz<br>WLAN   | 5GHz<br>WLAN     | Bluetooth        | Summed<br>1g SAR | Summed<br>1g SAR | Summed<br>1g SAR | Summed<br>1g SAR |
|          |           | . 55151.             | 1g SAR<br>(W/kg) | 1g SAR<br>(W/kg) | 1g SAR<br>(W/kg) | 1g SAR<br>(W/kg) | (W/kg)           | (W/kg)           | (W/kg)           | (W/kg)           |
|          |           | Right Cheek          | 0.172            | 0.581            | 0.580            | 0.148            | 0.753            | 0.752            | 0.320            | 0.900            |
|          | GSM850    | Right Tilted         | 0.058            | 0.518            | 0.465            | 0.125            | 0.576            | 0.523            | 0.183            | 0.648            |
|          | GSIVIOSU  | Left Cheek           | 0.157            | 0.310            | 0.329            | 0.074            | 0.467            | 0.486            | 0.231            | 0.560            |
| GSM      |           | Left Tilted          | 0.070            | 0.337            | 0.198            | 0.073            | 0.407            | 0.268            | 0.143            | 0.341            |
| GSIVI    |           | Right Cheek          | 0.082            | 0.581            | 0.580            | 0.148            | 0.663            | 0.662            | 0.230            | 0.810            |
|          | GSM1900   | Right Tilted         | 0.066            | 0.518            | 0.465            | 0.125            | 0.584            | 0.531            | 0.191            | 0.656            |
|          | GSW1900   | Left Cheek           | 0.054            | 0.310            | 0.329            | 0.074            | 0.364            | 0.383            | 0.128            | 0.457            |
|          |           | Left Tilted          | 0.064            | 0.337            | 0.198            | 0.073            | 0.401            | 0.262            | 0.137            | 0.335            |
|          |           | Right Cheek          | 0.154            | 0.581            | 0.580            | 0.148            | 0.735            | 0.734            | 0.302            | 0.882            |
| WCDMA    | WCDMA V   | Right Tilted         | 0.051            | 0.518            | 0.465            | 0.125            | 0.569            | 0.516            | 0.176            | 0.641            |
| VVCDIVIA | WCDIVIA V | Left Cheek           | 0.131            | 0.310            | 0.329            | 0.074            | 0.441            | 0.460            | 0.205            | 0.534            |
|          |           | Left Tilted          | 0.046            | 0.337            | 0.198            | 0.073            | 0.383            | 0.244            | 0.119            | 0.317            |
|          |           | Right Cheek          | 0.104            | 0.581            | 0.580            | 0.148            | 0.685            | 0.684            | 0.252            | 0.832            |
|          | LTE Band  | Right Tilted         | 0.042            | 0.518            | 0.465            | 0.125            | 0.560            | 0.507            | 0.167            | 0.632            |
|          | 5         | Left Cheek           | 0.087            | 0.310            | 0.329            | 0.074            | 0.397            | 0.416            | 0.161            | 0.490            |
| ,        |           | Left Tilted          | 0.027            | 0.337            | 0.198            | 0.073            | 0.364            | 0.225            | 0.100            | 0.298            |
| LTE      |           | Right Cheek          | 0.069            | 0.581            | 0.580            | 0.148            | 0.650            | 0.649            | 0.217            | 0.797            |
|          | LTE Band  | Right Tilted         | 0.042            | 0.518            | 0.465            | 0.125            | 0.560            | 0.507            | 0.167            | 0.632            |
|          | 12        | Left Cheek           | 0.062            | 0.310            | 0.329            | 0.074            | 0.372            | 0.391            | 0.136            | 0.465            |
|          |           | Left Tilted          | 0.044            | 0.337            | 0.198            | 0.073            | 0.381            | 0.242            | 0.117            | 0.315            |

Report No. : FA971613

TEL: 886-3-327-3456 Page 46 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019



# 14.2 Hotspot Exposure Conditions

|       |             |                      | 1                | 2                | 4                          | 1+2           | 1+4           |
|-------|-------------|----------------------|------------------|------------------|----------------------------|---------------|---------------|
| 1AWW  | N Band      | Exposure<br>Position | WWAN             | 2.4GHz WLAN      | Bluetooth                  | Summed        | Summed        |
|       |             | POSITION             | 1g SAR<br>(W/kg) | 1g SAR<br>(W/kg) | Estimated<br>1g SAR (W/kg) | 1g SAR (W/kg) | 1g SAR (W/kg) |
|       |             | Front                | 0.240            | 0.078            | 0.297                      | 0.318         | 0.537         |
|       |             | Back                 | 0.222            | 0.064            | 0.297                      | 0.286         | 0.519         |
|       |             | Left side            | 0.211            | 0.042            | 0.297                      | 0.253         | 0.508         |
|       | GSM850      | Right side           | 0.211            | 0.042            | 0.231                      | 0.371         | 0.371         |
|       |             | Top side             | 0.07 1           | 0.051            | 0.297                      | 0.051         | 0.297         |
|       |             | Bottom side          | 0.120            | 0.031            | 0.231                      | 0.120         | 0.120         |
| GSM   |             | Front                | 0.569            | 0.078            | 0.297                      | 0.647         | 0.866         |
|       |             | Back                 | 0.288            | 0.064            | 0.297                      | 0.352         | 0.585         |
|       |             | Left side            | 0.200            | 0.042            | 0.297                      | 0.332         | 0.418         |
|       | GSM1900     | Right side           | 0.613            | 0.042            | 0.291                      | 0.613         | 0.613         |
|       |             | Top side             | 0.013            | 0.051            | 0.297                      | 0.051         | 0.297         |
|       |             | Bottom side          | 1.050            | 0.031            | 0.291                      | 1.050         | 1.050         |
|       |             | Front                | 0.176            | 0.078            | 0.297                      | 0.254         | 0.473         |
|       | WCDMA V     | Back                 | 0.170            | 0.078            | 0.297                      | 0.234         | 0.467         |
|       |             | Left side            | 0.170            | 0.004            | 0.297                      | 0.176         | 0.431         |
| WCDMA |             | Right side           | 0.154            | 0.042            | 0.291                      | 0.176         | 0.451         |
|       |             | Top side             | 0.230            | 0.051            | 0.297                      | 0.250         | 0.297         |
|       |             | Bottom side          | 0.098            | 0.031            | 0.291                      | 0.031         | 0.098         |
|       |             | Front                | 0.090            | 0.078            | 0.297                      | 0.198         | 0.417         |
|       |             | Back                 | 0.120            | 0.078            | 0.297                      | 0.196         | 0.417         |
|       |             | Left side            | 0.122            | 0.004            | 0.297                      | 0.166         | 0.419         |
|       | LTE Band 5  | Right side           | 0.101            | 0.042            | 0.291                      | 0.145         | 0.185         |
|       |             | Top side             | 0.183            | 0.051            | 0.297                      | 0.051         | 0.103         |
|       |             | Bottom side          | 0.071            | 0.031            | 0.291                      | 0.031         | 0.237         |
| LTE   |             | Front                | 0.071            | 0.078            | 0.297                      | 0.071         | 0.422         |
|       |             | Back                 | 0.123            | 0.078            | 0.297                      | 0.203         | 0.422         |
|       |             | Left side            | 0.080            | 0.064            | 0.297                      | 0.132         | 0.365         |
|       | LTE Band 12 |                      |                  | 0.042            | 0.291                      | 0.122         | 0.377         |
|       |             | Right side           | 0.137            | 0.051            | 0.207                      |               |               |
|       |             | Top side             | 0.040            | 0.051            | 0.297                      | 0.051         | 0.297         |
|       |             | Bottom side          | 0.042            |                  |                            | 0.042         | 0.042         |

Report No. : FA971613

TEL: 886-3-327-3456 Page 47 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019



## 14.3 Body-Worn Accessory Exposure Conditions

|                                         |           |          | 1                | 2                | 3                | 4                             |                  |                  |                  |                  |
|-----------------------------------------|-----------|----------|------------------|------------------|------------------|-------------------------------|------------------|------------------|------------------|------------------|
| WWAN Band                               |           | Exposure | WWAN             | 2.4GHz<br>WLAN   | 5GHz<br>WLAN     | Bluetooth                     | 1+2<br>Summed    | 1+3<br>Summed    | 1+4<br>Summed    | 1+3+4<br>Summed  |
| *************************************** | V Bana    | Position | 1g SAR<br>(W/kg) | 1g SAR<br>(W/kg) | 1g SAR<br>(W/kg) | Estimated<br>1g SAR<br>(W/kg) | 1g SAR<br>(W/kg) | 1g SAR<br>(W/kg) | 1g SAR<br>(W/kg) | 1g SAR<br>(W/kg) |
|                                         | GSM850    | Front    | 0.240            | 0.078            | 0.082            | 0.297                         | 0.318            | 0.322            | 0.537            | 0.619            |
| GSM                                     | GSIVIOSU  | Back     | 0.222            | 0.064            | 0.001            | 0.297                         | 0.286            | 0.223            | 0.519            | 0.520            |
| GSIVI                                   | GSM1900   | Front    | 0.569            | 0.078            | 0.082            | 0.297                         | 0.647            | 0.651            | 0.866            | 0.948            |
|                                         | GSW1900   | Back     | 0.288            | 0.064            | 0.001            | 0.297                         | 0.352            | 0.289            | 0.585            | 0.586            |
| WCDMA                                   | WCDMA V   | Front    | 0.176            | 0.078            | 0.082            | 0.297                         | 0.254            | 0.258            | 0.473            | 0.555            |
| VVCDIVIA                                | WCDIVIA V | Back     | 0.170            | 0.064            | 0.001            | 0.297                         | 0.234            | 0.171            | 0.467            | 0.468            |
|                                         | LTE Band  | Front    | 0.120            | 0.078            | 0.082            | 0.297                         | 0.198            | 0.202            | 0.417            | 0.499            |
| LTE                                     | 5         | Back     | 0.122            | 0.064            | 0.001            | 0.297                         | 0.186            | 0.123            | 0.419            | 0.420            |
| ""                                      | LTE Band  | Front    | 0.125            | 0.078            | 0.082            | 0.297                         | 0.203            | 0.207            | 0.422            | 0.504            |
|                                         | 12        | Back     | 0.088            | 0.064            | 0.001            | 0.297                         | 0.152            | 0.089            | 0.385            | 0.386            |

**Report No. : FA971613** 

Test Engineer: Charles Shen Jack Yang Ray Sun AndyS Su Carter Jhuang and Tim Su

TEL: 886-3-327-3456 Page 48 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019

### 15. <u>Uncertainty Assessment</u>

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be  $\leq$  30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg. Therefore, the measurement uncertainty table is not required in this report.

**Report No.: FA971613** 

### 16. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [8] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [9] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [10] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.
- [11] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [12] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

TEL: 886-3-327-3456 Page 49 of 49
FAX: 886-3-328-4978 Issued Date: Aug. 20, 2019