

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std. 1528-2013

For

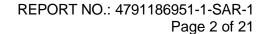
BLUETOOTH HEADSET

MODEL NUMBER: WAVE FLEX 2, VIBE FLEX 2

REPORT NUMBER: 4791186951-1-SAR-1

ISSUE DATE: May 20, 2024

FCC ID: APIJBLVFLEX2


Prepared for

Harman International Industries, Inc 8500 Balboa Boulevard Northridge California 91329, UNITED STATES

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	May 20, 2024	Initial Issue	\

Note:

- 1) This test report is only published to and used by the applicant, and it is not for evidence purpose in China.
- 2) The measurement result for the sample received is <Pass> according to < IEEE Std. 1528>when <Simple Acceptance> decision rule is applied.

Table of Contents

1.	At	testation of Test Results4	
2.	Те	st Specification, Methods and Procedures5	
3.	Fa	cilities and Accreditation6	
4.	SA	AR Measurement System & Test Equipment7	
	4.1. 4.2. 4.3.	SAR Measurement System SAR Scan Procedures Test Equipment	. 8
5.	Мє	easurement Uncertainty11	
6.	De	evice Under Test (DUT) Information12	
	6.1. 6.2.	DUT Description	
7.	Co	onducted Output Power Measurement and tune-up tolerance13	
	7.1. 7.2.	Power measurement result Duty Cycle	
8.	An	ntenna location diagram15	
9.	Die	electric Property Measurements & System Check16	
		Dielectric Property MeasurementsSystem Check	
10	. Ме	easured and Reported (Scaled) SAR Results18	
	10.1.	SAR Test Results of BT	19
11	. Sir	multaneous Transmission SAR Analysis20	
Αŗ	pendi	xes21	
	479118 479118	36951-1-SAR-1_App A Photo	21 21

1. Attestation of Test Results

Attestation of Test Nesaits					
Applicant Name Harman International Industries, Inc					
Address	8500 Balboa Boulevard Northridge California 91329, UNITED STATES				
Manufacturer	Harman International Industries, Inc	Harman International Industries, Inc			
Address	8500 Balboa Boulevard Northridge Calif	ornia 91329, UNITED STATES			
EUT Name	BLUETOOTH HEADSET				
Model	WAVE FLEX 2, VIBE FLEX 2				
Model Difference	1				
Brand Name	JBL				
Sample Received Date	ved Date May 9, 2024				
Sample Status	Normal				
Sample ID	Sample ID 7185874				
Date of Tested	May 16, 2024				
Applicable Standards	FCC 47 CFR § 2.1093 IEEE Std. 1528-2013 KDB publication				
SAR Limits (W/Kg)					
Exposure Category	Peak spatial-average (1g of tissue)	Extremities (hands, wrists, ankles, etc.) (10g of tissue)			
General population / Uncontrolled exposure	1.6	4			
Occupational / Controlled exposure	8	20			
The Highest Reported SAR (W/kg)					
DE E 0 174	Equipmen	t Class			
RF Exposure Conditions	DS	5			
110014 - (00//100)	Left ear	Right ear			
Head 1-g (W/kg)	0.992	1.021			
Test Results	Pas	s			
Prepared By:	Reviewed By:	Approved By:			
Jons. Sin	Danny Harry Lephenbus				
James Qin	Denny Huang	Stephen Guo			
Project Engineer	Senior Project Engineer Laboratory Manager				

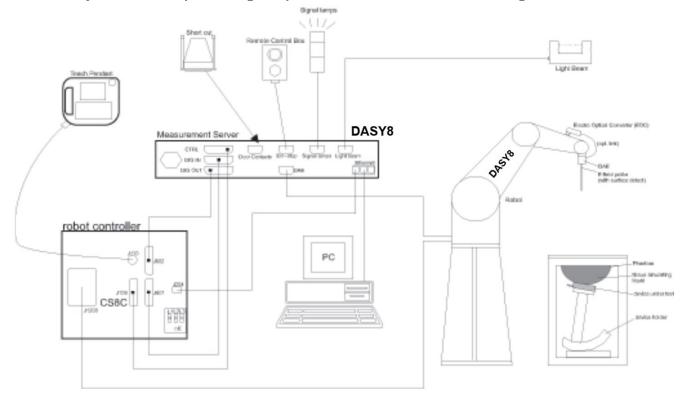
REPORT NO.: 4791186951-1-SAR-1 Page 5 of 21

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with IEEE Std.1528-2013 and the following FCC Published RF exposure KDB procedures:

- o 447498 D04 Interim General RF Exposure Guidance v01
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02
- o 941225 D07 UMPC Mini Tablet v01r02

3. Facilities and Accreditation


Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.	
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China	
Accreditation Certificate	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046. VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20192 and R-20202	
Description	Shielding Room B, the VCCI registration No. is C-20153 and T-20155 All measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China	

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY8 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion,
 offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard
 or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital
 communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC
 signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 and the DASY8 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

REPORT NO.: 4791186951-1-SAR-1 Page 8 of 21

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in Db) is specified in the standards for compliance testing. For example, a 2 Db range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 Db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 v01r04 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$

REPORT NO.: 4791186951-1-SAR-1 Page 9 of 21

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label. Zoom Scan Parameters extracted from KDB 865664 D01 v01r04 SAR Measurement 100 MHz to 6 GHz

			110 1 0, 11 1 1 1 0 0 0 1 1 1 1 1 1 1 1		
			≤ 3 GHz	> 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm	3 – 4 GHz: ≤ 5 mm*		
		$2-3$ GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*		
			3 – 4 GHz: ≤ 4 mm		
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	4 – 5 GHz: ≤ 3 mm	
				$5-6$ GHz: ≤ 2 mm	
Maximum zoom	graded	$\Delta z_{Zoom}(1)$: between 1st two points closest to phantom surface		3 – 4 GHz: ≤ 3 mm	
scan spatial resolution, normal to			≤4 mm	4 – 5 GHz: ≤ 2.5 mm	
phantom surface				5 – 6 GHz: ≤ 2 mm	
	grid \[\Delta z_{Zoom}(n>1): \] between subsequent \[points \]		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$		
16.	x, y, z			3 – 4 GHz: ≥ 28 mm	
Minimum zoom scan volume			≥ 30 mm	4 – 5 GHz: ≥ 25 mm	
scan volume				5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in Db from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be greater than the step size in Z-direction.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

REPORT NO.: 4791186951-1-SAR-1 Page 10 of 21

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations and is traceable to recognized national standards.

Name of equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
ENA Network Analyzer	Keysight	E5080A	MY55100583	2024.10.11
Dielectric Probe kit	SPEAG	SM DAK 040 SA	1155	2025.02.27
DC power supply	Keysight	E36103A	MY55350020	2024.10.11
Signal Generator	Rohde & Schwarz	SME06	837633\001	2024.08.06
BI-Directional Coupler	KRYTAR	1850	54733	2024.10.11
Peak and Average Power Sensor	Keysight	E9325A	MY62220002	2024.10.11
Peak and Average Power Sensor	Keysight	E9325A	MY62220003	2024.10.11
Dual Channel PK Power Meter	Keysight	N1912A	MY55416024	2024.10.11
Amplifier	CORAD TECHNOLOGY LTD	AMF-4D-00400600-50- 30P	1983561	NCR
Dosimetric E-Field Probe	SPEAG	EX3DV4	7383	2024.06.04
Data Acquisition Electronic	SPEAG	DAE3	427	2024.05.16
Dipole Kit 2450 MHz	SPEAG	D2450V2	977	2024.12.16
Software	SPEAG	DASY8	N/A	NCR
Twin Phantom	SPEAG	SAM 5.0	1805	NCR
Thermometer	/	GX-138	150709653	2024.10.18
Thermometer	VICTOR	ITHX-SD-5	18470005	2024.10.18

Note:

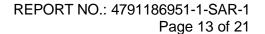
- 1) Per KDB865664D01 v01r04 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement.
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

REPORT NO.: 4791186951-1-SAR-1 Page 11 of 21

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k =2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std. 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.



6.1. DUT Description

The EUT is a Bluetooth headset and consist of a left ear earbud and a right ear earbud, for difference between left ear earbud and right ear earbud, please refer to difference letter.

6.2. Wireless Technology

Wireless technology	Frequency band
ВТ	2.4 GHz

7. Conducted Output Power Measurement and tune-up tolerance

7.1. Power measurement result

Left ear

Test Mode	Frequency[MHz]	Average Result[dBm]	Tune up limit [dBm]
	2402	5.90	7.0
DH5	2441	5.95	7.0
	2480	5.16	7.0
	2402	Not required	2.0
3DH5	2441	Not required	2.0
	2480	Not required	2.0
	2402	Not required	6.0
BLE 1M	2440	Not required	6.0
	2480	Not required	6.0
	2402	Not required	3.0
BLE 2M	2440	Not required	3.0
	2480	Not required	3.0


Right ear

Kigiil eai			
Test Mode	Frequency[MHz]	Average Result[dBm]	Tune up limit [dBm]
	2402	6.12	7.0
BLE_1M	2440	6.32	7.0
	2480	5.79	7.0
	2402	Not required	2.0
BLE_2M	2440	Not required	2.0
	2480	Not required	2.0
	2402	Not required	3.0
BLE 1M	2440	Not required	3.0
	2480	Not required	3.0
	2402	Not required	1.0
BLE 2M	2440	Not required	1.0
	2480	Not required	1.0

7.2. Duty Cycle

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)
DH5	2.88	9.685	0.2974	29.74

REPORT NO.: 4791186951-1-SAR-1 Page 15 of 21

8. **Antenna location diagram** Referred to appendix A.

REPORT NO.: 4791186951-1-SAR-1 Page 16 of 21

9. Dielectric Property Measurements & System Check

9.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 – 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series. Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 v01r04 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	Head		Body	
ranger requerity (ivil iz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013 Dielectric Property Measurements Results:

Liquid	Freq.	Liquid Parameters				Deviation(9/)			-		
		Measured		Target		Deviation(%)		Limit	Temp.	Test Date	
		€r	σ	€r	σ	€r	σ	(%)	(°C)		
Head 2450	2360	39.50	1.73	39.36	1.72	0.36	0.58	±5			
	2450	39.40	1.87	39.20	1.80	0.51	3.89		22.1	May 16, 2024	
	2540	39.30	1.95	39.09	1.90	0.54	2.63				

REPORT NO.: 4791186951-1-SAR-1 Page 17 of 21

9.1. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1GHZ) and 15 mm (below 1GHz) from dipole center to the simulating liquid surface.
- For area scan, standard grid spacing for head measurements is 15 mm in x- and y- dimension (≤2GHz), 12 mm in xand y-dimension (2-4 GHz) and 10 mm in x- and y- dimension (4-6GHz).
- For zoom scan, Δ x_{zoom} , Δ $y_{zoom} \le 2$ GHz ≤ 8 mm, 2-4 GHz ≤ 5 mm and 4-6 GHz- ≤ 4 mm; Δ $z_{zoom} \le 3$ GHz ≤ 5 mm, 3-4 GHz- ≤ 4 mm and 4-6 GHz- ≤ 2 mm.
- Distance between probe sensors and phantom surface was set to 3 mm except for 5 GHz band. For 5 GHz band, Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was set to 100 mW or 250 mW depend on the certificate of the dipoles.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test

frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

T.S. Liquid		Measured	Results	Target	Delta (%)	Limit (%)		Test Date	
		Zoom Scan (W/Kg)	Normalize to 1W (W/Kg)	(Ref. value)			Temp. (℃)		
Head 2450	1-g	5.410	54.10	53.20	1.69	±10	22.1	May 16, 2024	
Head 2450	10-g	2.410	24.10	24.20	-0.41	±10		iviay 10, 2024	

REPORT NO.: 4791186951-1-SAR-1 Page 18 of 21

10.Measured and Reported (Scaled) SAR Results

• Reported SAR(W/kg) = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor

SAR Test Reduction criteria are as follows:

KDB 447498 D04 General RF Exposure Guidance:

A) Per KDB447498 D04, all SAR measurement results are scaled to the maximum tune-up tolerance limit to demonstrate SAR compliance.

- B) Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - SAR ≤ 0.8 W/kg for 1-g, or SAR ≤ 2.0 W/kg for 10-g, when the transmission band span is ≤ 100 MHz.
 - SAR ≤ 0.6 W/kg for 1-g, or SAR ≤ 1.5 W/kg for 10-g, when the transmission band span is between 100 MHz and 200 MHz.
 - SAR ≤ 0.4 W/kg for 1-g, or SAR ≤ 1.0 W/kg for 10-g, when the transmission band span is ≥ 200 MHz.

Per KDB865664 D01 v01r04:

For each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤ 20%, and the measured SAR <1.45W/Kg, only one repeated measurement is required.

10.1.SAR Test Results of BT

Test Position	Test Mode	Frequency	Power (dBm)		Measured SAR Value	Power	Duty Cycle	Scaled			
			Tune-up	Meas.	Zoom 1-g (W/Kg)	Drift	(%)	(W/Kg)			
Left ear											
Front Side	DH5	2441	7.00	5.95	0.012	-0.09	29.74	0.051			
Back Side	DH5	2441	7.00	5.95	0.146	-0.04	29.74	0.625			
Left Side	DH5	2441	7.00	5.95	0.060	-0.01	29.74	0.257			
Right Side	DH5	2441	7.00	5.95	0.075	-0.05	29.74	0.321			
Top Side	DH5	2441	7.00	5.95	0.044	-0.11	29.74	0.188			
Bottom Side	DH5	2441	7.00	5.95	0.007	0.05	29.74	0.030			
Back Side	DH5	2402	7.00	5.90	0.229	-0.01	29.74	0.992			
Back Side	DH5	2480	7.00	5.16	0.153	-0.07	29.74	0.786			
Right ear											
Front Side	DH5	2441	7.00	6.32	0.013	-0.03	29.74	0.051			
Back Side	DH5	2441	7.00	6.32	0.198	-0.05	29.74	0.779			
Left Side	DH5	2441	7.00	6.32	0.097	0.00	29.74	0.381			
Right Side	DH5	2441	7.00	6.32	0.126	-0.01	29.74	0.495			
Top Side	DH5	2441	7.00	6.32	0.014	-0.02	29.74	0.055			
Bottom Side	DH5	2441	7.00	6.32	0.005	0.03	29.74	0.020			
Back Side	DH5	2402	7.00	6.12	0.248	-0.02	29.74	1.021			
Back Side	DH5	2480	7.00	5.79	0.166	0.00	29.74	0.738			

REPORT NO.: 4791186951-1-SAR-1 Page 20 of 21

11.Simultaneous Transmission SAR AnalysisThere is only one antenna, so simultaneous transmission does not exist.

REPORT NO.: 4791186951-1-SAR-1

Page 21 of 21

Appendixes

Refer to separated files for the following appendixes.

4791186951-1-SAR-1_App A Photo

4791186951-1-SAR-1_App B System Check Plots

4791186951-1-SAR-1_App C Highest Test Plots

4791186951-1-SAR-1_App D Cal. Certificates

-----End of Report-----