

Choose certainty.
Add value.

Report On

Specific Absorption Rate Testing of the Sharp CDMA SHX11 Tri-band CDMA (850MHz_BC0/BC3, 1900MHz_BC6) & Tri-band GSM (GSM900/DCS1800/PCS1900) Dual mode Cellular Phone with Bluetooth, WLAN, FeliCa and GPS Mobile Handset

COMMERCIAL-IN-CONFIDENCE

FCC ID: APYHRO00151

Document 75913577 Report 15 Issue 3

June 2011

TÜV SÜD Product Service Ltd, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: www.tuvps.co.uk

COMMERCIAL-IN-CONFIDENCE

REPORT ON Specific Absorption Rate Testing of the

Sharp CDMA SHX11 Tri-band CDMA (850MHz_BC0/BC3, 1900MHz_BC6) & Tri-band GSM (GSM900/DCS1800/PCS1900) Dual mode Cellular Phone with Bluetooth, WLAN, FeliCa and GPS

Mobile Handset

Document 75913577 Report 15 Issue 3

June 2011

PREPARED FOR Sharp Communication Compliance Ltd

Azure House Bagshot Road Bracknell Berkshire United Kingdom RG12 7QY

PREPARED BY

N Grigsby

Telecoms Test Engineer

APPROVED BY

M Jenkins

Authorised Signatory

DATED 21 June 2011

This report has been up-issued to Issue 3 to correct typographical errors.

CONTENTS

Section		Page No
1	REPORT SUMMARY	3
1.1 1.2	Introduction	
1.3	Test Results Summary	
1.4	Product Information	
1.5	FCC Power Measurements	11
2	TEST DETAILS	13
2.1	SAR Measurement System	
2.2	CDMA 2000 Head SAR Test Results and Course Area Scans – 2D	
2.3	CDMA 2000 Body SAR Test Results and Course Area Scans – 2D	
2.4 2.5	GSM 1900MHz Head SAR Test Results and Course Area Scans – 2D	
2.5	GSM 1900MHz Body SAR Test Results and Course Area Scans – 2DWLAN 2450MHz Head SAR Test Results and Course Area Scans – 2D	
2.7	WLAN 2450MHz Body SAR Test Results and Course Area Scans – 2D	
3	TEST EQUIPMENT USED	38
3.1	Test Equipment Used	39
3.2	Test Software	40
3.3	Dielectric Properties of Simulant Liquids	
3.4	Test Conditions	
3.5	Measurement Uncertainty	43
4	PHOTOGRAPHS	45
4.1	Test Positional Photographs	46
4.2	Photographs of Equipment Under Test (EUT)	49
5	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	53
5.1	Accreditation, Disclaimers and Copyright	54
ANNFY	▲ Probe Calibration Report	Δ 2

SECTION 1

REPORT SUMMARY

Specific Absorption Rate Testing of the Sharp CDMA SHX11 Tri-band CDMA (850MHz_BC0/BC3, 1900MHz_BC6) & Tri-band GSM (GSM900/DCS1800/PCS1900) Dual mode Cellular Phone with Bluetooth, WLAN, FeliCa and GPS Mobile Handset

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Specific Absorption Rate Testing of the Sharp CDMA SHX11 Tri-band CDMA (850MHz_BC0/BC3, 1900MHz_BC6) & Tri-band GSM (GSM900/DCS1800/PCS1900) Dual mode Cellular Phone with Bluetooth, WLAN, FeliCa and GPS Mobile Handset to the requirements of EN 50360: 2001.

Objective To perform Specific Absorption Rate Testing to determine

the Equipment Under Test's (EUT's) compliance with the requirements specified of OET65 C:2001, for the series of

tests carried out.

Applicant Sharp Communication Compliance Ltd

Manufacturer Sharp Corporation

Manufacturing Description Mobile Handset

Model Number CDMA SHX11

Power Class PCS 1900 MHz Class 1

GPRS Class B
GPRS Multi-slot Class 10

IMEI Number(s) 004401113358127 004401113358119

Hardware Version PP1

Software Version

C3251 C3252

Battery Cell Manufacturer Sharp Corporation

Battery Model Number SHX11UAA

Test Specification/Issue/Date OET Bulletin 65 Supplement C Edition 01-01

Start of Test 18 May 2010 Finish of Test 17 May 2011

Related Document(s) FCC 47CFR 2.1093

KDB 248227 - v01r02 (Rev 1.2) KDB 450824 - D01 v01r01(Rev 1.1)

KDB 450824 – D02 v01 KDB 648474 – D01 v01r05 KDB 941225 – D01 v02 KDB 941225 – D03 v01

IEEE 1528-2003

Name of Engineer(s) Nigel Grigsby

1.2 BRIEF SUMMARY OF RESULTS

The measurements shown in this report were made in accordance with the procedures specified in OET 65(C) - 2001.

The maximum 1g volume averaged SAR found during this Assessment

Max 1g SAR (W/kg)	0.607
-------------------	-------

The maximum 1g volume averaged SAR level measured for all the tests performed did not exceed the limits for General Population/Uncontrolled Exposure (W/kg) Partial Body of 1.6 W/kg. Level defined in Supplement C (Edition 01-01) to OET Bulletin 65 (97-01).

1.3 TEST RESULTS SUMMARY

1.3.1 System Performance / Validation Check Results

Prior to formal testing being performed a System Check was performed in accordance with OET 65(C) – 2001 and the results were compared against published data in Standard IEEE 1528-2003. The following results were obtained: -

System performance / Validation results

Date	Dipole Used	Frequency (MHz)	Max 1g SAR (W/kg)*	Percentage Drift on Reference	Max 10g SAR (W/kg)*	Percentage Drift on Reference
16/05/2011	835	844.4	9.73	2.37%	6.46	4.15%
17/05/2011	1900	1883.6	41.02	3.33%	21.82	6.44%
17/05/2011	2450	2450	48.06	-8.29%	23.04	-3.99%

^{*}Normalised to a forward power of 1W

1.3.2 Results Summary Tables

CDMA 2000 Head Specific Absorption Rate (Maximum SAR) 1g & 10g Results for the Sharp CDMA SHX11.

Position				Max		Max		
Ear	Head	Channel Number	Frequency (MHz)	Spot SAR (W/kg)	Max 1g SAR (W/kg)	10g SAR (W/kg)	SAR Drift (%)	Area scan (Figure number)
Left	Cheek	384	836.52	0.660	0.607	0.454	0.320	Figure 8
Left	15°	384	836.52	0.360	0.349	0.271	0.360	Figure 9
Right	Cheek	384	836.52	0.590	0.571	0.441	0.550	Figure 10
Right	15°	384	836.52	0.410	0.396	0.307	-0.140	Figure 11
Limit for Ger	neral Populatio	n (Uncontrolle	ed Exposure) 1.	6 W/kg (1g) & 2.0 W/k	g (10g)		

CDMA 2000 Body Specific Absorption Rate (Maximum SAR) 1g & 10g Results for the Sharp CDMA SHX11.

Position				Max	May 1g	Max		
Spacing	Direction	Channel Number	Frequency (MHz)	Spot SAR (W/kg)	Max 1g SAR (W/kg)	10g SAR (W/kg)	SAR Drift (%)	Area scan (Figure number)
15mm	Front Facing	384	836.52	0.260	0.303	0.217	-0.660	Figure 12
15mm	Rear Facing	384	836.52	0.320	0.366	0.265	-0.880	Figure 13
Limit for Ger	neral Populatio	n (Uncontrolle	ed Exposure) 1.	6 W/kg (1g) & 2.0 W/k	g (10g)		

GSM 1900MHz Head Specific Absorption Rate (Maximum SAR) 1g & 10g Results for the Sharp CDMA SHX11.

Pos	Position			Max		Max		_
Ear	Head	Channel Number	Frequency (MHz)	Spot SAR (W/kg)	Max 1g SAR (W/kg)	10g SAR (W/kg)	SAR Drift (%)	Area scan (Figure number)
Left	Cheek	810	1909.8	0.410	0.390	0.245	3.270	Figure 14
Left	15°	810	1909.8	0.190	0.184	0.109	-2.560	Figure 15
Right	Cheek	810	1909.8	0.310	0.294	0.187	2.340	Figure 16
Right	15°	810	1909.8	0.150	0.141	0.080	0.170	Figure 17
Limit for Ger	neral Populatio	n (Uncontrolle	ed Exposure) 1.	6 W/kg (1g) & 2.0 W/k	g (10g)		

GSM 1900MHz Body Specific Absorption Rate (Maximum SAR) 1g & 10g Results for the Sharp CDMA SHX11.

Position				Max	May 1g	Max		_
Spacing	Direction	Channel Number	Frequency (MHz)	Spot SAR (W/kg)	Max 1g SAR (W/kg)	10g SAR (W/kg)	SAR Drift (%)	Area scan (Figure number)
15mm	Front Facing	512	1850.2	0.200	0.241	0.152	2.440	Figure 18
15mm	Rear Facing	512	1850.2	0.260	0.314	0.184	0.370	Figure 19
Limit for Ger	neral Populatio	n (Uncontrolle	ed Exposure) 1.	6 W/kg (1g) & 2.0 W/k	g (10g)		

WLAN 2450MHz Head Specific Absorption Rate (Maximum SAR) 1g & 10g Results for the CDMA SHX11.

Position				Max		Max		
Ear	Head	Channel Number	Frequency (MHz)	Spot SAR (W/kg)	Max 1g SAR (W/kg)	10g SAR (W/kg)	SAR Drift (%)	Area scan (Figure number)
Left	Cheek	6	2437.0	0.300	0.249	0.132	2.240	Figure 20
Left	15°	6	2437.0	0.290	0.239	0.114	8.630	Figure 21
Right	Cheek	6	2437.0	0.100	0.090	0.060	-8.430	Figure 22
Right	15°	6	2437.0	0.120	0.120	0.069	-1.300	Figure 23
Limit for Ger	neral Populatio	n (Uncontrolle	ed Exposure) 1.	6 W/kg (1g) & 2.0 W/k	g (10g)		

WLAN 2450MHz Body Specific Absorption Rate (Maximum SAR) 1g & 10g Results for the CDMA SHX11.

Pos	Position			Max		Max		_
Spacing	Direction	Channel Number	Frequency (MHz)	Spot SAR (W/kg)	Max 1g SAR (W/kg)	10g SAR (W/kg)	SAR Drift (%)	Area scan (Figure number)
15mm	Front Facing	6	2437.0	0.020	0.026	0.018	0.000	Figure 24
15mm	Rear Facing	6	2437.0	0.040	0.051	0.028	0.000	Figure 25
Limit for Ger	neral Populatio	n (Uncontrolle	ed Exposure) 1.	6 W/kg (1g) & 2.0 W/k	g (10g)		

1.4 PRODUCT INFORMATION

1.4.1 Technical Description

The equipment under test (EUT) was a Sharp CDMA SHX11 Tri-band CDMA (850MHz_BC0/BC3, 1900MHz_BC6) & Tri-band GSM (GSM900/DCS1800/PCS1900) Dual mode Cellular Phone with Bluetooth, WLAN, FeliCa and GPS Mobile Handset. A full technical description can be found in the manufacturer's documentation.

1.4.2 Test Configuration and Modes of Operation

The testing was performed with standard batteries supplied and manufactured by Sharp Coropration. Each battery was fully charged before each measurement and there were no external connections.

For head SAR assessment, testing was performed with the device in the declared normal position of operation for the Cellular CDMA 2000, PCS1900 and WLAN 2450MHz frequency bands at maximum power. The device was placed against a Specific Anthropomorphic Mannequin (SAM) phantom as specified in the OET 65(C) - 2001. The phantom was filled with simulant liquid appropriate to the frequency band. The dielectric properties were measured and found to be in accordance with the requirements for the dielectric properties specified OET 65(C) - 2001 testing was performed at both the left and right ear of the phantom at both handset positions stated in the applied specification.

For body SAR assessment, the device was tested for typical body-worn operation in accordance with the requirements of OET65(c) with the exception of SAR limits applied, these were obtained from ICNIRP (1998). Flat phantom dimensions are 210mmx210mmx210mm and with a sidewall thickness of 3.0mm. The phantom was filled to a depth of 150mm with the appropriate body simulant liquid. The dielectric properties were in accordance with the requirements specified in Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01). SAR testing was performed with the body of the device placed at 15.0mm separation from the phantom.

Conducted power measurements were carried out on the device in Voice and GPRS modes. The channel that yielded the highest SAR for each mode was used to make SAR measurements.

Testing was performed in each position at the frequency that gave the highest output power for each band. No SAR level was found to be within -3dB of the applicable limit (-3dB equates to ≤0.802 W/kg in this instance) therefore no additional testing was required at the remaining frequencies / channels of the bands.

Product Service

Simultaneous transmission SAR testing for Head/Body for CDMA2000 800MHz and PCS1900 was not required because the sum of the max 1-g SAR levels obtained is less than 1.6W/kg. Simultaneous transmission SAR testing for Head/Body for PCS1900 and BT was not required because the antenna separation distance is greater than 5cm and the Bluetooth conducted output power is less than 24mW. Simultaneous transmission SAR testing for Head/Body for PCS1900 and WLAN was not required because the Bluetooth conducted output power is less than 24mW. Simultaneous transmission SAR testing for Head/Body for CDMA2000 800MHz and WLAN was not required because the antenna separation distance is greater than 5cm and the maximum SAR levels obtained for both transmitters is less than 0.8W/kg. Simultaneous transmission SAR testing for Head/Body for CDMA2000 800MHz and BT was not required because the antenna separation distance is greater than 5cm and the Bluetooth conducted output power is less than 24mW. Simultaneous transmission SAR testing for Head/Body for WLAN and BT was not required because the antenna separation distance is less than 2.5cm and the Bluetooth conducted output power is less than 24mW. Stand alone SAR testing for Bluetooth was not required due to the output power being less than the threshold.

Testing was performed using a Universal Radio Communications test set. WLAN testing was achieved using the devices internal software, customer supplied software and settings supplied by the customer. The worse case data rate for WLAN testing was obtained from data provided by TUV Product Service determined by the testing of the handset to ETSI EN 300 328. The worst case was deemed as the data rate which produced the highest level of conducted average power. This was 11Mbps for 802.11b.

Due to the inability to make conducted power measurements on the WLAN SAR sample the following technique was used to make power measurements and ascertain what testing was required and which channel yielded the highest power. Due to limiting factors of the radiated test setup the radiated measurements were made in maximum peak only as maximum average measurements could not be made. Measurements were made on the conducted sample in maximum peak and maximum average. On a channel by channel basis the ratio between maximum peak and maximum average was worked out, this ratio was then applied to the radiated maximum peak measurements that were taken on the radiated sample.

Testing is not required on 802.11g/n when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

HEAD SAR CDMA2000:

SAR for the head exposure configurations is measured in RC3 with the EUT configured to transmit at full rate using Loopback Service Option SO55.

SAR for RC1 is not required when the maximum average output of each channel is less than 0.25dB higher than that measured in RC3. If SAR for RC1 is required, then SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

BODY SAR CDMA2000:

SAR for the body exposure configuration is measured in RC3 with the EUT configured using TDSO32, to transmit at full rate on FCH with all other code channels disabled. SAR for multiple code channels (FCH + SCH) is not required when the maximum average output of each RF channel is less than 0.25dB higher than that measured with FCH only. If SAR for multiple code channels is required then SAR is measured on the maximum output channel (FCH + SCHn) with FCH at full rate and SCH0 enabled at 9600bps, using the exposure configuration that results in the highest SAR with FCH only for that channel. When multiple code channels are enabled, the DUT may shift by more than 0.5dB and lead to higher SAR drifts and SCH dropouts.

Body SAR in RC1 is not required when the maximum average output of each channel is less than 0.25dB higher than that measured in RC3. If SAR for RC1 is required, then SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate, using the body exposure configuration that results in the highest SAR that channel in RC3.

Included in this report are descriptions of the test method; the equipment used and an analysis of the test uncertainties applicable and diagrams indicating the locations of maximum SAR for each test position along with photographs indicating the positioning of the handset against the body as appropriate.

1.5 FCC POWER MEASUREMENTS

1.5.1 **Method**

Conducted power measurements were made using a power meter.

1.5.2 Conducted Power Measurements

Head

Serial No.	Mode	Modulation	Frequency	Conducted Carrier Power (dBm)	
		64-RAY Orthogonal	824.70	23.97	
SSHFD000762	S055, RC1		836.52	24.31	
			848.27	23.47	

Serial No.	Mode	Mode Modulation		Conducted Carrier Power (dBm)
			824.70	23.75
SSHFD000762 S055,	S055, RC3	64-RAY Orthogonal	838.52	24.13
			848.37	23.56

Body

Serial No.	Mode	Modulation	Frequency	Conducted Carrier Power (dBm)
	TDS032,		824.70 21.14	
SSHFD000762	FCH	BPSK	838.52	25.18
	RC3		848.37	24.13

Serial No.	Mode	Modulation	Frequency	Conducted Carrier Power (dBm)
	TDS032,		824.70	23.46
SSHFD000762	FCH +SCH	BPSK	838.52	23.79
	RC3		848.37	23.62

WLAN

Mode	Modulation	Frequency	Conducted Carrier Power (dBm) IMEI 004401113357913	Radiated Carrier Power(dBm) IMEI 004401113358119	Peak to Average Ratio (dB)	Corrected Radiated Carrier Power for SAR Report (dBm)
		2412	18.74	16.8	3.64	13.16
802.11b 2Mbps	CCK/PBCC	2437	19.32	17.4	3.45	13.95
		2462	18.83	17.1	3.69	13.41

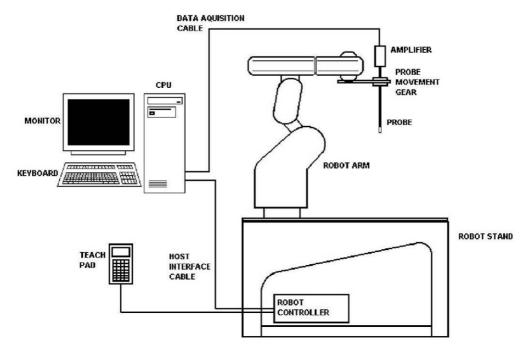
Mode	Modulation	Frequency	Conducted Carrier Power (dBm) IMEI 004401113357913	Radiated Carrier Power(dBm) IMEI 004401113358119	Peak to Average Ratio (dB)	Corrected Radiated Carrier Power for SAR Report (dBm)
		2412	20.39	18.4	9.34	9.06
802.11g 6Mbps	BPSK	2437	21.03	20.3	9.42	10.88
		2462	20.64	18.0	9.57	8.43

Mode	Modulation	Frequency	Conducted Carrier Power (dBm) IMEI 004401113357913	Radiated Carrier Power(dBm) IMEI 004401113358119	Peak to Average Ratio (dB)	Corrected Radiated Carrier Power for SAR Report (dBm)
		2412	20.48	18.2	9.69	8.51
802.11n 6.5Mbps	BPSK	2437	21.08	17.0	9.67	7.33
		2462	20.46	18.3	9.15	9.15

SECTION 2

TEST DETAILS

Specific Absorption Rate Testing of the Sharp CDMA SHX11 Tri-band CDMA (850MHz_BC0/BC3, 1900MHz_BC6) & Tri-band GSM (GSM900/DCS1800/PCS1900) Dual mode Cellular Phone with Bluetooth, WLAN, FeliCa and GPS Mobile Handset



2.1 SAR MEASUREMENT SYSTEM

2.1.1 Robot System Specification

The SAR measurement system being used is the IndexSAR SARA2 system, which consists of a Mitsubishi RV-E2 6-axis robot arm and controller, IndexSAR probe and amplifier and SAM phantom Head Shape. The robot is used to articulate the probe to programmed positions inside the phantom head to obtain the SAR readings from the DUT.

Schematic diagram of the SAR measurement system

Figure 1

The system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

The position and digitised shape of the phantom heads are made available to the software for accurate positioning of the probe and reduction of set-up time.

The SAM phantom heads are individually digitised using a Mitutoyo CMM machine to a precision of 0.001mm. The data is then converted into a shape format for the software, providing an accurate description of the phantom shell.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

2.1.2 Probe and Amplifier Specification

IXP-050 IndexSAR isotropic immersible SAR probe

The probes are constructed using three orthogonal dipole sensors arranged on an interlocking, triangular prism core. The probes have built-in shielding against static charges and are contained within a PEEK cylindrical enclosure material at the tip. Probe calibration is described in the following section.

IFA-010 Fast Amplifier

Technical description of IndexSAR IFA-010 Fast probe amplifier A block diagram of the fast probe amplifier electronics is shown below.

Block diagram of the fast probe amplifier electronic

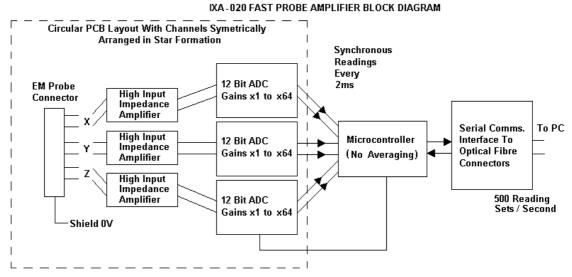


Figure 2

This amplifier has a time constant of approx. $50\mu s$, which is much faster than the SAR probe response time. The overall system time constant is therefore that of the probe (<1ms) and reading sets for all three channels (simultaneously) are returned every 2ms to the PC. The conversion period is approx. 1 μs at the start of each 2ms period. This enables the probe to follow pulse modulated signals of periods >>2ms. The PC software applies the linearisation procedure separately to each reading, so no linearisation corrections for the averaging of modulated signals are needed in this case. It is important to ensure that the probe reading frequency and the pulse period are not synchronised and the behaviour with pulses of short duration in comparison with the measurement interval need additional consideration.

Phantoms

The Flat phantom used is a rectangular Perspex Box IndexSAR item IXB-070. Dimensions 210w 210d 210h (mm). This phantom is used with IndexSAR side bench IXM-030.

The Specific Anthropomorphic Mannequin (SAM) Upright Phantom is fabricated using moulds generated from the CAD files as specified by CENELEC EN 62209-1: 2006. It is mounted via a rotation base to a supporting table, which also holds the robotic positioner. The phantom and robot alignment is assured by both mechanical and laser registration systems.

2.1.3 SAR Measurement Procedure

Principal components of the SAR measurement test bench

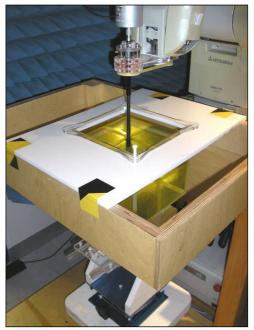


Figure 3

Figure 4

The major components of the test bench are shown in the pictures above. A test set and dipole antenna control the handset via an air link and a low-mass phone holder can position the phone at either ear. Graduated scales are provided to set the phone in the 15 degree position. The upright phantom head holds approx. 7 litres of simulant liquid. The phantom is filled and emptied through a 45mm diameter penetration hole in the top of the head.

After an area scan has been done at a fixed distance of 8mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

SARA2 Interpolation and Extrapolation schemes

SARA2 software contains support for both 2D cubic B-spline interpolation as well as 3D cubic B-spline interpolation. In addition, for extrapolation purposes, a general n^{-th} order polynomial fitting routine is implemented following a singular value decomposition algorithm presented in [4]. A 4th order polynomial fit is used by default for data extrapolation, but a linear-logarithmic fitting function can be selected as an option. The polynomial fitting procedures have been tested by comparing the fitting coefficients generated by the SARA2 procedures with those obtained using the polynomial fit functions of Microsoft Excel when applied to the same test input data.

Interpolation of 2D area scan

The 2D cubic B-spline interpolation is used after the initial area scan at fixed distance from the phantom shell wall. The initial scan data are collected with approx. 115mm spatial resolution and spline interpolation is used to find the location of the local maximum to within a 1mm resolution for positioning the subsequent 3D scanning.

Extrapolation of 3D scan

For the 3D scan, data are collected on a spatially regular 3D grid having (by default) 6.4 mm steps in the lateral dimensions and 3.5 mm steps in the depth direction (away from the source). SARA2 enables full control over the selection of alternative step sizes in all directions.

The digitised shape of the head is available to the SARA2 software, which decides which points in the 3D array are sufficiently well within the shell wall to be 'visited' by the SAR probe. After the data collection, the data are extrapolated in the depth direction to assign values to points in the 3D array closer to the shell wall. A notional extrapolation value is also assigned to the first point outside the shell wall so that subsequent interpolation schemes will be applicable right up to the shell wall boundary.

Interpolation of 3D scan and volume averaging

The procedure used for defining the shape of the volumes used for SAR averaging in the SARA2 software follow the method of adapting the surface of the 'cube' to conform with the curved inner surface of the phantom (see Appendix C.2.2.1 in EN 62209-1: 2006). This is called, here, the conformal scheme.

For each row of data in the depth direction, the data are extrapolated and interpolated to less than 1mm spacing and average values are calculated from the phantom surface for the row of data over distances corresponding to the requisite depth for 10g and 1g cubes. This results in two 2D arrays of data, which are then cubic B-spline interpolated to sub mm lateral resolution. A search routine then moves an averaging square around through the 2D array and records the maximum value of the corresponding 1g and 10g volume averages. For the definition of the surface in this procedure, the digitised position of the headshell surface is used for measurement in head-shaped phantoms. For measurements in rectangular, box phantoms, the distance between the phantom wall and the closest set of gridded data points is entered into the software.

For measurements in box-shaped phantoms, this distance is under the control of the user. The effective distance must be greater than 2.5mm as this is the tip-sensor distance and to avoid interface proximity effects, it should be at least 5mm. A value of 6 or 8mm is recommended. This distance is called **dbe** in EN 62209-1: 2006.

For automated measurements inside the head, the distance cannot be less than $2.5 \, \text{mm}$, which is the radius of the probe tip and to avoid interface proximity effects, a minimum clearance distance of x mm is retained. The actual value of dbe will vary from point to point depending upon how the spatially-regular 3D grid points fit within the shell. The greatest separation is when a grid point is just not visited due to the probe tip dimensions. In this case the distance could be as large as the step-size plus the minimum clearance distance (i.e with x=5 and a step size of 3.5, **dbe** will be between 3.5 and $8.5 \, \text{mm}$).

The default step size (**dstep** in EN 62209-1: 2006) used is 3.5mm, but this is under user-control. The compromise is with time of scan, so it is not practical to make it much smaller or scan times become long and power-drop influences become larger.

Product Service

The robot positioning system specification for the repeatability of the positioning (**dss** in EN 62209-1: 2006) is +/- 0.04mm.

The phantom shell is made by an industrial moulding process from the CAD files of the SAM shape, with both internal and external moulds. For the upright phantoms, the external shape is subsequently digitised on a Mitutoyo CMM machine (Euro C574) to a precision of 0.001 mm. Wall thickness measurements made non-destructively with an ultrasonic sensor indicate that the shell thickness (dph) away from the ear is 2.0 + - 0.1 mm. The ultrasonic measurements were calibrated using additional mechanical measurements on available cut surfaces of the phantom shells.

For the upright phantom, the alignment is based upon registration of the rotation axis of the phantom on its 253mm-diameter baseplate bearing and the position of the probe axis when commanded to go to the axial position. A laser alignment tool is provided (procedure detailed elsewhere). This enables the registration of the phantom tip (**dmis**) to be assured to within approx. 0.2mm. This alignment is done with reference to the actual probe tip after installation and probe alignment. The rotational positioning of the phantom is variable — offering advantages for special studies, but locating pins ensure accurate repositioning at the principal positions (LH and RH ears).

2.1.4 Head Test Positions

This recommended practice specifies exactly two test positions for the handset against the head phantom, the "Cheek" position and the "tilted" position. These two test positions are defined in the following sub-clauses. The handset should be tested in both positions on the left and right sides of the SAM phantom. In each test position the centre of the earpiece of the device is placed directly at the entrance of the auditory canal. The angles mentioned in the test positions used are referenced to the line connecting both auditory canal openings. The plane this line is on is known as the reference plane. Testing is performed on the right and left-hand sides of the generic phantom head.

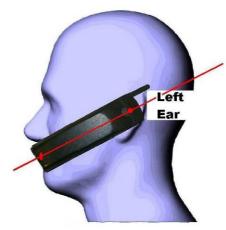


Figure 5. – Side View of Mobile next to head showing alignment.

The Cheek Position

The Cheek Position is where the mobile is in the reference plane and the line between the mobile and the line connecting both auditory canal openings is reduced until any part of the mobile touches any part of the generic twin phantom head.

The 15° Position

The 15° Position is where the mobile is in the reference Cheek position and the phone is kept in contact with the auditory canal at the earpiece; the bottom of the phone is then tilted away from the phantom mouth by 15°.

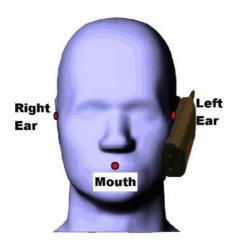


Figure 6. – Cheek Position.

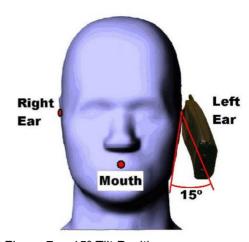


Figure 7. – 15° Tilt Position.

2.2 CDMA 2000 HEAD SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	16/05/2011 14:20:11	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	01.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.80°C	LIQUID SIMULANT:	850 Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	41.85
RELATIVE HUMIDITY:	38.20%	CONDUCTIVITY:	0.903
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.40°C
PHANTOM ROTATION:	0°	MAX SAR Y-AXIS LOCATION:	-48.00mm
DUT POSITION:	Left-Cheek	MAX SAR Z-AXIS LOCATION:	-160.90mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	26.94 V/m
TEST FREQUENCY:	836.52MHz	SAR 1g:	0.607 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.454 W/kg
CONVERSION FACTORS:	0.230 / 0.199 / 0.232	SAR START:	0.315 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR END:	0.316 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	0.320 %
DIODE COMPRESSION	20 / 20 / 20	PROBE BATTERY LAST	16/05/2011
FACTORS (V*200):		CHANGED:	
INPUT POWER LEVEL:	23dBm	EXTRAPOLATION:	poly4

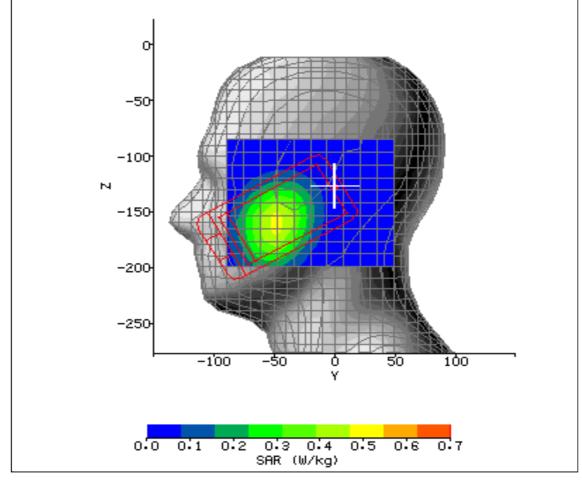


Figure 8: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 836.52MHz.

	1		
SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	16/05/2011 14:47:38	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	02.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.70°C	LIQUID SIMULANT:	850 Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	41.85
RELATIVE HUMIDITY:	37.20%	CONDUCTIVITY:	0.903
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.40°C
PHANTOM ROTATION:	0°	MAX SAR Y-AXIS LOCATION:	-35.40mm
DUT POSITION:	Left-15°	MAX SAR Z-AXIS LOCATION:	-145.95mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	19.91 V/m
TEST FREQUENCY:	836.52MHz	SAR 1g:	0.349 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.271 W/kg
CONVERSION FACTORS:	0.230 / 0.199 / 0.232	SAR START:	0.220 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR END:	0.220 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	0.360 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	16/05/2011
INPUT POWER LEVEL:	23dBm	EXTRAPOLATION:	poly4

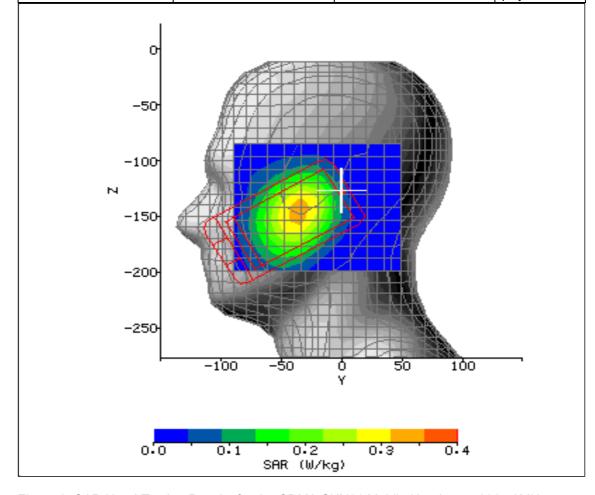


Figure 9: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 836.52MHz.

Product Service

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	16/05/2011 15:21:41	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	03.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.60°C	LIQUID SIMULANT:	850 Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	41.85
RELATIVE HUMIDITY:	38.10%	CONDUCTIVITY:	0.903
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.40°C
PHANTOM ROTATION:	180°	MAX SAR Y-AXIS LOCATION:	49.40mm
DUT POSITION:	Right-Cheek	MAX SAR Z-AXIS LOCATION:	-160.90mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	25.57 V/m
TEST FREQUENCY:	836.52MHz	SAR 1g:	0.571 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.441 W/kg
CONVERSION FACTORS:	0.230 / 0.199 / 0.232	SAR START:	0.353 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR END:	0.355 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	0.550 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	16/05/2011
INPUT POWER LEVEL:	23dBm	EXTRAPOLATION:	poly4

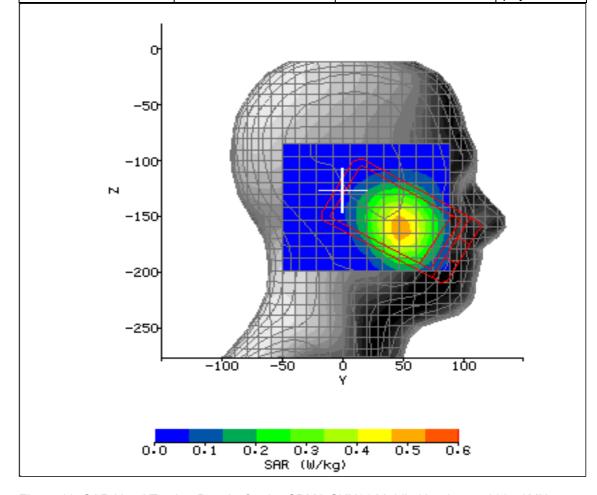


Figure 10: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 836.52MHz.

Product Service

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	16/05/2011 16:07:10	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	04.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.60°C	LIQUID SIMULANT:	850 Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	41.85
RELATIVE HUMIDITY:	36.60%	CONDUCTIVITY:	0.903
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.40°C
PHANTOM ROTATION:	180°	MAX SAR Y-AXIS LOCATION:	35.40mm
DUT POSITION:	Right-15°	MAX SAR Z-AXIS LOCATION:	-149.40mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	21.35 V/m
TEST FREQUENCY:	836.52MHz	SAR 1g:	0.396 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.307 W/kg
CONVERSION FACTORS:	0.230 / 0.199 / 0.232	SAR START:	0.232 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR END:	0.232 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	-0.140 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	16/05/2011
INPUT POWER LEVEL:	23dBm	EXTRAPOLATION:	poly4

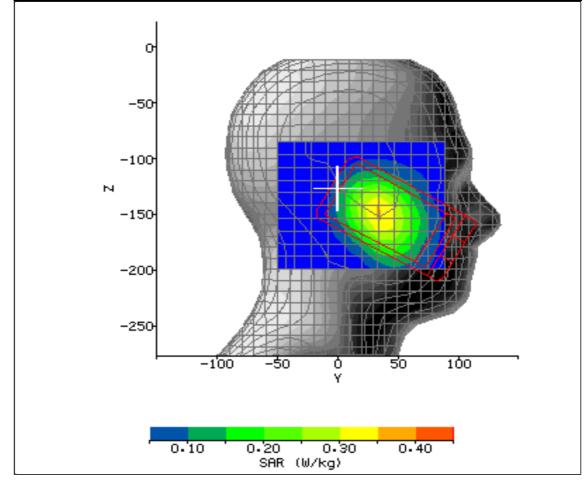


Figure 11: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 836.52MHz.

2.3 CDMA 2000 BODY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

CVCTEM / COETWARE	0ADA0 / 0 50 \/DM	INDUT DOWED DDIET	0.40
SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	16/05/2011 16:44:04	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	05.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.20°C	LIQUID SIMULANT:	850 Body
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	54.58
RELATIVE HUMIDITY:	40.07%	CONDUCTIVITY:	0.998
PHANTOM S/NO:	HeadBox01.csv	LIQUID TEMPERATURE:	23.40°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	19.00mm
DUT POSITION:	15mm-Front Facing	MAX SAR Y-AXIS LOCATION:	-10.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	16.10 V/m
TEST FREQUENCY:	836.52MHz	SAR 1g:	0.303 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.217 W/kg
CONVERSION FACTORS:	0.233 / 0.201 / 0.235	SAR START:	0.096 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR END:	0.095 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	-0.660 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	16/05/2011
INPUT POWER LEVEL:	23dBm	EXTRAPOLATION:	poly4

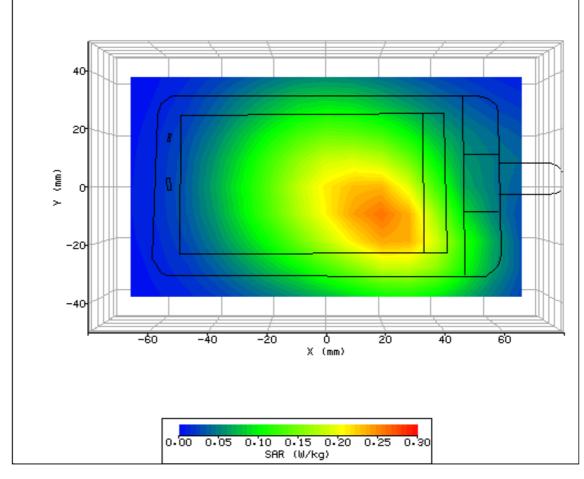


Figure 12: SAR Body Testing Results for the CDMA SHX11 Mobile Handset at 836.52MHz.

Product Service

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	16/05/2011 17:07:24	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	06.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.30°C	LIQUID SIMULANT:	850 Body
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	54.58
RELATIVE HUMIDITY:	38.20%	CONDUCTIVITY:	0.998
PHANTOM S/NO:	HeadBox01.csv	LIQUID TEMPERATURE:	23.40°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	14.00mm
DUT POSITION:	15mm-Rear Facing	MAX SAR Y-AXIS LOCATION:	8.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	17.91 V/m
TEST FREQUENCY:	836.52MHz	SAR 1g:	0.366 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.265 W/kg
CONVERSION FACTORS:	0.233 / 0.201 / 0.235	SAR START:	0.121 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR END:	0.120 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	-0.880 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	16/05/2011
INPUT POWER LEVEL:	23dBm	EXTRAPOLATION:	poly4

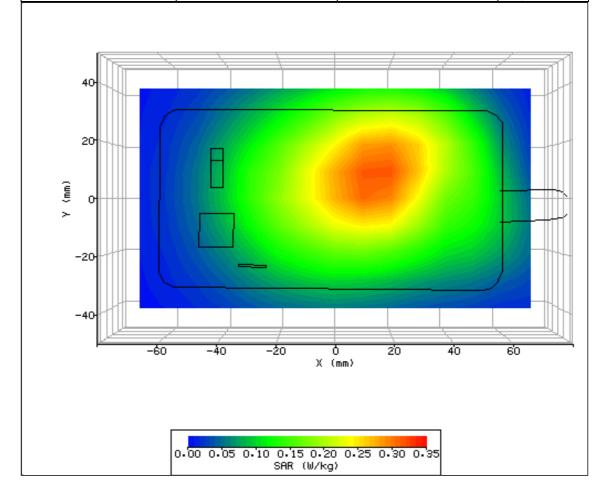


Figure 13: SAR Body Testing Results for the CDMA SHX11 Mobile Handset at 836.52MHz.

2.4 GSM 1900MHz HEAD SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	17/05/2011 10:03:35	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	07.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.40°C	LIQUID SIMULANT:	1900Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	38.10
RELATIVE HUMIDITY:	37.20%	CONDUCTIVITY:	1.440
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.10°C
PHANTOM ROTATION:	0°	MAX SAR Y-AXIS LOCATION:	-50.80mm
DUT POSITION:	Left-Cheek	MAX SAR Z-AXIS LOCATION:	-173.55mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	16.77 V/m
TEST FREQUENCY:	1909.8MHz	SAR 1g:	0.390 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.245 W/kg
CONVERSION FACTORS:	0.285 / 0.236 / 0.288	SAR START:	0.132 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR END:	0.136 W/kg
MODN. DUTY CYCLE:	12.5%	SAR DRIFT DURING SCAN:	3.270 %
DIODE COMPRESSION	20 / 20 / 20	PROBE BATTERY LAST	17/05/2011
FACTORS (V*200):		CHANGED:	
INPUT POWER LEVEL:	30dBm	EXTRAPOLATION:	poly4

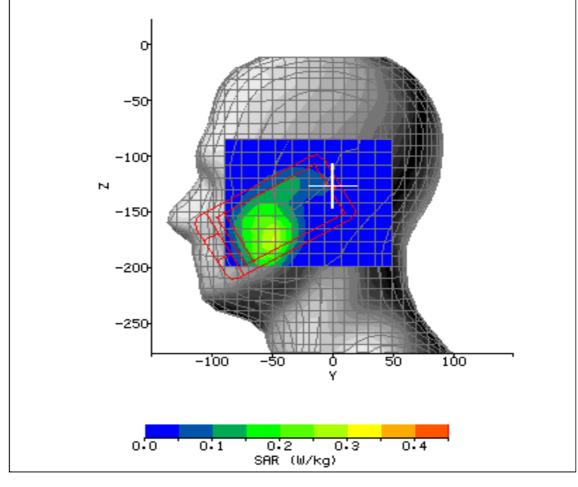


Figure 14: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 1909.8MHz.

Product Service

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	17/05/2011 10:35:08	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	08.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.40°C	LIQUID SIMULANT:	1900Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	38.10
RELATIVE HUMIDITY:	38.20%	CONDUCTIVITY:	1.440
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.10°C
PHANTOM ROTATION:	0°	MAX SAR Y-AXIS LOCATION:	-11.60mm
DUT POSITION:	Left-15°	MAX SAR Z-AXIS LOCATION:	-124.10mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	11.39 V/m
TEST FREQUENCY:	1909.8MHz	SAR 1g:	0.184 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.109 W/kg
CONVERSION FACTORS:	0.285 / 0.236 / 0.288	SAR START:	0.066 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR END:	0.064 W/kg
MODN. DUTY CYCLE:	12.5%	SAR DRIFT DURING SCAN:	-2.560 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	17/05/2011
INPUT POWER LEVEL:	30dBm	EXTRAPOLATION:	poly4

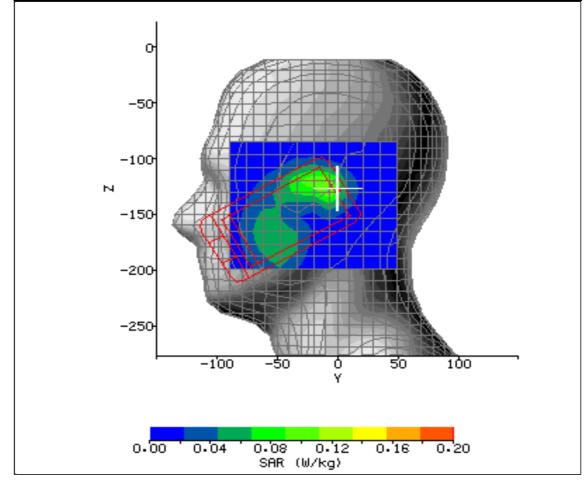


Figure 15: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 1909.8MHz.

Product Service

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	17/05/2011 11:08:23	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	09.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.50°C	LIQUID SIMULANT:	1900Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	38.10
RELATIVE HUMIDITY:	36.30%	CONDUCTIVITY:	1.440
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.10°C
PHANTOM ROTATION:	180°	MAX SAR Y-AXIS LOCATION:	55.00mm
DUT POSITION:	Right-Cheek	MAX SAR Z-AXIS LOCATION:	-174.70mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	14.65 V/m
TEST FREQUENCY:	1909.8MHz	SAR 1g:	0.294 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.187 W/kg
CONVERSION FACTORS:	0.285 / 0.236 / 0.288	SAR START:	0.132 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR END:	0.136 W/kg
MODN. DUTY CYCLE:	12.5%	SAR DRIFT DURING SCAN:	2.340 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	17/05/2011
INPUT POWER LEVEL:	30dBm	EXTRAPOLATION:	poly4

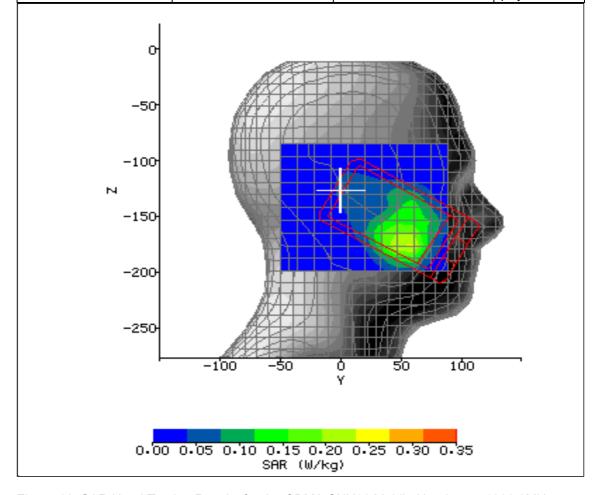


Figure 16: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 1909.8MHz.

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	17/05/2011 11:33:40	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	10.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.40°C	LIQUID SIMULANT:	1900Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	38.10
RELATIVE HUMIDITY:	35.30%	CONDUCTIVITY:	1.440
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.10°C
PHANTOM ROTATION:	180°	MAX SAR Y-AXIS LOCATION:	4.60mm
DUT POSITION:	Right-15°	MAX SAR Z-AXIS LOCATION:	-124.10mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	10.30 V/m
TEST FREQUENCY:	1909.8MHz	SAR 1g:	0.141 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.080 W/kg
CONVERSION FACTORS:	0.285 / 0.236 / 0.288	SAR START:	0.047 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR END:	0.047 W/kg
MODN. DUTY CYCLE:	12.5%	SAR DRIFT DURING SCAN:	0.170 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	17/05/2011
INPUT POWER LEVEL:	30dBm	EXTRAPOLATION:	poly4

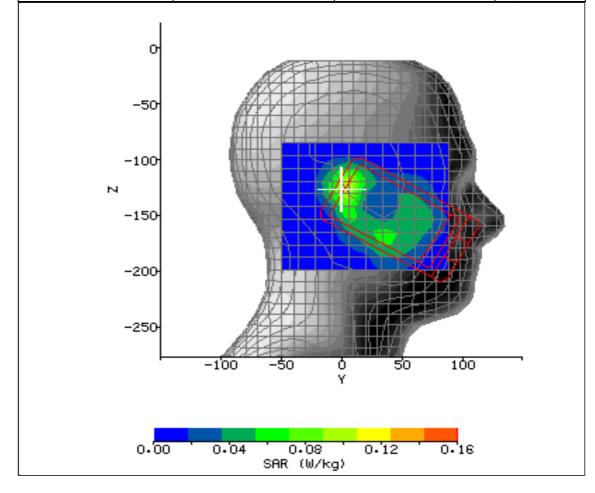


Figure 17: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 1909.8MHz.

2.5 GSM 1900MHz BODY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	17/05/2011 13:36:43	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	11.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.50°C	LIQUID SIMULANT:	1900Body
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	50.75
RELATIVE HUMIDITY:	40.50%	CONDUCTIVITY:	1.550
PHANTOM S/NO:	HeadBox01.csv	LIQUID TEMPERATURE:	23.20°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	38.00mm
DUT POSITION:	15mm-Front Facing	MAX SAR Y-AXIS LOCATION:	-19.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	11.46 V/m
TEST FREQUENCY:	1850.2MHz	SAR 1g:	0.241 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.152 W/kg
CONVERSION FACTORS:	0.318 / 0.261 / 0.325	SAR START:	0.041 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR END:	0.042 W/kg
MODN. DUTY CYCLE:	25%	SAR DRIFT DURING SCAN:	2.440 %
DIODE COMPRESSION	20 / 20 / 20	PROBE BATTERY LAST	17/05/2011
FACTORS (V*200):		CHANGED:	
INPUT POWER LEVEL:	30dBm	EXTRAPOLATION:	poly4

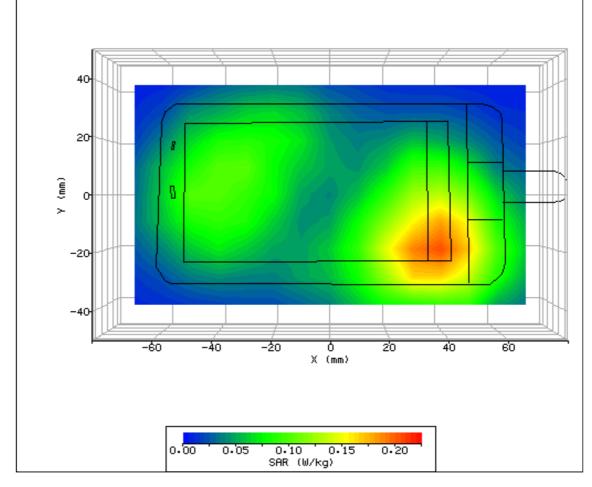


Figure 18: SAR Body Testing Results for the CDMA SHX11 Mobile Handset at 1850.2MHz.

Product Service

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	17/05/2011 14:52:38	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	12.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.50°C	LIQUID SIMULANT:	1900Body
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	50.75
RELATIVE HUMIDITY:	39.50%	CONDUCTIVITY:	1.550
PHANTOM S/NO:	HeadBox01.csv	LIQUID TEMPERATURE:	23.20°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	31.00mm
DUT POSITION:	15mm-Rear Facing	MAX SAR Y-AXIS LOCATION:	16.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	12.90 V/m
TEST FREQUENCY:	1850.2MHz	SAR 1g:	0.314 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.184 W/kg
CONVERSION FACTORS:	0.318 / 0.261 / 0.325	SAR START:	0.050 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR END:	0.050 W/kg
MODN. DUTY CYCLE:	25%	SAR DRIFT DURING SCAN:	0.370 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	17/05/2011
INPUT POWER LEVEL:	30dBm	EXTRAPOLATION:	poly4

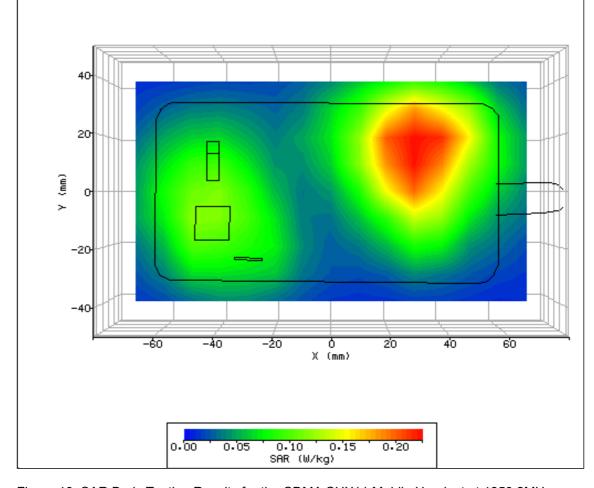


Figure 19: SAR Body Testing Results for the CDMA SHX11 Mobile Handset at 1850.2MHz.

2.6 WLAN 2450MHz HEAD SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	18/05/2011 07:59:50	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	13.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.80°C	LIQUID SIMULANT:	2450Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	38.92
RELATIVE HUMIDITY:	47.70%	CONDUCTIVITY:	1.758
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.40°C
PHANTOM ROTATION:	0°	MAX SAR Y-AXIS LOCATION:	-17.20mm
DUT POSITION:	Left-Cheek	MAX SAR Z-AXIS LOCATION:	-113.75mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	13.02 V/m
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.249 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.132 W/kg
CONVERSION FACTORS:	0.305 / 0.249 / 0.307	SAR START:	0.041 W/kg
TYPE OF MODULATION:	CCK/PBCC	SAR END:	0.042 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	2.240 %
DIODE COMPRESSION	20 / 20 / 20	PROBE BATTERY LAST	18/05/2010
FACTORS (V*200):		CHANGED:	
INPUT POWER LEVEL:	20dBm	EXTRAPOLATION:	poly4

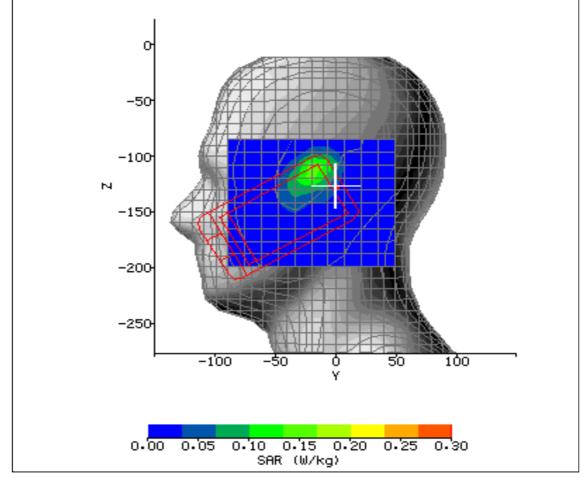


Figure 20: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 2437.0MHz.

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	18/05/2011 08:58:53	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	14.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.80°C	LIQUID SIMULANT:	2450Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	38.92
RELATIVE HUMIDITY:	48.20%	CONDUCTIVITY:	1.758
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.40°C
PHANTOM ROTATION:	0°	MAX SAR Y-AXIS LOCATION:	-7.40mm
DUT POSITION:	Left-15°	MAX SAR Z-AXIS LOCATION:	-109.15mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	12.91 V/m
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.239 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.114 W/kg
CONVERSION FACTORS:	0.305 / 0.249 / 0.307	SAR START:	0.038 W/kg
TYPE OF MODULATION:	CCK/PBCC	SAR END:	0.042 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	8.630 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	18/05/2010
INPUT POWER LEVEL:	20dBm	EXTRAPOLATION:	poly4

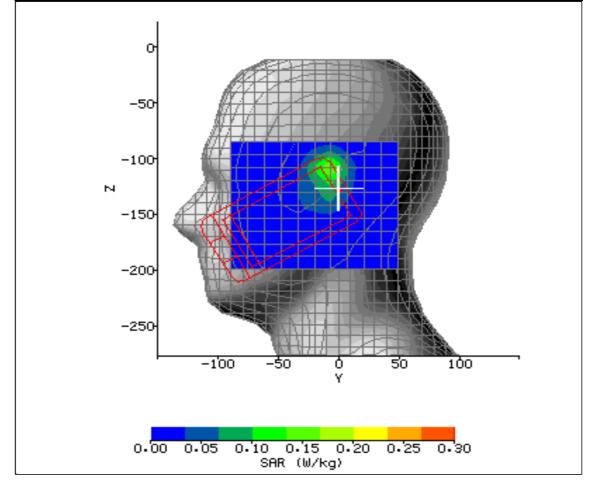


Figure 21: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 2437.0MHz.

			I
SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	18/05/2011 09:29:58	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	15.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.70°C	LIQUID SIMULANT:	2450Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	38.92
RELATIVE HUMIDITY:	48.40%	CONDUCTIVITY:	1.758
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.40°C
PHANTOM ROTATION:	180°	MAX SAR Y-AXIS LOCATION:	7.40mm
DUT POSITION:	Right-Cheek	MAX SAR Z-AXIS LOCATION:	-139.05mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	7.37 V/m
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.090 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.060 W/kg
CONVERSION FACTORS:	0.305 / 0.249 / 0.307	SAR START:	0.029 W/kg
TYPE OF MODULATION:	CCK/PBCC	SAR END:	0.027 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	-8.430 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	18/05/2010
INPUT POWER LEVEL:	20dBm	EXTRAPOLATION:	poly4

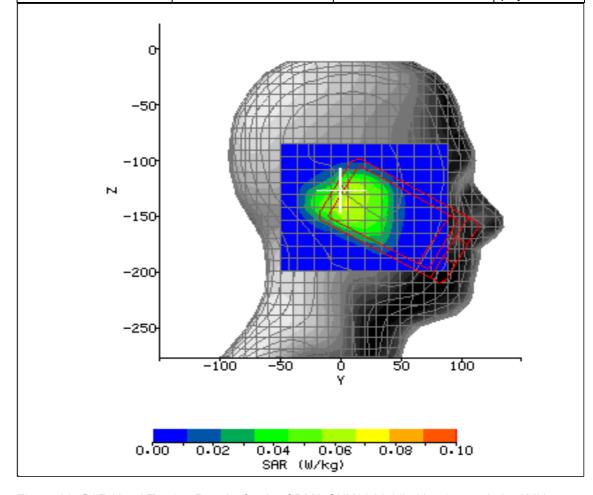


Figure 22: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 2437.0MHz.

	•					_				
L	Jr	_	М		∩t	S	α	~ /	10	•
г		u	u	u	Lal		C 1	v	н.	

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	18/05/2011 09:55:30	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	16.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.70°C	LIQUID SIMULANT:	2450Head
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	38.92
RELATIVE HUMIDITY:	46.20%	CONDUCTIVITY:	1.758
PHANTOM S/NO:	Head_04_35.csv	LIQUID TEMPERATURE:	23.40°C
PHANTOM ROTATION:	180°	MAX SAR Y-AXIS LOCATION:	6.00mm
DUT POSITION:	Right-15°	MAX SAR Z-AXIS LOCATION:	-125.25mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	8.34 V/m
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.120 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.069 W/kg
CONVERSION FACTORS:	0.305 / 0.249 / 0.307	SAR START:	0.034 W/kg
TYPE OF MODULATION:	CCK/PBCC	SAR END:	0.033 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	-1.300 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	18/05/2010
INPUT POWER LEVEL:	20dBm	EXTRAPOLATION:	poly4

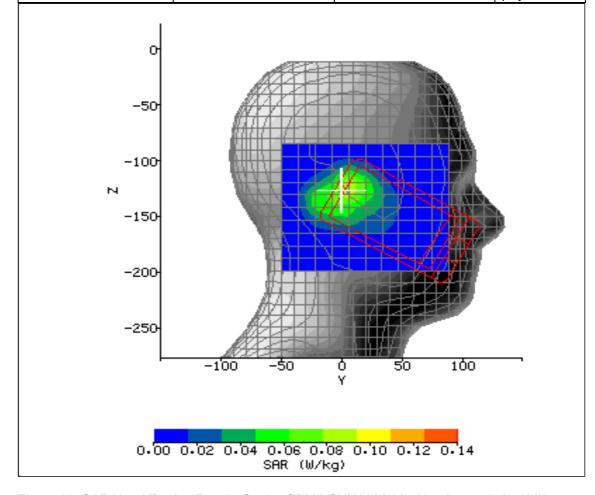


Figure 23: SAR Head Testing Results for the CDMA SHX11 Mobile Handset at 2437.0MHz.

Product Service

2.7 WLAN 2450MHz BODY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	18/05/2011 10:24:47	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	17.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.70°C	LIQUID SIMULANT:	2450Body
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	52.38
RELATIVE HUMIDITY:	46.10%	CONDUCTIVITY:	1.937
PHANTOM S/NO:	HeadBox01.csv	LIQUID TEMPERATURE:	23.50°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-49.00mm
DUT POSITION:	15mm-Front Facing	MAX SAR Y-AXIS LOCATION:	26.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	3.35 V/m
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.026 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.018 W/kg
CONVERSION FACTORS:	0.376 / 0.302 / 0.384	SAR START:	0.000 W/kg
TYPE OF MODULATION:	CCK/PBCC	SAR END:	0.000 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	0.000 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	18/05/2010
INPUT POWER LEVEL:	20dBm	EXTRAPOLATION:	poly4

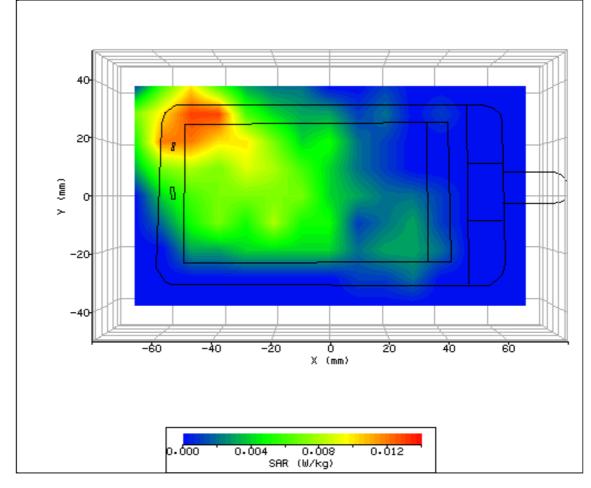


Figure 24: SAR Body Testing Results for the CDMA SHX11 Mobile Handset at 2437.0MHz.

Product Service

SYSTEM / SOFTWARE:	SARA2 / 2.53 VPM	INPUT POWER DRIFT:	0 dB
DATE / TIME:	18/05/2011 10:50:27	DUT BATTERY MODEL/NO:	SHX11UAA
FILENAME:	18.txt	PROBE SERIAL NUMBER:	190
AMBIENT TEMPERATURE:	23.70°C	LIQUID SIMULANT:	2450Body
DEVICE UNDER TEST:	CDMA SHX11	RELATIVE PERMITTIVITY:	52.38
RELATIVE HUMIDITY:	45.50%	CONDUCTIVITY:	1.937
PHANTOM S/NO:	HeadBox01.csv	LIQUID TEMPERATURE:	23.50°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-53.00mm
DUT POSITION:	15mm-Rear Facing	MAX SAR Y-AXIS LOCATION:	-20.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	4.57 V/m
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.051 W/kg
AIR FACTORS:	519.61 / 671.10 / 632.34	SAR 10g:	0.028 W/kg
CONVERSION FACTORS:	0.376 / 0.302 / 0.384	SAR START:	0.001 W/kg
TYPE OF MODULATION:	CCK/PBCC	SAR END:	0.001 W/kg
MODN. DUTY CYCLE:	100%	SAR DRIFT DURING SCAN:	0.000 %
DIODE COMPRESSION FACTORS (V*200):	20 / 20 / 20	PROBE BATTERY LAST CHANGED:	18/05/2010
INPUT POWER LEVEL:	20dBm	EXTRAPOLATION:	poly4

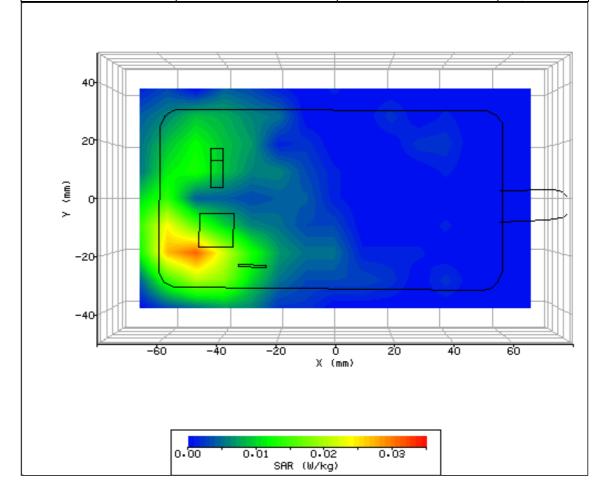


Figure 25: SAR Body Testing Results for the CDMA SHX11 Mobile Handset at 2437.0MHz.

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

The following test equipment was used at TÜV SÜD Product Service Ltd:

[T	1	T	1	T	
Instrument Description	Manufacturer	Model Type	TE Number	Cal Period (months)	Calibration Due Date	
Signal Generator	Hewlett Packard	ESG4000A	38	12	17-May-11	
Power Sensor	Rohde & Schwarz	NRV-Z1	60	12	08-Jun-11	
Industrial Robot	Mitsubishi	RV-E2/CR-E116	63	-	TU	
Thermometer	Digitron	T208	64	12	03-May-12	
Communications Tester	Rohde & Schwarz	CMU 200	442	12	24-Aug-11	
Communications Tester	Rohde & Schwarz	CMU 200	S/N L1005	12	2-Feb-12	
Attenuator (20dB, 20W)	Narda	766F-20	483	12	09-Jun-11	
Fast Probe Amplifier (3 channels)	IndexSar Ltd	IFA-010	1558	-	TU	
SAM Head Phantom	Antennessa	Head_04_35.csv	1561	-	TU	
200mm ³ Box Phantom 1	IndexSar Ltd	IXB-070	1565	-	TU	
Side Bench 2 Chamber 2	IndexSar Ltd	IXM-030	1571	-	TU	
Bi-directional Coupler	IndexSar Ltd	7401 (VDC0830- 20)	2414	12	TU	
Validation Amplifier (10MHz - 2.5GHz)	IndexSar Ltd	VBM2500-3	2415	12	TU	
Hygromer	Rotronic	I-1000	2784	12	22-Dec-11	
Power Sensor	Rohde & Schwarz	NRV- Z5	2878	12	08-Jun-11	
Antenna (Omnidirectional)	Katherin Scala Division	OG-890/1990/DC	2905	12	TU	
Dual Channel Power Meter	Rohde & Schwarz	NRVD	3259	12	08-Jun-11	
Signal Generator, 9kHz to 3GHz	Rohde & Schwarz	SMA 100A	3494	12	25-Jan-12	
Meter & T/C	R.S Components	Meter 615-8206 & Type K T/C	3612	12	18-Feb-12	
Immersible SAR Probe	IndexSar Ltd	IPX-050	3893	12	23-Feb-12	
835MHz Head Fluid	TUV Product Service	Batch 18	N/A	1	09-Jun-11	
835MHz Body Fluid	TUV Product Service	Batch 10	N/A	1	09-Jun-11	
1900MHz Head Fluid	TUV Product Service	Batch 6	N/A	1	09-Jun-11	
1900MHz Body Fluid	TUV Product Service	Batch 3	N/A	1	09-Jun-11	
2450MHz Head Fluid	TUV Product Service	Batch 9	N/A	1	09-Jun-11	
2450MHz Body Fluid	TUV Product Service	Batch 7	N/A	1	09-Jun-11	

TU – Traceability Unscheduled

COMMERCIAL-IN-CONFIDENCE

3.2 TEST SOFTWARE

The following software was used to control the TÜV SÜD Product Service Ltd SARA2 System.

Instrument	Version Number	Date	
SARA2 system	v.2.5.3 VPM	28 November 2006	
Mitsubishi robot controller firmware revision	RV-E2 Version C9a	-	
IFA-10 Probe amplifier	Version 2	-	

3.3 DIELECTRIC PROPERTIES OF SIMULANT LIQUIDS

The fluid properties of the simulant fluids used during routine SAR evaluation meet the dielectric properties required by OET 65(C) - 2001.

The fluids were calibrated in our Laboratory and re-checked prior to any measurements being made against reference fluids stated in IEEE 1528-2003 of 0.9% NaCl (Salt Solution) at 23°C and also for Dimethylsulphoxide (DMS) at 21°C.

IEEE 1528 Recipes

Frequency (MHz)	300	45	50	835		900		1450		18	00		19	000	1950	2000	21	00	2	450	3000
Recipe#	1	1	3	1	1	2	3	1	1	2	2	3	1	2	4	1	1	2	2	3	2
								Ing	redients	s (% by	weight)										
1, 2-Pro- panediol						64.81															
Bactericide	0.19	0.19	0.50	0.10	0.10		0.50													0.50	
Diacetin			48.90				49.20													49.45	
DGBE								45.41	47.00	13.84	44.92		44.94	13.84	45.00	50.00	50.00	7.99	7.99		7.99
HEC	0.98	0.96		1.00	1.00																
NaCl	5.95	3.95	1.70	1.45	1.48	0.79	1.10	0.67	0.36	0.35	0.18	0.64	0.18	0.35				0.16	0.16		0.16
Sucrose	55.32	56.32		57.00	56.50																
Γriton X-100										30.45				30.45				19.97	19.97		19.97
Water	37.56	38.56	48.90	40.45	40.92	34.40	49.20	53.80	52.64	55.36	54.90	49.43	54.90	55.36	55.00	50.00	50.00	71.88	71.88	49.75	71.88
								Measu	red die	lectric p	aramet	ers									
ε̈́r	46.00	43.40	44.30	41.60	41.20	41.80	42.70	40.9	39.3	41.00	40.40	39.20	39.90	41.00	40.10	37.00	36.80	41.10	40.30	39.20	37.90
σ (S/m)	0.86	0.85	0.90	0.90	0.98	0.97	0.99	1.21	1.39	1.38	1.40	1.40	1.42	1.38	1.41	1.40	1.51	1.55	1.88	1.82	2.46
Temp (°C)	22	22	20	22	22	22	20	22	22	21	22	20	21	21	20	22	22	20	20	20	20
							Ta	arget die	electric	parame	ters (Ta	able 2)									
ε̈́r	45.30	43	.50	41.5		41.50		40.50				40	.00				39.	80	3!	9.20	38.50
σ (S/m)	0.87	0.	87	0.9		0.97		1.20				1.	40				1.4	19	1	.80	2.40

The dielectric properties of the tissue simulant liquids used for the SAR testing at TÜV SÜD Product Service Ltd are as follows:-

Fluid Type and Frequency	Relative Permittivity εR (ε') Target	Relative Permittivity εR (ε') Measured	Conductivity σ Target	Conductivity σ Measured
835MHz Head	41.5	41.85	0.90	0.903
835MHz Body	55.2	54.58	0.97	0.998
1900 MHz Head	40.0	38.10	1.40	1.440
1900 MHz Body	53.3	50.75	1.52	1.550
2450 MHz Head	39.2	38.92	1.8	1.758
2450 MHz Body	52.7	52.38	1.95	1.937

3.4 TEST CONDITIONS

3.4.1 Test Laboratory Conditions

Ambient temperature: Within +15°C to +35°C.

The actual temperature during the testing ranged from 23.2°C to 23.8°C. The actual humidity during the testing ranged from 35.3% to 48.4% RH.

3.4.2 Test Fluid Temperature Range

Frequency	Body / Head Fluid	Min Temperature	Max Temperature
835MHz	Head	23.4	23.4
835MHz	Body	23.4	23.4
1900MHz	Head	23.1	23.1
1900MHz	Body	23.2	23.2
2450MHz	Head	23.4	23.4
2450MHz	Body	23.5	23.5

3.4.3 SAR Drift

The SAR Drift was within acceptable limits during scans. The maximum SAR Drift, drift due to the handset electronics, was recorded as 8.63% (1.84 dB) for all of the testing. The measurement uncertainty budget for this assessment includes the maximum SAR Drift figures for Head and/or Body as applicable.

3.5 MEASUREMENT UNCERTAINTY

Head SAR Measurements.

Source of Uncertainty	Description	Tolerance / Uncertainty ± %	Probability distribution	Div	c _i (1g)	Standard Uncertainty ± % (1g)	V _i or V _{eff}
Measurement System							
Probe calibration	7.2.1	8.73	N	1	1	8.73	8
Isotropy	otropy 7.2.1.2		R	1.73	1	1.84	8
Probe angle >30deg	additional	12.00	R	1.73	1	6.93	8
Boundary effect	7.2.1.5	0.49	R	1.73	1	0.28	8
Linearity	7.2.1.3	1.00	R	1.73	1	0.58	8
Detection limits	7.2.1.4	0.00	R	1.73	1	0.00	8
Readout electronics	7.2.1.6	0.30	N	1	1	0.30	∞
Response time	7.2.1.7	0.00	R	1.73	1	0.00	∞
Integration time (equiv.)	7.2.1.8	1.38	R	1.73	1	0.80	80
RF ambient conditions	7.2.3.6	3.00	R	1.73	1	1.73	8
Probe positioner mech. restrictions	7.2.2.1	5.35	R	1.73	1	3.09	8
Probe positioning with respect to phantom shell	7.2.2.3	5.00	R	1.73	1	2.89	8
Post-processing	7.2.4	7.00	R	1.73	1	4.04	8
Test sample related							
Test sample positioning	7.2.2.4	1.50	R	1.73	1	0.87	8
Device holder uncertainty	7.2.2.4.2	1.73	R	1.73	1	1.00	8
Drift of output power	7.2.3.4	8.63	R	1.73	1	4.98	8
Phantom and set-up							
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	2.01	R	1.73	1	1.16	8
Liquid conductivity (target)	7.2.3.3	5.00	R	1.73	0.64	1.85	∞
Liquid conductivity (meas.)	7.2.3.3	5.00	N	1	0.64	3.20	8
Liquid permittivity (target)	7.2.3.4	5.00	R	1.73	0.6	1.73	8
Liquid permittivity (meas.)	7.2.3.4	3.00	N	1	0.6	1.80	8
Combined standard uncertainty			RSS			14.62	
Expanded uncertainty (95% confidence interval	nl)		K=2			29.24	

COMMERCIAL-IN-CONFIDENCE

Body SAR Measurements.

Source of Uncertainty	Description	Tolerance / Uncertainty ± %	Probability distribution	Div	c _i (1g)	Standard Uncertainty ± % (1g)	V _i or V _{eff}
Measurement System							
Probe calibration	7.2.1	8.73	N	1	1	8.73	8
Isotropy	7.2.1.2	3.18	R	1.73	1	1.84	8
Boundary effect	7.2.1.5	0.49	R	1.73	1	0.28	8
Linearity	7.2.1.3	1.00	R	1.73	1	0.58	8
Detection limits	7.2.1.4	0.00	R	1.73	1	0.00	∞
Readout electronics	7.2.1.6	0.30	N	1	1	0.30	∞
Response time	7.2.1.7	0.00	R	1.73	1	0.00	∞
Integration time (equiv.)	7.2.1.8	1.38	R	1.73	1	0.80	8
RF ambient conditions	7.2.3.6	3.00	R	1.73	1	1.73	8
Probe positioner mech. restrictions 7.2.2.1		0.60	R	1.73	1	0.35	8
Probe positioning with respect to phantom shell	7.2.2.3	2.00	R	1.73	1	1.15	8
Post-processing	7.2.4	7.00	R	1.73	1	4.04	8
Test sample related							
Test sample positioning	7.2.2.4	1.50	R	1.73	1	0.87	8
Device holder uncertainty	7.2.2.4.2	1.73	R	1.73	1	1.00	8
Drift of output power	7.2.3.4	-0.88	R	1.73	1	2.89	8
Phantom and set-up							
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	2.01	R	1.73	1	1.16	8
Liquid conductivity (target)	7.2.3.3	5.00	R	1.73	0.64	1.85	8
Liquid conductivity (meas.)	7.2.3.3	5.00	N	1	0.64	3.20	8
Liquid permittivity (target)	7.2.3.4	5.00	R	1.73	0.6	1.73	8
Liquid permittivity (meas.)	7.2.3.4	3.00	N	1	0.6	1.80	8
Combined standard uncertainty			RSS			11.52	
Expanded uncertainty (95% confidence interval	——————————————————————————————————————		K=2			23.05	

SECTION 4

PHOTOGRAPHS

4.1 TEST POSITIONAL PHOTOGRAPHS

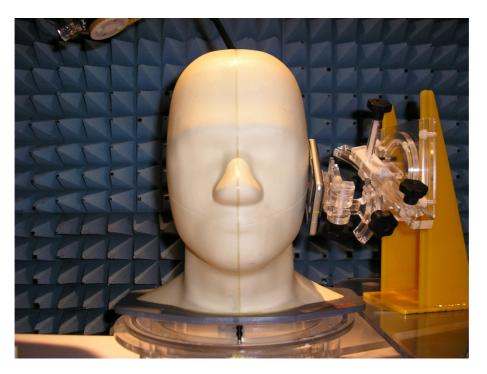


Figure 26 Left Hand Position

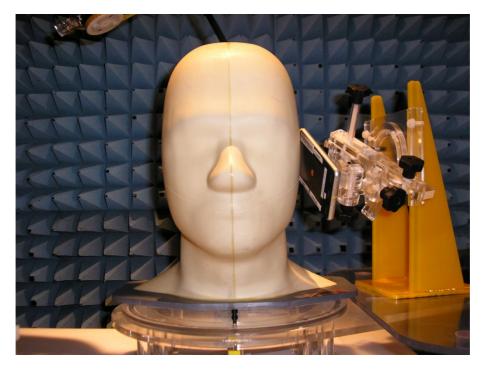


Figure 27 Left Hand 15° Position

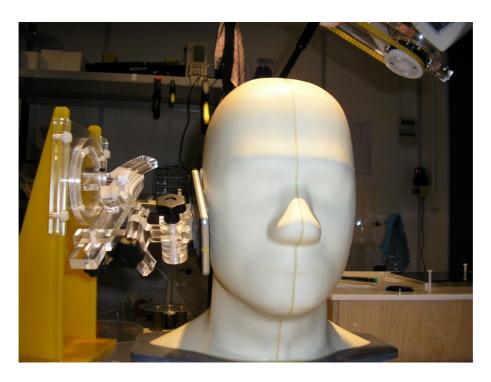


Figure 28 Right Hand Position

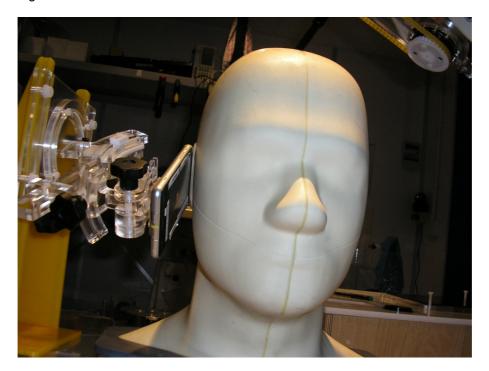


Figure 29 Right Hand 15° Position

COMMERCIAL-IN-CONFIDENCE

Figure 30 Body Position

4.2 PHOTOGRAPHS OF EQUIPMENT UNDER TEST (EUT)

Figure 31 Front View

Figure 32 Rear View

Figure 33 Rear View Battery removed

<u>Figure 34</u> Front View with Hands free Kit

Figure 34
Front View WLAN

Figure 36 Rear View WLAN

Figure 37 Rear View Battery Removed WLAN

<u>Figure 38</u> Front View with Hands free Kit WLAN

SECTION 5

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service Limited

© 2011 TÜV SÜD Product Service Limited

ANNEX A

PROBE CALIBRATION REPORT

Continuation Sheet

MEASUREMENT PROCEDURE

For frequencies at or above 835 MHz, the calibration method is based on establishing a calculable specific absorption rate (SAR) using a matched waveguide cell [1]. The cell has a feed-section and a liquid-filled section separated by a matching window that is designed to minimise reflections at the interface. A TE_{01} mode is launched into the waveguide by means of a N-type-to-waveguide adapter. The power delivered to the liquid is calculated from the forward power and reflection coefficient measured at the input to the cell. At the centre of the cross-section of the waveguide cell, the volume specific absorption rate (SAR^{ν}) in the liquid as a function of distance from the window is given by

$$SAR^{V} = \frac{4(P_{w})}{ab\delta}e^{-2Z/\delta} \tag{1}$$

where

a = the larger cross-sectional dimension of the waveguide.

b = the smaller cross-sectional dimension of the waveguide.

 δ = the skin depth for the liquid in the waveguide.

Z = the distance of the probe's sensors from the liquid to matching window boundary.

 P_w = the power delivered to the liquid.

For frequencies below 835 MHz, the SAR in the liquid is established by measuring the rate of temperature rise in the liquid at the calibration point. In this case the SAR in the liquid is related to the temperature rise by

$$SAR = c\frac{dT}{dt} \tag{2}$$

where c is the specific heat of the liquid.

Liquids having the properties specified by SAR measurement standards [2, 3, 4] were used for the calibration. The value of δ for the liquid was obtained by measuring the electric field (E) at a number of distances from the matching window. The calibration was for continuous wave (CW) signals, and the axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation. The probe was rotated about its axis in 15-degree steps, and the ratio of the calibration factors for the three probe sensors X, Y, & Z were optimized to give the best axial isotropy.

Reference : 2011020183-2 Page 2 of 7

Date of Issue: 3rd March 2011 Checked by: About

The probe was calibrated with the linearisation and air-correction factors enabled. Comparing the measured values of E^2 in the liquid to those calculated for the waveguide cell allows the ratio, ConvF, of sensitivity for $(E^2_{LIQUID}) / (E^2_{AIR})$ to be determined, as required by the probe

software.

ENVIRONMENT

Measurements were made in a temperature-controlled laboratory at 22 ± 1°C. The temperature of the liquid used was measured at the beginning and end of each measurement.

UNCERTAINTIES

The estimated uncertainty in calibration for SAR (W kg⁻¹) is ± 10 %. The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of

confidence of approximately 95%.

This uncertainty is valid when the probe is used in a liquid with the same dielectric properties as those used for the calibration. No estimate is made for the long-term stability of the device

calibrated or of the fluids used in the calibration.

When using the probe for SAR testing, additional uncertainties should be added to account for the spherical isotropy of the probe, proximity effects, linearity, and response to pulsed fields. There will be additional uncertainty if the probe is used in liquids having significantly different electrical properties to those used for the calibration. The electrical properties of the

liquids will be related to temperature.

RESULTS

Tables 1 and 2 give the results for calibration in liquid.

These calibration factors are only correct when the values for sensitivity in free-space, diode compression and sensor offset from the tip of the probe, as set in the probe

software, are the same as those given in Table 1 and 2.

Table 3 contains the values of the boundary correction factors f(0) and d. These values were

supplied by the manufacturer.

Reference: 2011020183-2

Date of Issue: 3rd March 2011

Checked by:

Page 3 of 7

Document 75913577 Report 15 Issue 3

Page A.3 of A.7

Continuation Sheet

REFERENCES:

- [1] Pokovic, KT, T.Schmid and N.Kuster, "Robust set-up for Precise Calibration of E-field probes in Tissue Simulating Liquids at Mobile Phone Frequencies", Proceedings ICECOM 1997, pp 120 124, Dubrovnik, Croatia Oct 12-17, 1997.
- [2] British Standard BS EN 503361:2001. "Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz)".
- [3] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".
- [4] Federal Communications Commission, FCC OET Bulletin 65, Supplement C, June 2001, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", David L. Means, Kwok W. Chan.

Reference: 2011020183-2

Date of Issue: 3rd March 2011

Checked by: Abound

/ nan-nan-

Page 4 of 7

Continuation Sheet

Table 1 Sensitivity in Head Simulating Liquids. SAR probe: IXP-050 S/N 0190

			S/N 0190				
		Probe set	tings for ca	libration			
Sensitivity i	n free-spa	ce ⁽¹⁾ Diod	e Compress	ion ⁽²⁾	Sensor offset		
$(V/m)^2$	= 519.61 /(V*200)		$P_X = 20 \text{ (V*2)}$				
Lin Y = 671.10 $(V/m)^2/(V*200)$		DCI	$P_{Y} = 20 \text{ (V*2)}$	200)	2.7 mm		
	= 632.34 /(V*200)	DC	P _Z = 20 (V*2	.00)			
	:	Sensitivity in	Head Simu	lating Liqu	ıid.		
Calibration frequency	Liquid	Phantom ⁽³⁾		bration Factor		Axial Isotropy	
(MHz)	ε' (3)	σ ⁽³⁾ (Sm ⁻¹)	$ConvF_X$	$ConvF_{Y}$	ConvFz	(dB)	
450	42.2	0.83	0.198	0.174	0.202	±0.01	
835	40.8	0.91	0.230	0.199	0.232	±0.01	
900	40.4	0.95	0.240	0.207	0.243	±0.01	
1800	39.6	1.41	0.287	0.239	0.288	±0.02	
1900	39.6	1.43	0.285	0.236	0.288	±0.02	
2100	39.0	1.48	0.319	0.263	0.320	±0.03	
2450	37.7	1.84	0.305	0.249	0.307	±0.04	
2600	37.1	2.00	0.324	0.267	0.333	±0.02	

Reference: 2011020183-2

Date of Issue : 3rd March 2011

Checked by:

Page 5 of 7

Continuation Sheet

Table 2 Sensitivity in Body Simulating Liquids. SAR probe: IXP-050

S/N 0190

		Probe se	ttings for ca	alibration			
Sensitivity in free-space ⁽¹⁾		ce ⁽¹⁾ Diod	le Compress	ion ⁽²⁾	Sensor offset from tip of probe ⁽²⁾		
Lin X = 519.61		DC	$P_X = 20 (V^*)$	200)			
8	² /(V*200)	200000					
	= 671.10	DC	$P_{Y} = 20 (V*2)$	200)	2.7 m	m	
0.00	² /(V*200)			(2000)			
	= 632.34	DC	$P_z = 20 (V*2)$	200)			
(V/m)	² /(V*200)						
		Sensitivity in	Body Simu	lating Liq	uid.		
Calibration	Liquid	Phantom ⁽³⁾	Cali	bration Fact	ors for	Axial	
frequency		NO. 0.748. C. 0.000.000.000.000.000.000.000.000.0		E ² Liquid / E ²	Air	Isotropy	
(MHz)	ε' (3)	σ ⁽³⁾ (Sm ⁻¹)	$ConvF_X$	ConvF _Y	ConvFz	(dB)	
450	55.0	0.92	0.202	0.177	0.205	±0.02	
835	56.5	0.99	0.233	0.201	0.235	±0.01	
900	56.2	1.03	0.244	0.209	0.245	±0.01	
1800	53.4	1.49	0.308	0.254	0.314	±0.02	
1900	53.1	1.58	0.318	0.261	0.325	±0.03	
2100	52.7	1.70	0.348	0.270	0.347	±0.02	
2450	54.2	2.04	0.376	0.302	0.384	±0.03	
2600	51.3	2.22	0.386	0.308	0.390	±0.03	

Notes.

Notes.

Reference: 2011020183-2

Date of Issue: 3rd March 2011

Checked by : O Bonds

Page 6 of 7

⁽¹⁾ Measured at 900 MHz

⁽²⁾ The manufacturer supplied these figures.

 $^{^{(3)}}$ Measured at a temperature of 22 \pm 1 0 C.

Continuation Sheet

Table 3
Manufacturer's boundary correction factors for IXP-050 probes

Frequency	Head Simul	ating Liquid	Body Simulating Liquid		
(MHz)	f(0)	d	f(0)	d	
835	1.35	1.30	1.45	1.30	
900	1.20	1.30	1.45	1.30	
1800	1.15	1.40	1.10	1.40	
1900	1.10	1.40	1.10	1.50	
2100	0.90	1.60	0.90	1.70	
2450	0.85	1.60	0.85	1.80	

Reference: 2011020183-2

Date of Issue : 3rd March 2011

Checked by: Down

Page 7 of 7