

Page 1 of 44 JQA File No. : KL80100550 Issue Date : April 12, 2011

TEST REPORT

APPLICANT ADDRESS	:	Sharp Corporation, Communication Systems Group 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, JAPAN
PRODUCTS	:	Cellular Phone
MODEL NO.	:	SH-10C
SERIAL NO.	:	004401113245233
FCC ID	:	APYHRO00145
TEST STANDARD	:	CFR 47 FCC Rules and Regulations Part 22
TESTING LOCATION	:	Japan Quality Assurance Organization
		KITA-KANSAI Testing Center
		1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan
TEST RESULTS	:	Passed
DATE OF TEST	:	March 29, 2011 ~ April 6, 2011

This report must not used by the client to claim product endorsement by NVLAP or NIST or any agency of the U.S. Government.

NVLAP LAB CODE 200191-0

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center Testing Dept. EMC Division 1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.

Page 2 of 44

TABLE OF CONTENTS

Page

Docum	entation	3
1	Test Regulation	3
2	Test Location	3
3	Recognition of Test Laboratory	3
4	Description of the Equipment Under Test	4
5	Test Condition	5
6	Preliminary Test and Test Setup	7
7	Equipment Under Test Modification	16
8	Responsible Party	16
9	Deviation from Standard	16
10	Test Results	17
11	Summary	20
12	Operating Condition	21
13	Test Configuration	21
14	Equipment Under Test Arrangement (Drawings)	22
Append	dix A: Test Data	23
Append	dix B: Test Arrangement (Photographs)	41
Append	lix C: Test Instruments	43

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EMC

EMI

EMS

: Electromagnetic Compatibility

: Electromagnetic Susceptibility

: Electromagnetic Interference

- **EUT** : Equipment Under Test
- **AE** : Associated Equipment
- N/A : Not Applicable
- N/T : Not Tested
- \boxtimes indicates that the listed condition, standard or equipment is applicable for this report.
- □ indicates that the listed condition, standard or equipment is not applicable for this report.

Page 3 of 44

Documentation

1 Test Regulation

Applied Standard	:	CFR 47 FCC Rules and Regulations Part 22 Subpart H – Cellular Radiotelephone Service
Test Requirements	:	CFR 47 FCC Rules and Regulations Part 2 §2.1046, §2.1047, §2.1049, §2.1051, §2.1053, §2.1055 and §2.1057
Test Procedure	:	ANSI C63.4–2003, TIA/EIA–603-C-2004

2 Test Location

KITA-KANSAI Testing Center 1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan KAMEOKA EMC Branch 9-1, Ozaki, Inukanno, Nishibetsuin-cho, Kameoka-shi, Kyoto 621-0126, Japan

3 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center Testing Department EMC Division is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility of Testing Division is registered by the following bodies.

VLAC Code	:	VLAC-001-2 (Effective through : March 30, 2012)
NVLAP Lab Code	:	200191-0 (Effective through : June 30, 2011)
BSMI Recognition No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-AI-E-6006
		(Effective through : September 14, 2013)
VCCI Registration No.	:	R-008, C-006, C-007, C-1674, C-2143, C-3685, T-1418, T-1419, T-1819, T-1820,
		T-1821, G-172, G-173
		(Effective through : March 30, 2012)
IC Registration No.	:	2079E-1, 2079E-2 (Effective through : January 25, 2014)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Effective through : February 22, 2012)

Page 4 of 44

4 Description of the Equipment Under Test

4.1 General Information

1.	Manufacturer	:	Sharp Corporation, Communication Systems Group 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, JAPAN
2.	Products	:	Cellular Phone
3.	Model No.	:	SH-10C
4.	Serial No.	:	004401113245233
5.	Product Type	:	Pre-production
6.	Date of Manufacture	:	March, 2011
7.	Transmitting Frequency	:	826.4 MHz(4132CH) – 846.6MHz(4233CH)
8.	Receiving Frequency	:	871.4 MHz(4357CH) – 891.6MHz(4458CH)
9.	Emission Designations	:	4M16F9W
10.	Max. RF Output Power	:	0.407W (ERP)
11.	Power Rating	:	4.0VDC (Lithium-ion Battery Pack SH27 800mAh)
12.	EUT Grounding	:	None
13.	Category	:	WCDMA850
14.	EUT Authorization	:	Certification
15.	Receive Date of EUT	:	March 27, 2011

4.2 Channel Plan

The carrier spacing is 200 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

 $\begin{array}{ll} \mbox{Transmitting Frequency (in MHz)} &= 826.4 + 0.2 \times (n-4132) \\ \mbox{where, } n: \mbox{channel number } (4132 \leq n \leq 4233) \end{array}$

Receiving Frequency (in MHz) = $871.4 + 0.2 \times (n - 4357)$ where, n : channel number ($4357 \le n \le 4458$)

Page 5 of 44

Test Condition 5

5.1 RF Power Output (§2.1046)

5.1.1Conducted RF Power Output

The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] - Not Applicable Test site: KITA-KANSAI Shielded room - 2nd Shielded room KAMEOKA - Shielded room

- Conducted emission facility

- Conducted emission facility

Test instruments : Refer to Appendix C.

5.1.2ERP / EIRP RF Power Output

The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] - Not Applicable

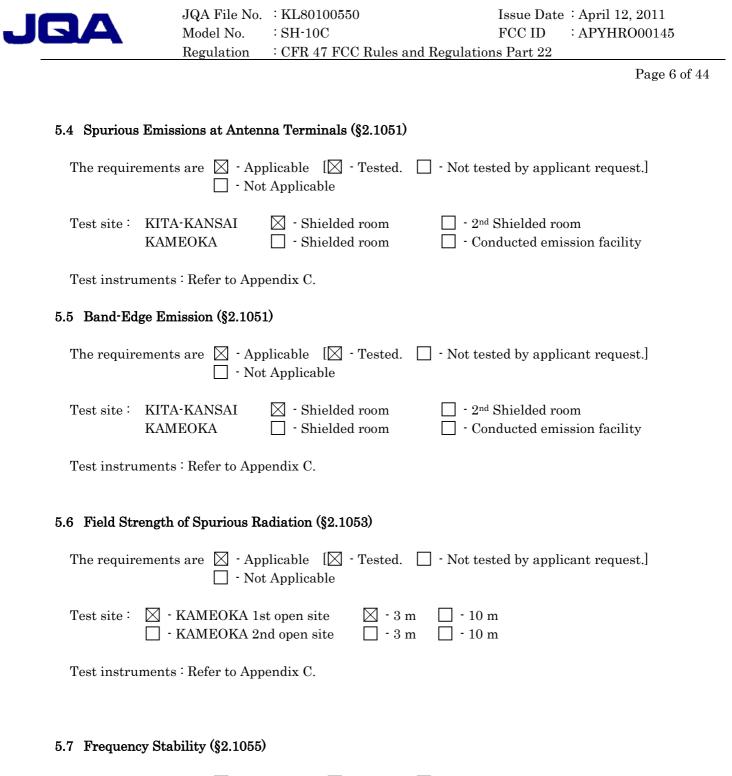
Test site :	🛛 - KAMEOKA 1st open site	🔀 - 3 m	🗌 - 10 m
	C - KAMEOKA 2nd open site	🗌 - 3 m	🗌 - 10 m

Test instruments : Refer to Appendix C.

5.2 Modulation Characteristics (§2.1047)

The requirements are 🗌 - Applicable [🗌 - Tested. 🔲 - Not tested by applicant request.] > Not Applicable Test site: KITA-KANSAI - Shielded room - Anechoic chamber

KAMEOKA - Shielded room


Test instruments : Refer to Appendix B.

5.3 Occupied Bandwidth (§2.1049)

The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] - Not Applicable Test site : KITA-KANSAI Shielded room - 2nd Shielded room

KAMEOKA	Shielded room

Test instruments : Refer to Appendix C.

The requirements are \square - Applicable $[\square$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable

Test site : KITA-KANSAI Environment Testing Room

Test instruments : Refer to Appendix C.

Page 7 of 44

6 Preliminary Test and Test Setup

6.1 RF Power Output (§2.1046)

6.1.1 Conducted RF Power Output

The Conducted RF Power Output was measured with a power meter, one 10dB attenuator and a short, low loss cable.

6.1.2 ERP / EIRP RF Power Output

Step 1:

In order to obtain the maximum emission, the EUT was placed at the height 1.8 m on the non-conducted support and was varying at three orthogonal axes(Refer to clause 15), at the distance 3 m from the receiving antenna and rotated around 360 degrees.

The receiving antenna height was varied from 1 m to 4 m.

The EUT on the table was placed to be maximum emission against at the receiving antenna polarized (vertical and horizontal).

Then the meter reading of the spectrum analyzer at the maximum emission was A $dB(\mu V)$.

Step 2:

The EUT was replaced to substitution antenna at the same polarized under the same condition as step 1.

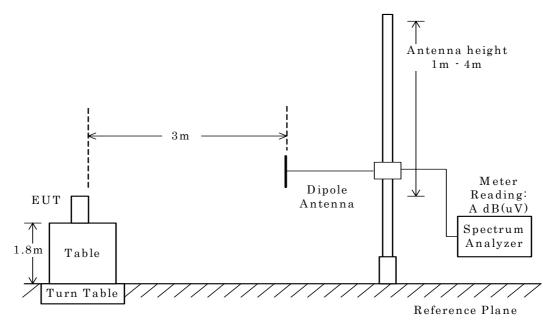
The RF power was fed to the transmitting antenna through the RF amplifier from the signal generator.

In order to obtain the maximum emission level, the height of the receiving antenna was varied from 1 m to 4 m.

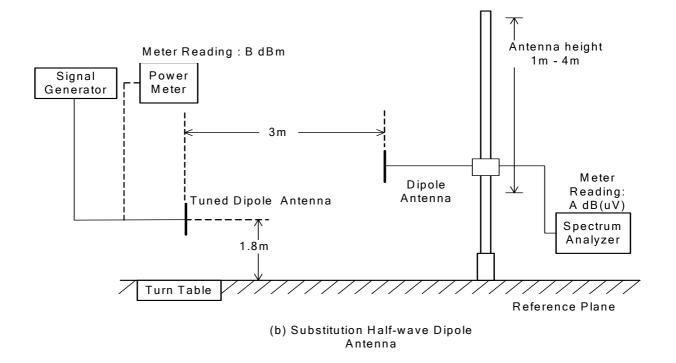
The level of maximum emission was A dB(μV), same as the recorded level in the step 1.

Then the RF power into the substitution horn antenna was P (dBm).

The ERP/EIRP output power was calculated in the following equation.


ERP (dBm) = P (dBm) - Balun loss of the tuned dipole antenna (dB) + Cable loss (dB)EIRP (dBm) = P (dBm) + Gh (dBi)

where, Gh(dBi): Gain of the substitution horn antenna.



Page 8 of 44

```
- Side View -
```


(a)EUT



Page 9 of 44

6.2 Modulation Characteristics (§2.1047) Not Applicable

6.3 Occupied Bandwidth (§2.1049)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	30 kHz
Video Bandwidth	$30 \mathrm{kHz}$
Span	$5~\mathrm{MHz}$
Sweep Time	AUTO
Trace	Maxhold

Page 10 of 44

6.4 Spurious Emissions at Antenna Terminals (§2.1051)

The Antenna Conducted Emission was measured with a spectrum analyzer. The test system is shown as follows:

a) Frequency Range : 9kHz - 1.2GHz

EUT	Antenna	10dB Attenuator	Spectrum	
LUI	Terminal	Toud Attenuator	Analyzer	

b) Frequency Range : 1.2GHz - 10GHz

FIT	Antenna	10dB Attenuator	HPF	Spectrum
EUI	Terminal	Toud Attenuator	пгг	Analyzer

The setting of the spectrum analyzer are shown as follows:

Frequency Range	9 kHz - 150 kHz	150 kHz - 30 MHz	30 MHz - 10 GHz
Res. Bandwidth	200 Hz	$10 \mathrm{kHz}$	$1 \mathrm{~MHz}$
Video Bandwidth	1 kHz	30 kHz	$3 \mathrm{~MHz}$
Sweep Time	AUTO	AUTO	AUTO
Trace	Maxhold	Maxhold	Maxhold

Page 11 of 44

6.5 Band-Edge Emission (§2.1051)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

TX Frequency	826.40 MHz / 846.60 MHz
Band-Edge Frequency	824.00 MHz / 849.00 MHz
Res. Bandwidth	$51 \mathrm{kHz}$
Video Bandwidth	$51 \mathrm{~kHz}$
Span	$5 \mathrm{~MHz}$
Sweep Time	AUTO
Trace	Maxhold

Page 12 of 44

6.6 Field Strength of Spurious Radiation (§2.1053)

Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 1.0 m in height and was varying at three orthogonal axes (Refer to clause 15). The receiving antenna was oriented for vertical polarization and varied from

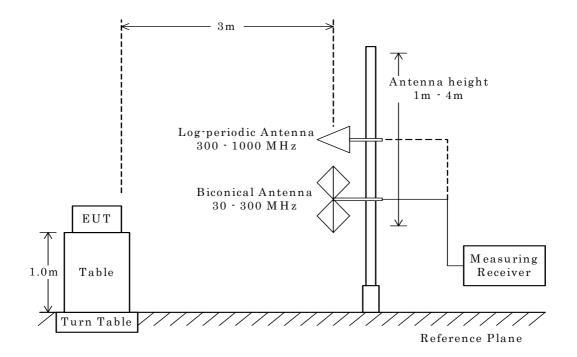
1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also

repeated with the receiving antenna in the horizontal polarization.

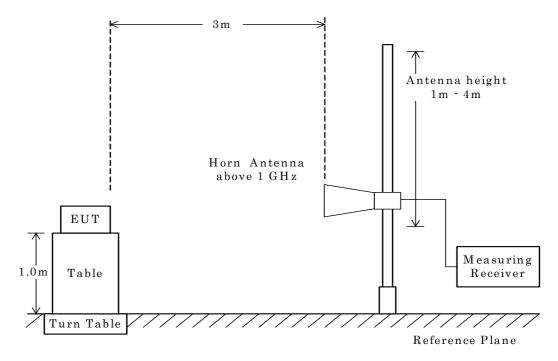
This test was carried out using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

Step 2) The ERP measurement was carried out with according to Step 2 in page 8. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The ERP is calculated in the following equation.


A) Up to 1 GHz
ERP(dBm) = P (dBm) - (Balun Loss of the half-wave dipole Ant. (dB)) + Cable Loss(dB)
B) Above 1 GHz
ERP(dBm) = P (dBm) + Gh(dBi) - Gd(dBi)
Where, Gh(dBi) : Gain of the substitution horn antenna Gd(dBi) : Gain of the substitution half-wave dipole antenna

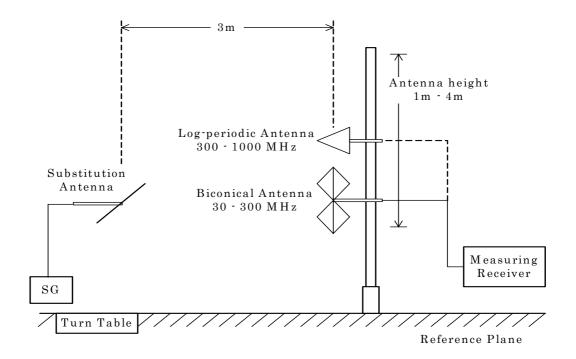
The respective calculated ERP of the spurious and harmonics were compared with the ERP of fundamental frequency by specified attenuation limits, $43+10\log_{10}$ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.



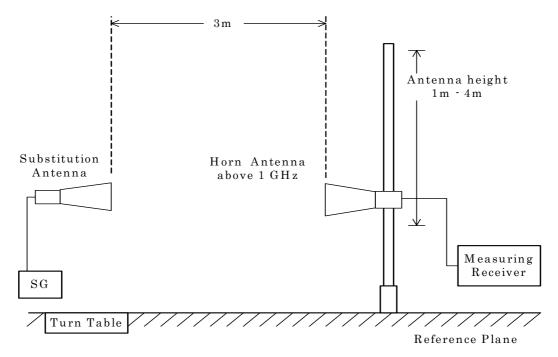
Page 13 of 44

Radiated Emission 30 MHz to 1000 MHz

Radiated Emission above 1 GHz



The antenna height is scanned depending on the EUT's size and mounting height.

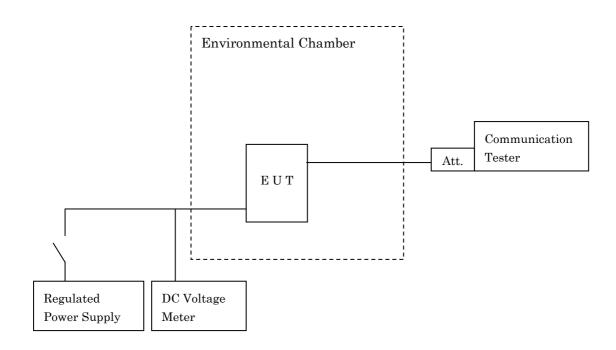


Page 14 of 44

Radiated Emission 30 to 1000 MHz - Substitution Method

Radiated Emission above 1 GHz - Substitution Method

Page 15 of 44


6.7 Frequency Stability (§2.1055)

Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

Frequency Stability versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the ending voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

Page 16 of 44

7 Equipment Under Test Modification

- \boxtimes No modifications were conducted by JQA to achieve compliance to the limitations.
- □ To achieve compliance to the limitations, the following changes were made by JQA during the compliance test.

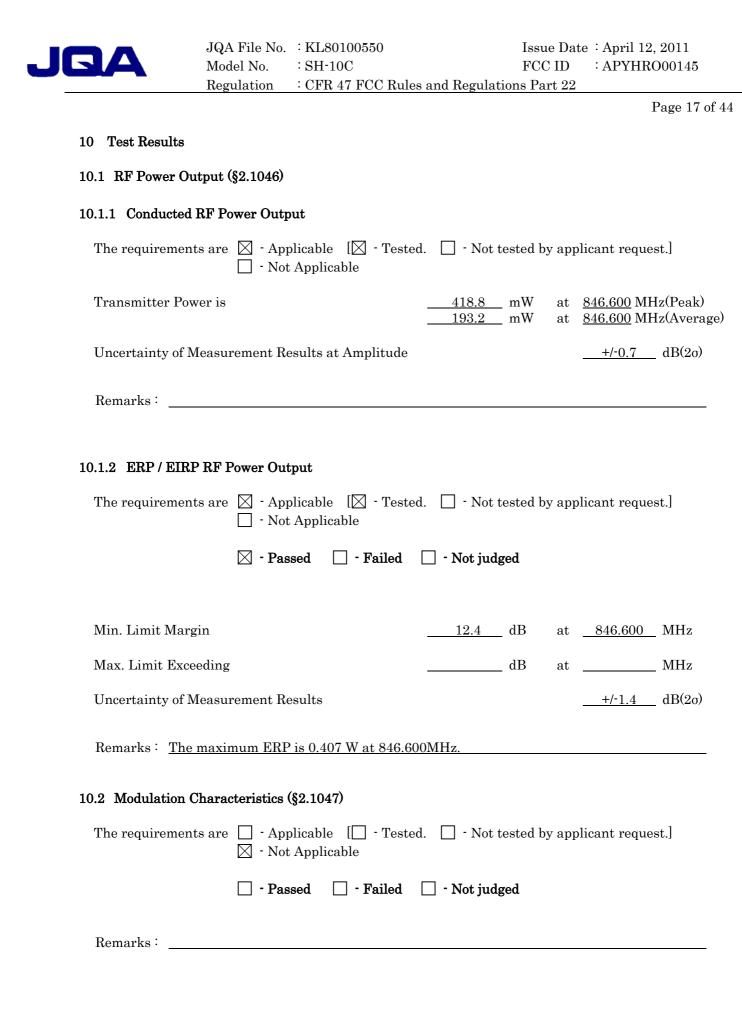
The modifications will be implemented in all production models of this equipment.

Applicant	: Not Applicable
Date	: Not Applicable
Typed Name	: Not Applicable
Position	: Not Applicable

Signatory: <u>Not Applicable</u>

8 Responsible Party

Responsible Party of Test Item (Product)


Responsible Party :

Contact Person :

Signatory

9 Deviation from Standard

- \boxtimes No deviations from the standard described in clause 1.
- □ The following deviations were employed from the standard described in clause 1.

			· A DVIID 00014
el No. :SH-10C ilation :CFR 47 FCC Rule	г es and Regulations	CC ID Part 22	APYHRO0014
	ŭ		Page 1
h (§2.1049)			
☑ - Applicable [□ - Teste□ - Not Applicable	ed. 🗌 - Not tested	l by appli	cant request.]
🛛 - Passed 🗌 - Failed	🗌 - Not judged		
s	<u>4.16</u> MH <u>4.65</u> MH		846.600 MHz 826.400 MHz
ement Results		_	<u>+/-0.9</u> %(2o)
at Antenna Terminals (§2.1 ⊠ - Applicable [⊠ - Testo □ - Not Applicable		l by appli	cant request.]
🛛 - Passed 🗌 - Failed	🗌 - Not judged		
	<u>>33.9</u> dB	at _	<u>8466.000</u> MHz
	dB	at _	MHz
ement Results	$1 \mathrm{GHz} - 1$	8GHz	+/-1.0 dB(24 +/-1.2 dB(24 +/-1.6 dB(24
	ement Results	ement Results $9 \text{ kHz} - 18$ 1 GHz - 18	

	<u> </u>	CFR 47 FCC Ru					Page 19
10.5 Band-Edge	e Emission (§2.108	51)					
The requireme		plicable [🛛 - Test t Applicable	ted. 🗌 - Not	tested b	oy app	olicant requ	uest.]
	🖂 - Pas	ssed 🗌 - Failed	🗌 - Not jud	lged			
The Band-Edg	ge level is		-20.8	_ dBm	at	849.000) MHz
Uncertainty of	f Measurement Ro	esults				+/-1.2	dB(2o)
Remarks:							
10.6 Field Stren	ngth of Spurious F	Radiation (§2.1053)					
	ents are 🛛 - Apj	plicable [🛛 - Test	ted. 🗌 - Not	tested b	oy app	plicant req	uest.]
	ents are 🛛 - Apj 🗌 - Not	plicable [🛛 - Test t Applicable 			oy app	olicant req	uest.]
	ents are 🛛 - Apj	plicable [🛛 - Test t Applicable 	ted. 🗌 - Not		oy app	olicant req	uest.]
	ents are 🛛 - App 🗌 - Not 🛛 - Pas	plicable [🛛 - Test t Applicable 		ged	by app	olicant req <u>6791.20</u>	
The requireme	ents are 🛛 - App 🗌 - Not 🔀 - Pas argin	plicable [🛛 - Test t Applicable 	🗌 - Not jud	ged		6791.20	
The requireme Min. Limit Ma Max. Limit Ex	ents are 🛛 - App 🗌 - Not 🔀 - Pas argin	plicable [🛛 - Test t Applicable ssed 🗌 - Failed	☐ - Not jud 	ged _ dB _ dB	at at IHz	<u>6791.20</u> +/-1.4	0_ MHz MHz dB(20)
The requireme Min. Limit Ma Max. Limit Ex Uncertainty of	ents are 🛛 - App 🗌 - Not 🖾 - Pas argin acceeding f Measurement Ro	plicable [🛛 - Test t Applicable ssed 🗌 - Failed esults	☐ - Not jud 	l ged _ dB _ dB - 1000 M pove 1 G	at at IHz Hz	<u>6791.20</u> +/-1.4 +/-2.2	0_ MHz MHz dB(2o) dB(2o)
The requireme Min. Limit Ma Max. Limit Ex Uncertainty of	ents are 🛛 - App 🗌 - Not 🖾 - Pas argin acceeding f Measurement Ro	plicable [🛛 - Test t Applicable ssed 🗌 - Failed	☐ - Not jud 	l ged _ dB _ dB - 1000 M pove 1 G	at at IHz Hz	<u>6791.20</u> +/-1.4 +/-2.2	0_ MHz MHz dB(2o) dB(2o)
The requirement Min. Limit Ma Max. Limit Ex Uncertainty of Remarks :	ents are 🛛 - App 🗌 - Not 🖾 - Pas argin acceeding f Measurement Ro	plicable [🛛 - Test t Applicable ssed 🗌 - Failed esults	☐ - Not jud 	l ged _ dB _ dB - 1000 M pove 1 G	at at IHz Hz	<u>6791.20</u> +/-1.4 +/-2.2	0_ MHz MHz dB(2o) dB(2o)
The requirement Min. Limit Ma Max. Limit Ex Uncertainty of Remarks :	ents are 🛛 - App 🗋 - Not 🖾 - Pas argin acceeding f Measurement Ro	plicable [🛛 - Test t Applicable ssed 🗌 - Failed esults	☐ - Not jud 	l ged _ dB _ dB - 1000 M pove 1 G	at at IHz Hz	<u>6791.20</u> +/-1.4 +/-2.2	0_ MHz MHz dB(2o) dB(2o)
The requirement Min. Limit Ma Max. Limit Ex Uncertainty of Remarks :	ents are 🖾 - App 🗌 - Not 🖾 - Pase argin acceeding f Measurement Ro Stability(§2.1055 ents are 🖾 - App	plicable [🛛 - Test t Applicable ssed 🗌 - Failed esults	☐ - Not jud 	l ged _ dB _ dB 0000 M pove 1 G	at at IHz Hz	<u>6791.20</u> +/-1.4 +/-2.2	0_ MHz MHz dB(2o) dB(2o)
The requirement Min. Limit Ma Max. Limit Ex Uncertainty of Remarks : 10.7 Frequency The requirement	ents are 🖾 - App 🗌 - Not 🖾 - Pase argin acceeding f Measurement Ro Stability(§2.1055 ents are 🖾 - App	plicable [🛛 - Test t Applicable ssed 🗌 - Failed esults () plicable [🖾 - Test t Applicable	☐ - Not jud 	l ged _ dB _ dB 1000 M pove 1 G	at at IHz Hz	<u>6791.20</u> +/-1.4 +/-2.2	0_ MHz MHz dB(2o) dB(2o)

Page 20 of 44

11 Summary

General Remarks :

The EUT was tested according to the requirements of the following standard.

CFR 47 FCC Rules and Regulations Part 22

The test configuration is shown in clause 12 to 14.

The conclusion for the test items of which are required by the applied regulation is indicated under the test results.

Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

Test Results:

The "as received" sample;

- \boxtimes fulfill the test requirements of the regulation mentioned on clause 1.
- doesn't fulfill the test requirements of the regulation mentioned on clause 1.

Reviewed by:

Shigeru Kinoshita Deputy Manager Testing Dept. EMC Div. JQA KITA-KANSAI Testing Center

Tested by:

Akio Hosoda Advisor Testing Dept. EMC Div. JQA KITA-KANSAI Testing Center

Page 21 of 44

12 Operating Condition

The test were carried under one modulation type shown as follows: Modulation Data : BPSK Spreading : HPSK

The Radiated Emission test were carried under 3 test configurations shown in clause 14. In all tests, the fully charged battery is used for the EUT.

Detailed Transmitter portion: Transmitter frequency : 826.4 MHz(4132CH) – 846.6 MHz(4233CH) : 3305.6 MHz(4132CH) - 3386.4 MHz(4233CH) Local frequency

Detailed Receiver portion:

Receiver frequency : 871.4 MHz(4357CH) - 891.6 MHz(4458CH) Local frequency : 3485.6 MHz(4357CH) - 3566.4 MHz(4458CH)

Other Clock Frequency 27.12MHz, 52MHz, 26MHz, 27.456MHz, 40.95MHz, 48MHz, 32.768kHz

Sharp

13 Test Configuration

<u>_</u>	Гhe	he equipment under test (EUT) consists of :									
		Item	Manufacturer	Model No.	Serial No.	FCC ID					
	А	Cellular Phone	Sharp	SH-10C	004401113 245233	APYHRO00145					
	В	Lithium-ion Battery	Sharp	SH27		N/A					
	С	AC Adapter for Global use	NTT DoCoMo	MAS-BH0008 -A 002		N/A					
	D	Headset Conversion Cable	NTT DoCoMo	P01		N/A					
	Е	Arib Connector Adaptor	SMK			N/A					

The auxiliary equipment used for testing :

Stereo Handsfree

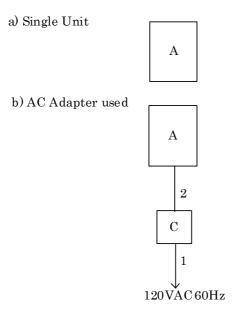
None

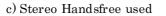
 \mathbf{F}

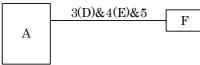
Type of Cable:

No.	Description	Identification	Connector	Cable	Ferrite	Length
INO.	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	AC Power Cord			NO	NO	0.5
2	DC Power Cord		NO		NO	1.5
3	Headset Conversion Cable			NO	NO	0.8
4	Arib Connector Cable			NO	NO	0.1
5	Handsfree Cable		NO		NO	1.5

SHLDL1


--


N/A



Page 22 of 44

14 Equipment Under Test Arrangement (Drawings)

Page 23 of 44

Appendix A: Test Data

A.1 RF Power Output (§2.1046)

A.1.1 Conducted RF Power Output

(WCDMA850)

<u>Test Date: March 29, 2011</u> <u>Temp.: 19 °C, Humi: 34 %</u>

Transm	itting Frequency	Correction Factor	Meter Reading (Peak)	Results	(Peak)
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]
4132	826.400	10.30	15.72	26.02	399.9
4182	836.400	10.30	15.82	26.12	409.3
4233	846.600	10.31	15.91	26.22	418.8
Transm	itting Frequency	Correction Factor	Meter Reading (Average)	Results (A	Average)
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]
	826.400	10.30	12.14	22.44	175.4
4132					
4132 4182	836.400	10.30	12.27	22.57	180.7

Correction Factor	=	10.31	dB
+) Meter Reading	=	15.91	dBm
Result	=	26.22	dBm = 418.8 mW

Page 24 of 44 $\,$

A.1.2 ERP / EIRP Power Output

25.9

25.5

25.8

25.0

25.3

26.1

(WCDMA850)

Test Date: March 31,	2011
Temp.: 21 °C, Humi:	40 %

+12.6

+13.0

+12.4

1. Measurement Results

4132

4182

4233

826.400

836.400

846.600

	nsmitting requency		Emission Measurement [dB(uV)]		Measurement uV)]	Supplied Power to Substitution Antenna	Balun Loss of Substitution Antenna
СН	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dBm]	[dB]
4132	826.400	92.8	90.8	55.5	54.4	-10.0	1.4
4182	836.400	91.3	90.0	54.4	53.3	-10.0	1.4
4233	846.600	92.2	90.6	55.0	53.1	-10.1	1.4
2. Calculati	ion Results						
Transmit CH	tting Frequency [MHz]	Peak ER Hori. (ERPh)		Maximum [V		Limits [dBm]	Margin [dB]

0.389

0.355

0.407

38.5

38.5

38.5

Emission Measurment (Mv)	=		dB(uV)
Substitution Measurement (Msv)	=	-53.1	dB(uV)
Supplied Power to Substitution A	ntenna =	-10.1	dBm
+) Balun Loss of Substitution Ant	enna =	-1.4	dB
Result (ERPv)	=	26.1	dBm = 0.407 W
Minimum Margin: 38.5 - 26.1 = 12.4 (dB)			
NOTE : Setting of measuring instrument	(s) :		
NOTE : Setting of measuring instrument Detector Function	(s) : Resolution B.W.	V.B.W.	Sweep Time

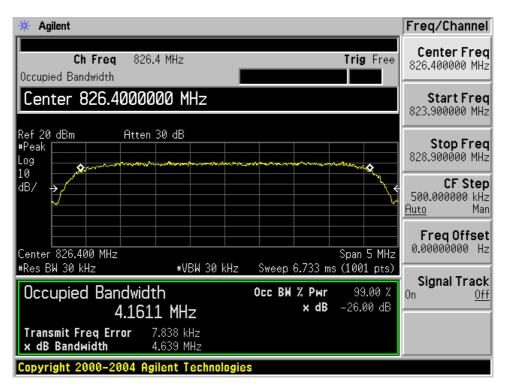
JAPAN QUALITY ASSURANCE ORGANIZATION

Page 25 of 44

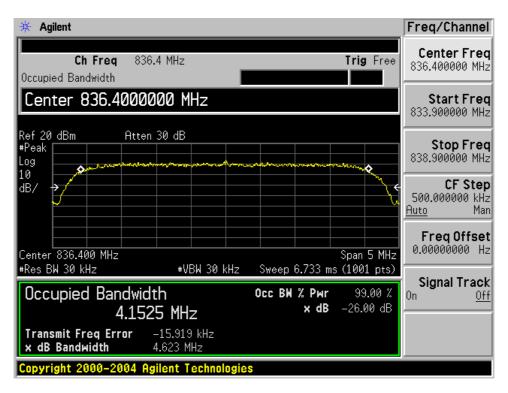
A.2 Modulation Characteristics (§2.1047) Not Applicable

A.3 Occupied Bandwidth (§2.1049)

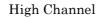
The resolution bandwidth was set to about 1% of emission bandwidth, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

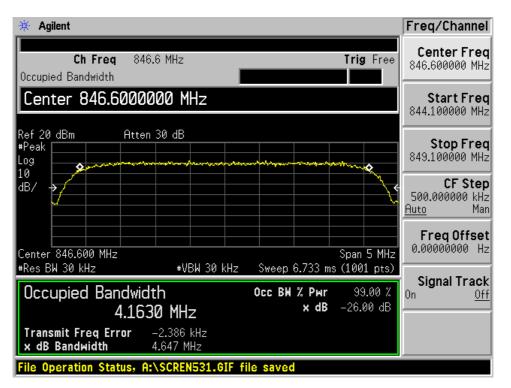

<u>Test Date : March 29, 2011</u> <u>Temp.:19°C, Humi:34%</u>

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-26dBc Bandwidth (MHz)
4132	826.40	4.16	4.64
4182	836.40	4.15	4.63
4233	846.60	4.16	4.65



Page 26 of 44




Middle Channel

Page 27 of 44

Page 28 of 44

A.4 Spurious Emissions at Antenna Terminals (§2.1051)

(WCDMA850)

<u>Test Date: March 29, 2011</u> <u>Temp.: 19 °C, Humi: 34 %</u>

	ansmitting requency [MHz]	Measured Frequency [MHz]	Corr. Factor [dB]	Meter Readings [dBm]	Limits [dBm]	Results [dBm]	Margin [dB]	Remarks
4132	826.400	1652.800	12.0	< -63.0	-13.0	< -51.0	> +38.0	С
		2479.200	12.0	< -63.0	-13.0	< -51.0	> +38.0	C
		3305.600	13.0	< -63.0	-13.0	< -50.0	> +37.0	C
		4132.000	13.1	< -63.0	-13.0	< -49.9	> +36.9	C
		4958.400	13.2	< -63.0	-13.0	< -49.8	> +36.8	C
		5784.800	14.3	< -63.0	-13.0	< -48.7	> +35.7	C
		6611.200	15.1	< -63.0	-13.0	< -47.9	> +34.9	С
		7437.600	15.3	< -63.0	-13.0	< -47.7	> +34.7	C
		8264.000	15.9	< -63.0	-13.0	< -47.1	> +34.1	C
4182	836.400	1672.800	11.9	-62.1	-13.0	-50.2	+37.2	С
		2509.200	12.1	< -63.0	-13.0	< -50.9	> +37.9	С
		3345.600	13.0	< -63.0	-13.0	< -50.0	> +37.0	С
		4182.000	13.1	< -63.0	-13.0	< -49.9	> +36.9	С
		5018.400	13.2	<-63.0	-13.0	< -49.8	> +36.8	С
		5854.800	14.4	<-63.0	-13.0	< -48.6	> +35.6	С
		6691.200	15.1	< -63.0	-13.0	< -47.9	> +34.9	С
		7527.600	15.3	< -63.0	-13.0	< -47.7	> +34.7	С
		8364.000	16.0	< -63.0	-13.0	< -47.0	> +34.0	С
4233	846.600	1693.200	11.9	<-63.0	-13.0	< -51.1	> +38.1	С
		2539.800	12.1	< -63.0	-13.0	< -50.9	> +37.9	С
		3386.400	13.0	< -63.0	-13.0	< -50.0	> +37.0	С
		4233.000	13.0	<-63.0	-13.0	< -50.0	> +37.0	С
		5079.600	13.3	<-63.0	-13.0	< -49.7	> +36.7	С
		5926.200	14.5	<-63.0	-13.0	< -48.5	> +35.5	С
		6772.800	15.2	<-63.0	-13.0	< -47.8	> +34.8	С
		7619.400	15.3	<-63.0	-13.0	< -47.7	> +34.7	С
		8466.000	16.1	<-63.0	-13.0	< -46.9	> +33.9	С

Page 29 of 44

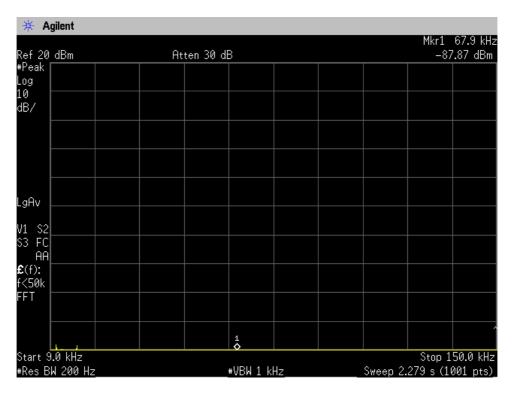
Calculated result at 8466.0 MI Corr. Factor	Hz, as the wo	orst point show 16.1 dB
+) Meter Reading	=	<-63.0 dBm
Result	=	<-46.9 dBm
Minimum Margin: -13.0 - (<-40	3.9) = >33.9 ((dB)

NOTES

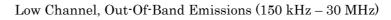
1. The spectrum was checked from 9 kHz to 10 GHz.

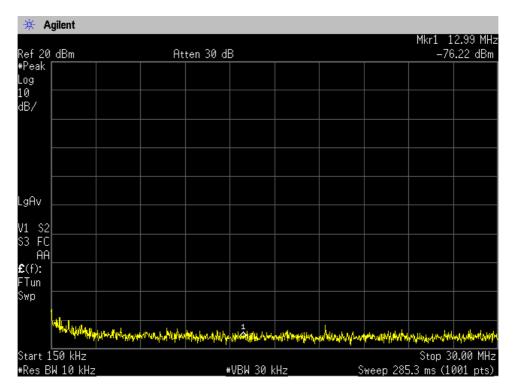
2. Applied limits : -13.0 [dBm] = $10\log(TP[mW]) \cdot (43 + 10\log(tp[W])) = 10\log(TP[mW]) \cdot (43 + (10\log(TP[mW]) \cdot 30))$ where, tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal

3. The correction factor is shown as follows:

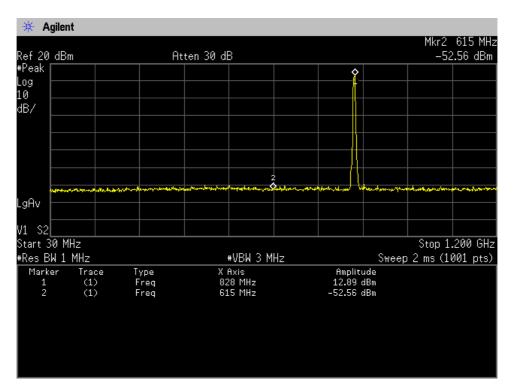

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. [dB] (9 kHz - 2 GHz)

- Corr. Factor [dB] = Cable Loss + 10dB Pad Att. + High Pass Filter Loss (D-96) [dB] (over 2 GHz)
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Setting of measuring instrument(s):


	Detector Function	RES B.W.	V.B.W.	Sweep Time
А	Peak	200 Hz	1 kHz	AUTO
В	Peak	10 kHz	30 kHz	AUTO
С	Peak	1 MHz	3 MHz	AUTO

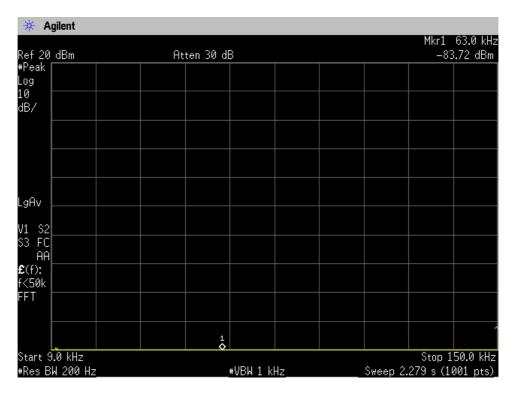


Page 30 of 44


Low Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

Page 31 of 44

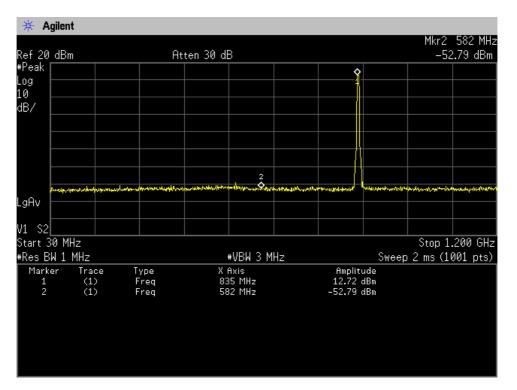
Low Channel, Out-Of-Band Emissions (30 MHz - 1.2 GHz)


Low Channel, Out-Of-Band Emissions (1.2 GHz - 10 GHz)

🔆 Agile	ent						
Ref -5 dE	∃m	At	ten 10 dB				1.653 GHz 4.49 dBm
#Peak Log							
10 dB/							
uD/							
			4	An under and the address of	and the stand of the second strong with the	When the second states and a second states and s	لەردە دە مەسىر قارارىر.
	الملواحوط وتبسابه وعيراكوهد	an and a second s					
LgAv							
M1 S2						0	
Start 1.20 #Res BW 1			#VBW 1	3 MHz	Sweep	5top 10 14.67 ms (1	.000 GHz 001 pts)
Marker 1	Trace (1)	Type Freg	X Axis 1.653 GHz		Amplitude -64.49 dBm		
2 3	(1) (1)	Freq Freq	2.479 GHz 3.306 GHz		-67.84 dBm -67.73 dBm		
4	(1)	Freq	4.132 GHz		-69.92 dBm		

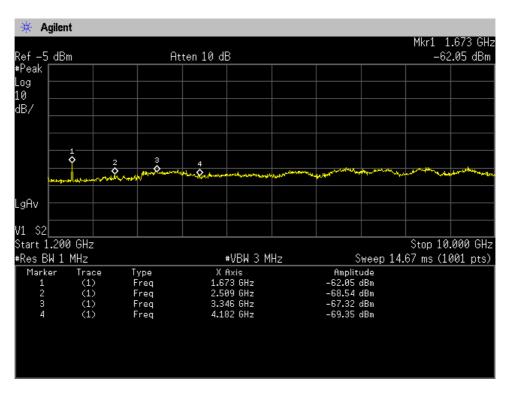
JAPAN QUALITY ASSURANCE ORGANIZATION

Page 32 of 44

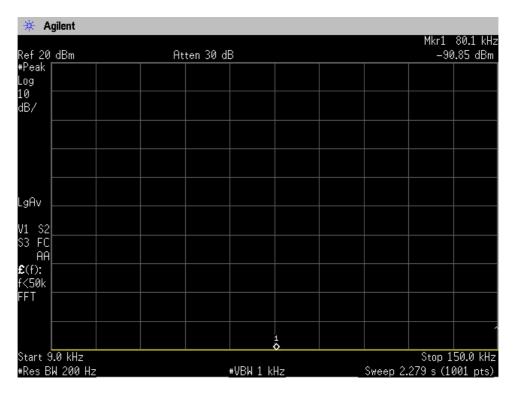

Middle Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

Middle Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

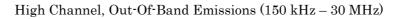
🔆 Agilent									
Ref 20 dBm		At	ten 30 di	3					7.34 MHz 6.16 dBm
#Peak									
Log 10									
10 dB/									
LgAv									
V1 S2									
V1 S2 S3 FC									
AA									
£ (f): FTun									
Swp									
u									
White white	wall work when	hat the here the party	white we have	putra has been been been been been been been bee	ANNA STA	manut	eyelnul www.plu	erendenser her	hand hand have
Start 150 kHz									0.00 MHz
#Res BW 10 kH	z		#	⊧VBW 30 k	(Hz	S	weep 285	5.3 ms (10	

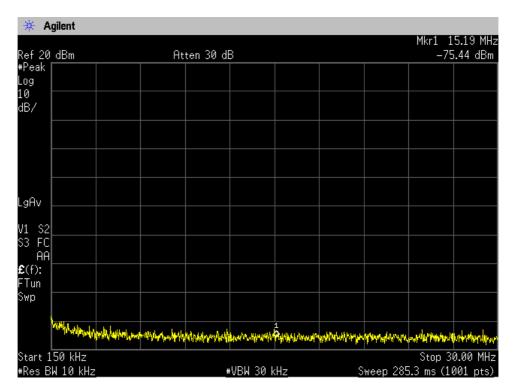


Page 33 of 44

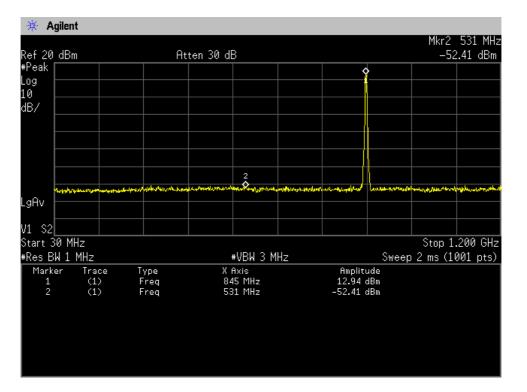

Middle Channel, Out-Of-Band Emissions (30 MHz - 1.2 GHz)

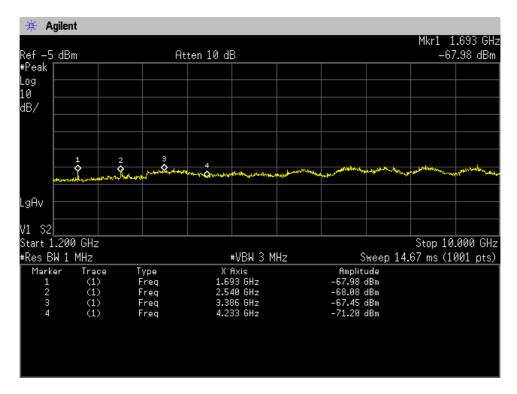
Middle Channel, Out-Of-Band Emissions (1.2 GHz - 10 GHz)





Page 34 of 44 $\,$


High Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

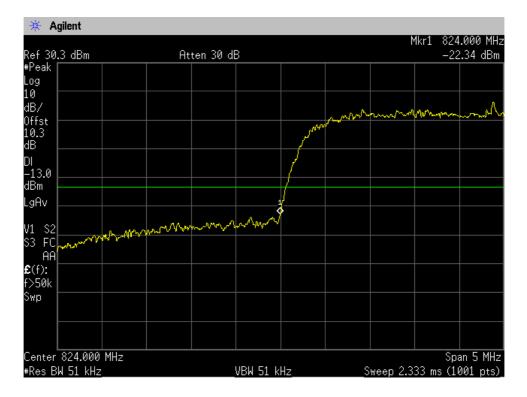


Page 35 of 44

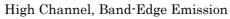
High Channel, Out-Of-Band Emissions (30 MHz - 1.2 GHz)

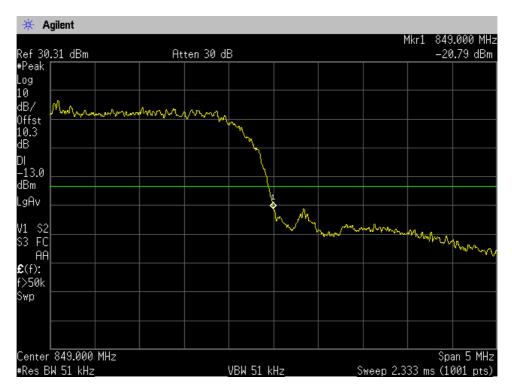
High Channel, Out-Of-Band Emissions (1.2 GHz - 10 GHz)

Page 36 of 44


A.5 Band-Edge Emission(§2.1051)

<u>Test Date : March 29, 2011</u> <u>Temp.:19°C, Humi:34%</u>


Channel	Frequency (MHz)	Band-Edge Frequency (MHz)	Band-Edge Level (dBm)
4132	826.4	824.0	-22.3
4233	846.6	849.0	-20.8



Page 37 of 44

Low Channel, Band-Edge Emission

Page 38 of 44

Test Date: March 31, 2011

Temp.: 21 °C, Humi: 40 %

A.6 Field Strength of Spurious Radiation (§2.1053)

(WCDMA850)

Test Configuration : Single Unit

	ansmitting Frequency	Measured Frequency	ERP [dBm]		Limits [dBm]	Margin [dB]	Remarks
СН	[MHz]	[MHz]	Hori.	Vert.			
4132	826.400	1652.800	-52.3	-53.1	-13.0	+39.3	С
		2479.200	-54.7	-56.2	-13.0	+41.7	С
		3305.600	-54.3	-55.1	-13.0	+41.3	С
		4132.000	< -50.6	<-50.6	-13.0	> +37.6	С
		4958.400	< -51.2	<-51.2	-13.0	> +38.2	С
		5784.800	< -50.0	< -50.0	-13.0	> +37.0	С
		6611.200	< -47.3	< -47.3	-13.0	> +34.3	С
		7437.600	< -56.8	< -56.8	-13.0	> +43.8	С
		8264.000	< -50.5	<-50.5	-13.0	> +37.5	С
4182	836.400	1672.800	-52.7	-52.6	-13.0	+39.6	С
		2509.200	< -58.0	< -58.0	-13.0	> +45.0	С
		3345.600	-54.3	-54.1	-13.0	+41.1	С
		4182.000	< -50.6	< -50.6	-13.0	> +37.6	С
		5018.400	< -51.2	< -51.2	-13.0	> +38.2	С
		5854.800	< -50.1	< -50.1	-13.0	>+37.1	С
		6691.200	< -47.2	< -47.2	-13.0	> +34.2	С
		7527.600	< -56.7	< -56.7	-13.0	> +43.7	С
		8364.000	< -50.5	< -50.5	-13.0	> +37.5	С
4233	846.600	1693.200	-55.6	-55.4	-13.0	+42.4	С
		2539.800	< -57.9	< -57.9	-13.0	> +44.9	С
		3386.400	-53.2	-54.3	-13.0	+40.2	С
		4233.000	< -50.7	< -50.7	-13.0	> +37.7	С
		5079.600	< -51.2	< -51.2	-13.0	> +38.2	С
		5926.200	< -49.9	< -49.9	-13.0	> +36.9	С
		6772.800	< -47.4	< -47.4	-13.0	> +34.4	С
		7619.400	< -54.6	< -54.6	-13.0	>+41.6	С
		8466.000	< -50.2	< -50.2	-13.0	> +37.2	С

Page 39 of 44

Calculated result at 6772.8 MHz, as the worst point shown on underline: Minimum Margin: -13.0 - (<-47.2) = >34.2 (dB)

NOTES

- 1. Test Distance :3 m
- 2. The spectrum was checked from 30 MHz to 10 GHz.
- 3. All emissions not reported were more than 20 dB below the applied limits.
- 4. Applied limits : -13.0 [dBm] = $10\log(TP[mW]) \cdot (43 + 10\log(tp[W])) = 10\log(TP[mW]) \cdot (43 + (10\log(TP[mW]) \cdot 30))$ where, tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal
- 5. The symbol of "<" means "or less".
- 6. The symbol of ">" means "more than".
- 7. Setting of measuring instrument(s) :

	Detector Function	RES B.W.	V.B.W.	Sweep Time
А	Peak	10 kHz	30 kHz	20 msec.
В	Peak	100 kHz	$300 \mathrm{kHz}$	20 msec.
С	Peak	1 MHz	3 MHz	20 msec.

Page 40 of 44

A.7 Frequency Stability (§2.1055)

(WCDMA850)

Test Date: April 5, 2011

1. Frequency Stability Measurement versus Temperature

Transmitting Fr DC Supply Volta		: 836.400 MHz (4 : 4.0 VDC	182 ch)			
Ambient		Deviat	ion [ppm]		Limits	Margin
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
-30	+ 0.02	+ 0.00	+ 0.00	+ 0.00	2.50	2.48
-20	+ 0.01	- 0.01	- 0.01	- 0.01	2.50	2.49
-10	- 0.01	+ 0.00	- 0.01	+ 0.00	2.50	2.49
0	- 0.01	- 0.01	- 0.01	- 0.01	2.50	2.49
10	+ 0.03	- 0.01	- 0.01	- 0.01	2.50	2.47
20	+ 0.02	- 0.01	+ 0.00	+ 0.00	2.50	2.48
30	+ 0.02	- 0.01	- 0.01	+ 0.00	2.50	2.48
40	+ 0.01	+ 0.00	+ 0.00	+ 0.00	2.50	2.49
50	+ 0.00	+ 0.00	+ 0.00	- 0.01	2.50	2.49

2. Frequency Stability Measurement versus Power Supply Voltage

Transmitting Free Ambient Temperate		: 836.400 MHz (4 : 20 °C	182 ch)			
DC Supply Voltage [V]	Startup	Deviati 2 minutes	on [ppm] 5 minutes	10 minutes	Limits [ppm]	Margin [ppm]
4.0 3.7(Ending)	+ 0.02 + 0.02	- 0.01 + 0.00	+ 0.00 - 0.01	+ 0.00 - 0.01	$\begin{array}{c} 2.50 \\ 2.50 \end{array}$	2.48 2.48

 Test condition example as the maximum deviation point shown on underline:

 Ambient Temperature
 : 10 °C / Startup

 DC Supply Voltage
 : 4 VDC

 Minimum Margin: 2.50 - 0.03 = 2.47 (ppm)

 NOTE : The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.

Page 41 of 44 $\,$

Appendix B: Test Arrangement (Photographs)

Radiated Emission

This page is CONFIDENTIAL.

Page 42 of 44 $\,$

This page is CONFIDENTIAL.

Page 43 of 44

Appendix C: Test Instruments

C.1 RF Power Output

C.1.1 Conducted RF Power Output

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Power Meter	N1911A	Agilent	B-63	2010/6	1 Year
Power Sensor	N1921A	Agilent	B-64	2010/6	1 Year
Attenuator	54A-10	Weinschel	D-29	2010/10	1 Year

C.1.2 ERP / EIRP Power Output

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESU26 (S/N: 100170)	Rohde & Schwarz		2010/4	1 Year
Signal Generator	E8257D	Agilent	B-39	2010/8	1 Year
Power Meter	N1911A	Agilent	B-63	2010/6	1 Year
Power Sensor	N1921A	Agilent	B-64	2010/6	1 Year
Attenuator(TX)	2-10	Weinschel	D-79	2010/10	1 Year
Dipole Antenna(RX)	KBA-611	Kyoritsu	C-20	2009/8	2 Years
Dipole Antenna(TX)	KBA-611	Kyoritsu	C-19	2009/8	2 Years

C.2 Modulation Characteristics

Not Applicable

C.3 Occupied Bandwidth

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2010/9	1 Year
Attenuator	54A-10	Weinschel	D-29	2010/10	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2010/6	1 Year

C.4 Spurious Emissions at Antenna Terminals

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2010/9	1 Year
Attenuator	54A-10	Weinschel	D-29	2010/10	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2010/6	1 Year
HPF	HPM5010S	MICRO-TRONICS	D-94	2011/2	1 Year

Page 44 of 44 $\,$

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2010/9	1 Year
Attenuator	54A-10	Weinschel	D-29	2010/10	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2010/6	1 Year

C.5 Band-Edge Emission

C.6 Field Strength of Spurious Radiation

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESU26	Rohde & Schwarz		2010/4	1 Year
Signal Generator	(S/N: 100170) E8257A	Agilent	B-39	2010/8	1 Year
Power Meter	N1911A	Aginent	B-63	2010/6	1 Year
Power Sensor	N1921A	Aginent	B-64	2010/6	1 Year
Horn Antenna(TX)	91888-2	EATON	C-40-1	2009/6	2 Years
Horn Antenna(TX)	91889-2	EATON	C-40-2	2009/6	2 Years
Horn Antenna(TX)	94613-1	EATON	C-41-3	2010/6	1 Year
Horn Antenna(TX)	91891-2	EATON	C-41-4	2010/6	1 Year
Horn Antenna(RX)	91888-2	EATON	C-41-1	2010/6	1 Year
Horn Antenna(RX)	91889-2	EATON	C-41-2	2010/8	1 Year
Horn Antenna(RX)	3160-05	EATON	C-56	2009/6	2 Years
Horn Antenna(RX)	3160-06	EATON	C-57	2009/6	2 Years
Horn Antenna(RX)	3160-07	EATON	C-58	2009/6	2 Years
RF Cable(TX)	SUCOFLEX E102E	SUHNER	C-70	2010/11	1 Year
RF Cable(RX)	SUCOFLEX104	SUHNER	C-40-11	2010/12	1 Year
RF Cable(RX)	SUCOFLEX104	SUHNER	C-40-14	2010/12	1 Year
Attenuator(TX)	2-10	Weinschel	D-40	2010/8	1 Year
Attenuator(RX)	2-10	Weinschel	D-79	2010/10	1 Year
Attenuator(RX)	54-10	Weinschel	D-82	2010/6	1 Year
Pre-Amplifier	WJ-6611-513	Watkins Johnson	A-23	2010/12	1 Year
Pre-Amplifier	WJ-6882-824	Watkins Johnson	A-21	2010/12	1 Year
Pre-Amplifier	DBL-0618N515	DBS Microwave	A-33	2010/12	1 Year
HPF	HPM5010S	MICRO-TRONICS	D-94	2011/2	1 Year

C.7 Frequency Stability

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Radio Communication Analyzer	MT8815B	Anritsu	B-69	2010/9	1 Year
DC Voltage Meter	2011-39	YEW	B-33	2010/4	1 Year
Environmental Chamber	PL-4KPH (S/N:14007470)	TABAI ESPEC		N/A	N/A
Temperature Recorder	SRF106AS00000M11 (S/N:01400909)	TABAI ESPEC		2010/8	1 Year
DC Power Supply	NL035-10	TAKASAGO	F-4	N/A	N/A