

SAR TEST REPORT

for

Harman International Industries, Inc.

BLUETOOTH HEADSET

Model No.: BOOMBOX 2

FCC ID: APIJBLBOOMBOX2

IC: 6132A-JBLBOOMBOX2

The MAX SAR(1g)					
Body SAR	0.29912W/Kg				

Prepared for : Harman International Industries, Inc. 8500 Balboa Boulevard, Northridge, CA 91329, UNITED STATES

Prepared By : Audix Technology (Shenzhen) Co., Ltd. No. 6, Kefeng Road, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China

> Tel: (0755) 26639496 Fax: (0755) 26632877

Report Number:ACS-SF19003Date of Test:Dec.02, 2019Date of Report:Dec.23, 2019

TABLE OF CONTENTS

Description		Page
Test Report Verific	ation	3
	FORMATION	
1.1. Description	n of Equipment Under Test	4
	Equipment Under Test	
2. GENERAL DE	SCRIPTION	6
2.1. Product De	escription For EUT	6
	andards	
	tegory and SAR Limits	
	itions	
2.5. Exposure I	Positions Consideration	
	e SAR Test Exclusion Considerations	
	ments	
1 1	v Environment	
5	ent Uncertainty	
	OCEDURES	
3.1. General de	scription of test procedures	
4. SAR MEASUR	EMENTS SYSTEM	
4.1. SAR Meas	urement Set-up	
	2 Dm	
	Ider for SAM Twin Phantom	
	field Probe System	
	be Calibration	
• •	procedure	
	GE AND EVALUATION	
	ge	
	ation by SEMCAD	
	CK	
	ГЅ	
	ver	
	eck for Body Tissue simulating liquid	
7.3. Test Resul	ts	

ANNEX A: SYSTEM CHECK RESULTS ANNEX B: GRAPH RESULTS WITH BANDS OF WATCH ANNEX C: DASY CABLIBRATION CERTIFICATE ANNEX D: TEST SETUP PHOTOS

AUDIX Technology (Shenzhen) Co., Ltd.

SAR TEST REPORT

Applicant
Product
FCC ID
IC

Harman International Industries, Inc. BLUETOOTH HEADSET APIJBLBOOMBOX2 6132A-JBLBOOMBOX2

(A) Model No.

: BOOMBOX 2

(B) Test Voltage

(1) DC 24V from external AC Adapter (2) DC 7.2V (built-in battery)

Measurement Standard Used:

- · FCC 47 CFR Part 2 (2.1093)
- · IEEE C95.1-1999

· IEEE 1528-2013

IEC62209-2:2010

· FCC OET Bulletin 65 Supplement C (Edition 01-01)

· RSS-102 ISSUE 5: 2015

· FCC KDB 447498 D01 v06

· FCC KDB 865664 D01/D02

The device described above is tested by Audix Technology (Shenzhen) Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Audix Technology (Shenzhen) Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. This report contains data that are not covered by the NVLAP accreditation. Also, this report shows that the EUT is technically compliant with the FCC and RSS-102 requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Audix Technology (Shenzhen) Co., Ltd.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Date of Test : Dec.02, 2	Report of date:	Dec.23, 2019
Prepared by : Monica		Summ
Monica Liu/A	Sistant CUDIX [®] 信筆科技 (深圳) 有 Audix Technology (S EMC 串 門 報 会 集	Shenzhen) Co., Ltd.
Approved & Authorized Signer :	Stamp only for EMC Devision Signature: David Jin /	

1. GENERAL INFORMATION

1.1. Description of Equipment Under Test

Applicant	Harman International Industries, Inc. 8500 Balboa Boulevard, Northridge, CA 91329, UNITED STATES
Manufacturer	Harman International Industries, Inc. 8500 Balboa Boulevard, Northridge, CA 91329, UNITED STATES
Product	BLUETOOTH HEADSET
Model No.	BOOMBOX 2
FCC ID	APIJBLBOOMBOX2
IC	6132A-JBLBOOMBOX2
Sample Type	Prototype production
Date of Receipt	Dec.02, 2019
Date of Test	Nov.25, 2019

1.2. Feature of Equipment Under Test

Product Feature & Specification						
Product	BLUETOOTH HEADSET					
Model No.	BOOMBOX 2					
FCC ID	APIJBLBOOMBOX2					
IC	6132A-JBLBOOMBOX2					
Radio	Bluetooth BDR+EDR; SRD					
Power Source	Commercial Power	AC 100 ~ 240V				
	External Power Source	DC 24V				
	Polymer Li-ion battery	DC 7.2V, mAh				
	UM battery	DC V				
Bluetooth						
Frequency Range	2402-2480MHz					
Type of Modulation	GFSK, π/4DQPSK, 8DPSK					
Data Rate	1Mbps, 2Mbps, 3Mbps					
Quantity of Channels	79					
Channel Separation	1MHz					
SRD						
Frequency Range	2407-2475MHz					
Type of Modulation	GFSK, π/4DQPSK, 8DPSK					

Antenna System

Bluetooth	
Type of Antenna	Antenna
Antenna number	1
Antenna Peak Gain	dBi

2. GENERAL DESCRIPTION

2.1. Product Description For EUT [None]

2.2. Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

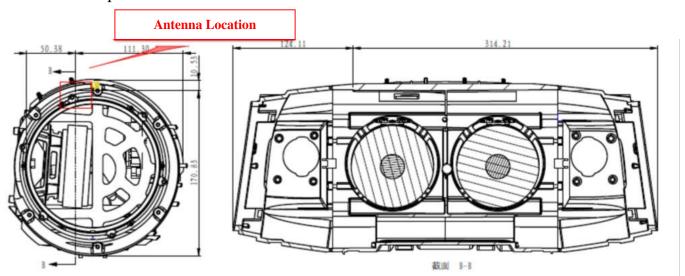
FCC 47 CFR Part 2 (2.1093)
IEEE C95.1-1999
IEEE 1528-2013
IEC62209-2:2010
FCC OET Bulletin 65 Supplement C (Edition 01-01)
RSS-102 ISSUE 5: 2015
FCC KDB 447498 D01 v06
FCC KDB 865664 D01/D02

2.3. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4. Test Conditions

2.4.1. Ambient Condition


Ambient Temperature	20 to 24 °C			
Humidity	< 60 %			

2.4.2. Test Configuration

The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests.

2.5. Exposure Positions Consideration

Antenna	Description
antenna	Bluetooth BDR+EDR; SRD

Sides for SAR tests Test distance: 0 mm(Head)									
Body Head Touch Head (15°)						(15°)			
Band	Band Back Front Top Bottom Left Right					Left	Right	Left	Right
Bluetooth									Х

Note:

The side which has a distance larger than 5cm from antenna can be excluded from SAR measurement.

2.6. Standalone SAR Test Exclusion Considerations

According to RSS-102 Table 1, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 4mW.

Frequency	Exemption Limits (mW)						
(MHz)	At separation distance of						
	≤5 mm	10 mm	15 mm	20 mm	25 mm		
≤300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	7 mW	10 mW	18 mW	34 mW	60 mW		
2450	$4 \mathrm{mW}$	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	15 mW	27 mW	41 mW		

Frequency	Exemption Limits (mW)							
(MHz)	At separation distance of							
	30 mm	35 mm	40 mm	45 mm	≥50 mm			
≤300	223 mW	254 mW	284 mW	315 mW	345 mW			
450	141 mW	159 mW	177 mW	195 mW	213 mW			
835	80 mW	92 mW	105 mW	117 mW	130 mW			
1900	99 mW	153 mW	225 mW	316 mW	431 mW			
2450	83 mW	123 mW	173 mW	235 mW	309 mW			
3500	86 mW	124 mW	170 mW	225 mW	290 mW			
5800	56 mW	71 mW	85 mW	97 mW	106 mW			

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [\checkmark f(GHz)] \leq 3.0 for 1-g SAR, where

- \bullet f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10 mW.

Appendix A

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and \leq 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	SAR Test Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

2.7. EUT Configuration and operation conditions for test.

(EUT: BLUETOOTH HEADSET)

2.8. Test Equipments

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal Date	Validity Date	Cal. Agency
1.	DASY5 SAR Test System	Speag	TX60 L speag	F09/5B1H1/01	NCR	NCR	N/A
2.	Wireless Communication Test Set	Agilent	E5515C	GB443002433	2019.04.13	2020.04.13	CCIC
3.	Power Meter	Anritsu	ML2487A	6K00003262	2019.04.13	2020.04.13	CCIC
4.	Power Sensor	Anritsu	MA2491A	032516	2019.04.13	2020.04.13	CCIC
5.	Signal Generator	Rohde&Schwarz	SMB100A	181375	2019.04.23	2020.04.23	CCIC
6.	Amplifier	Milmega	ZHL-42W	C620601316	NCR	NCR	N/A
7.	Dipole Validation Kits	Speag	D2450V2	862	2017.06.06	2020.06.06	SPEAG
8.	Attenuator	N/A	1527	001	2019.10.13	2020.10.13	CCIC
9.	Date Acquisition Electronics	Speag	DAE4	899	2019.03.19	2020.03.19	CCTL
10.	E-Field Probe	Speag	EX3DV4	3767	2019.03.25	2020.03.25	CCTL
11.	ENA Series Analyzer	Agilent	E5071B	MY42403549	2019.04.13	2020.04.13	CCIC
12.	Test Software	Schmid&Partner Englinnering AG	DASY5	52.8.7.1137	NCR	NCR	NCR
13.	Radio Communication Analyzer	ANRITSU	MT8820C	6201091003	2019.10.12	2020.10.12	CCIC
14.	Radio Communication Analyzer	R&S	CMW500	103249	2019.10.12	2020.10.12	CCIC

Note: Dipole antenna calibration interval is 3 year, annual check result to be follow (Refer to KDB 865664, Dipole calibration)

Dipole: 2450V2-SN862

Antenna Parameters with Body TSL

Date	2017.06.06	2018.06.05	2019.06.04				
Date	(Reference Value)	(Measured Value)	(Measured Value)				
Impedance, Transformed to Feed point	50.7Ω+4.98jΩ	50.3Ω+4.83jΩ	50.8Ω+4.76jΩ				
Return Loss	-26.0dB	-25.4dB	-26.4dB				

Antenna Parameters with Head TSL

Date	2017.06.06 (Reference Value)	2018.06.05 (Measured Value)	2019.06.04 (Measured Value)
Impedance, Transformed to Feed point	48.6Ω+5.14jΩ	47.5Ω+5.04jΩ	48.3Ω+5.18jΩ
Return Loss	-25.4dB	-24.7dB	-24.5dB

Note: The impedance of the measured value, deviates by less than 5 Ω form the reference Value; the return loss of the measured value, deviates by less than 20% form the reference value. According to KDB 865664 D01 instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered

2.9. Laboratory Environment

Temperature	Min:20°C,Max.25°C			
Relative humidity	Min. = 30%, Max. = 70%			
Note: Ambient noise is checked and found very low and in compliance with requirement of standards.				

2.10. Measurement Uncertainty

Test Item	Uncertainty	
Uncertainty for SAR test	1g: 21.14 10g: 20.64	
Uncertainty for test site temperature and humidity	0.6°C	

Source	Туре	Uncertainly Value (%)	Probability Distribution	к	C1(1g)	C1(10g)	Standard uncertaint y ul(%)1g	Standard uncertaint y ul(%)10g	Degree of freedom Veff or Vi
Measurement system repetivity	А	0.5	N	1		1	0.5	0.5	9
Probe calibration	В	5.9	N	1	1	1	5.9	5.9	∞
Isotropy	В	4.7	R	√3	1	1	2.7	2.7	∞
Linearity	В	4.7	R	√3	1	1	2.7	2.7	∞
Probe modulation response	В	0	R	√3	1	1	0	0	∞
Detection limits	В	1.0	R	√3	1	1	0.6	0.6	∞
Boundary effect	В	1.9	R	√3	1	1	1.1	1.1	∞
Readout electronics	В	1.0	Ν	1	1	1	1.0	1.0	∞
Response time	В	0	R	√3	1	1	0	0	∞
Integration time	В	4.32	R	√3	1	1	2.5	2.5	∞
RF ambient conditions – noise	В	0	R	√3	1	1	0	0	∞
RF ambient conditions – reflections	В	3	R	√3	1	1	1.73	1.73	∞
Probe positioner mech. restrictions	В	0.4	R	√3	1	1	0.2	0.2	∞
Probe positioning with respect to phantom shell	В	2.9	R	√3	1	1	1.7	1.7	∞
Post-processing	В	0	R	√3	1	1	0	0	∞
			Test sar	nple re	lated				
Device holder uncertainty	А	2.94	Ν	1	1	1	2.94	2.94	M-1
Test sample positioning	А	4.1	N	1	1	1	4.1	4.1	M-1
Power scaling	В	5.0	R	√3	1	1	2.9	2.9	∞
Drift of output power (measured SAR drift)	В	5.0	R	√3	1	1	2.9	2.9	∞
			Phanton	n and s	et-up				
Phantom uncertainty (shape and thickness tolerances)	В	4.0	R	√3	1	1	2.3	2.1	∞
Algorithm for correcting SAR for deviations in permittivity and conductivity	В	1.9	N	1	1	0,84	1,9	1,6	∞
Liquid conductivity (meas.)	А	0.55	N	1	0.78	0.71	0.24	0.21	M-1
Liquid permittivity (meas.)	А	0.19	N	1	0.23	0.26	0.09	0.06	М
Liquid permittivity – temperature uncertainty	А	5.0	R	√3	0,78	0,71	1.4	1.1	∞
Liquid conductivity – temperature uncertainty	А	5.0	R	√3	0.23	0,26	1.2	0.8	∞
Combined standard uncertainty	u. =	$\sqrt{\sum_{i=1}^{23} c_i^2 u_i^2}$			1	1	10.57	10.32	
Expanded uncertainty (95 % conf. interval)			N	N K=2		21.14	20.64		

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients					Frequen	cy (MHz)		. 23a	1	
(% by weight)	450		835		9	915		- 1900		50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCI)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

$$\label{eq:Water: De-ionized, 16 M} \begin{split} & \text{Water: De-ionized, 16 M} \Omega + \text{resistivity} & \text{HEC: Hydroxyethyl Cellulose} \\ & \text{DGBE: 99+\% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]} \end{split}$$

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1,3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)		
Water	78		
Mineral oil	11		
Emulsifiers	9		
Additives and Salt	2		

3. MEASURE PROCEDURES

3.1. General description of test procedures

For the 802.11a/b/g SAR body tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band.802.11b/g modes are tested on channels1,6,11;however,if output power reduction is necessary for channels 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels must be tested instead.

SAR is not required for 802.11g channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels. When the maximum average output channel in each frequency band is not included in the "default test channels", the maximum channel should be tested instead of an adjacent "default test channels", these are referred to as the "required test channels" and are illustrated in table 1.

Please apply the following guidance for SAR testing:

- 1. Please use a 0 mm (touching) test separation distance on the flat phantom during SAR testing of this device. This separation distance is based on the guidance found in FCC KDB Publication 447498 D01, Section 5.2.3 3)
- 2. Please utilize a body tissue simulating liquid (TSL) of the appropriate frequency during SAR testing.
- 3. Please use the guidance found in FCC KDB Publication 447498 D01 to determine which sides of the device need to be tested for SAR.
- 4. FCC KDB Publication 248227 D01 should be used for selection of the WiFi channels, data rates, etc.

				band test reduction	on taken into consi	deration				
802.11 M	lodes	а	g	n (I	HT)®		ac (VHT)®			
Chanı Bandwidth		20	20	20	40	20	40	80	160	
§15.247			1/6/11	1/6/11	6					
(2.4 GHz)			SAR not requir	ed for OFDM; 802.11t W/kg	adjusted SAR ≤ 1.2					
] [36/40/44/48		36/40/44/48	38/46	36/40/44/48	38/46	42		
U-NII-1		U-NII-2A exclusion applied								
U-NII-2A		52/56/ <mark>60</mark> /64		52/56/60/64	54/62	52/56/60/64	54/62	58		
	Ch. #	0.85								
U-NII-1	Сп. #								50	
+ U-NII-2A	W/kg									
		100/ <mark>112</mark> /116/128		100/112/116/128	102/110/118/126	100/112/116/128	102/110/118/126	106/112	114	
U-NII-2C		0.95								
U-NII-3		132/149/165		132/149/165	134/142/151/159	132/149/165	134/142/151/159	138/155		
§15.247		132/149/ <mark>165</mark>		132/149/165	134/142/151/159	132/149/165	134/142/151/159	138/155		
(5.8 GHz)		1.08								

This example assumes the device has a fixed exposure test position; increase, <u>initial test position</u> SAR test reduction does not apply.
 It is also assumed that the test separation distance and measured power (illustrated in Table C.3) do not qualify for the standalone SAR test exclusion provisions in KDB

Publication 447498 D01.

• SAR probe(s) are assumed to have valid calibrations at 5.25, 5.60 and 5.75 GHz.

• The illustrated SAR values are already scaled to 100% transmission duty factor and according to *reported* SAR procedure.

• U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.

4. SAR MEASUREMENTS SYSTEM

4.1. SAR Measurement Set-up

DASY5 system for performing compliance tests consists of the following items:

- (1) A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- (2) A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage It issue simulating liquid. The probe is equipped with an optical surface detector system.
- (3) A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- (4) A unit to operate the optical surface detector which is connected to the EOC.
- (5) The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- (6) The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.
- (7) DASY5 software and SEMCAD data evaluation software.
- (8) Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- (9) The generic twin phantom enabling the testing of left-hand and right-hand usage.
- (10) The device holder for handheld mobile phones.
- (11)Tissue simulating liquid mixed according to the given recipes.
- (12)System validation dipoles allowing to validate the proper functioning of the system.

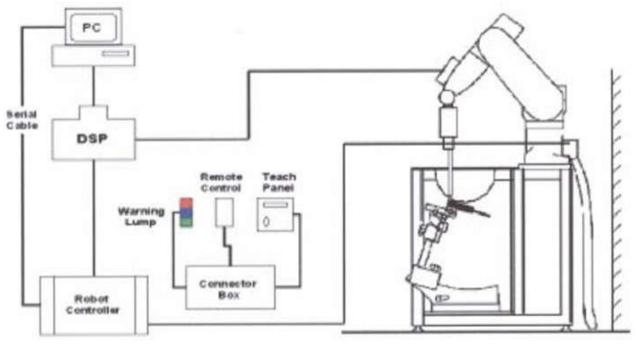


Figure 4.1 SAR Lab Test Measurement Set-up

4.2. ELI Phantom

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Material	Vinylester, glass fiber reinforced (VE-GF)				
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)				
Shell Thickness	2.0 ± 0.2 mm (bottom plate)				
Dimensions	Major axis: 600 mm Minor axis: 400 mm				
Filling Volume	approx. 30 liters				
Wooden Support	SPEAG standard phantom table				

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Figure 6.2 Top View of Twin Phantom A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

*Water-sugar based liquid *Glycol based liquids

4.3. Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivaty =3 and loss tangent = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Figure 4.3 Device Holder

4.4. DASY5 E-field Probe System The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangul -ar configuration and optimized for dosimetric evaluation.

4.4.1. EX3DV4 Probe Specification

Figure 4.4 EX3DV4 E-field Probe

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to $>$ 6 GHz Linearity: \pm 0.2 dB (30 MHz to 6 GHz)
Directivity	\pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: PRS-T2 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

4.5. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than ± 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

4.6. Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the EUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles.

The difference between the optical surface detection and the actual surface depends on the Probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained. **Zoom Scan**

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- · maximum search
- \cdot extrapolation
- \cdot boundary correction
- \cdot peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

5. DATA STORAGE AND EVALUATION

5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for thedata evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression point	Dcpi
Device parameters	: - Frequency - Crest factor	f cf
Media parameters:	- Conductivity	

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$Vi = Ui + Ui2 \cdot c f / d c pi$$

With $Vi = con$	mpensated signal of channel i $(i = x, y, z)$
<i>Ui</i> = inp	but signal of channel i $(i = x, y, z)$
cf = cres	st factor of exciting field (DASY parameter)
<i>dcp</i> i = d	iode compression point (DASY parameter)
From the comp	ensated input signals the primary field data for each channel can be evaluated:
E-field probes:	$Ei = (Vi / Normi \cdot ConvF) 1/2$
H-field probes:	$Hi = (Vi)1/2 \cdot (ai0 + ai1 f + ai2f2)/f$
With Vi	= compensated signal of channel i $(i = x, y, z)$
Normi	= sensor sensitivity of channel i $(i = x, y, z)$
ConvF	= sensitivity enhancement in solution
aij	= sensor sensitivity factors for H-field probes
f	= carrier frequency [GHz]
Ei	= electric field strength of channel i in V/m
Hi	= magnetic field strength of channel i in A/m
The RSS value	of the field components gives the total field strength (Hermitian magnitude):

The RSS value of the field components gives the total field strength (Hermitian magnitude):

Etot = (Ex2 + EY2 + Ez2)1/2

The primary field data are used to calculate the derived field units.

 $SAR = (Etot2 \cdot) / (\cdot 1000)$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

Ppwe = Etot2 / 3770 or **Ppwe** = $Htot2 \cdot 37.7$

with *Ppwe* = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

6. SYSTEM CHECK

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the ANNEX A.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

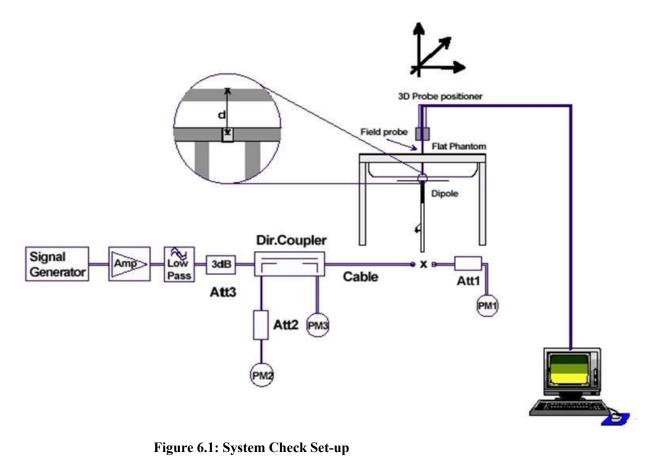


Figure 6.3: photos of system

7. TEST RESULTS

7.1. Output power

(Bluetooth)

Test Mode	Frequency (MHz)	Output power (dBm)	Maximum Tune-up Power (dBm)
DH5	2402	5.50	6.00
DH5	2441	6.16	6.50
DH5	2480	6.26	6.50
2DH5	2402	-0.28	0.00
2DH5	2441	-0.41	0.00
2DH5	2480	-0.92	-0.50
3DH5	2402	-0.40	0.00
3DH5	2441	-0.49	0.00
3DH5	2480	-0.95	-0.50

(SRD)

Test Mode	Frequency (MHz)	Output power (dBm)	Maximum Tune-up Power (dBm)
DH5	2407	11.75	12.00
DH5	2441	12.42	12.50
DH5	2475	12.37	12.50
2DH5	2407	12.10	12.50
2DH5	2441	12.55	13.00
2DH5	2475	12.48	12.50
3DH5	2407	11.90	12.00
3DH5	2441	12.43	12.50
3DH5	2475	12.46	12.50

Note:

Use the data rate with the maximum output level for the SAR test.

Ig I0g Er of(s/m) % Recommended 51.50 23.70 52.7 1.95 / Value 41.818-61.182 19.2681-28.1319 50.065-55.335 1.8525-2.0475 / Value 51.40 23.64 52.41 1.919 22.01 Value 51.40 23.64 52.41 1.919 22.01 Volue: Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole. as feeding power to the calibrated dipole. state	A50MHz Recommended value 51.50 41.818 - 61.182 23.70 19.2681 - 28.1319 52.7 50.065 - 55.335 1.95 1.8525 - 2.0475 / 450MHz Measurement value 2019-12-02 51.40 23.64 52.441 1.919 22.01 Note: Recommended Values used derive from the calibration certificate and 250 mW is used	Frequency	Description	(1g±18.8%	W/kg) 6 window; 6 window)	Dielectric I (±5% w	Temp	
value 41.818 - 61.182 19.2681 - 28.1319 50.065 - 55.335 1.8525 - 2.0475 7 value 51.40 23.64 52.441 1.919 22.01 Note: Recommended Values used derive from the calibration certificate and 250 mW is used	value 41.818 - 61.182 19.2681 - 28.1319 50.065 - 55.335 1.8525 - 2.0475 7 450MHz Measurement value 51.40 23.64 52.441 1.919 22.01 Note: Recommended Values used derive from the calibration certificate and 250 mW is used			1g	10g	εr	σ(s/m)	°C
value 2019-12-0251.4023.6452.4411.91922.01Note: Recommended Values used derive from the calibration certificate and 250 mW is used	value 2019-12-0251.4023.6452.4411.91922.01Note: Recommended Values used derive from the calibration certificate and 250 mW is used		value					/
Note: Recommended Values used derive from the calibration certificate and 250 mW is used	Note: Recommended Values used derive from the calibration certificate and 250 mW is used	2450MHz	value	51.40	23.64	52.441	1.919	22.01

7.3. Test Results

		Dielectric Parameters (±5% window)						
Fr	equency		er	σ(s/m)				
		Measurement	Recommended	Measurement	Recommended			
		value	value	value	value			
	2402MHz	55.31		1.918				
2450MHz (Bluetooth)	240211112	4.95%		-1.64%				
	2441MHz	55.271	52.7	1.974	1.05			
		4.88%	52.7	1.23%	1.95			
	2400MIL-	55.233		2.038				
	2480MHz	4.81%		4.51%				
	2407MHz	55.296		1.923				
2450MHz (SRD)	240/IVIAZ	4.93%		-1.38%				
	2441MHz	55.271	50.7	1.974	1.05			
		4.88%	52.7	1.23%	1.95			
	2475MII-	55.233	1	2.038				
	2475MHz	4.81%		4.51%				

Figure 4.4: Liquid depth in the Flat Phantom

	Blu	etooth:										
	Output Power Measured Results Scaled-1 Scaled-Final Power											
Band	lest Max											
2402 6.00 5.50 0.015 0.00638 0.01683 0.00716 0.02141 0.00911									-0.12			
BT	BT 2441 Top 6.50 6.16 0.015 0.00631 0.01622 0.00682 0.02064 0.00868 -0.1											
	2480 6.50 6.26 0.016 0.00694 0.01691 0.00733 0.02151 0.00933 0.1										0.14	
	Conclusion: PASS											
	Note :											
	Factor= Max. Scaled AV Power(W)/Measured Power(W) Scaled SAR-1= Measured SAR*Factor											
			C .									
				aled-Final= ax. Reported				٨D				
			I ne M Rhuetooth d	1		02131 W/K	g 10r 1g S	АК				

Note: The Bluetooth duty cycle is 0.786.

	SR	D:					_		-			
	Output Power Measured Results Scaled-1 Scaled-Final											
Band	BandFreq.Test PositionMax. Scaled AV Power (dBm)Measured AV Power (dBm)SAR1g (W/kg)SAR10g (W/kg)SAR10g (W/kg)SAR10g (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Power (W/kg)Poor Poor Power (W/kg)Poor Poor Power (W/kg)Poor Poor Power (W/kg)Poor Poor Power (W/kg)Poor Poor Power (W/kg)Poor 											
2407 12.50 12.10 0.184 0.084 0.20175 0.09210 0.26033 0.11884									0.17			
SRD	SRD 2441 Top 13.00 12.55 0.209 0.087 0.23182 0.09650 0.29912 0.12451 0											
2480 12.50 12.48 0.216 0.090 0.21700 0.09042 0.28000 0.11667 0										0.10		
				(Conclusion	: PASS						
					Note	:						
			Factor=	Max. Scaled	l AV Powe	r(W)/Meas	sured Pow	er(W)				
				Scaled SAF	R-1= Meas	ured SAR*	Factor					
			Sc	aled-Final=	Scaled SA	AR-1*(1/Du	ity Cycle)					
			The M	ax. Reporte	d SAR : 0.	29912W/k	g for 1g S	AR				

The Max. Reported SAR : 0.29912**W/kg for 1g SAR Note:** The SRD duty cycle is 0.775.

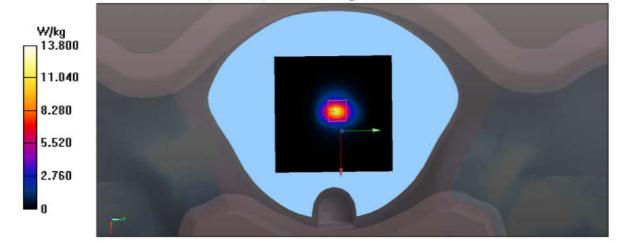
ANNEX A: SYSTEM CHECK RESULTS

Test Laboratory: Audix SAR Lab

Date: 02/12/2019

CW 2450 DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:862 Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2450 MHz; $\sigma = 1.919$ S/m; $\epsilon_r = 52.441$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN3767; ConvF(7.58, 7.58, 7.58); Calibrated: 25/03/2019;
- Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 19/03/2019
- Phantom: SAM1; Type: SAM; Serial: TP-1543
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CW 2450MHz/Area Scan (61x71x1): Interpolated grid: dx=2.000 mm, dy=2.000 mm

Maximum value of SAR (interpolated) = 14.03 W/kg

Configuration/CW 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.11 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 30.22 W/kgSAR(1 g) = 12.85 W/kg; SAR(10 g) = 5.91 W/kgMaximum value of SAR (measured) = 13.801 W/kg

Date: 02/12/2019

ANNEX B: GRAPH RESULTS WITH BANDS OF WATCH

Bluetooth:

Test Laboratory: Audix SAR Lab CH0(2402MHz Top) EUT: BLUETOOTH HEADSET M/N:BOOMBOX 2 Communication Suntany, UUD 0, Blue Teath (0), Communi

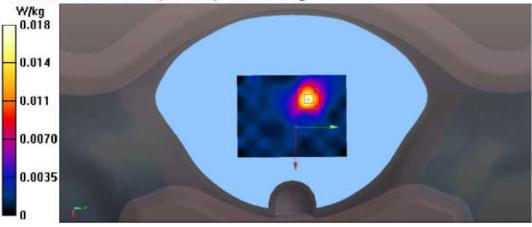
Communication System: UID 0, Blue Tooth (0); Communication System Band: Mid; Frequency: 2402 MHz;Communication System PAR: 0 dB Medium parameters used: f = 2402 MHz; $\sigma = 1.918$ S/m; $\epsilon_r = 55.31$; $\rho = 1000$ kg/m³

Medium parameters used: f = 2402 MHz, $\sigma = 1.918$ S/m; $\varepsilon_r = 55.51$; $\rho = 1000$ kg/m Phantom section: Flat Section

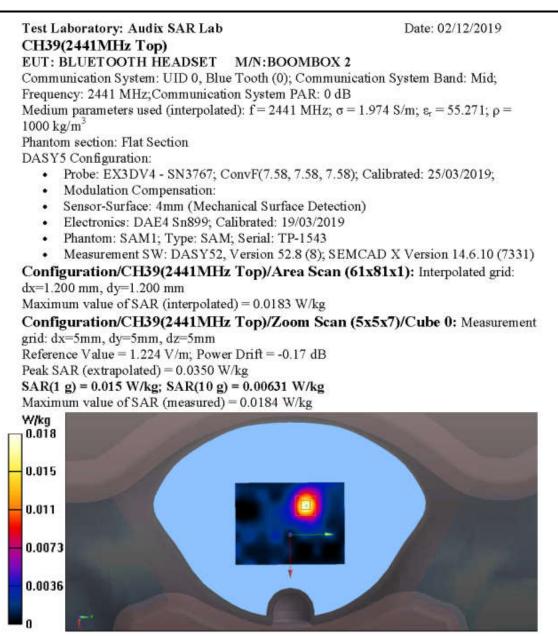
DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(7.58, 7.58, 7.58); Calibrated: 25/03/2019;
- Modulation Compensation:
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 19/03/2019
- Phantom: SAM1; Type: SAM; Serial: TP-1543
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

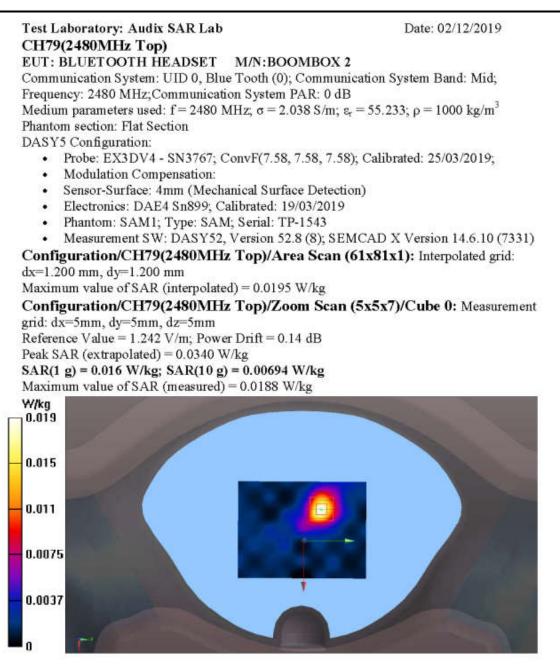
Configuration/CH0(2402MHz Top)/Area Scan (61x81x1): Interpolated grid:


dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0176 W/kg


Configuration/CH0(2402MHz Top)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.286 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.0560 W/kg

SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.00638 W/kg


Maximum value of SAR (measured) = 0.0177 W/kg

SRD:

 Test Laboratory: Audix SAR Lab
 Date: 02/12/2019

 CH(2407MHz Top)
 EUT: BLUETOOTH HEADSET
 M/N:BOOMBOX 2

 Communication System: UID 0, 2.4 GHz ; Communication System Band: ISM 2.4GHz

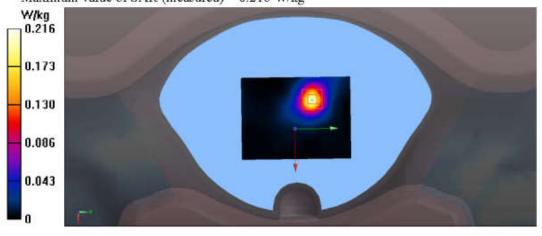
Communication System: UID 0, 2.4 GHz; Communication System Band: ISM 2.4GHz Band (2400.0-2483.5MHz); Frequency: 2407 MHz;Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2407 MHz; $\sigma = 1.923$ S/m; $\epsilon_r = 55.296$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

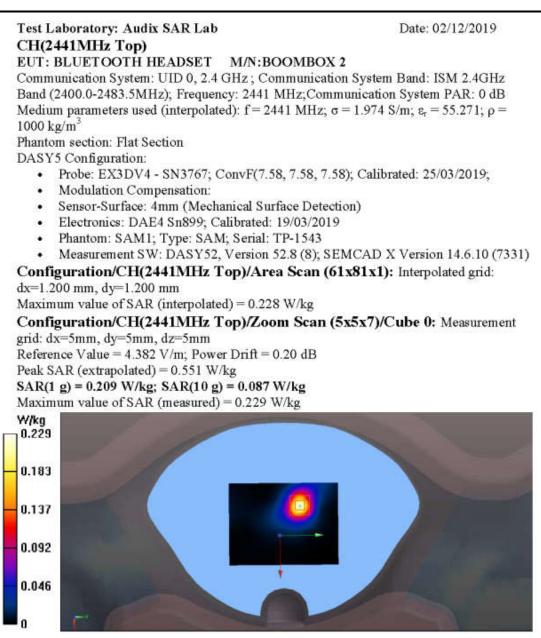
DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(7.58, 7.58, 7.58); Calibrated: 25/03/2019;
- · Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 19/03/2019
- · Phantom: SAM1; Type: SAM; Serial: TP-1543
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

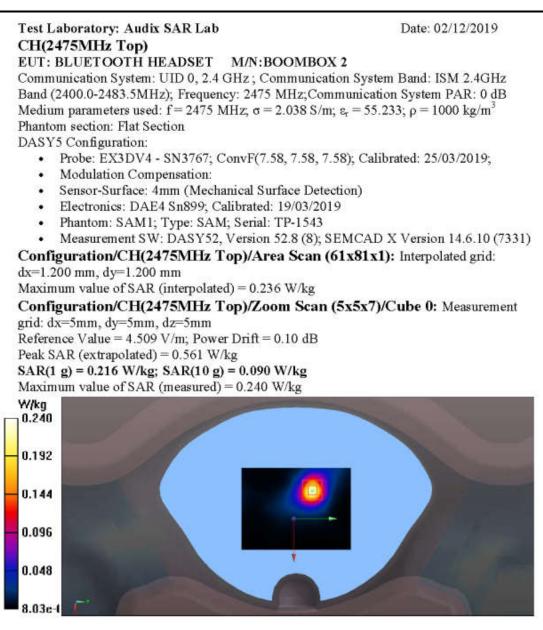
Configuration/CH(2407MHz Top)/Area Scan (61x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm


Maximum value of SAR (interpolated) = 0.213 W/kg

Configuration/CH(2407MHz Top)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 3.111 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.267 W/kg


SAR(1 g) = 0.184 W/kg; SAR(10 g) = 0.084 W/kg Maximum value of SAR (measured) = 0.216 W/kg

ANNEX C: DASY CABLIBRATION CERTIFICATE In Collaboration with 中国认可 p e a S 国际互认 CALIBRATION LABORATORY む 准 CALIBRATION Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 **CNAS L0570** E-mail: cttl@chinattl.com http://www.chinattl.cn Audix Client **Certificate No:** Z17-97065 **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 862 Calibration Procedure(s) FD-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 06, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 101919 27-Jun-16 (CTTL, No.J16X04777) Jun-17 Power sensor NRP-Z91 101547 27-Jun-16 (CTTL, No.J16X04777) Jun-17 Reference Probe EX3DV4 SN 3617 23-Jan-17(SPEAG,No.EX3-3617_Jan17) Jan-18 DAE4 SN 771 19-Jan-17(CTTL-SPEAG, No.Z17-97016) Jan-18 Secondary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 13-Jan-17 (CTTL, No.J17X00286) Jan-18 MY46110673 13-Jan-17 (CTTL, No.J17X00285) Network Analyzer E5071C Jan-18 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: June 09, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z17-97065 Page 1 of 8

In Collaboration with р e CALIBRATION LABORATORY

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. . No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97065

Page 2 of 8

In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1442
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.8 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.13 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 18.7 % (k=2)

Body TSL parameters

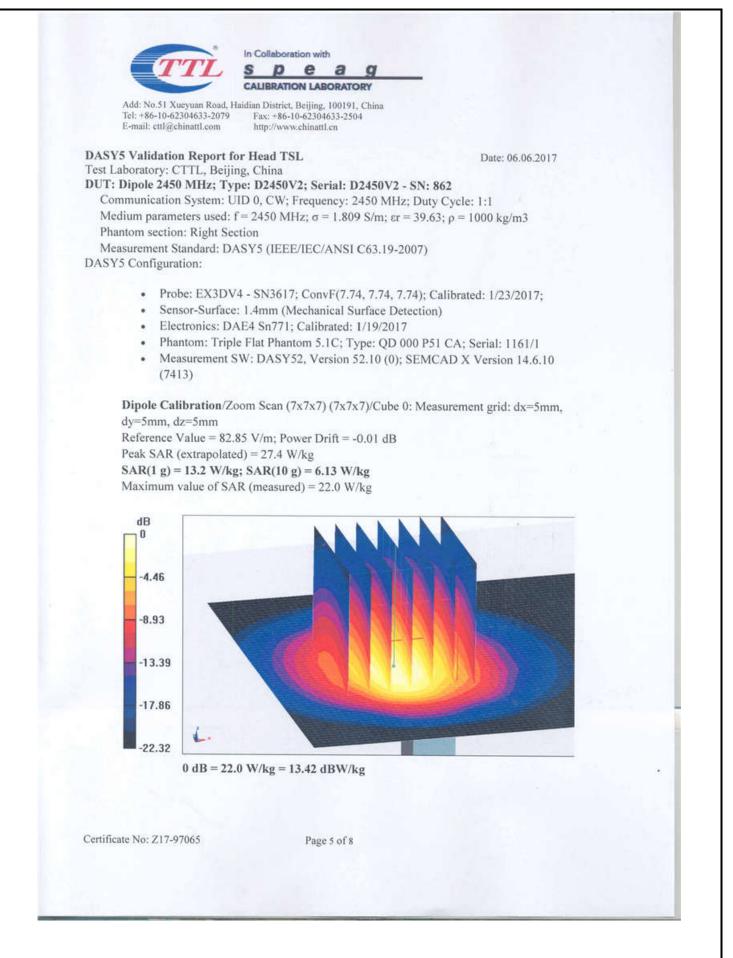
The following parameters and calculations were applied.

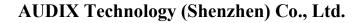
	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.96 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

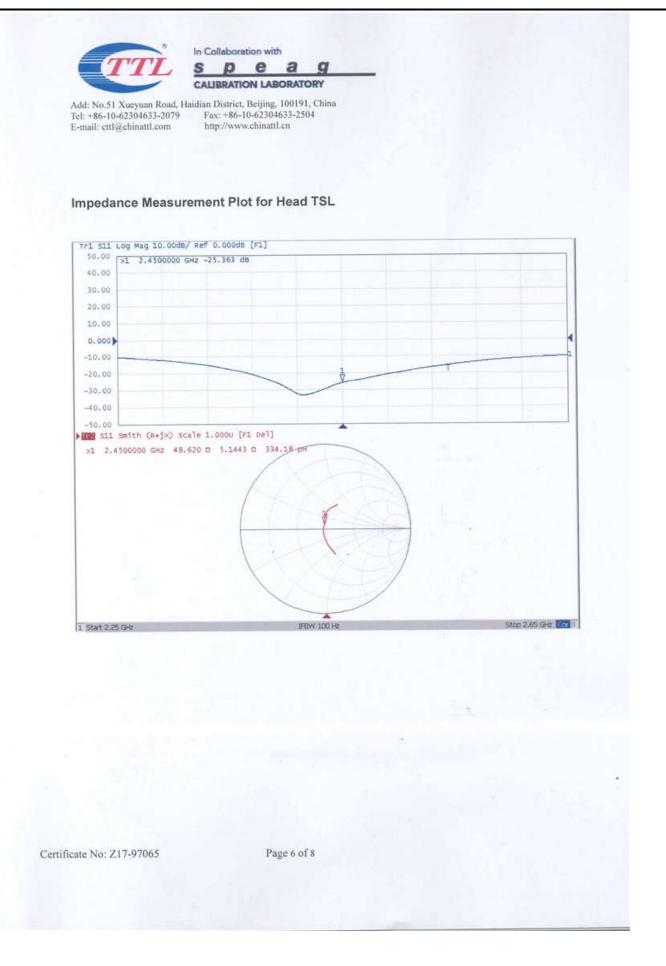
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	1
SAR measured	250 mW input power	12.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.5 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.94 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.7 mW /g ± 18.7 % (k=2)

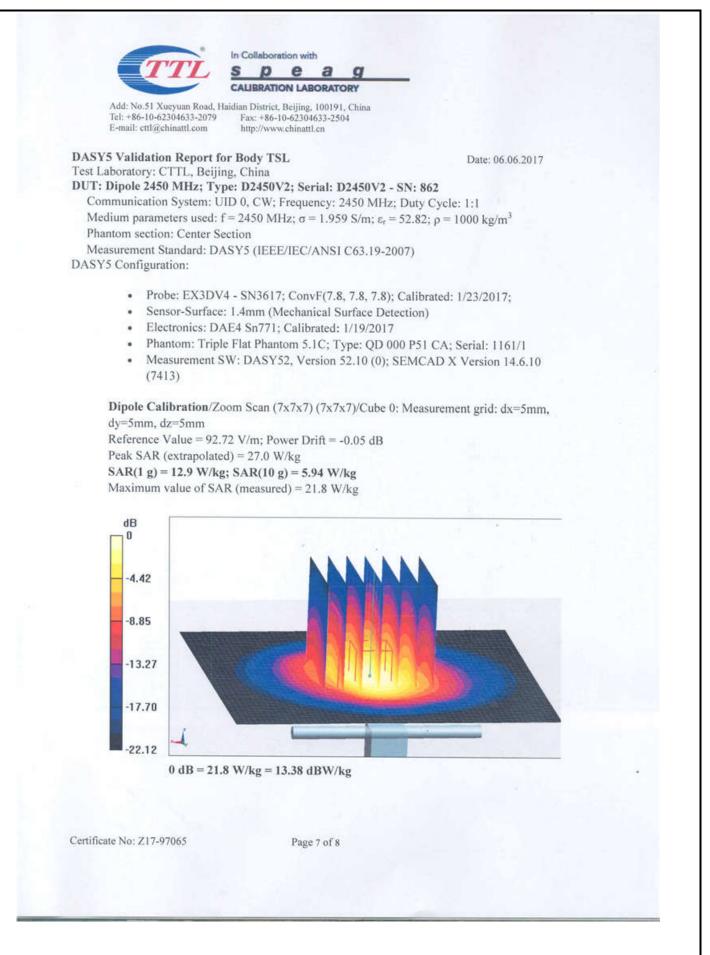
Certificate No: Z17-97065

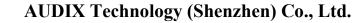

Page 3 of 8

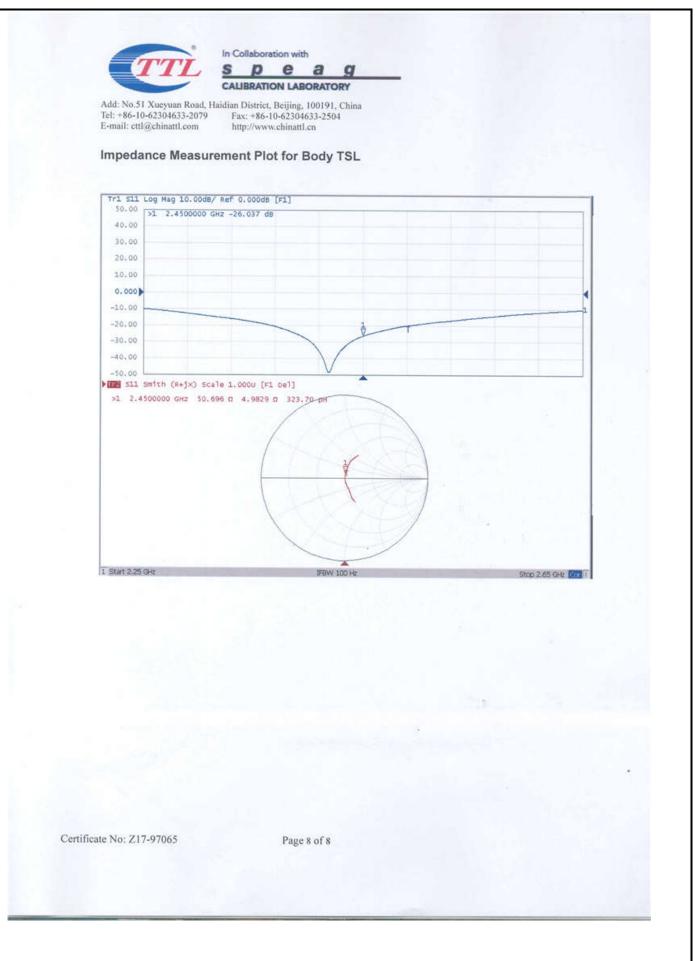


Add: No.51 Xueyuan Road, Haidian District, Beijing, I Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com http://www.chinattl.com ppendix (Additional assessments outs)	100191, China i33-2504 cn
ntenna Parameters with Head TSL	
Impedance, transformed to feed point	48.6Ω+ 5.14jΩ
Return Loss	- 25.4dB
ntenna Parameters with Body TSL	
Impedance, transformed to feed point	50.7Ω+ 4.98jΩ
Return Loss	- 26.0dB
ter long term use with 100W radiated power, on	Iv a slight warming of the dipole near the feedpoint can
e measured. The dipole is made of standard semirigid coaxial of innected to the second arm of the dipole. The ar the dipoles, small end caps are added to the dip cording to the position as explained in the "Mea fected by this change. The overall dipole length	arms, because they might bend or the soldered
a measured. The dipole is made of standard semirigid coaxial of innected to the second arm of the dipole. The ar- the dipoles, small end caps are added to the dip cording to the position as explained in the "Mea fected by this change. The overall dipole length o excessive force must be applied to the dipole a innections near the feedpoint may be damaged.	cable. The center conductor of the feeding line is directly ntenna is therefore short-circuited for DC-signals. On some pole arms in order to improve matching when loaded asurement Conditions'' paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered


Page 4 of 8







Client : Au	dix	A REAL PROPERTY OF THE OWNER OF T	te No: Z19-60079
CALIBRATION	CERTIFICAT	E	
Object	DAE4 -	SN: 899	Contraction of the local division of the loc
Calibration Procedure(s)	FF-211	-002-01 tion Procedure for the Data Acq	uisition Electronics
Calibration date:	March	19, 2019	and the store of the
All calibrations have be humidity<70%. Calibration Equipment us		the closed laboratory facility: envi	ronment temperature(22±3)°C and
Primary Standards	ID # Cal		Scheduled Calibration
		Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05034)	Scheduled Calibration June-19
Primary Standards Process Calibrator 753		Date(Calibrated by, Certificate No.)	
Process Calibrator 753	1971018 Name	Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05034) Function	
Process Calibrator 753	1971018	Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05034)	June-19
Process Calibrator 753 Calibrated by: Reviewed by:	1971018 Name Yu Zongying	Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05034) Function SAR Test Engineer	June-19
Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	1971018 Name Yu Zongying Lin Hao Qi Dianyuan	Date(Calibrated by, Certificate No.) 20-Jun-18 (CTTL, No.J18X05034) Function SAR Test Engineer SAR Test Engineer	June-19 Signature

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Page 2 of 3

In Collaboration with S D E A G CALIBRATION LABORATORY

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DC Voltage Measurement

High Range:	1LSB =	6.1µV ,	full range =	-100+300 mV
Low Range:	1LSB =	61nV .	full range =	-1+3mV

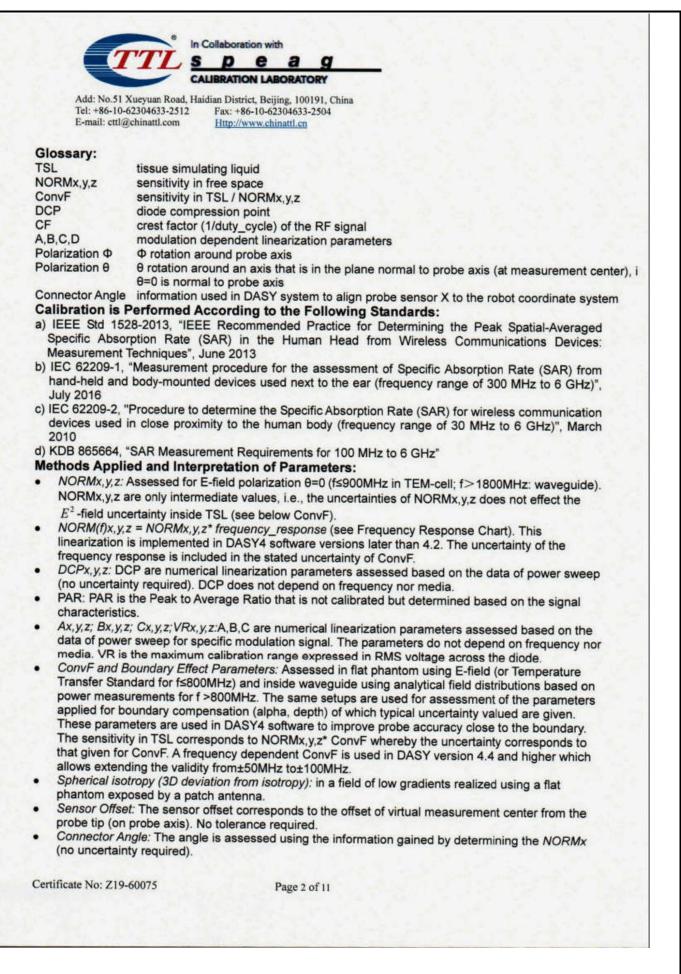
Calibration Factors	X	Y	Z
High Range	402.440 ± 0.15% (k=2)	403.028 ± 0.15% (k=2)	403.025 ± 0.15% (k=2)
Low Range	3.97760 ± 0.7% (k=2)	3.97479 ± 0.7% (k=2)	3.98121 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system

350° ± 1 °

Certificate No: Z19-60079


Page 3 of 3

AUDIX Technology (Shenzhen) Co., Ltd.

Client Aud		Certificate No: Z19-6	00/0
OALIBITATION OF	ERTIFICATE		
Object	EX3DV4	- SN:3767	analise and
	NAMES OF COMPANY		and the second se
Calibration Procedure(s)	FF-Z11-0	04-01	1000
	Calibratio	on Procedures for Dosimetric E-field Probes	
Calibration date:	March 25	5, 2019	
humidity<70%. Calibration Equipment used	(M&TE critical for		21233
Primary Standards Power Meter NRP2		Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power sensor NRP-Z91	101919	20-Jun-18 (CTTL, No.J18X05032) 20-Jun-18 (CTTL, No.J18X05032)	Jun-19
			Lun 40
			Jun-19
Power sensor NRP-Z91 Reference10dBAttenuator	101548 18N50W-10dB	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101548	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133)	
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	101548 18N50W-10dB 18N50W-20dB SN 7514	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2)	Jun-19 Feb-20 Feb-20 Aug-19
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	101548 18N50W-10dB 18N50W-20dB	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132)	Jun-19 Feb-20 Feb-20 Aug-19
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID #	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG, No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18)	Jun-19 Feb-20 Feb-20 Aug-19
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033)	Jun-19 Feb-20 Feb-20 Aug-19 Aug -19 Scheduled Calibration Jun-19
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-19 (CTTL, No.J19X00547)	Jun-19 Feb-20 Feb-20 Aug-19 Aug -19 Scheduled Calibration Jun-19 Jan -20
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673 Name	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-19 (CTTL, No.J19X00547) Function	Jun-19 Feb-20 Feb-20 Aug-19 Aug -19 Scheduled Calibration Jun-19
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-19 (CTTL, No.J19X00547)	Jun-19 Feb-20 Feb-20 Aug-19 Aug -19 Scheduled Calibration Jun-19 Jan -20
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673 Name	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-19 (CTTL, No.J19X00547) Function	Jun-19 Feb-20 Feb-20 Aug-19 Aug -19 Scheduled Calibration Jun-19 Jan -20
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by: Reviewed by:	101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673 Name Yu Zongying	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG, No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-19 (CTTL, No.J19X00547) Function SAR Test Engineer	Jun-19 Feb-20 Feb-20 Aug-19 Aug -19 Scheduled Calibration Jun-19 Jan -20
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by: Reviewed by: Approved by:	101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao Qi Dianyuan	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG, No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-19 (CTTL, No.J18X05033) 24-Jan-19 (CTTL, No.J19X00547) Function SAR Test Engineer SAR Test Engineer SAR Project Leader	Jun-19 Feb-20 Feb-20 Aug-19 Aug-19 Scheduled Calibration Jun-19 Jan -20 Signature
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by: Reviewed by:	101548 18N50W-10dB 18N50W-20dB SN 7514 SN 1555 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao Qi Dianyuan	20-Jun-18 (CTTL, No.J18X05032) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 27-Aug-18(SPEAG, No.EX3-7514_Aug18/2) 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 21-Jun-18 (CTTL, No.J18X05033) 24-Jan-19 (CTTL, No.J18X05033) 24-Jan-19 (CTTL, No.J19X00547) Function SAR Test Engineer SAR Test Engineer	Jun-19 Feb-20 Feb-20 Aug-19 Aug-19 Scheduled Calibration Jun-19 Jan -20 Signature

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Probe EX3DV4

SN: 3767

Calibrated: March 25, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z19-60075

Page 3 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3767

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.55	0.57	0.48	±10.0%
DCP(mV) ^B	101.7	101.5	103.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0 CW	0	X	0.0	0.0	1.0	0.00	175.2	±2.7%
		Y	0.0	0.0	1.0		180.4	
-		Z	0.0	0.0	1.0		164.9	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 4 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3767

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.72	9.72	9.72	0.14	1.14	±12.1%
835	41.5	0.90	9.40	9.40	9.40	0.25	0.96	±12.1%
900	41.5	0.97	9.38	9.38	9.38	0.19	1.08	±12.1%
1450	40.5	1.20	8.51	8.51	8.51	0.10	1.52	±12.1%
1750	40.1	1.37	8.32	8.32	8.32	0.22	1.08	±12.1%
1900	40.0	1.40	7.91	7.91	7.91	0.27	0.97	±12.1%
2000	40.0	1.40	7.83	7.83	7.83	0.25	0.94	±12.1%
2450	39.2	1.80	7.40	7.40	7.40	0.58	0.72	±12.1%
2600	39.0	1.96	7.25	7.25	7.25	0.65	0.69	±12.1%
3500	37.9	2.91	6.74	6.74	6.74	0.60	0.98	±13.3%
5200	36.0	4.66	5.55	5.55	5.55	0.40	1.35	±13.3%
5300	35.9	4.76	5.18	5.18	5.18	0.40	1.50	±13.3%
5500	35.6	4.96	4.87	4.87	4.87	0.45	1.40	±13.3%
5600	35.5	5.07	4.76	4.76	4.76	0.45	1.40	±13.3%
5800	35.3	5.27	4.71	4.71	4.71	0.45	1.50	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z19-60075

Page 5 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

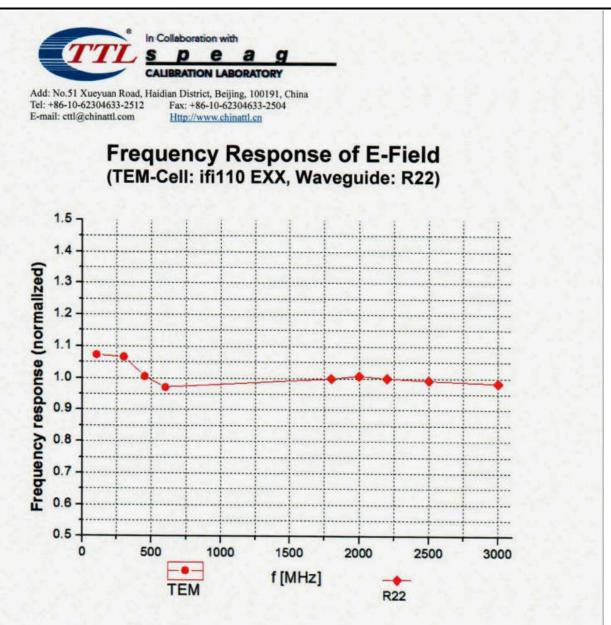
 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3767

Calibration Parameter Determined in Body Tissue Simulating Media

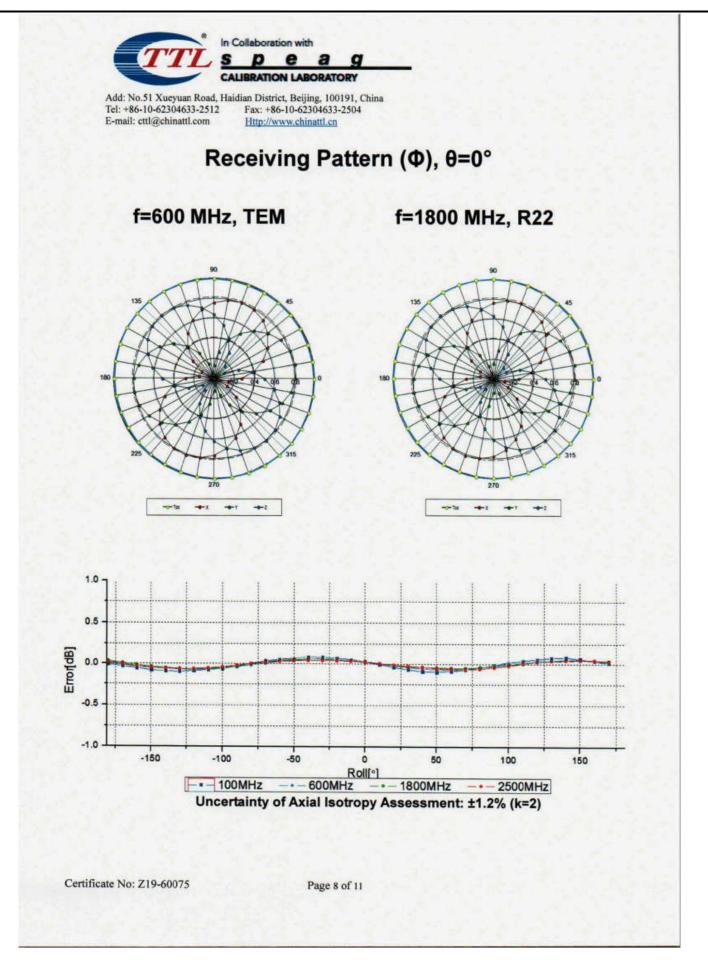
f [MHz] ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.00	10.00	10.00	0.40	0.80	±12.1%
835	55.2	0.97	9.62	9.62	9.62	0.17	1.44	±12.1%
900	55.0	1.05	9.57	9.57	9.57	0.20	1.28	±12.1%
1450	54.0	1.30	8.41	8.41	8.41	0.10	1.70	±12.1%
1750	53.4	1.49	8.00	8.00	8.00	0.20	1.17	±12.1%
1900	53.3	1.52	7.87	7.87	7.87	0.23	1.11	±12.1%
2000	53.3	1.52	7.71	7.71	7.71	0.19	1.26	±12.1%
2450	52.7	1.95	7.58	7.58	7.58	0.57	0.78	±12.1%
2600	52.5	2.16	7.37	7.37	7.37	0.67	0.72	±12.1%
3500	51.3	3.31	6.54	6.54	6.54	0.55	1.05	±13.3%
5200	49.0	5.30	5.10	5.10	5.10	0.49	1.40	±13.3%
5300	48.9	5.42	4.90	4.90	4.90	0.45	1.50	±13.3%
5500	48.6	5.65	4.45	4.45	4.45	0.45	1.70	±13.3%
5600	48.5	5.77	4.36	4.36	4.36	0.45	1.55	±13.3%
5800	48.2	6.00	4.39	4.39	4.39	0.50	1.42	±13.3%


^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

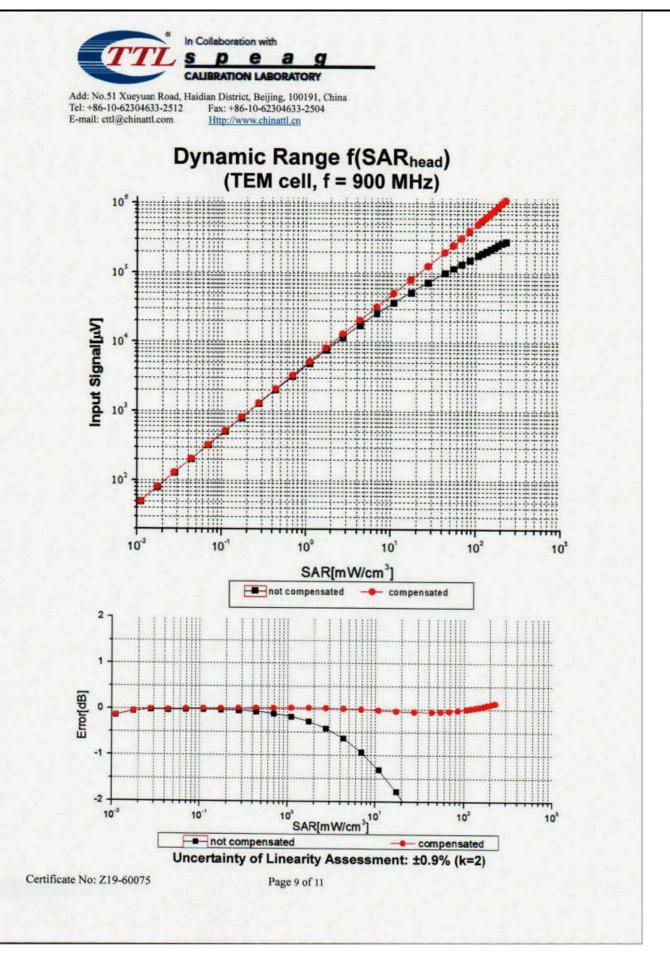
^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z19-60075

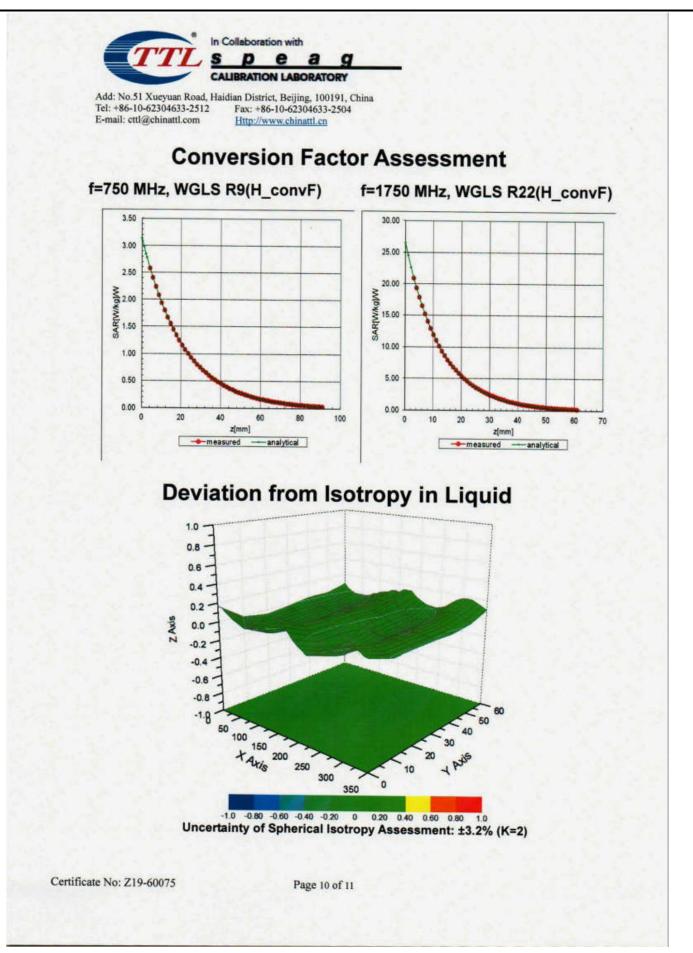
Page 6 of 11

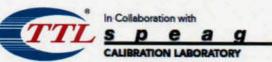


Uncertainty of Frequency Response of E-field: ±7.4% (k=2)


Certificate No: Z19-60075

Page 7 of 11





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3767

Other Probe Parameters

Sensor Arrangement	Triangular		
Connector Angle (°)	146.2		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disable		
Probe Overall Length	337mm		
Probe Body Diameter	10mm		
Tip Length	9mm		
Tip Diameter	2.5mm		
Probe Tip to Sensor X Calibration Point	1mm		
Probe Tip to Sensor Y Calibration Point	1mm		
Probe Tip to Sensor Z Calibration Point	1mm		
Recommended Measurement Distance from Surface	1.4mm		

Certificate No: Z19-60075

Page 11 of 11

ANNEX D: TEST SETUP PHOTOS

Top Side

..... THE END