

Page 1 of 43

JQA File No.: KL80130333R Issue Date: October 1, 2013

TEST REPORT

Applicant : Sharp Corporation, Communication Systems Division

Address : 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, JAPAN

Products : Cellular Phone

Model No. : SH-01F

Serial No. : 004401114935196

004401114935162

FCC ID : APYHRO00197

Test Standard : CFR 47 FCC Rules and Regulations Part 22

Test Results : Passed

Date of Test : September $13 \sim 24$, 2013

Assun

Kousei Shibata Manager

Japan Quality Assurance Organization KITA-KANSAI Testing Center

SAITO EMC Branch

7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 2 of 43

TABLE OF CONTENTS

		Page
1	Description of the Equipment Under Test	3
2	Summary of Test Results	4
3	Test Procedure	5
4	Test Location	5
5	Recognition of Test Laboratory	5
6	Details of the Equipment Under Test	6
7	Details of the Test Item	9

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EUT : Equipment Under Test

AE : Associated Equipment

N/A : Not Applicable

N/T : Not Tested

EMC : Electromagnetic Compatibility

EMI : Electromagnetic Interference

EMS : Electromagnetic Susceptibility

indicates that the listed condition, standard or equipment is applicable for this report.
 indicates that the listed condition, standard or equipment is not applicable for this report.

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 3 of 43

1 Description of the Equipment Under Test

1. Manufacturer : Sharp Corporation, Communication Systems Division

2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, JAPAN

2. Products : Cellular Phone

3. Model No. : SH-01F

4. Serial No. : 004401114935196

: 004401114935162

5. Product Type : Pre-production6. Date of Manufacture : August, 2013

7. Power Rating : 4.0VDC (Lithium-ion Battery LIS1531SPPC(SY6) 3000mAh)

8. EUT Grounding : None

Transmitting Frequency : 824.2 MHz(128CH) – 848.8 MHz(251CH)
 Receiving Frequency : 869.2 MHz(128CH) – 893.8 MHz(251CH)

11. Emission Designations : 245KGXW12. Max. RF Output Power : 1.202W (ERP)

13. Category : GSM85014. EUT Authorization : Certification

15. Received Date of EUT : September 11, 2013

16. Channel Plan

The carrier spacing is 200 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = $824.2 + 0.2 \times (n - 128)$ where, n: channel number ($128 \le n \le 251$)

Receiving Frequency (in MHz) = $869.2 + 0.2 \times (n - 128)$

where, n: channel number $(128 \le n \le 251)$

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 4 of 43

2 Summary of Test Results

Applied Standard: CFR 47 FCC Rules and Regulations Part 22 Subpart H – Cellular Radiotelephone Service

The EUT described in clause 1 was tested according to the applied standard shown above.

Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

\boxtimes	- '	The	test	result	was	passed f	or the te	est requ	uireme	ents of	the a	pplied	l standa	ard.
	- '	The	test	result	was	failed for	r the tes	st requi	iremer	nts of t	he ap	plied	standaı	rd.
П	_ ′	The	test	result	was	not iudg	ed the to	est rea	uirem	ents of	the a	pplie	d stand	ard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.

- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Deputy Manager

JQA KITA-KANSAI Testing Center

SAITO EMC Branch

Tested by:

Shigeru Osawa Deputy Manager

JQA KITA-KANSAI Testing Center

SAITO EMC Branch

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 5 of 43

3 Test Procedure

Test Requirements : CFR 47 FCC Rules and Regulations Part 2

§2.1046, §2.1047, §2.1049, §2.1051, §2.1053, §2.1055 and §2.1057

Test Procedure : ANSI C63.4–2003, TIA/EIA–603-C-2004

FCC KDB 971168 D01 Licensed DTS Guidance v02r01, released June 7, 2013

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No. : VLAC-001-2 (Expiry date : March 30, 2014) VCCI Registration No. : A-0002 (Expiry date : March 30, 2014)

IC Registration No. : 2079E-3, 2079E-4 (Expiry date : July 20, 2014)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date: February 22, 2016)

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 6 of 43

6 Details of the Equipment Under Test

6.1 Operating Condition

The test were carried under one modulation type shown as follows: Modulation Burst Signal: DATA TSC 5 in accordance with GSM 05.02.

The Radiated Emission test were carried under 3 test configurations shown in clause 6.3. In all tests, the fully charged battery is used for the EUT.

Detailed Transmitter portion:

Transmitter frequency : 824.2 MHz(128CH) – 848.8 MHz(251CH) Local frequency : 3296.8 MHz(128CH) – 3395.2 MHz(251CH)

Detailed Receiver portion:

Receiver frequency : 869.2 MHz(128CH) – 893.8 MHz(251CH)
Local frequency : 3476.8 MHz(128CH) – 3575.2 MHz(251CH)

Other Clock Frequency

32.768 kHz, 19.2 MHz, 27 MHz, 27.12 MHz, 37.4 MHz

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 7 of 43

6.2 Test Configuration

The equipment under test (EUT) consists of:

	Item	Manufacturer	Model No.	Serial No.	FCC ID
A	Cellular Phone	Sharp	SH-01F	004401114 935196 *1) 004401114 935162 *2)	APYHRO00197
В	AC Adapter	Fujitsu Corporation	04	WFA	N/A
C	Stereo Handsfree	Sharp	SHLDL1		N/A

^{*1)} Used for Field Strength of Spurious Emission

The auxiliary equipment used for testing:

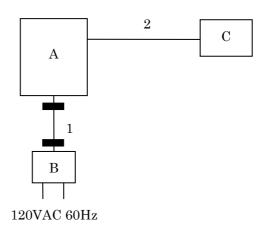
None

Type of Cable:

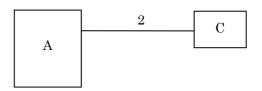
No.	Description	Identification	Connector	Cable	Ferrite	Length
100.	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	USB conversion cable			NO	YES	1.1
2	Handsfree Cable			NO	NO	1.5

^{*2)} Used for Antenna Conducted Emission and Frequency Stability

Standard : CFR 47 FCC Rules and Regulations Part 22


Page 8 of 43

6.3 Test Arrangement (Drawings)


a) Single Unit

b) AC Adapter used

c) Handsfree used

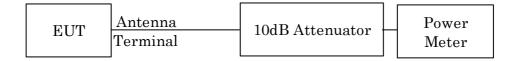
: Ferrite Core

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 9 of 43

7 Details of the Test 1	tem
7.1 RF Power Output (§	§2.1046)
For the requirements,	\boxtimes - Applicable [\boxtimes - Tested. \square - Not tested by applicant request.] \square - Not Applicable
For the limits,	oxedows - Passed $oxedows$ - Failed $oxedows$ - Not judged
7.1.1 Worst Point and	Measurement Uncertainty
Transmitter Power is	<u>1733.8</u> mW at <u>824.200</u> MHz
Uncertainty of Measu	rement Results at Amplitude dB(2\sigma)
Remarks:	
7.1.2 Test Site	
KITA-KANSAI Testin	g Center
Test site: SAITO	

Standard : CFR 47 FCC Rules and Regulations Part 22


Page 10 of 43

7.1.3 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Power Meter	N1911A	Agilent	B-63	2013/7	1 Year
Power Sensor	N1921A	Agilent	B-64	2013/7	1 Year
Attenuator	54A-10	Weinschel	D-28	2012/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year

7.1.4 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one 10dB attenuator and a short, low loss cable.

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 11 of 43

7.1.5 Test Data

(GSM850)

Test Date: September 13, 2013 Temp.: 28 °C, Humi: 60 %

Transmitting Frequency		Correction Factor	Meter Reading (Peak)	Result	s (Peak)
CH	[MHz]	[dB]	[dBm]	[dBm]	[mW]
128	824.200	9.97	22.42	32.39	1733.8
189	836.400	9.97	22.41	32.38	1729.8
251	848.800	9.97	22.40	32.37	1725.8

Calculated result at 824.200 MHz, as the maximum level point shown on underline:

NOTE: The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 12 of 43

7.2 ERP / EIRP RF Power Output	
For the requirements, \boxtimes - Applicable $[\boxtimes$ - '\overline{\to} - \text{Not Applicable}	Tested. - Not tested by applicant request.
For the limits, \square - Passed \square - Fai	led 🗌 - Not judged
7.2.1 Worst Point and Measurement Uncertain	ty
Min. Limit Margin	
Uncertainty of Measurement Results	<u>+/-1.4</u> dB(2σ)
Remarks: The maximum ERP is 1.202 W at 8	324.200 MHz.
7.2.2 Test Site	
KITA-KANSAI Testing Center SAITO EMC Br	ranch
Anechoic chamber A1	☐ - Anechoic chamber A2

7.2.3 Test Instruments

Type	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESU26	Rohde & Schwarz	A-6	2013/4	1 Year
Signal Generator	E8257D	Agilent	B-39	2013/8	1 Year
Power Meter	N1911A	Agilent	B-63	2013/7	1 Year
Power Sensor	N1921A	Agilent	B-64	2013/7	1 Year
Attenuator(TX)	2-10	Weinschel	D-79	2012/11	1 Year
Log-periodic Antenna	UHALP9108-A1	Schwarzbeck	C-31	2013/5	1 Year
Dipole Antenna(TX)	KBA-611	Kyoritsu	C-20	2013/5	1 Year

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 13 of 43

7.2.4 Test Method and Test Setup (Diagrammatic illustration)

Step 1:

In order to obtain the maximum emission, the EUT was placed at the height 1.5 m on the non-conducted support and was varying at three orthogonal axes, at the distance 3 m from the receiving antenna and rotated around 360 degrees.

The receiving antenna height was varied from 1 m to 4 m.

The EUT on the table was placed to be maximum emission against at the receiving antenna polarized (vertical and horizontal).

Then the meter reading of the spectrum analyzer at the maximum emission was A dB(μ V).

Step 2:

The EUT was replaced to substitution antenna at the same polarized under the same condition as step 1.

The RF power was fed to the transmitting antenna through the RF amplifier from the signal generator.

In order to obtain the maximum emission level, the height of the receiving antenna was varied from 1 m to 4 m.

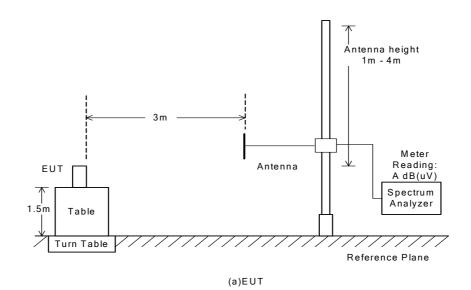
The level of maximum emission was A $dB(\mu V)$, same as the recorded level in the step 1.

Then the RF power into the substitution horn antenna was P (dBm).

The ERP/EIRP output power was calculated in the following equation.

ERP (dBm) = P (dBm) – Balun loss of the tuned dipole antenna (dB) + Cable loss (dB)

EIRP (dBm) = P (dBm) + Gh (dBi)


where, Gh (dBi): Gain of the substitution horn antenna.

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 14 of 43

- Side View -

Antenna height Meter Reading : B dBm $1 \, \text{m} \cdot 4 \, \text{m}$ Signal Power $3\,\mathrm{m}$ $M\,eter$ Reading: A dB(uV) Tuned Dipole Antenna Antenna Spectrum Analyzer $1.5 \,\mathrm{m}$ Turn Table Reference Plane

(b) Substitution Half-wave Dipole Antenna

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 15 of 43

7.2.5 Test Data

(GSM850)

Test Date: September 15, 2013 Temp.: 25 °C, Humi: 74 %

1. Measurement Results

Transmitting Frequency		8		Substitution Measurement [dB(uV)]		Supplied Power to Substitution Antenna	Balun Loss of Substitution Antenna
СН	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dBm]	[dB]
128	824.200	104.5	103.1	67.2	66.5	- 5.0	1.5
189	836.400	103.2	102.0	66.8	66.0	- 5.0	1.5
251	848.800	103.7	101.6	66.6	65.4	- 5.0	1.6

2. Calculation Results

Transmitting Frequency		Peak ERP [dBm]		Maximum Peak ERP	Limits	Margin
СН	[MHz]	Hori. (ERPh)	Vert. (ERPv)	[W]	[dBm]	[dB]
128	824.200	30.8	30.1	1.202	38.5	+ 7.7
189	836.400	29.9	29.5	0.977	38.5	+ 8.6
251	848.800	30.6	29.7	1.148	38.5	+ 7.9

Calculated result at 824.200 MHz, as the worst point shown on underline:

Minimum Margin: 38.5 - 30.8 = 7.7 (dB)

NOTE: Setting of measuring instrument(s):

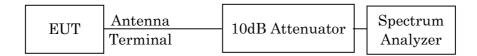
Detector Function	Resolution B.W.	V.B.W.	Sweep Time
Peak	5 MHz	5 MHz	AUTO

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 16 of 43

7.3 Modulation Characteristics (§2.1047)
For the requirements, - Applicable - Tested. - Not tested by applicant request. - Not Applicable
For the limits,
7.4 Occupied Bandwidth (§2.1049)
For the requirements, \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.]
For the limits, \square - Passed \square - Failed \square - Not judged
7.4.1 Worst Point and Measurement Uncertainty
The 99% Bandwidth is 245.3 kHz at 836.400 MHz The 26dB Bandwidth is 318.0 kHz at 824.200 MHz
Uncertainty of Measurement Results %(20)
Remarks:
7.4.2 Test Site
KITA-KANSAI Testing Center
Test site : SAITO \square - Anechoic chamber (A1) \square - Measurement room (M1) \square - Measurement room (M2) \square - Measurement room (M3) \square - Shielded room (S1) \square - Shielded room (S2) \square - Shielded room (S3) \square - Shielded room (S4)

Standard : CFR 47 FCC Rules and Regulations Part 22


Page 17 of 43

7.4.3 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2012/9	1 Year
Attenuator	54A-10	Weinschel	D-28	2012/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year

7.4.4 Test Method and Test Setup (Diagrammatic illustration)

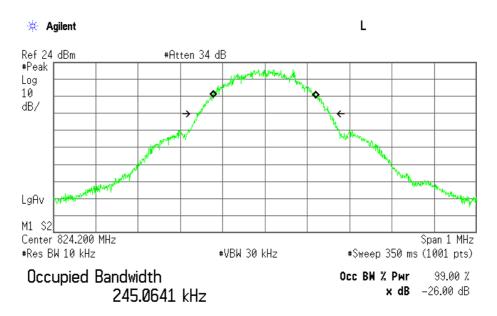
The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	10 kHz
Video Bandwidth	30 kHz
Span	1 MHz
Sweep Time	AUTO
Trace	Maxhold

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 18 of 43

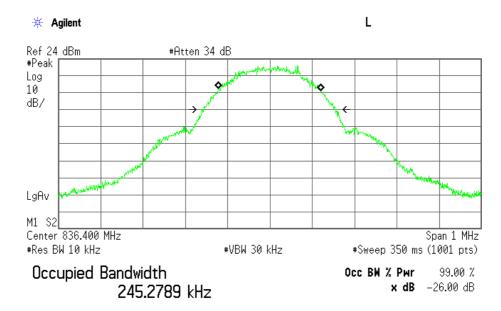

7.4.5 Test Data

The resolution bandwidth was set to about 1% of emission bandwidth, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

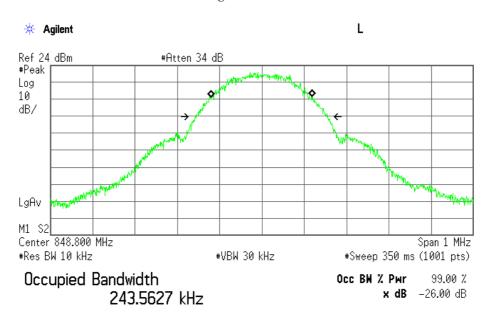
Test Date: September 13, 2013 Temp.:28°C, Humi:60%

Channel	Frequency (MHz)	99% Bandwidth (kHz)	-26dBc Bandwidth (kHz)
128	824.20	245.1	318.0
189	836.40	245.3	315.2
251	848.80	243.6	315.4

Low Channel


Transmit Freq Error -1.407 kHz Occupied Bandwidth 318.014 kHz

Standard : CFR 47 FCC Rules and Regulations Part 22


Page 19 of 43

Middle Channel

Transmit Freq Error -1.051 kHz Occupied Bandwidth 315.245 kHz

High Channel

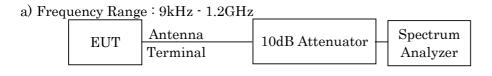
Transmit Freq Error -1.245 kHz Occupied Bandwidth 315.410 kHz

Standard : CFR 47 FCC Rules and Regulations Part 22

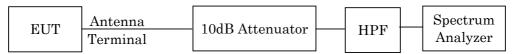
Page 20 of 43

7.5 Spurious Emissions	at Antenna Terminals (§2.1051)	
For the requirements,	☑ - Applicable [☑ - Tested☑ - Not Applicable	Not tested by ap	oplicant request.]
For the limits,	igtiises - Passed $igcap$ - Failed $igl[$	Not judged	
7.5.1 Worst Point and M	Measurement Uncertainty		
Min. Limit Margin		32.9 dB at	1697.600 MHz
Uncertainty of Measure	ement Results	$9 \mathrm{~kHz} - 1\mathrm{GHz}$ $1\mathrm{GHz} - 18\mathrm{GHz}$ $18\mathrm{GHz} - 40\mathrm{GHz}$	+/-1.0 dB(2σ) +/-1.2 dB(2σ) +/-1.6 dB(2σ)
Remarks:			
7.5.2 Test Site			
KITA-KANSAI Testing	Center		
Test site: SAITO	☐ - Anechoic chamber (.☐ - Measurement room ☐ - Shielded room (S1) ☐ - Shielded room (S3)	<u>=</u>	

Standard : CFR 47 FCC Rules and Regulations Part 22


Page 21 of 43

7.5.3 Test Instruments


Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2012/9	1 Year
Attenuator	54A-10	Weinschel	D-28	2012/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year
HPF	HPM5010S	MICRO-TRONICS	D-94	2013/2	1 Year

7.5.4 Test Method and Test Setup (Diagrammatic illustration)

The Antenna Conducted Emission was measured with a spectrum analyzer. The test system is shown as follows:

b) Frequency Range: 1.2GHz - 10GHz

The setting of the spectrum analyzer are shown as follows:

Frequency Range	9 kHz - 150 kHz	150 kHz - 30 MHz	30 MHz - 10 GHz
Res. Bandwidth	200 Hz	10 kHz	1 MHz
Video Bandwidth	1 kHz	$30~\mathrm{kHz}$	$3\mathrm{MHz}$
Sweep Time	AUTO	AUTO	AUTO
Trace	Maxhold	Maxhold	Maxhold

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 22 of 43

7.5.5 Test Data

(GSM850)

<u>Test Date: September 13, 2013</u> <u>Temp.: 28 °C, Humi: 60 %</u>

	rans mitting Tre que ncy [MHz]	Me as ured Frequency [MHz]	Corr. Factor [dB]	Meter Readings [dBm]	Limits [dBm]	Results [dBm]	Margin [dB]	Remarks
128	824.200	1648.400	11.2	-60.4	-13.0	-49.2	+36.2	С
		2472.600	10.8	-56.9	-13.0	-46.1	+33.1	C
		3296.800	11.0	< -63.0	-13.0	< -52.0	> +39.0	C
		4121.000	11.1	< -63.0	-13.0	< -51.9	> +38.9	C
		4945.200	11.2	< -63.0	-13.0	< -51.8	> +38.8	C
		5769.400	11.3	< -63.0	-13.0	< -51.7	> +38.7	C
		6593.600	11.4	< -63.0	-13.0	< -51.6	> +38.6	C
		7417.800	11.7	< -63.0	-13.0	< -51.3	> +38.3	C
		8242.000	11.9	< -63.0	-13.0	< -51.1	> +38.1	С
189	836.400	1672.800	11.2	-60.7	-13.0	-49.5	+36.5	С
		2509.200	10.8	-57.9	-13.0	-47.1	+34.1	С
		3345.600	11.0	< -63.0	-13.0	< -52.0	> +39.0	С
		4182.000	11.1	< -63.0	-13.0	< -51.9	> +38.9	C
		5018.400	11.2	< -63.0	-13.0	< -51.8	> +38.8	C
		5854.800	11.3	< -63.0	-13.0	< -51.7	> +38.7	C
		6691.200	11.5	< -63.0	-13.0	< -51.5	> +38.5	С
		7527.600	11.8	< -63.0	-13.0	< -51.2	> +38.2	С
		8364.000	12.0	< -63.0	-13.0	< -51.0	> +38.0	С
251	848.800	1697.600	11.1	-57.0	-13.0	-45.9	+32.9	С
		2546.400	10.8	-57.6	-13.0	-46.8	+33.8	С
		3395.200	11.0	< -63.0	-13.0	< -52.0	> +39.0	С
		4244.000	11.1	< -63.0	-13.0	< -51.9	> +38.9	C
		5092.800	11.2	< -63.0	-13.0	< -51.8	> +38.8	C
		5941.600	11.3	< -63.0	-13.0	< -51.7	> +38.7	C
		6790.400	11.5	< -63.0	-13.0	< -51.5	> +38.5	C
		7639.200	11.8	< -63.0	-13.0	< -51.2	> +38.2	C
		8488.000	12.0	< -63.0	-13.0	< -51.0	> +38.0	C

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 23 of 43

Calculated result at 1697.6 MHz, as the worst point shown on underline:

 $\begin{array}{ccccc} \text{Corr. Factor} & = & 11.1 \text{ dB} \\ +) & \underline{\text{Meter Reading}} & = & -57.0 \text{ dBm} \\ \hline \text{Result} & = & -45.9 \text{ dBm} \end{array}$

Minimum Margin: -13.0 - (-45.9) = 32.9 (dB)

NOTES

1. The spectrum was checked from $9\,\mathrm{kHz}$ to $10\,\mathrm{GHz}.$

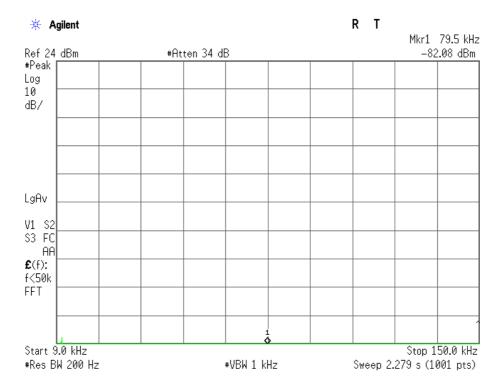
2. Applied limits : -13.0 [dBm] = $10\log(\text{TP[mW]})$ - $(43 + 10\log(\text{tp[W]}))$ = $10\log(\text{TP[mW]})$ - $(43 + (10\log(\text{TP[mW]}))$ - $(43 + (10\log(\text{TP[mW]})))$ - $(43 + (10\log(\text{TP[mW]}))$ - $(43 + (10\log(\text{TP[mW]}))$ - $(43 + (10\log(\text{TP[mW]})))$ - (

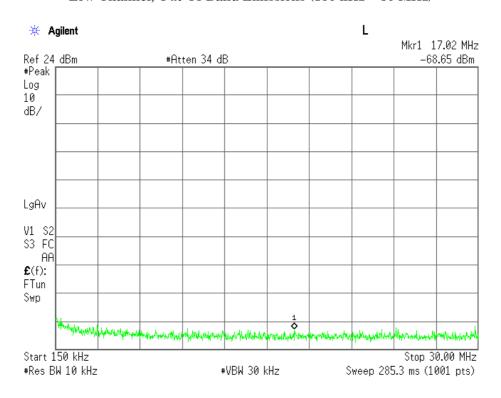
3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. [dB] (9 kHz - 2 GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. + High Pass Filter Loss (D-96) [dB] (over 2 GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Setting of measuring instrument(s):

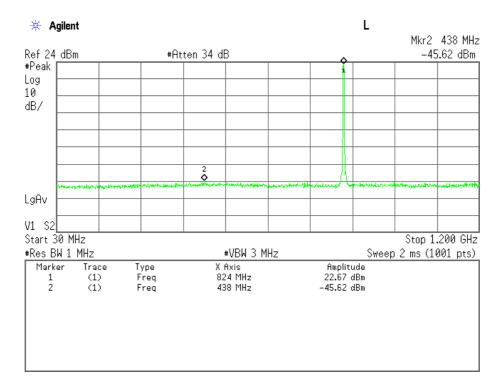

	Detector Function	RES B.W.	V.B.W.	Sweep Time
A	Peak	200 Hz	1 kHz	AUTO
В	Peak	10 kHz	30 kHz	AUTO
С	Peak	1 MHz	3 MHz	AUTO

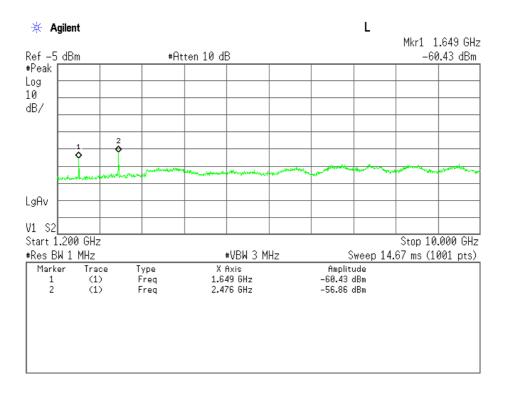

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 24 of 43

Low Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

Low Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

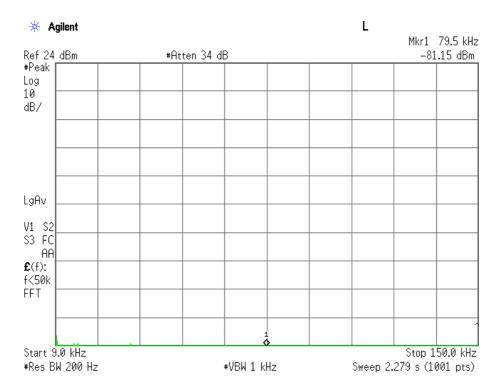



Standard : CFR 47 FCC Rules and Regulations Part 22

Page 25 of 43

Low Channel, Out-Of-Band Emissions (30 MHz - 1.2 GHz)

Low Channel, Out-Of-Band Emissions (1.2 GHz - 10 GHz)

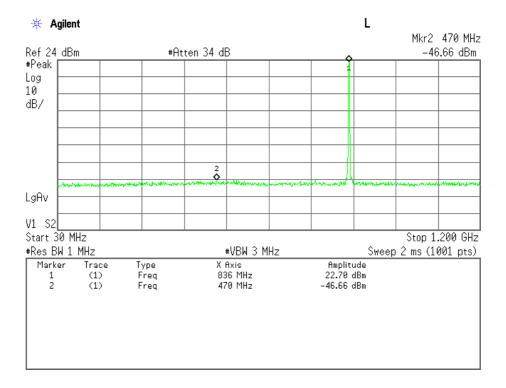


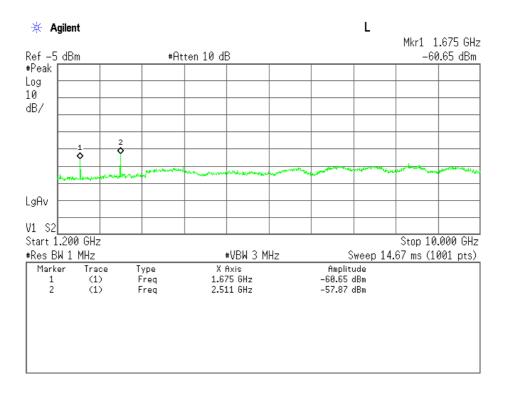
Standard : CFR 47 FCC Rules and Regulations Part 22

Page 26 of 43

Middle Channel, Out-Of-Band Emissions (9 kHz - 150 kHz)

Middle Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

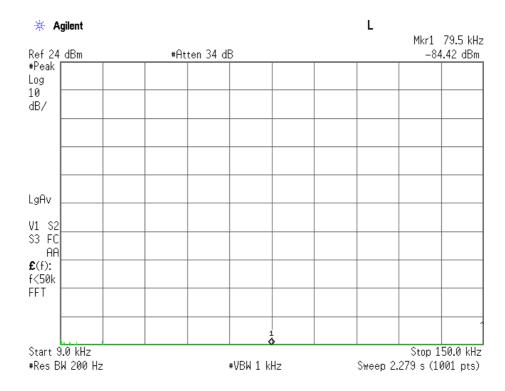


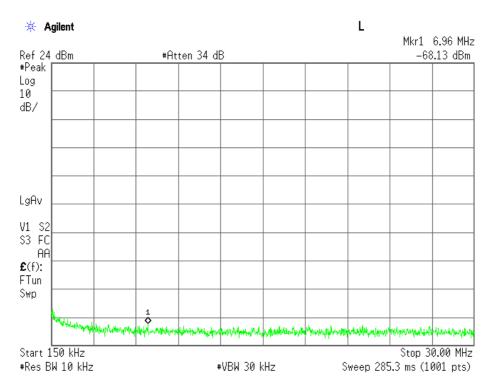

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 27 of 43

Middle Channel, Out-Of-Band Emissions (30 MHz – 1.2 GHz)

Middle Channel, Out-Of-Band Emissions (1.2 GHz - 10 GHz)

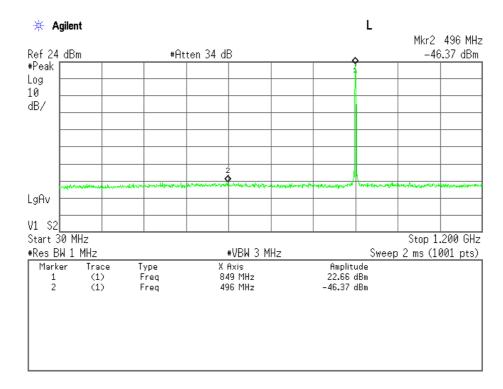


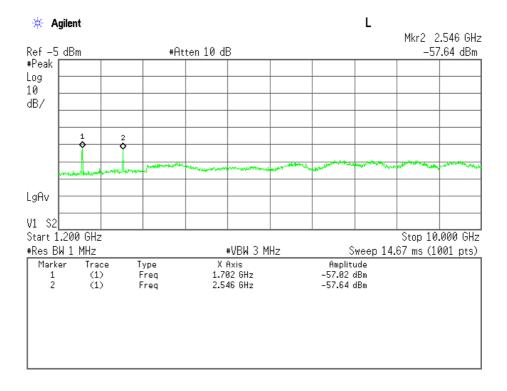

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 28 of 43

High Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

High Channel, Out-Of-Band Emissions (150 kHz – 30 MHz)




Standard : CFR 47 FCC Rules and Regulations Part 22

Page 29 of 43

High Channel, Out-Of-Band Emissions (30 MHz – 1.2 GHz)

High Channel, Out-Of-Band Emissions (1.2 GHz – 10 GHz)

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 30 of 43

7.6 Band-Edge Emission (§	§2.1051)		
For the requirements,] - Applicable [⊠ - Tested. □] - Not Applicable	- Not tested by app	plicant request.]
For the limits,] - Passed 🗌 - Failed 🗌 - N	ot judged	
7.6.1 Worst Point and Me	asurement Uncertainty		
The Band-Edge level is	1	.4.0 dBm at	824.000 MHz
Uncertainty of Measurem	nent Results		<u>+/-1.2</u> dB(2σ)
Remarks: The measure	ment result is within the range of	measurement unce	ertainty.
7.6.2 Test Site			
KITA-KANSAI Testing C	enter		
Test site: SAITO	☐ - Anechoic chamber (A1) ☐ - Measurement room (M2) ☐ - Shielded room (S1) ☐ - Shielded room (S3)	=	

7.6.3 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2012/9	1 Year
Attenuator	54A-10	Weinschel	D-28	2012/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 31 of 43

7.6.4 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

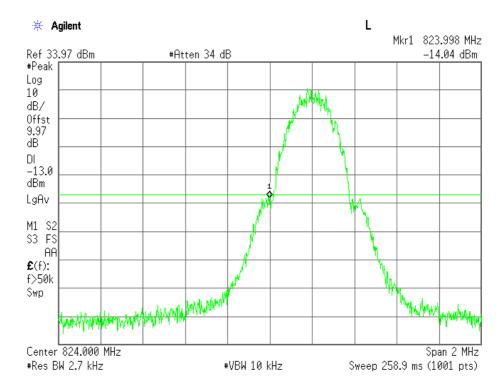
EUT	Antenna	10dB Attenuator	Spectrum
	Terminal	10dB 1100iidatoi	Analyzer

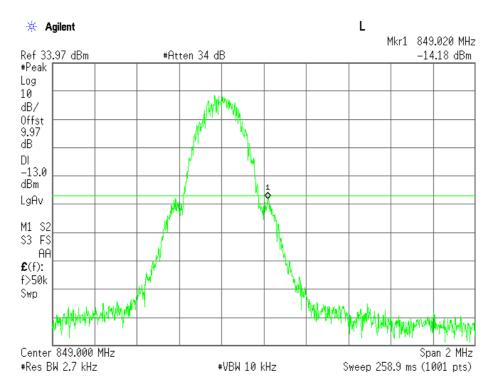
The setting of the spectrum analyzer are shown as follows:

TX Frequency	824.20 MHz / 848.80 MHz
Band-Edge Frequency	824.00 MHz / 849.00 MHz
Res. Bandwidth	$2.7~\mathrm{kHz}$
Video Bandwidth	$10~\mathrm{kHz}$
Span	$2~\mathrm{MHz}$
Sweep Time	AUTO
Trace	Maxhold

7.6.5 Test Data

<u>Test Date : September 13, 2013</u> <u>Temp.:28°C, Humi:60%</u>


Channel	Frequency (MHz)	Band-Edge Frequency (MHz)	Band-Edge Level (dBm)
128	824.2	824.0	-14.0
251	848.8	849.0	-14.2


Standard : CFR 47 FCC Rules and Regulations Part 22

Page 32 of 43

Low Channel, Band-Edge Emission

High Channel, Band-Edge Emission

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 33 of 43

7.7 Field Strength of Spurious Radiation (§2.1053)	
For the requirements, \boxtimes - Applicable $[\boxtimes$ - Test \square - Not Applicable	ted. - Not tested by applicant request.
For the limits, \square - Passed \square - Failed	Not judged
7.7.1 Worst Point and Measurement Uncertainty	
Min. Limit Margin	dB atMHz
Uncertainty of Measurement Results	30 MHz – 1000 MHz
Remarks:	
7.7.2 Test Site	
KITA-KANSAI Testing Center SAITO EMC Branc	ch.
☐ - Anechoic chamber A1	- Anechoic chamber A2

7.7.3 Test Instruments

Type	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESU26	Rohde & Schwarz	A-6	2013/4	1 Year
Signal Generator	E8257A	Agilent	B-39	2013/8	1 Year
Power Meter	N1911A	Agilent	B-63	2013/7	1 Year
Power Sensor	N1921A	Agilent	B-64	2013/7	1 Year
Horn Antenna	91888-2	EATON	C-41-1	2013/6	1 Year
Horn Antenna	91889-2	EATON	C-41-2	2013/6	1 Year
Horn Antenna	3160-05	EATON	C-56	2013/7	1 Year
Horn Antenna	3160-06	EATON	C-57	2013/7	1 Year
Horn Antenna	3160-07	EATON	C-58	2013/7	1 Year
RF Cable	SUCOFLEX104	SUHNER	C-66	2013/2	1 Year
RF Cable	SUCOFLEX104	SUHNER	C-67	2013/2	1 Year
Attenuator	2-10	Weinschel	D-79	2012/11	1 Year
Attenuator	54-10	Weinschel	D-29	2012/9	1 Year
Pre-Amplifier	WJ-6611-513	Watkins Johnson	A-23	2013/2	1 Year
Pre-Amplifier	WJ-6882-824	Watkins Johnson	A-21	2013/2	1 Year
Pre-Amplifier	DBL-0618N515	DBS Microwave	A-33	2013/2	1 Year
HPF	HPM5010S	MICRO-TRONICS	D-94	2013/2	1 Year

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 34 of 43

7.7.4 Test Method and Test Setup (Diagrammatic illustration)

Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 0.8 m in height and was varying at three orthogonal axes. The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.

This test was carried out using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

Step 2)

A) Up to 1 GHz

The ERP measurement was carried out with according to Step 2 in Clause 7.2.4. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The ERP is calculated in the following equation.

B) Above 1 GHz

The ERP is calculated from the maximum emission level by the following formula.

$$\frac{e^2}{120\pi} = \frac{eirp}{4\pi d^2} \quad ---- \text{(Eq.1)}$$

$$erp = eirp - Gd - (Eq.2)$$

Where, e[V/m]:: Field Strength at measuring distance(d=3m)

eirp[W]: Equivalent Isotropic Radiated Power

erp[*W*]: Effective Radiated Power

Gd(dBi): Gain of the substitution half-wave dipole antenna(2.15dBi)

$$eirp = \frac{(de)^2}{30} = \frac{3}{10}e^2$$

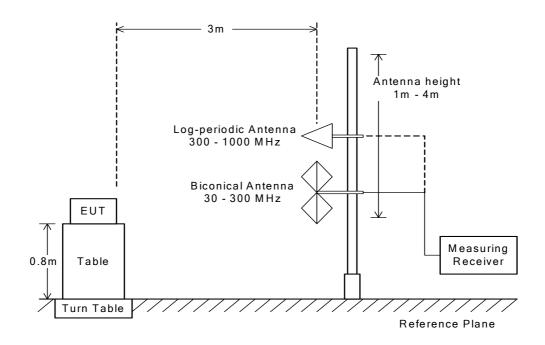
$$\therefore 10\log(eirp) = 20\log(e) + 10\log(3/10) = 20\log(e) - 5.23$$

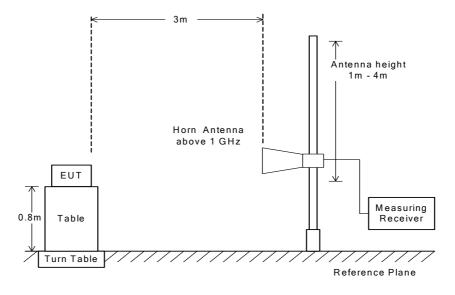
$$10\log(eirp) = EIRP[dBm] - 30$$

$$20\log(e) = E[dB(\mu V / m)] - 120$$

$$\therefore EIRP = E - 120 + 30 - 5.23 = E - 95.23$$

$$ERP[dBm] = EIRP - 2.15 = E - 97.38$$


The respective calculated ERP of the spurious and harmonics were compared with the ERP of fundamental frequency by specified attenuation limits, 43+10log₁₀ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.

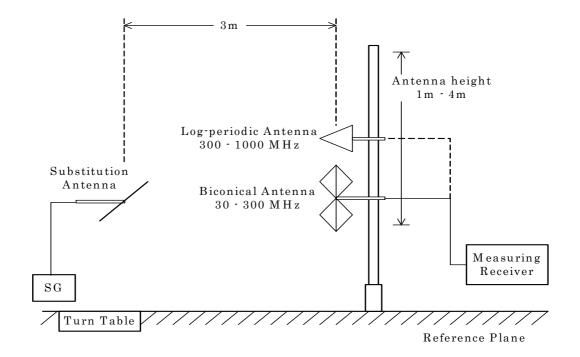

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 35 of 43

Radiated Emission 30 MHz to 1000 MHz

Radiated Emission above 1 GHz

NOTE


The antenna height is scanned depending on the EUT's size and mounting height.

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 36 of 43

Radiated Emission 30 to 1000 MHz - Substitution Method

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 37 of 43

7.7.5 Test Data

(GSM850)

Test Configuration: Single Unit

<u>Test Date: September 19, 2013</u> <u>Temp.: 25 °C, Humi: 59 %</u>

	ransmitting	Measured		RP	Limits	Margin	Remarks
СН	Frequency [MHz]	Frequency [MHz]	Hori.	Bm] Vert.	[dBm]	[dB]	
128	824.200	1648.400	-46.3	-47.5	-13.0	+33.3	С
		2472.600	-42.3	-42.6	-13.0	+29.3	С
-		3296.800	< -56.7	< -56.7	-13.0	> +43.7	С
		4121.000	< -51.2	< -51.2	-13.0	> +38.2	C
		4945.200	< -51.6	< -51.6	-13.0	> +38.6	C
		5769.400	< -50.6	< -50.6	-13.0	> +37.6	C
		6593.600	< -47.7	< -47.7	-13.0	> +34.7	С
		7417.800	< -57.2	< -57.2	-13.0	> +44.2	C
		8242.000	< -51.3	< -51.3	-13.0	> +38.3	С
189	836.400	1672.800	-45.4	-46.6	-13.0	+32.4	С
		2509.200	-47.8	-45.5	-13.0	+32.5	С
		3345.600	< -56.5	< -56.5	-13.0	> +43.5	С
		4182.000	< -51.2	< -51.2	-13.0	> +38.2	С
		5018.400	< -51.5	< -51.5	-13.0	> +38.5	С
		5854.800	< -50.5	< -50.5	-13.0	> +37.5	С
		6691.200	< -47.6	< -47.6	-13.0	> +34.6	С
		7527.600	< -57.1	< -57.1	-13.0	> +44.1	С
		8364.000	< -51.3	< -51.3	-13.0	> +38.3	С
251	848.800	1697.600	-46.5	-44.7	-13.0	+31.7	С
		2546.400	-44.1	-44.5	-13.0	+31.1	С
		3395.200	< -56.5	< -56.5	-13.0	> +43.5	С
		4244.000	< -51.2	< -51.2	-13.0	> +38.2	С
		5092.800	< -51.5	< -51.5	-13.0	> +38.5	С
		5941.600	< -49.9	< -49.9	-13.0	> +36.9	C
		6790.400	< -47.7	< -47.7	-13.0	> +34.7	C
		7639.200	< -55.1	< -55.1	-13.0	> +42.1	C
		8488.000	< -51.4	< -51.4	-13.0	> +38.4	С

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 38 of 43

Calculated result at 2472.6 MHz, as the worst point shown on underline:

Minimum Margin: -13.0 - (-42.3) = 29.3 (dB)

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 30 MHz to 10 GHz.
- 3. All emissions not reported were more than 20 dB below the applied limits.
- $4. \ Applied \ limits : -13.0 \ [dBm] = 10 log(TP[mW]) (43 + 10 log(tp[W])) = 10 log(TP[mW]) (43 + (10 log(TP[mW]) 30)) \\ where, \ tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal$
- 5. The symbol of "<" means "or less".
- 6. The symbol of ">" means "more than".
- 7. Setting of measuring instrument(s):

	Detector Function	RES B.W.	V.B.W.	Sweep Time
A	Peak	10 kHz	$30\mathrm{kHz}$	20 msec.
В	Peak	100 kHz	$300\mathrm{kHz}$	20 msec.
С	Peak	$1\mathrm{MHz}$	$3\mathrm{MHz}$	20 msec.

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 39 of 43

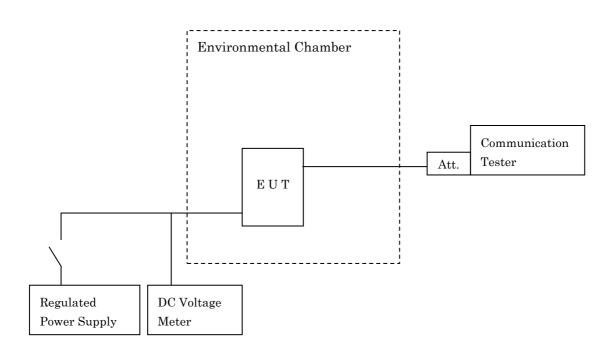
7.8 Frequency	y Stability(§2.1	055)			
For the requ		- Applicable [⊠ - Tes · Not Applicable	ted. 🗌 - Not tested l	oy applicant request.	l
For the limi	ts,	Passed 🗌 - Failed	☐ - Not judged		
7.8.1 Worst	Point and Meas	surement Uncertainty			
The Freque	ncy Stability lev	vel is	+0.04 ppm	at <u>836.400</u> N	ИНz
Uncertainty	of Measureme	nt Results		+/-0.02 p	pm(2o
Remarks:					
7.8.2 Test Si	ite				
KITA-KANS	SAI Testing Cer	nter			
	SAITO MINOH	☑ - Environment Te☑ - Environment Te	=		

7.8.3 Test Instruments

Туре	Model	Manufacturer		Last Cal.	Interval
Universal Radio Communication Tester	CMU200	Rohde & Schwarz	B-21	2013/4	1 Year
DC Voltage Meter	2011-39	YEW	B-33	2013/4	1 Year
Environmental Chamber	SH-641	ESPEC	F-32	2013/7	1 Year
DC Power Supply	NL035-10	TAKASAGO	F-4	N/A	N/A

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 40 of 43


7.8.4 Test Method and Test Setup (Diagrammatic illustration)

Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

Frequency Stability versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the ending voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

Standard : CFR 47 FCC Rules and Regulations Part 22

Page 41 of 43

7.8.5 Test Data

(GSM850)

 $\underline{\text{Test Date: September 20, 2013}}$

- September 24, 2013

1. Frequency Stability Measurement versus Temperature

Transmitting Frequency : 836.400 MHz (189 ch)

DC Supply Voltage : 4.0 VDC

Ambient		Deviat	ion [ppm]		Limits	Margin
Temperature	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
[°C]						
-30	+ 0.04	- 0.01	+ 0.02	+ 0.02	2.50	2.46
-20	+ 0.03	+ 0.02	+ 0.02	+ 0.02	2.50	2.47
-10	+ 0.02	+ 0.02	+ 0.02	+ 0.02	2.50	2.48
0	+ 0.02	+ 0.02	+ 0.02	+ 0.02	2.50	2.48
10	+ 0.03	+ 0.02	+ 0.02	+ 0.02	2.50	2.47
20	+ 0.03	+ 0.02	+ 0.02	+ 0.02	2.50	2.47
30	+ 0.03	+ 0.02	+ 0.02	+ 0.02	2.50	2.47
40	- 0.03	+ 0.02	+ 0.02	+ 0.02	2.50	2.47
50	- 0.02	+ 0.02	+ 0.02	+ 0.02	2.50	2.48

2. Frequency Stability Measurement versus Power Supply Voltage

Transmitting Frequency : 836.400 MHz (189 ch)

Ambient Temperature: : 20 $^{\circ}$ C

DC Supply		Deviation [ppm]				Margin
Voltage [V]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
4.0	+ 0.03	+ 0.02	+ 0.02	+ 0.02	2.50	2.47
3.7(Ending)	- 0.03	+ 0.02	+ 0.02	+ 0.02	2.50	2.47

 $Test\ condition\ example\ as\ the\ maximum\ deviation\ point\ shown\ on\ underline:$

Ambient Temperature $: -30 \, ^{\circ}\text{C}$ / Startup

DC Supply Voltage : 4 VDC Minimum Margin: 2.50 - 0.04 = 2.46 (ppm)

NOTE: The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.