

Page 1 of 59

JQA File No.: KL80130024 **Issue Date**: May 7, 2013

TEST REPORT (SAR EVALUATION)

Applicant : Sharp Corporation, Communication Systems Division

Address : 2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

Products : Cellular Phone

Model No. : SH-07E

 Serial No.
 : 004401114755545

 FCC ID
 : APYHRO00190

Test Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Test Results : Passed

Date of Test : April 22, 2013 ~ May 3, 2013

Hem

Kousei Shibata

Manager

Japan Quality Assurance Organization
KITA-KANSAI Testing Center

SAITO EMC Branch

7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan, National Institute of Information and Communications Technology (NICT) of Japan, and Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zürich, Switzerland.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 2 of 59

TABLE OF CONTENTS

		Page
1	Description of the Device Under Test (DUT)	3
2	Summary of Test Results	4
3	Test Procedure	5
4	Test Location	5
5	Recognition of Test Laboratory	5
6	Measurement System Diagram	6
7	System Components	7
8	Measurement Process	11
9	Measurement Uncertainties	12
10	Test Arrangement.	14
11	Tissue Verification	16
12	System Validation	20
13	RF Output Power Measurements	22
14	SAR Measurements	30
15	Test Setup Photographs	53
16	Test Instruments	58
17	Appendix	59

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 3 of 59

1 Description of the Device Under Test (DUT)

1. Manufacturer : Sharp Corporation, Communication Systems Division

2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

2. Products : Cellular Phone

3. Model No. : SH-07E

4. Serial No. : 004401114755545
5. Product Type : Pre-production
6. Date of Manufacture : April, 2013

7. Transmitting Frequency : 826.4 MHz – 846.6 MHz (WCDMA Band V)

824.2 MHz – 848.8 MHz (GSM 850) 1850.2 MHz – 1909.8 MHz (PCS 1900) 2402 MHz – 2480 MHz (Bluetooth)

2412 MHz – 2462 MHz (WLAN 802.11b/g/n)

 $5150~\rm{MHz} - 5250~\rm{MHz}$ (WLAN 802.11a/n/ac, W52) $5250~\rm{MHz} - 5350~\rm{MHz}$ (WLAN 802.11a/n/ac, W53) $5470~\rm{MHz} - 5725~\rm{MHz}$ (WLAN 802.11a/n/ac, W56)

8. Battery Option : Lithium-ion Battery Pack SH42 (2100mAh)

9. Power Rating : 4.0VDC

10. EUT Grounding : None

11. Device Category : Portable Device (§2.1093)

12. Exposure Category : General Population/Uncontrolled Exposure

13. FCC Rule Part(s) : 24(E), 15.247, 15.407

14. EUT Authorization : Certification15. Received Date of DUT : April 19, 2013

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 4 of 59

2 Summary of Test Results

Applied Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio-

frequency Electromagnetic Fields

Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions

Band	Test Configuration	Reported 1 g SAR (W/kg)	Limit (W/kg)
WCDMA D 1 W	Head	0.58	
WCDMA Band V	Body & Hotspot	0.83	
CCM of o	Head	0.62	
GSM 850	Body & Hotspot	0.96	
DCC 1000	Head	0.67	
PCS 1900	Body & Hotspot	0.78	
WLAN 2.4 GHz	Head	0.17	
WLAN 2.4 GHZ	Body & Hotspot	< 0.10	1.6
WLAN 5.2 GHz	Head	0.10	
WLAN 5.2 GHZ	Body	< 0.10	
WLAN 5.3 GHz	Head	0.12	
WLAN 9.5 GHZ	Body	< 0.10	
WLAN 5.6 GHz	Head	0.17	
WLAN 9.0 GHZ	Body	0.10	
Simultaneous tran	nsmission condition	1.06	

The test results are passed for exposure limits specified in ANSI/IEEE Std. C95.1–1991.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Deputy Manager

JQA KITA-KANSAI Testing Center

SAITO EMC Branch

Tested by:

Yasuhisa Sakai

Deputy Manager

 ${\it JQA~KITA\text{-}KANSAI~Testing~Center}$

SAITO EMC Branch

JQA File No. : KL80130024 Issue Date: May 7, 2013 FCC ID : APYHRO00190 Model No. : SH-07E

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 5 of 59

3 **Test Procedure**

The tests documented in this report were performed in accordance with FCC/OET Bulletin 65 Supplement C (Edition 01-01), IEEE Std.1528-2003 and the following KDB Procedures.

248227 D01 SAR meas for 802 11 a b g v01r02

447498 D01 General RF Exposure Guidance v05

648474 D04 SAR Handsets Multi Xmiter and Ant v01

#865664 D01 SAR measurement 100 MHz to 6 GHz v01

865664 D02 SAR Reporting v01

#941225 D01 SAR test for 3G devices v02

#941225 D02 Guidance PBA for 3GPP R6 HSPA v02r01

941225 D03 SAR Test Reduction GSM GPRS EDGE v01

941225 D06 Hot Spot SAR v01

Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No. : VLAC-001-2 (Expiry date : March 30, 2014) VCCI Registration No. : A-0002 (Expiry date : March 30, 2014)

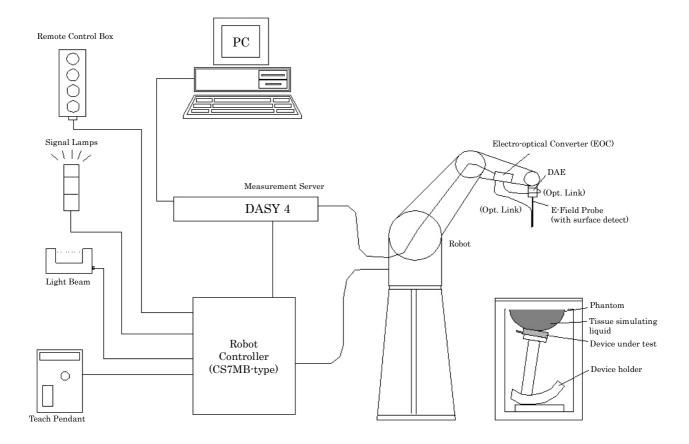
BSMI Registration No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-A1-E-6006

(Expiry date: September 14, 2013)

IC Registration No. : 2079E-3, 2079E-4 (Expiry date: July 20, 2014)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI.

(Expiry date: February 22, 2016)


Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 6 of 59

6 Measurement System Diagram

These measurements are performed using the DASY4 automated dosimetric assessment system (manufactured by Schmid & Partner Engineering AG (SPEAG) in Zürich, Switzerland). It consists of high precision robotics system, cell controller system, DASY4 measurement server, personal computer with DASY4 software, data acquisition electronic (DAE) circuit, the Electro-optical converter (EOC), near-field probe, and the twin SAM phantom containing the equivalent tissue. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF).

The Robot is connected to the cell controller to allow software manipulation of the robot. The DAE is connected to the EOC. The DAE performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 7 of 59

7 System Components

7.1 Probe Specification ET3DV6

Construction : Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static changes

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration : In air form 10 MHz to 2.3 GHz

In head tissue simulating liquid (HSL) and

muscle tissue simulating liquid 835 MHz (accuracy \pm 12.0%; k=2) 900 MHz (accuracy \pm 12.0%; k=2) 1450 MHz (accuracy \pm 12.0%; k=2) 1750 MHz (accuracy \pm 12.0%; k=2) 1900 MHz (accuracy \pm 12.0%; k=2) 1950 MHz (accuracy \pm 12.0%; k=2)

Frequency : 10 MHz to 2.3 GHz

Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 2.3 GHz)

Directivity $\pm 0.2 \text{ dB}$ in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal to probe axis)

Dynamic Range \div 5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB

Surface Detection : ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions : Overall length 337 mm

Tip length 16 mm Body diameter 12 mm Tip diameter 6.8 mm

Distance from probe tip to dipole centers 2.7 mm

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 8 of 59

7.2 Probe Specification EX3DV4

Construction : Symmetrical design with triangular core

Built-in shielding against static changes

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration : In air form 10 MHz to 6 GHz

In head tissue simulating liquid (HSL) and

muscle tissue simulating liquid 2450 MHz (accuracy \pm 12.0%; k=2) 2600 MHz (accuracy \pm 13.1%; k=2) 5200 MHz (accuracy \pm 13.1%; k=2) 5300 MHz (accuracy \pm 13.1%; k=2) 5500 MHz (accuracy \pm 13.1%; k=2) 5600 MHz (accuracy \pm 13.1%; k=2) 5800 MHz (accuracy \pm 13.1%; k=2)

Frequency : 10 MHz to 6 GHz

Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 6 GHz)

Directivity $\pm 0.3 \text{ dB}$ in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range : $10 \mu \text{W/g}$ to >100 mW/g; Linearity: $\pm 0.2 \text{ dB}$ (noise: typically < $1 \mu \text{W/g}$)

Dimensions : Overall length 337 mm

Tip length 20 mm Body diameter 12 mm Tip diameter 2.5 mm

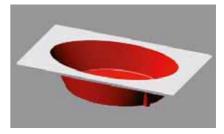
Distance from probe tip to dipole centers 1 mm

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 9 of 59

7.3 Twin SAM Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.


Shell Thickness : 2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm

Filling Volume : Volume Approx. 25 liters

Dimensions : $810 \times 1000 \times 500 \text{ mm} (H \times L \times W)$

7.4 ELI4 Flat Phantom

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete

setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Shell Thickness : 2 ± 0.2 mm (sagging: <1%)
Filling Volume : Volume Approx. 30 liters
Dimensions : Major ellipse axis : 600 mm
Minor axis : 400 mm

JQA File No. : KL80130024 Issue Date : May 7, 2013 Model No. : SH-07E FCC ID : APYHRO00190

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 10 of 59

7.5 Mounting Device for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat point).

7.6 Laptop Extensions Kit for Mounting Device

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

7.7 Typical Composition of Ingredients for Liquid Tissue

Ingredients	Frequency (MHz)									
(% by weight)	85	35	19	00	2450					
(% by weight)	Head	Body	Head	Body	Head	Body				
Water	41.45	52.40	54.90	40.40	62.70	73.20				
Salt (NaCl)	1.45	1.40	0.18	0.50	0.50	0.04				
Sugar	56.00	45.00	0.00	58.00	0.00	0.00				
HEC	1.00	1.00	0.00	1.00	0.00	0.00				
Bactericide	0.10	0.10	0.00	0.10	0.00	0.00				
Triton X-100	0.00	0.00	0.00	0.00	36.80	0.00				
DGBE	0.00	0.00	44.92	0.00	0.00	26.70				

Salt : 99+% Pure Sodium Chloride Sugar : 98+% Pure Sucrose Water : De-ionized, 16 M Ω + resistivity HEC : Hydroxyethyl Cellulose DGBE : 99+% Di (ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbuthyl)phenyl]ether

The composition of ingredients is according to FCC/OET Bulletin 65 Supplement C.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 11 of 59

8 Measurement Process

Step 1: Power Reference Measurement

The power reference job measures the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. The minimum distance of probe sensors to surface set to 4 mm for an ET3DV6 probe, or 2 mm for EX3DV4 probe. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations in relatively coarse grids. When an area scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. If only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maxima within 2 dB of the maximum SAR value are detected, the number of zoom scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The zoom scan measures points specified in standards within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

Step 4: Z Scan

The Z scan measures points along a vertical straight line. The line runs along the Z axis of a one-dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

Step 5: Power Drift Measurement

The power drift measurement measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The power drift measurement gives the field difference in dB from the reading conducted within the last power reference measurement. The power reference measurement and power drift measurement are for monitoring the power drift of the device under test in the batch process.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 12 of 59

9 Measurement Uncertainties

9.1 300 MHz to 3 GHz

Uncertainty Component	Tol. (± %)	Prob. Dist.	Div.	c_i	c _i (10g)	Std. Un	c. (± %)	v _i
	(± /0)	Dist.		(1g)	(10g)	1g	10g	
Measurement System								
Probe calibration	6.0	N	1	1	1	6.0	6.0	8
Axial isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
Hemispherical isotropy	9.6	R	√3	0.7	0.7	3.9	3.9	8
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Readout electronics	0.3	N	1	1	1	0.3	0.3	8
Response time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
Integration time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
RF ambient conditions – noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
RF ambient conditions – reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
Probe positioner mechanical tolerance	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
Probe positioning with respect to phantom shell	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
Extrapolation, interpolation and integration	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
algorithms for max. SAR evaluation								
Test Sample Related								
Test sample positioning	3.4	N	1	1	1	3.4	3.4	23
Device holder uncertainty	2.9	N	1	1	1	2.9	2.9	5
Output power variation – SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
Phantom and Tissue Parameters								
Phantom uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
Liquid conductivity – deviation from target	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
Liquid Conductivity – measurement uncertainty	3.2	N	1	0.64	0.43	2.0	1.4	5
Liquid Permittivity – deviation from target	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity – measurement uncertainty	3.0	N	1	0.6	0.49	1.8	1.5	5
Combined Standard Uncertainty		RSS				11.0	10.8	
Expanded Uncertainty (95% Confidence Interval)		k=2				22.1	21.5	

NOTES

1. Tol.: tolerance in influence quantity 2. Prob. Dist.: probability distributions

3. N, R: normal, rectanglar

4. Div. : divisor used to obtain standard uncertainty

5. c_i : sensitivity coefficient

6. Std. Unc.: standard uncertainty

7. Measurement uncertainties are according to IEEE Std. 1528 and IEC 62209-1.

JQA File No. : KL80130024 Issue Date : May 7, 2013 Model No. : SH-07E FCC ID : APYHRO00190

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 13 of 59

9.2 3 GHz to 6 GHz

Uncertainty Component	Tol. (± %)	Prob. Dist.	Div.	c _i (1g)	c_i	Std. Un	c. (± %)	v _i
			(10g)	1g	10g			
Measurement System								
Probe calibration	6.6	N	1	1	1	6.6	6.6	8
Axial isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
Hemispherical isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	∞
Boundary effect	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout electronics	0.3	N	1	1	1	0.3	0.3	∞
Response time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Integration time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF ambient conditions – noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF ambient conditions – reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe positioner mechanical tolerance	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Probe positioning with respect to phantom shell	9.9	R	$\sqrt{3}$	1	1	5.7	5.7	∞
Extrapolation, interpolation and integration	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
algorithms for max. SAR evaluation								
Test Sample Related								
Test sample positioning	3.4	N	1	1	1	3.4	3.4	23
Device holder uncertainty	2.9	N	1	1	1	2.9	2.9	5
Output power variation – SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and Tissue Parameters								
Phantom uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid conductivity – deviation from target	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity – measurement uncertainty	3.2	N	1	0.64	0.43	2.0	1.4	5
Liquid Permittivity – deviation from target	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity – measurement uncertainty	3.0	N	1	0.6	0.49	1.8	1.5	5
Combined Standard Uncertainty		RSS				12.8	12.6	
Expanded Uncertainty (95% Confidence Interval)		k=2				25.7	25.2	

NOTES

1. Tol.: tolerance in influence quantity 2. Prob. Dist.: probability distributions

3. N, R: normal, rectanglar

4. Div. : divisor used to obtain standard uncertainty

5. c_i : sensitivity coefficient

6. Std. Unc.: standard uncertainty

7. Measurement uncertainties are according to IEEE Std. 1528 and IEC 62209-1.

JQA File No. : KL80130024 Issue Date : May 7, 2013 Model No. : SH-07E FCC ID : APYHRO00190

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 14 of 59

Horizontal

Mobile phone box

Vertical

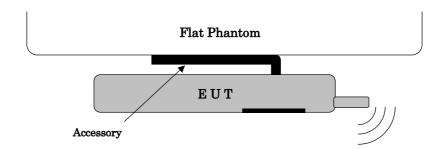
10 Test Arrangement

10.1 Cheek-Touch Position

- 1. Position the device with the vertical center line of the body of the device and the horizontal line crossing the center of the ear piece in a plane parallel to the sagittal plane of the phantom.
- 2. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the center of the ear piece with the line RE-LE.
- 3. Translate the mobile phone box towards the phantom with the ear piece aligned with the line RE-LE until the phone touches the ear.
- 4. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

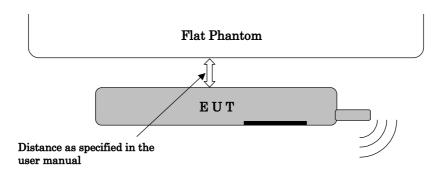
10.2 Ear-Tilt Position

- 1. Position the device in the "Cheek-Touch Position".
- 2. While maintaining the device in the reference plane and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.



Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 15 of 59


10.3 Body-worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. Both the physical spacing to the body of the user as dictated by the accessory and the materials used in an accessory affect the SAR produced by the transmitting device. For purpose of determining test requirements, accessories may be divided into two categories: those that do not contain metallic components and those that do.

When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

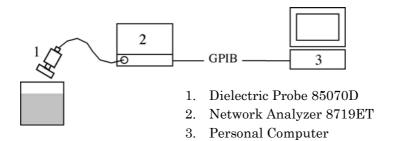
Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

Lap-held device (e.g. laptop computer)

SAR is tested for a lap-held position with the bottom of the computer in direct contact against a flat phantom.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 16 of 59


11 Tissue Verification

11.1 Tissue Verification Measurement Condition

The tissue dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use, or earlier if dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

The temperature of the tissue-equivalent medium used during measurement must be within 18°C to 25°C and within \pm 2°C of the temperature when the tissue parameters are characterized.

It is verified by using the dielectric probe and the network analyzer.

11.2 Tissue Dielectric Properties

The tissue dielectric properties are specified in FCC/OET Bulletin 65 Supplement C.

Target Frequency	Не	ead	Во	ody
[MHz]	Permittivity (ε _r)	Conductivity (o)	Permittivity (ε _r)	Conductivity (o)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

For tissue dielectric properties at other frequencies within the range, a linear interpolation method shall be used.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 17 of 59

11.3 Tissue Verification Results

Tissue dielectric parameters are measured at the low, middle and high frequency of each operating frequency range of the test device.

Date	Liquid	Frequency [MHz]	Parameters	Target	Measured	Deviation [%]	Limit [%]
		222	Permittivity (ε _r)	41.6	41.45	-0.36	± 5
		820	Conductivity (o)	0.90	0.872	-3.11	± 5
4/00/0010	TT 1	00.	Permittivity (ε _r)	41.5	41.34	-0.39	± 5
4/22/2013	Head	835	Conductivity (o)	0.90	0.887	-1.44	± 5
		950	Permittivity (ε _r)	41.5	41.18	-0.77	± 5
		850	Conductivity (o)	0.92	0.901	-2.07	± 5
		000	Permittivity (e _r)	55.3	54.58	-1.30	± 5
		820	Conductivity (o)	0.97	0.957	-1.34	± 5
4/23/2013	Body	835	Permittivity (e _r)	55.2	54.52	-1.23	± 5
4/23/2013	Боау		Conductivity (o)	0.97	0.969	-0.10	± 5
		850	Permittivity (e _r)	55.2	54.44	-1.38	± 5
			Conductivity (o)	0.99	0.985	-0.51	± 5
		1850	Permittivity (e _r)	53.3	53.39	+0.17	± 5
		1000	Conductivity (o)	1.52	1.486	-2.24	± 5
		1000	Permittivity (e _r)	53.3	53.32	+0.04	± 5
4/24/2013	Doder	1880	Conductivity (o)	1.52	1.518	-0.13	± 5
4/24/2013	Body	1900	Permittivity (e _r)	53.3	53.27	-0.06	± 5
			Conductivity (o)	1.52	1.540	+1.32	± 5
			Permittivity (e _r)	53.3	53.32	+0.04	± 5
			Conductivity (o)	1.52	1.551	+1.97	± 5
		1850	Permittivity (e _r)	40.0	39.75	-0.63	± 5
		1650	Conductivity (o)	1.40	1.385	-1.07	± 5
		1000	Permittivity (e _r)	40.0	39.61	-0.98	± 5
4/25/2013	Head	1880	Conductivity (o)	1.40	1.419	+1.36	± 5
4/25/2015	Heau	1900	Permittivity (e _r)	40.0	39.54	-1.15	± 5
		1900	Conductivity (o)	1.40	1.436	+2.57	± 5
		1910	Permittivity (e _r)	40.0	39.58	-1.05	± 5
		1910	Conductivity (o)	1.40	1.445	+3.21	± 5
		2410	Permittivity (e _r)	52.8	52.36	-0.83	± 5
		2410	Conductivity (o)	1.91	1.903	-0.37	± 5
		2435	Permittivity (e _r)	52.7	52.27	-0.82	± 5
4/30/2013	Body	2400	Conductivity (o)	1.94	1.937	-0.15	± 5
4/30/2013	Douy	2450 - 2475 -	Permittivity (e _r)	52.7	52.22	-0.91	± 5
			Conductivity (o)	1.95	1.957	+0.36	± 5
			Permittivity (e _r)	52.7	52.13	-1.08	± 5
		2410	Conductivity (o)	1.99	1.991	+0.05	± 5

JQA File No. : KL80130024 Issue Date : May 7, 2013 Model No. : SH-07E FCC ID : APYHRO00190

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 18 of 59

Tissue Verification Results (continued)

Date	Liquid	Frequency [MHz]	Parameters	Target	Measured	Deviation [%]	Limit [%]
		2410	Permittivity (ε _r)	39.3	38.83	-1.20	± 5
		2410	Conductivity (o)	1.76	1.782	+1.25	± 5
		0.495	Permittivity (ε _r)	39.2	38.74	-1.17	± 5
E/1/0019	Haad	2435	Conductivity (o)	1.79	1.812	+1.23	± 5
5/1/2013	Head	9450	Permittivity (ε _r)	39.2	38.67	-1.35	± 5
		2450	Conductivity (o)	1.80	1.829	+1.61	± 5
		2475	Permittivity (ε _r)	39.2	38.57	-1.61	± 5
		2479	Conductivity (o)	1.83	1.859	+1.58	± 5
		5190	Permittivity (ε _r)	36.0	36.38	+1.06	± 5
		5180	Conductivity (o)	4.63	4.670	+0.86	± 5
5/2/2013	Head	5200	Permittivity (ε _r)	36.0	36.34	+0.94	± 5
3/2/2013	пеац	9200	Conductivity (o)	4.66	4.690	+0.64	± 5
		5240	Permittivity (ε _r)	35.9	36.25	+0.97	± 5
			Conductivity (o)	4.70	4.730	+0.64	± 5
		5260	Permittivity (ε _r)	35.9	36.20	+0.84	± 5
		5200	Conductivity (o)	4.72	4.753	+0.70	± 5
5/2/2013	Head	5300	Permittivity (ε _r)	35.9	36.15	+0.70	± 5
3/2/2013	Heau	3300	Conductivity (o)	4.76	4.796	+0.76	± 5
		5320	Permittivity (ε _r)	35.8	36.12	+0.89	± 5
		3320	Conductivity (o)	4.78	4.816	+0.75	± 5
		5500	Permittivity (ε _r)	35.6	35.80	+0.56	± 5
		3300	Conductivity (o)	4.96	5.015	+1.11	± 5
		5520	Permittivity (ε _r)	35.6	35.77	+0.48	± 5
		3320	Conductivity (o)	4.98	5.038	+1.16	± 5
		5560	Permittivity (ε _r)	35.6	35.72	+0.34	± 5
		3300	Conductivity (o)	5.02	5.083	+1.25	± 5
5/2/2013	Head	5600	Permittivity (ε _r)	35.5	35.66	+0.45	± 5
3/2/2013	Heau	3000	Conductivity (o)	5.07	5.128	+1.14	± 5
		5640	Permittivity (ε _r)	35.5	35.60	+0.28	± 5
		5040	Conductivity (o)	5.11	5.174	+1.25	± 5
		5680	Permittivity (ε _r)	35.4	35.53	+0.37	± 5
		5680	Conductivity (o)	5.15	5.219	+1.34	± 5
		5700	Permittivity (e _r)	35.4	35.50	+0.28	± 5
			Conductivity (o)	5.17	5.242	+1.39	± 5

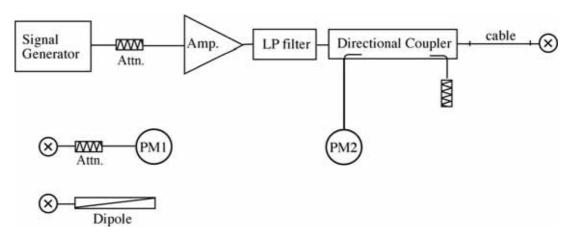
Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 19 of 59

Tissue Verification Results (continued)

Date	Liquid	Frequency [MHz]	Parameters	Target	Measured	Deviation [%]	Limit [%]
		5180	Permittivity (ε _r)	49.0	48.75	-0.51	± 5
		3100	Conductivity (o)	5.28	5.267	-0.25	± 5
E/9/9019	D. J.	5200	Permittivity (ε _r)	49.0	48.71	-0.59	± 5
5/3/2013	Body	5200	Conductivity (o)	5.30	5.289	-0.21	± 5
		5240	Permittivity (ε _r)	49.0	48.64	-0.73	± 5
		5240	Conductivity (o)	5.35	5.345	-0.09	± 5
		5 960	Permittivity (ε _r)	48.9	48.57	-0.67	± 5
		5260	Conductivity (o)	5.37	5.373	+0.06	± 5
5/3/2013	Body	5300	Permittivity (ε _r)	48.9	48.50	-0.82	± 5
3/3/2013	Боау	9900	Conductivity (o)	5.42	5.421	+0.02	± 5
		5320	Permittivity (ε _r)	48.9	48.46	-0.90	± 5
			Conductivity (o)	5.44	5.449	+0.17	± 5
		5500	Permittivity (ε _r)	48.6	48.09	-1.05	± 5
		5500	Conductivity (o)	5.65	5.688	+0.67	± 5
		5520	Permittivity (ε _r)	48.6	48.04	-1.15	± 5
		5520	Conductivity (o)	5.67	5.719	+0.86	± 5
		5560	Permittivity (ε _r)	48.5	47.99	-1.05	± 5
		9960	Conductivity (o)	5.72	5.769	+0.86	± 5
5/3/2013	Body	5600	Permittivity (ε _r)	48.5	47.92	-1.20	± 5
5/5/2015	Bouy	5600	Conductivity (o)	5.77	5.823	+0.92	± 5
		5640	Permittivity (ε _r)	48.4	47.85	-1.14	± 5
		3640	Conductivity (o)	5.81	5.879	+1.19	± 5
		5680	Permittivity (e _r)	48.4	47.78	-1.28	± 5
			Conductivity (o)	5.86	5.934	+1.26	± 5
		5700	Permittivity (ε _r)	48.3	47.75	-1.14	± 5
		9700	Conductivity (o)	5.88	5.962	+1.39	± 5

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)


Page 20 of 59

12 System Validation

12.1 System Validation Measurement Condition

The power meter PM1 (including Attenuator) measures the forward power at the location of the validation dipole connector. The signal generator is adjusted for 250 mW at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

The dipole antenna is matched to be used near flat phantom filled with tissue simulating solution. A specific distance holder is used in the positioning of the antenna to ensure correct spacing between the phantom and the dipole.

12.2 Target SAR Values for System Validation

The target SAR values can be obtained from the calibration certificate of system validation dipoles.

System	Dipole	Cal Data	Frequency	Targ	Target SAR Values [W/kg]			
Type	Serial	Cal. Date	[MHz]	1g/10g	Head	Body		
D835V2	4d081	8/8/2012	835	1g	9.35	9.46		
D055V2	40001	0/0/2012	000	10g	6.12	6.25		
D1900V2	5d112	8/14/2012	1900	1g	39.6	40.5		
D1900V2	90112	0/14/2012	1900	10g	20.9	21.5		
D0.450V0	714	11/7/2012	9450	1g	53.1	50.5		
D2450V2			11/1/2012	2450	10g	24.7	23.5	
				5000	1g	77.7	75.3	
					5200	10g	22.3	21.0
D5GHzV2	1111	9/18/2012	5500	1g	82.4	79.1		
Dognzvz	1111 9/18/2	9/18/2012 5500 5800	5500	10g	23.4	22.0		
			5000	1g	76.0	74.4		
			9000	10g	21.7	20.6		

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 21 of 59

12.3 System Validation Results

The SAR measured with a system validation dipole, using the required tissue-equivalent medium at the test frequency, must be within 10 % of the manufacturer calibrated dipole SAR target.

Date	System I	Dipole	Liquid	Liquid Measured SAR [W/kg] (Normalized to 1 W)		Target	Deviation	Limit	
Date	Type	Serial	Liquid			Target	[%]	[%]	
4/00/0010	Doorwo	4.1001	77 1	1 g	9.28	9.35	-0.75	± 10	
4/22/2013	D835V2	4d081	Head	10 g	6.08	6.12	-0.65	± 10	
4/02/0012	DeagNo	43001	D. J.	1 g	9.36	9.46	-1.06	± 10	
4/23/2013	D835V2	4d081	Body	10 g	6.20	6.25	-0.80	± 10	
4/04/0010	D1000V9	F.1110	D. 1	1 g	38.92	40.5	-3.90	± 10	
4/24/2013	D1900V2	5d112	Body	10 g	20.84	21.5	-3.07	± 10	
4/05/0019	D1000V9	V2 5d112	Haad	1 g	39.56	39.6	-0.10	± 10	
4/25/2013	D1900V2		Head	10 g	20.88	20.9	-0.10	± 10	
4/90/9019	D2450V2	714	Body	1 g	50.80	50.5	+0.59	± 10	
4/30/2013				10 g	23.96	23.5	+1.96	± 10	
E/1/0019	D0450V0	714	Haad	1 g	49.60	53.1	-6.59	± 10	
5/1/2013	D2450V2	/14	Head	10 g	22.60	24.7	-8.50	± 10	
E/0/0019	D5GHzV2	GHzV2	5GHzV2	IIJ	1 g	78.40	77.7	+0.90	± 10
5/2/2013	(5.2GHz)	1111	Head	10 g	22.44	22.3	+0.63	± 10	
F /9/9019	D5GHzV2	1111	TT 1	1 g	82.80	82.4	+0.49	± 10	
5/2/2013	(5.5GHz)	1111	Head	10 g	23.40	23.4	+0.00	± 10	
E/9/9019	D5GHzV2	1111	Dada	1 g	73.20	75.3	-2.79	± 10	
5/3/2013	$/2013$ $ 60012 \lor 2 $ $ 1111 $ Body		Боау	10 g	20.64	21.0	-1.71	± 10	
F/9/9019	D5GHzV2	1111	D. 1	1 g	75.20	79.1	-4.93	± 10	
5/3/2013	(5.5GHz)	1111	Body	10 g	20.80	22.0	-5.45	± 10	

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 22 of 59

13 RF Output Power Measurements

13.1 WCDMA Band V

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification.

To setup the desire channel frequency and the maximum output power, a Radio Communication Tester "Anritsu, MT8820C" was used to program the DUT.

3GPP Release 99 WCDMA Settings

Settings	Release 99	
Loopback Mode	Mode 1	OFF
Channel Coding	12.2k / 64k / 144k / 384kbps RMC	Voice AMR
TPC Bit Pattern	All 1	
Power Tolerance (dB)	+1.7/-3.7	

3GPP Release 5 HSDPA Settings

odii welede o mezime emige						
Settings	Release 5 HS	Release 5 HSDPA				
Sub-test	1	2	3	4		
Loopback Mode	Mode 1	Mode 1				
Channel Coding	Fixed Refere	Fixed Reference Channel (QPSK)				
TPC Algorithm	2	2				
TPC Bit Pattern	All 1					
Beta C	2	11	15	15		
Beta D	15	15	8	4		
MPR (dB)	0	0	0.5	0.5		
Power Tolerance (dB)	+1.7/-3.7	+1.7/-3.7	+2.7/-3.7	+3.7/-3.7		

3GPP Release 6 HSPA Settings

Settings	Release 6 HSPA					
Sub-test	1	2	3	4	5	
Loopback Mode	Mode 1					
Channel Coding	E-DCH RF Test with TTI 10ms (QPSK)					
TPC Algorithm	2					
TPC Bit Pattern	Inner Loop	Power Contro	1		All 1	
Beta C	10	6	15	2	15	
Beta D	15	15	9	15	0	
Absolute Grant Value	20 12 15 17 12					
MPR (dB)	0 2 1 2 0					
Power Tolerance (dB)	+1.7/-6.7	+3.7/-5.2	+2.7/-5.2	+3.7/-5.2	+1.7/-3.7	

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 23 of 59

Conducted power measurement results

			icted Average Power	(dBm)
Mode		4132 ch	4132 ch 4182 ch	
		(826.4 MHz)	(836.4 MHz)	(846.6 MHz)
12.2 kbps RMC		23.07	23.06	22.97
64 kbp	s RMC	23.09	23.11	22.97
144 kb _l	os RMC	23.05	23.11	22.95
384 kbj	os RMC	23.05	23.09	22.95
Voice	Voice AMR		23.03 23.06	
	Sub-test 1	22.99	23.03	22.89
R5 HSDPA	Sub-test 2	22.99	23.02	22.89
	Sub-test 3	22.47	22.51	22.46
	Sub-test 4	22.56	22.50	22.44
	Sub-test 1	22.16	22.24	22.66
R6 HSPA	Sub-test 2	20.74	20.67	20.67
	Sub-test 3	21.46	21.74	21.87
	Sub-test 4	20.85	20.83	20.83
	Sub-test 5	22.92	22.91	22.87

Note(s):

- 1. KDB 941225 D01 SAR in voice and data modes is measured using a 12.2 kbps RMC. SAR in voice AMR configurations and for other spreading codes are not required when the maximum average output of each channel is less than ¼ dB higher than that measured in 12.2 kbps RMC.
- 2. KDB 941225 D01 Body SAR for HSPA (HSDPA/HSUPA) is not required when the maximum average output with HSPA active is less than ¼ dB higher than that measured without HSPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit.
- 3. KDB 941225 D01 Head SAR for HSPA (VoIP applicable) is not required when the maximum average output with HSPA active is less than ¼ dB higher than that measured without HSPA using 12.2 kbps RMC.
- 4. KDB 941225 D02 The maximum power reduction (MPR) on the order of 0, 2, 1, 2, 0 dB are expected for the subtests specified in R6 HSPA. Conducted power measurement results are set within 24 dBm +/- expected power tolerance.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 24 of 59

13.2 GSM 850

To setup the desire channel frequency and the maximum output power, a Radio Communication Tester "Anritsu, MT8820C" was used to program the DUT.

GSM/GPRS Settings

Settings	Mode	Parameter		
G 1 G - + 1 ·	Band Indicator	GSM 850		
General Settings	Power Control Level	5 (33 dBm)		
CDDC C : C -	Connection Type	Test Mode A		
GPRS Specific	Multi Slot Class	12 (4 down / 4 up / 5 sum)		
Settings	Coding Scheme	CS1 (GMSK)		

Conducted power measurement results

		Conducted Power (dBm)				
Mode		128 ch	189 ch	251 ch		
		(824.2 MHz)	(836.4 MHz)	(848.8 MHz)		
CCM	Burst Avg.	31.98	32.04	31.91		
GSM	Frame Avg.		23.01	22.88		
GPRS (1 slot)	Burst Avg.	31.98	32.04	31.91		
GFRS (1 Slot)	Frame Avg.	22.95	23.01	22.88		
CDDC (o. 1.4)	Burst Avg.	29.51	29.59	29.40		
GPRS (2 slot)	Frame Avg.	23.49	23.57	23.38		
GPRS (3 slot)	Burst Avg.	28.43	28.29	27.87		
GPRS (3 Slot)	Frame Avg.	24.17	24.03	23.61		
CDDC (4 1 4)	Burst Avg.	27.41	27.09	27.23		
GPRS (4 slot)	Frame Avg.	24.40	24.08	24.22		

Note(s):

KDB 941225 D03 – The worst-case configuration for SAR testing is determined to be as follows.

- 1. Body : GPRS mode with 4 time slots, based on the output power above
- 2. Head: Same mode as Body SAR testing (VoIP applicable using GPRS multi-slot)

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 25 of 59

13.3 PCS 1900

To setup the desire channel frequency and the maximum output power, a Radio Communication Tester was used to program the DUT.

GSM/GPRS Settings

Settings	Mode	Parameter		
G 1 G - + 1 '	Band Indicator	PCS 1900		
General Settings	Power Control Level	0 (30 dBm)		
CDDC C 'C' -	Connection Type	Test Mode A		
GPRS Specific	Multi Slot Class	12 (4 down / 4 up / 5 sum)		
Settings	Coding Scheme	CS1 (GMSK)		

Conducted power measurement results

		Conducted Power (dBm)				
Mode		512 ch	661 ch	810 ch		
		$(1850.2 \mathrm{MHz})$	(1880.0 MHz)	(1909.8 MHz)		
CCM	Burst Avg.	28.90	28.93	28.92		
GSM	Frame Avg.	19.87	19.87 19.90	19.89		
GPRS (1 slot)	Burst Avg.	28.90	28.93	28.92		
GFR5 (1 8101)	Frame Avg.	19.87	19.90	19.89		
GDDG (9, 1,4)	Burst Avg.	26.80	26.82	26.73		
GPRS (2 slot)	Frame Avg.	20.78	20.80	20.71		
GPRS (3 slot)	Burst Avg.	25.49	25.30	25.43		
	Frame Avg.	21.23	21.04	21.17		
GPRS (4 slot)	Burst Avg.	24.43	24.49	24.42		
GFRS (4 S10t)	Frame Avg.	21.42	(1880.0 MHz) 28.93 19.90 28.93 19.90 26.82 20.80 25.30 21.04	21.41		

Note(s):

KDB 941225 D03 – The worst-case configuration for SAR testing is determined to be as follows.

- 1. Body : GPRS mode with 4 time slots, based on the output power above
- 2. Head: Same mode as Body SAR testing (VoIP applicable using GPRS multi-slot)

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 26 of 59

13.4 WLAN 2.4 GHz

To setup the desire channel frequency and the maximum output power, RF test mode prepared by the manufacturer was used to program the DUT.

Conducted power measurement results

Band	Mode	Channel	Frequency (MHz)	Average Power (dBm)
		1	2412	11.71
	802.11b	6	2437	12.01
2.4 GHz		11	2462	11.67
	802.11g	1	2412	11.19
		6	2437	11.43
		11	2462	11.18
		1	2412	11.26
	802.11n [HT20]	6	2437	11.41
		11	2462	11.24

Note(s):

KDB 248227~D01-SAR is not required for 802.11g/n channels when the maximum average output power is less than $^{1}\!\!/4~dB$ higher than that measured on the corresponding 802.11b channels.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 27 of 59

13.5 WLAN 5 GHz

To setup the desire channel frequency and the maximum output power, RF test mode prepared by the manufacturer was used to program the DUT.

Conducted power measurement results (W52)

Band	Mode	Channel	Frequency (MHz)	Average Power (dBm)
		36	5180	12.18
	000 11-	40	5200	12.17
	802.11a	44	5220	12.06
		48	5240	11.97
# 0 CII-	802.11n [HT20]	36	5180	12.25
$5.2~\mathrm{GHz}$		44	5220	12.06
		48	5240	11.93
	802.11n [HT40]	38	5190	12.03
	002.11П [П140]	46	5230	11.95
	802.11ac [VHT80]	42	5210	12.05

Note(s):

KDB 248227~D01 - SAR is not required for 802.11n/ac channels when the maximum average output power is less than $\frac{1}{4}$ dB higher than that measured on the corresponding 802.11a channels.

Conducted power measurement results (W53)

Band	Mode	Channel	Frequency (MHz)	Average Power (dBm)
		52	5260	12.41
	909 110	56	5280	12.42
	802.11a	60	5300	12.38
		64	5320	12.25
5.3 GHz	802.11n [HT20]	52	5260	12.48
		60	5300	12.24
		64	5320	12.28
	000 11 [HTM40]	54	5270	12.43
	802.11n [HT40]	62	5310	12.30
	802.11ac [VHT80]	58	5290	12.38

Note(s):

KDB 248227~D01-SAR is not required for 802.11n/ac channels when the maximum average output power is less than $\frac{1}{4}$ dB higher than that measured on the corresponding 802.11a channels.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 28 of 59

Conducted power measurement results (W56)

Band	Mode	Channel	Frequency (MHz)	Average Power (dBm)
		100	5500	12.07
		104	5520	12.05
		108	5540	11.73
		112	5560	11.95
		116	5580	11.87
	802.11a	120	5600	Not supported
	802.11n [HT20]	124	5620	Not supported
		128	5640	Not supported
z c OII-		132	5660	11.61
5.6 GHz		136	5680	11.38
		140	5700	11.45
		100	5500	11.95
		116	5580	11.80
		140	5700	11.31
		102	5510	12.04
	802.11n [HT40]	110	5550	11.79
		134	5670	11.57
	802.11ac [VHT80]	106	5530	12.07

Note(s):

KDB 248227~D01-SAR is not required for 802.11n/ac channels when the maximum average output power is less than $^{1}\!\!/4~dB$ higher than that measured on the corresponding 802.11a channels.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 29 of 59

13.6 Bluetooth

For the Bluetooth operation, the client supplied a special driving program to program the DUT to continually transmit the specified maximum power.

Modulation type : Frequency Hopping Spread Spectrum (FHSS)

Transmitting Frequency : 2402 MHz (0 ch) – 2480 MHz (78 ch)

RF Output Power : Max. 2.5 mW (Class 2)

13.7 Standalone SAR Test Exclusion Considerations (KDB 447498 D01)

The 1 g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation $distances \le 50$ mm are determined by;

[(max. power of channel, including tune-up tolerance, mW) | (min. test separation distance, mm)] \cdot [\sqrt{f} (GHz)] \leq 3.0, where

- f (GHz) is the RF channel transmit frequency in GHz.
- Power and distance are rounded to the nearest mW and mm before calculation.
- The result is rounded to one decimal place for comparison.
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied.

Dand	Frequency	Max.	Power	Test	Distance	Threshold	Test
Band	(MHz)	(dBm)	(mW)	Position	(mm)	Threshold	Exclusion
WLAN	0.410	19.0	90.0	Head	< 5	6.2	NO
$2.4~\mathrm{GHz}$	2412	13.0	20.0	Body	10	3.1	NO
WLAN	E 100	10 5	99.4	Head	< 5	10.2	NO
$5\mathrm{GHz}$	5180	13.5	22.4	Body	10	5.1	NO
Bluetooth	2441	4.0	2.5	Head	< 5	0.8	YES
Diuetooth	4441	4.0	∠.5	Body	10	0.4	YES

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 30 of 59

14 SAR Measurements

14.1 WCDMA Band V

14.1.1 Head

R99 12.2kbps RMC – Duty Cycle 100%									
Test Position		Frequency	Power	[dBm]	1 g SAR [W/kg]				
	Ch#	[MHz]	Tune-up Limit	Measured	Measured	Scaled	Note		
	4132	826.4					1		
Left Touched	4182	836.4	24.2	23.06	0.449	0.584			
	4233	846.6					1		
	4132	826.4					1		
Left Tilted	4182	836.4	24.2	23.06	0.232	0.302			
	4233	846.6					1		
	4132	826.4					1		
Right Touched	4182	836.4	24.2	23.06	0.426	0.554			
	4233	846.6					1		
Right Tilted	4132	826.4					1		
	4182	836.4	24.2	23.06	0.241	0.313			
	4233	846.6					1		

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - $\bullet \quad \leq 0.8 \text{ W/kg}$ when the transmission band is $\leq 100 \text{ MHz}$
 - \bullet ≤ 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg when the transmission band is ≥ 200 MHz

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 31 of 59

14.1.2 Body w/ 1.0 cm (body-worn accessory & hotspot mode)

R99 12.2kbps RMC – Duty Cycle 100%									
	Engarran	Frequency	Power	[dBm]	1 g SAR [W/kg]				
Test Position	Ch#	[MHz]	Tune-up Limit	Measured	Measured	Scaled	Note		
	4132	826.4					3		
Top Edge	4182	836.4					3		
	4233	846.6					3		
	4132	826.4					1		
Bottom Edge	4182	836.4	24.2	23.06	0.070	0.091			
	4233	846.6					1		
	4132	826.4					1		
Left Edge	4182	836.4	24.2	23.06	0.356	0.463			
	4233	846.6					1		
	4132	826.4					1		
Right Edge	4182	836.4	24.2	23.06	0.296	0.385			
	4233	846.6					1		
	4132	826.4					1		
Front Side	4182	836.4	24.2	23.06	0.486	0.632			
	4233	846.6					1		
	4132	826.4	24.2	23.07	0.577	0.748			
Rear Side	4182	836.4	24.2	23.06	0.630	0.819			
	4233	846.6	24.2	22.97	0.627	0.832			

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg when the transmission band is ≤ 100 MHz
 - $\bullet \quad \leq 0.6 \text{ W/kg}$ when the transmission band is between 100 MHz and 200 MHz
 - $\bullet \quad \leq 0.4 \text{ W/kg}$ when the transmission band is $\geq 200 \text{ MHz}$
- 2. KDB 648474 D04 When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band is repeated for that body-worn accessory with a headset attached to the handset.
- 3. KDB $941225\ D06$ SAR is not required because the distance from the transmitting antenna to this surface (or edge) is greater than $2.5\ cm$.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 32 of 59

14.2 GSM 850

14.2.1 Head

GPRS 4 slot (CS1) – Duty Cycle 48.0%									
		E	Power [dBm]		1 g SAR [W/kg]				
Test Position	Ch#	Frequency [MHz]	Tune-up Limit	Measured	Measured	Scaled	Note		
	128	824.2					1		
Left Touched	189	836.4	28.4	27.09	0.457	0.618			
	251	848.8					1		
	128	824.2					1		
Left Tilted	189	836.4	28.4	27.09	0.257	0.347			
	251	848.8					1		
	128	824.2					1		
Right Touched	189	836.4	28.4	27.09	0.417	0.564			
	251	848.8					1		
Right Tilted	128	824.2					1		
	189	836.4	28.4	27.09	0.233	0.315			
	251	848.8					1		

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - $\bullet \quad \leq 0.8 \text{ W/kg}$ when the transmission band is $\leq 100 \text{ MHz}$
 - $\bullet \quad \leq 0.6$ W/kg when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg when the transmission band is ≥ 200 MHz

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 33 of 59

14.2.2 Body w/ 1.0 cm (body-worn accessory & hotspot mode)

GPRS 4 slot (CS1) – Duty Cycle 48.0%								
		Frequency	Power [dBm]		1 g SAR [W/kg]			
Test Position	Ch#	[MHz]	Tune-up Limit	Measured	Measured	Scaled	Note	
	128	824.2					3	
Top Edge	189	836.4					3	
	251	848.8					3	
	128	824.2					1	
Bottom Edge	189	836.4	28.4	27.09	0.081	0.110		
	251	848.8					1	
	128	824.2					1	
Left Edge	189	836.4	28.4	27.09	0.367	0.496		
	251	848.8					1	
	128	824.2					1	
Right Edge	189	836.4	28.4	27.09	0.276	0.373		
	251	848.8					1	
	128	824.2					1	
Front Side	189	836.4	28.4	27.09	0.495	0.669		
	251	848.8					1	
	128	824.2	28.4	27.41	0.703	0.883		
Rear Side	189	836.4	28.4	27.09	0.663	0.896		
Nomb(d)	251	848.8	28.4	27.23	0.733	0.960		

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg when the transmission band is ≤ 100 MHz
 - $\bullet \quad \leq 0.6 \text{ W/kg}$ when the transmission band is between 100 MHz and 200 MHz
 - $\bullet \quad \leq 0.4$ W/kg when the transmission band is ≥ 200 MHz
- 2. KDB 648474 D04 When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band is repeated for that body-worn accessory with a headset attached to the handset.
- 3. KDB $941225\ D06$ SAR is not required because the distance from the transmitting antenna to this surface (or edge) is greater than $2.5\ cm$.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 34 of 59

14.3 PCS 1900

14.3.1 Head

GPRS 4 slot (CS1) – Duty Cycle 48.0%									
		E	Power [dBm]		1 g SAR [W/kg]				
Test Position	Ch#	Frequency [MHz]	Tune-up Limit	Measured	Measured	Scaled	Note		
	512	1850.2					1		
Left Touched	661	1880.0	25.4	24.49	0.410	0.506			
	810	1909.8					1		
	512	1850.2					1		
Left Tilted	661	1880.0	25.4	24.49	0.086	0.106			
	810	1909.8					1		
	512	1850.2					1		
Right Touched	661	1880.0	25.4	24.49	0.541	0.667			
	810	1909.8					1		
Right Tilted	512	1850.2					1		
	661	1880.0	25.4	24.49	0.083	0.102			
	810	1909.8					1		

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - $\bullet \quad \leq 0.8 \; W/kg$ when the transmission band is $\leq 100 \; MHz$
 - \bullet ≤ 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg when the transmission band is ≥ 200 MHz

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 35 of 59

14.3.2 Body w/ 1.0 cm (body-worn accessory & hotspot mode)

GPRS 4 slot (CS1) – Duty Cycle 48.0%									
Test Position		Frequency	Power	Power [dBm]		1 g SAR [W/kg]			
	Ch#	[MHz]	Tune-up Limit	Measured	Measured	Scaled	Note		
	512	1850.2					3		
Top Edge	661	1880.0					3		
	810	1909.8					3		
	512	1850.2					1		
Bottom Edge	661	1880.0	25.4	24.49	0.388	0.478			
	810	1909.8					1		
	512	1850.2					1		
Left Edge	661	1880.0	25.4	24.49	0.093	0.115			
	810	1909.8					1		
	512	1850.2					1		
Right Edge	661	1880.0	25.4	24.49	0.238	0.293			
	810	1909.8					1		
	512	1850.2					1		
Front Side	661	1880.0	25.4	24.49	0.441	0.544			
	810	1909.8					1		
	512	1850.2					1		
Rear Side	661	1880.0	25.4	24.49	0.633	0.781			
	810	1909.8					1		

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg when the transmission band is ≤ 100 MHz
 - \bullet \leq 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
 - $\bullet \quad \leq 0.4$ W/kg when the transmission band is ≥ 200 MHz
- 2. KDB 648474 D04 When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band is repeated for that body-worn accessory with a headset attached to the handset.
- 3. KDB $941225\ D06$ SAR is not required because the distance from the transmitting antenna to this surface (or edge) is greater than $2.5\ cm$.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 36 of 59

14.4 WLAN 2.4 GHz

14.4.1 Head

802.11b (1 Mbps) – Duty Cycle 100%									
Test Position		E	Power [dBm]		1 g SAR [W/kg]				
	Ch#	Frequency [MHz]	Tune-up Limit	Measured	Measured	Scaled	Note		
	1	2412					1		
Left Touched	6	2437	13.0	12.01	0.085	0.107			
	11	2462					1		
	1	2412					1		
Left Tilted	6	2437	13.0	12.01	0.071	0.089			
	11	2462					1		
	1	2412					1		
Right Touched	6	2437	13.0	12.01	0.137	0.172			
	11	2462					1		
Right Tilted	1	2412					1		
	6	2437	13.0	12.01	0.089	0.112			
	11	2462					1		

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - $\bullet \quad \leq 0.8 \text{ W/kg}$ when the transmission band is $\leq 100 \text{ MHz}$
 - \bullet ≤ 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg when the transmission band is ≥ 200 MHz

JQA File No. : KL80130024 Issue Date : May 7, 2013 Model No. : SH-07E FCC ID : APYHRO00190

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 37 of 59

14.4.2 Body w/ 1.0 cm (body-worn accessory & hotspot mode)

802.11b (1 Mbps) – Duty Cycle 100%							
		Frequency	Power	[dBm]	1 g SAR	[W/kg]	
Test Position	Ch#	[MHz]	Tune-up Limit	Measured	Measured	Scaled	Note
	1	2412					1
Top Edge	6	2437	13.0	12.01	0.022	0.027	
	11	2462					1
	1	2412					3
Bottom Edge	6	2437					3
	11	2462					3
	1	2412					1
Left Edge	6	2437	13.0	12.01	0.036	0.045	
	11	2462					1
	1	2412					3
Right Edge	6	2437					3
	11	2462					3
	1	2412					1
Front Side	6	2437	13.0	12.01	0.023	0.029	
	11	2462					1
	1	2412					1
Rear Side	6	2437	13.0	12.01	0.034	0.043	
NOME(G):	11	2462					1

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg when the transmission band is ≤ 100 MHz
 - $\bullet \quad \leq 0.6 \text{ W/kg}$ when the transmission band is between 100 MHz and 200 MHz
 - $\bullet \quad \leq 0.4$ W/kg when the transmission band is ≥ 200 MHz
- 2. KDB 648474 D04 When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band is repeated for that body-worn accessory with a headset attached to the handset.
- 3. KDB $941225\ D06$ SAR is not required because the distance from the transmitting antenna to this surface (or edge) is greater than $2.5\ cm$.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 38 of 59

14.5 WLAN 5.2 GHz

14.5.1 Head

802.11a (6 Mbps) – Duty Cycle 100%							
		Frequency	Power	Power [dBm]		[W/kg]	
Test Position	Ch#	[MHz]	Tune-up Limit	Measured	Measured	Scaled	Note
Laft Tarrahad	36	5180	13.5	12.18	0.040	0.054	
Left Touched	48	5240					1
I - C / (T):14 - 1	36	5180	13.5	12.18	0.034	0.046	
Left Tilted	48	5240					1
D: 1 / M 1 1	36	5180	13.5	12.18	0.073	0.099	
Right Touched	48	5240					1
D. 1. mil. 1	36	5180	13.5	12.18	0.058	0.079	
Right Tilted	48	5240					1

NOTE(S):

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
 - $\bullet \quad \leq 0.4 \text{ W/kg}$ when the transmission band is $\geq 200 \text{ MHz}$

14.5.2 Body w/ 1.0 cm (body-worn accessory mode)

802.11a (6 Mbps) – Duty Cycle 100%								
		Fraguenay	Power [dBm]		1 g SAR [W/kg]			
Test Position	Ch#	Frequency [MHz]	Tune-up Limit	Measured	Measured	Scaled	Note	
F C' 1.	36	5180	13.5	12.18	0.015	0.020		
Front Side	48	5240					1	
Rear Side	36	5180	13.5	12.18	0.055	0.075		
	48	5240					1	

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg when the transmission band is ≤ 100 MHz
 - \leq 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg when the transmission band is ≥ 200 MHz
- 2. KDB 648474 D04 When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band is repeated for that body-worn accessory with a headset attached to the handset.

JQA File No. : KL80130024 Issue Date : May 7, 2013 Model No. : SH-07E FCC ID : APYHRO00190

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 39 of 59

14.6 WLAN 5.3 GHz

14.6.1 Head

802.11a (6 Mbps) – Duty Cycle 100%							
		Frequency	Power	Power [dBm]		1 g SAR [W/kg]	
Test Position	Ch#	[MHz]	Tune-up Limit	Measured	Measured	Scaled	Note
I of Tourshad	56	5280	13.5	12.42	0.047	0.060	
Left Touched	64	5320					1
T - C+ /D'14 - 1	56	5280	13.5	12.42	0.048	0.062	
Left Tilted	64	5320					1
D'ale Manales I	56	5280	13.5	12.42	0.092	0.118	
Right Touched	64	5320					1
Right Tilted	56	5280	13.5	12.42	0.077	0.099	
	64	5320					1

NOTE(S):

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
 - $\bullet \quad \leq 0.4 \text{ W/kg}$ when the transmission band is $\geq 200 \text{ MHz}$

14.6.2 Body w/ 1.0 cm (body-worn accessory mode)

802.11a (6 Mbps) – Duty Cycle 100%								
		Fraguenay	Power [dBm]		1 g SAR [W/kg]			
Test Position	Test Position Ch#	Frequency [MHz]	Tune-up Limit	Measured	Measured	Scaled	Note	
F C' 1.	56	5280	13.5	12.42	0.019	0.024		
Front Side	64	5320					1	
Rear Side	56	5280	13.5	12.42	0.062	0.080		
	64	5320					1	

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - $\bullet \quad \leq 0.8 \text{ W/kg}$ when the transmission band is $\leq 100 \text{ MHz}$
 - \leq 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg when the transmission band is ≥ 200 MHz
- 2. KDB 648474 D04 When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band is repeated for that body-worn accessory with a headset attached to the handset.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 40 of 59

14.7 WLAN 5.6 GHz

14.7.1 Head

802.11a (6 Mbps) – Duty Cycle 100%								
		Frequency	Power	Power [dBm]		[W/kg]		
Test Position	Ch#	[MHz]	Tune-up Limit	Measured	Measured	Scaled	Note	
	100	5500	13.5	12.07	0.083	0.115		
I of Touch of	116	5580					1	
Left Touched	124	5620					2	
	136	5680					1	
	100	5500	13.5	12.07	0.078	0.108		
T - C+ (T):14 - 1	116	5580					1	
Left Tilted	124	5620					2	
	136	5680					1	
	100	5500	13.5	12.07	0.119	0.165		
D: 1 / M 1 1	116	5580					1	
Right Touched	124	5620					2	
	136	5680					1	
	100	5500	13.5	12.07	0.091	0.126		
D'l. (W'14 - 1	116	5580					1	
Right Tilted	124	5620					2	
	136	5680					1	

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - $\bullet \quad \leq 0.8 \text{ W/kg}$ when the transmission band is $\leq 100 \text{ MHz}$
 - \leq 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg when the transmission band is ≥ 200 MHz
- 2. KDB 443999 D01 Transmissions in the 5600 to 5650 MHz band are disabled.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 41 of 59

14.7.2 Body w/ 1.0 cm (body-worn accessory mode)

802.11a (6 Mbps) – Duty Cycle 100%								
Test Position		Frequency [MHz]	Power	[dBm]	1 g SAR [W/kg]			
	Ch#		Tune-up Limit	Measured	Measured	Scaled	Note	
D. GU	100	5500	13.5	12.07	0.026	0.036		
	116	5580					1	
Front Side	124	5620					3	
	136	5680					1	
	100	5500	13.5	12.07	0.074	0.103		
Rear Side	116	5580					1	
	124	5620					3	
	136	5680					1	

- 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg when the transmission band is ≥ 200 MHz
- 2. KDB 648474 D04 When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band is repeated for that body-worn accessory with a headset attached to the handset.
- 3. KDB 443999 D01 Transmissions in the 5600 to 5650 MHz band are disabled.

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 42 of 59

14.8 Simultaneous Transmission SAR Analysis (KDB 447498 D01)

14.8.1 Simultaneous Transmission

WWAN can transmit simultaneously with WLAN/Bluetooth.

WLAN in $2.4~\mathrm{GHz}$ and $5~\mathrm{GHz}$ bands cannot transmit simultaneously with Bluetooth.

No.	Conditions	Head	Body	Hotspot
1	WCDMA Band V + WLAN 2.4 GHz	YES	YES	YES
2	GSM 850 + WLAN 2.4 GHz	YES	YES	YES
3	PCS 1900 + WLAN 2.4 GHz	YES	YES	YES
4	WCDMA Band V + WLAN 5 GHz	YES	YES	NO
5	GSM 850 + WLAN 5 GHz	YES	YES	NO
6	PCS 1900 + WLAN 5 GHz	YES	YES	NO
7	WCDMA Band V + Bluetooth	YES	YES	NO
8	GSM 850 + Bluetooth	YES	YES	NO
9	PCS 1900 + Bluetooth	YES	YES	NO

The device is capable of personal hotspot mode with WLAN in $2.4~\mathrm{GHz}$ band.

However, the 5 GHz bands do not support hotspot mode.

14.8.2 Antenna Separation Distances

WWAN to WLAN/Bluetooth : 104 mm

14.8.3 Standalone SAR Estimation

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · [\sqrt{f} (GHz) / 7.5] W/kg for 1 g SAR, test separation distances \leq 50 mm

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied.

Frequency		Max. Power		Test	Distance	Estimated SAR
Band	(MHz)	(dBm)	(mW)	Position	(mm)	(W/kg)
D1441-	9.4.41	4.0	0.5	Head	< 5	0.104
Bluetooth	2441	4.0	2.5	Body	10	0.052

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 43 of 59

14.8.4 Sum of the SAR for WWAN + WLAN 2.4 GHz

14.8.4.1 Head

Sum of the SAR with Measured Values

Sum of the SAR with Me		Highest 1 g SAR (W/kg)				
Test Position	WWAN	WLAN 2.4 GHz	Σ 1 g SAR (W/kg)			
	WCDMA Band V	0.584	0.107	0.691		
Left Touched	GSM 850	0.618	0.107	0.725		
	PCS1900	0.506	0.107	0.613		
	WCDMA Band V	0.302	0.089	0.391		
Left Tilted	GSM 850 0.347		0.089	0.436		
	PCS1900	0.106	0.089	0.195		
	WCDMA Band V	0.554	0.172	0.726		
Right Touched	GSM 850	0.564	0.172	0.736		
	PCS1900	0.667	0.172	0.839		
	WCDMA Band V	0.313	0.112	0.425		
Right Tilted	GSM 850	0.315	0.112	0.427		
	PCS1900	0.102	0.112	0.214		

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is \leq 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 44 of 59

14.8.4.2 Body w/ 1.0 cm (body-worn accessory & hotspot mode)

Sum of the SAR with Measured Values

Sum of the Sint with the	Highest 1		Σ1g SAR	
Test Position	WWAN	WWAN		
	WCDMA Band V	N/A	0.027	N/A
Top Edge	GSM 850	N/A	0.027	N/A
	PCS1900	N/A	0.027	N/A
	WCDMA Band V	0.091	N/A	N/A
Bottom Edge	GSM 850	0.110	N/A	N/A
	PCS1900	0.478	N/A	N/A
	WCDMA Band V	0.463	0.045	0.508
Left Edge	GSM 850	0.496	0.045	0.541
	PCS1900	0.115	0.045	0.160
	WCDMA Band V	0.385	N/A	N/A
Right Edge	GSM 850	0.373	N/A	N/A
	PCS1900	0.293	N/A	N/A
	WCDMA Band V	0.632	0.029	0.661
Front Side	GSM 850	0.669	0.029	0.698
	PCS1900	0.544	0.029	0.573
	WCDMA Band V	0.832	0.043	0.875
Rear Side	GSM 850	0.960	0.043	1.003
	PCS1900	0.781	0.043	0.824

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is \leq 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 45 of 59

14.8.5 Sum of the SAR for WWAN + WLAN 5.2 GHz

14.8.5.1 Head

Sum of the SAR with Measured Values

Sum of the BAIL With Me		Highest 1 g SAR (W/kg)				
Test Position	WWAN	WWAN				
	WCDMA Band V	0.584	0.054	0.638		
Left Touched	GSM 850	0.618	0.054	0.672		
	PCS1900	0.506	0.054	0.560		
	WCDMA Band V	0.302	0.046	0.348		
Left Tilted	GSM 850	0.347	0.046	0.393		
	PCS1900	0.106	0.046	0.152		
	WCDMA Band V	0.554	0.099	0.653		
Right Touched	GSM 850	0.564	0.099	0.663		
	PCS1900	0.667	0.099	0.766		
	WCDMA Band V	0.313	0.079	0.392		
Right Tilted	GSM 850	0.315	0.079	0.394		
	PCS1900	0.102	0.079	0.181		

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is < 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 46 of 59

14.8.5.2 Body w/ 1.0 cm (body-worn accessory mode)

Sum of the SAR with Measured Values

	Highest 1 g SAR (W/kg)			Σ1g SAR	
Test Position	WWAN		WLAN 5.2 GHz	(W/kg)	
	WCDMA Band V	0.632	0.020	0.652	
Front Side	GSM 850	0.669	0.020	0.689	
	PCS1900	0.544	0.020	0.564	
	WCDMA Band V	0.832	0.075	0.907	
Rear Side	GSM 850	0.960	0.075	1.035	
	PCS1900	0.781	0.075	0.856	

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is \leq 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 47 of 59

14.8.6 Sum of the SAR for WWAN + WLAN 5.3 GHz

14.8.6.1 Head

Sum of the SAR with Measured Values

Sum of the SAR with Me	Highest 1 g SAR (W/kg)			$\nabla 1 \sim CAD$
Test Position WWAN		WLAN 5.3 GHz	Σ 1 g SAR (W/kg)	
	WCDMA Band V	0.584	0.060	0.644
Left Touched	GSM 850	0.618	0.060	0.678
	PCS1900	0.506	0.060	0.566
	WCDMA Band V	0.302	0.062	0.364
Left Tilted	GSM 850	0.347	0.062	0.409
	PCS1900	0.106	0.062	0.168
	WCDMA Band V	0.554	0.118	0.672
Right Touched	GSM 850	0.564	0.118	0.682
	PCS1900	0.667	0.118	0.785
	WCDMA Band V	0.313	0.099	0.412
Right Tilted	GSM 850	0.315	0.099	0.414
	PCS1900	0.102	0.099	0.201

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is \leq 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 48 of 59

14.8.6.2 Body w/ 1.0 cm (body-worn accessory mode)

Sum of the SAR with Measured Values

	Highest 1	Σ1gSAR			
Test Position	WWAN		WLAN 5.3 GHz	(W/kg)	
	WCDMA Band V	0.632	0.024	0.656	
Front Side	GSM 850	0.669	0.024	0.693	
	PCS1900	0.544	0.024	0.568	
	WCDMA Band V	0.832	0.080	0.912	
Rear Side	GSM 850	0.960	0.080	1.040	
	PCS1900	0.781	0.080	0.861	

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is \leq 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 49 of 59

14.8.7 Sum of the SAR for WWAN + WLAN 5.6 GHz

14.8.7.1 Head

Sum of the SAR with Measured Values

Sum of the BAIL With Me	Highest 1 g SAR (W/kg)			V 1 CAD	
Test Position	WWAN		WLAN 5.6 GHz	Σ1 g SAR (W/kg)	
	WCDMA Band V	0.584	0.115	0.699	
Left Touched	GSM 850	0.618	0.115	0.733	
	PCS1900	0.506	0.115	0.621	
	WCDMA Band V	0.302	0.108	0.410	
Left Tilted	GSM 850	0.347	0.108	0.455	
	PCS1900	0.106	0.108	0.214	
	WCDMA Band V	0.554	0.165	0.719	
Right Touched	GSM 850	0.564	0.165	0.729	
	PCS1900	0.667	0.165	0.832	
	WCDMA Band V	0.313	0.126	0.439	
Right Tilted	GSM 850	0.315	0.126	0.441	
	PCS1900	0.102	0.126	0.228	

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is < 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 50 of 59

14.8.7.2 Body w/ 1.0 cm (body-worn accessory mode)

Sum of the SAR with Measured Values

	Highest 1 g SAR (W/kg)			Σ1g SAR	
Test Position	WWAN		WLAN 5.6 GHz	(W/kg)	
	WCDMA Band V	0.632	0.036	0.668	
Front Side	GSM 850	0.669	0.036	0.705	
	PCS1900	0.544	0.036	0.580	
	WCDMA Band V	0.832	0.103	0.935	
Rear Side	GSM 850	0.960	0.103	1.063	
	PCS1900	0.781	0.103	0.884	

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is \leq 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 51 of 59

14.8.8 Sum of the SAR for WWAN + Bluetooth

14.8.8.1 Head

Sum of the SAR with Measured Values

Test Position	Highest 1 g SAR (W/kg) WWAN Bluetooth			Σ 1 g SAR (W/kg)
	WCDMA Band V	0.584	0.104	0.688
Left Touched	GSM 850	0.618	0.104	0.722
	PCS1900	0.506	0.104	0.610
	WCDMA Band V	0.302	0.104	0.406
Left Tilted	GSM 850	0.347	0.104	0.451
	PCS1900	0.106	0.104	0.210
	WCDMA Band V	0.554	0.104	0.658
Right Touched	GSM 850	0.564	0.104	0.668
	PCS1900	0.667	0.104	0.771
	WCDMA Band V	0.313	0.104	0.417
Right Tilted	GSM 850	0.315	0.104	0.419
	PCS1900	0.102	0.104	0.206

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is \leq 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 52 of 59

14.8.8.2 Body w/ 1.0 cm (body-worn accessory mode)

Sum of the SAR with Measured Values

Test Position	Highest 1 g SAR (W/kg)			Σ1g SAR
Test Position	WWAN		Bluetooth	(W/kg)
	WCDMA Band V	0.632	0.052	0.684
Front Side	GSM 850	0.669	0.052	0.721
	PCS1900	0.544	0.052	0.596
	WCDMA Band V	0.832	0.052	0.884
Rear Side	GSM 850	0.960	0.052	1.012
	PCS1900	0.781	0.052	0.833

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is < 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 58 of 59

16 Test Instruments

Type	Model	Manufacturer	ID No.	Last Cal.	Interval
E-Field Probe	ET3DV6	SPEAG	S-2	2012/8	1 Year
E-Field Probe	EX3DV4	SPEAG	S-17	2012/9	1 Year
DAE	DAE4	SPEAG	S-3	2012/11	1 Year
Robot	RX60L	SPEAG	S-7		N/A
Probe Alignment Unit	LB1RX60L	SPEAG	S-13		N/A
Network Analyzer	8719ET	Agilent	B-53	2012/9	1 Year
Dielectric Probe Kit	85070D	Agilent	B-54		N/A
835MHz Dipole	D835V2	SPEAG	S-23	2012/8	1 Year
1900MHz Dipole	D1900V2	SPEAG	S-25	2012/8	1 Year
2450MHz Dipole	D2450V2	SPEAG	S-6	2012/11	1 Year
5GHz Dipole	D5GHzV2	SPEAG	S-31	2012/9	1 Year
Signal Generator	MG3681A	Anritsu	B-3	2012/9	1 Year
Signal Generator	MG3710A	Anritsu	B-41	2012/9	1 Year
RF Power Amplifier	A0840-3833-R	R&K	A-34		N/A
RF Power Amplifier	CGA020M602-2633R	R&K	A-51		N/A
Directional Coupler	4226-20	narda	D-87		N/A
Low Pass Filter	LSM1000-4BA	LARK	D-90	2012/11	1 Year
Low Pass Filter	LSM2200-4BA	LARK	D-91	2012/11	1 Year
Low Pass Filter	LSM2700-3BA	LARK	D-92	2012/11	1 Year
Radio Communication Analyzer	MT8820C	Anritsu	B-5	2013/2	1 Year
Power Meter	E4417A	Agilent	B-51	2012/6	1 Year
Power Sensor	E9323A	Agilent	B-59	2012/6	1 Year
Power Meter	N1911A	Agilent	B-63	2012/7	1 Year
Power Sensor	N1921A	Agilent	B-64	2012/7	1 Year
Attenuator	54A-10	Weinschel	D-28	2012/9	1 Year
Attenuator	2-20	Weinschel	D-36	2012/9	1 Year

Standard : FCC/OET Bulletin 65 Supplement C (Edition 01-01)

Page 59 of 59

17 Appendix

Exhibit	Contents	No. of page(s)
1	System Validation Plots	10
2-1	SAR Test Plots (WCDMA Band V)	13
2-2	SAR Test Plots (GSM 850)	13
2-3	SAR Test Plots (PCS 1900)	11
2-4	SAR Test Plots (WLAN 2.4 GHz)	10
2-5	SAR Test Plots (WLAN 5 GHz)	24
3-1	Dosimetric E-Field Probe – ET3DV6, S/N: 1679	11
3-2	Dosimetric E-Field Probe – EX3DV4, S/N: 3808	11
4-1	System Validation Dipole – D835V2, S/N: 4d081	8
4-2	System Validation Dipole - D1900V2, S/N: 5d112	8
4-3	System Validation Dipole - D2450V2, S/N: 714	8
4-4	System Validation Dipole – D5GHzV2, S/N: 1111	13