

FCC AND ISED CERTIFICATION TEST REPORT

FOR

Applicant	:	Harman International Industries, Inc.	
Address	:	500 Balboa Boulevard, Northridge, CA 91329, JNITED STATES	
Equipment under Test	:	Aulti-Channel Soundbar with wireless subwoofer	
Model No.		AR 700	
Trade Mark	:	JBL	
FCC ID		APIBAR800	
IC	:	6132A-BAR800	
Manufacturer	:	Harman International Industries, Inc.	
Address	:	8500 Balboa Boulevard, Northridge, CA 91329, UNITED STATES	

Issued By: Dongguan Dongdian Testing Service Co., Ltd.

Add.: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park,

Dongguan City, Guangdong Province, China, 523808

Tel.: +86-0769-38826678, E-mail: ddt@dgddt.com, http://www.dgddt.com

REPORT

Table of Contents

	Test report declares	.3
1.	Summary of Test Results	5
2.	General Test Information	
2.1.	Description of EUT	6
2.2.	Accessories of EUT	7
2.3.	Assistant equipment used for test	7
2.4.	Block diagram of EUT configuration for test	7
2.5.	Deviations of test standard	7
2.6.	Test environment conditions	
2.7.	Test laboratory	8
2.8.	Measurement uncertainty	9
3.	Equipment Used During Test	
4.	Radiated Emission1	
4.1.	Block diagram of test setup 1	
4.2.	Limit 1	2
4.3.	Test Procedure 1	4
4.4.	Test result 1	
5.	Power Line Conducted Emission 1	
5.1.	Block diagram of test setup 1	8
5.2.	Power line conducted emission limits	8
5.3.	Test procedure 1	8
5.4.	Test result 1	
6.	Test Setup Photograph	22
7.	Photos of the EUT	23

Test Report Declare

Applicant	:	Harman International Industries, Inc.	
Address	:	8500 Balboa Boulevard, Northridge, CA 91329, UNITED STATES	
Equipment under Test	:	Iulti-Channel Soundbar with wireless subwoofer	
Model No.	:	BAR 700	
Trade Mark	:	IBL	
Manufacturer		larman International Industries, Inc.	
Address	/	8500 Balboa Boulevard, Northridge, CA 91329, UNITED STATES	

Test Standard Used:

FCC Rules and Regulations Part 15 Subpart C, RSS-247 Issue 2 February 2017.

Test Procedure Used:

ANSI C63.10:2013, RSS-Gen Issue 5, Apr. 2018, Amendment 2 (February 2021)

We Declare:

The equipment described above is tested by Dongguan Dongdian Testing Service Co., Ltd. and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan Dongdian Testing Service Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC&ISED standards.

Report No.:	DDT-R22112306-2E01		
Date of Receipt:	Nov. 23, 2022	Date of Test:	Nov. 23, 2022 ~ Dec. 05, 2022

Prepared By:

Ella Gon

Ella Gong/Engineer

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan Dongdian Testing Service Co., Ltd.

Revision History

Rev.	Revisions	Issue Date	Revised By
	Initial issue	Dec. 08, 2022	7
	DE DE	PK	2

1. Summary of Test Results

Description of Test Item	Standard	Verdict
Radiated Emission	FCC Part 15: 15.209 FCC Part 15: 15.247(d) ANSI C63.10:2013 RSS-247 Issue 2 RSS-Gen Issue 5	Pass
Power Line Conducted Emissions	FCC Part 15: 15.207 ANSI C63.10:2013 RSS-Gen Issue 5	Pass

Note:

1. This report added a model BAR 700 based on the report DDT-R21123117-2E01, the difference is that BAR 700 has two less overhead speakers and one less power amplifier IC on Power amplifier board than BAR 800. This change based on engineering judgment that only Radiated Emission (below 1 GHz) and Power Line Conducted Emissions need to test. 2. Please refer to report DDT-R21123117-2E01 for the other original data.

2. General Test Information

2.1. Description of EUT

EUT* Name	:	Multi-Channel Soundbar with wireless subwoofer	
Model Number	:	AR 700	
EUT Function Description	:	Please reference user manual of this device	
Power Supply	:	AC 100-240V-50/60Hz 70W	
Radio Specification	:	Bluetooth V5.0 ®	
Operation Frequency	:	2402 MHz - 2480 MHz	
Modulation	:	GFSK, π/4-DQPSK, 8DPSK	
Data Rate	:	1 Mbps, 2 Mbps, 3 Mbps	
Antenna Gain	:	FPC antenna, maximum PK gain: 2.56 dBi	
Sample Number	:	S22112306-03	
Nister FLIT is the short from	•		

Note: EUT is the ab. of equipment under test.

Channel inform		9			OK/
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	27	2429	54	2456
1	2403	28	2430	55	2457
2	2404	29	2431	56	2458
3	2405	30	2432	57	2459
4	2406	31	2433	58	2460
5	2407	32	2434	59	2461
6	2408	33		60	8 2462
7	2409	34	2436	61	2463
8	2410	35	2437	62	2464
9	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454	8	
26	2428	53	2455		

2.2. Accessories of EUT

Description of Accessories	Manufacturer	Model number	Description	Other
AC cable	Harman	N/A	N/A	Length: 1.85m,
HDMI cable	Harman	N/A	N/A	Length: 1.15m, with two magnetic rings
Remote control	Harman	N/A	N/A	N/A

2.3. Assistant equipment used for test

Assistant equipment	Manufacturer	Model number	EMC Compliance	SN
N/A	N/A	N/A	N/A	N/A

2.4. Block diagram of EUT configuration for test

AC Mains-

Test software: adb.exe

The test software was used to control EUT work in Continuous Tx Mode, and select test channel, wireless mode as below table.

The pathloss of external cable: 0.5dB (According to the manufacturer's claims)

Tested mode, channel, information			
Mode	Setting Tx Power	Channel	Frequency (MHz)
GFSK hopping on Tx Mode	default	CH0 to CH78	2402 to 2480
π /4-DQPSK hopping on Tx Mode	default	CH0 to CH78	2402 to 2480
8DPSK hopping on Tx Mode	default	CH0 to CH78	2402 to 2480
	default	CH0	2402
GFSK hopping off Tx Mode	default	CH39	2441
	default	CH78	2480
	default	CH0	2402
π /4-DQPSK hopping off Tx Mode	default	CH39	2441
	default	CH78	2480
	default	CH0	2402
8DPSK hopping off Tx Mode	default	CH39	2441
	default	CH78	2480

2.5. Deviations of test standard

No deviation.

2.6. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	+21 ℃ to +25 ℃
Humidity range:	40% to 75%
Pressure range:	86 kPa to 106 kPa

2.7. Test laboratory

Dongguan Dongdian Testing Service Co., Ltd.

Add.: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China, 523808.

Tel.: +86-0769-38826678, http://www.dgddt.com, Email: ddt@dgddt.com.

CNAS Accreditation No. L6451; A2LA Accreditation Number: 3870.01

FCC Designation Number: CN1182, Test Firm Registration Number: 540522

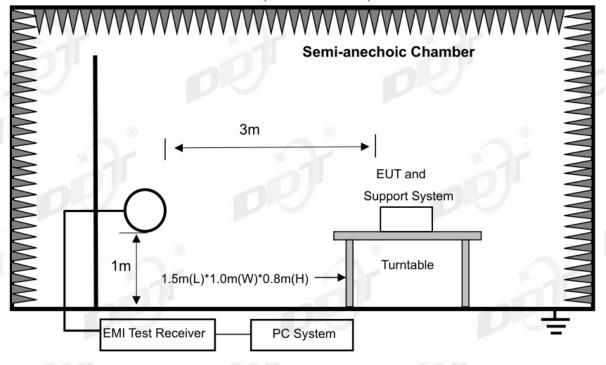
Innovation, Science and Economic Development Canada Site Registration Number: 10288A

Conformity Assessment Body identifier: CN0048

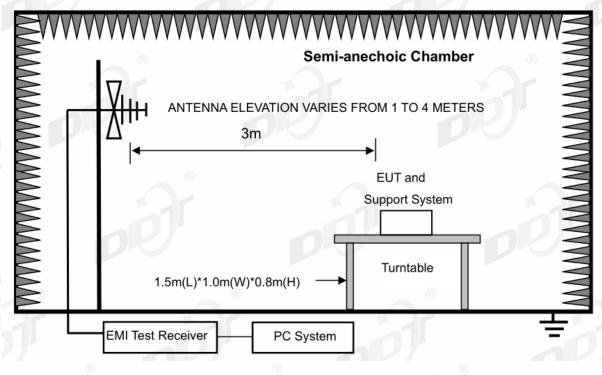
VCCI facility registration number: C-20087, T-20088, R-20123, R-20155, G-20118

2.8. Measurement uncertainty

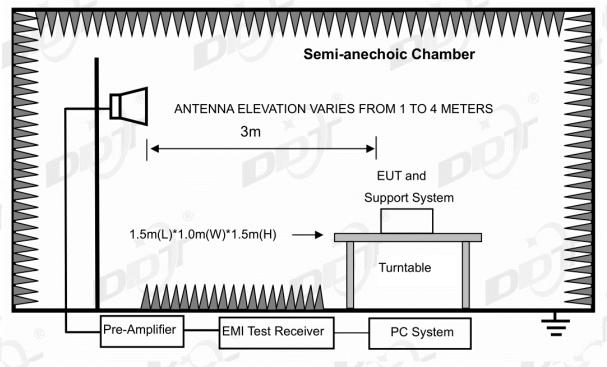
Uncertainty 1.1% 0.86 dB (10 MHz ≤ f < 3.6 GHz);
0.86 dB (10 MHz ≤ f < 3.6 GHz);
1.38 dB (3.6 GHz ≤ f < 8 GHz)
0.74 dB
0.74 dB (10 MHz ≤ f < 3.6 GHz);
1.38 dB (3.6 GHz ≤ f < 8 GHz)
6.7 x 10 ⁻⁸ (Antenna couple method)
5.5 x 10 ⁻⁸ (Conducted method)
0.86 dB (10 MHz ≤ f < 3.6 GHz);
1.40 dB (3.6 GHz ≤ f < 8 GHz)
1.66 dB (8 GHz ≤ f < 22 GHz)
3×10 ⁻⁸
₀ 0.4 °C
2 %
3.44 dB
4.70 dB (Antenna Polarize: V)
4.84 dB (Antenna Polarize: H)
4.10 dB (1 - 6 GHz)
4.40 dB (6 GHz - 18 GHz)
3.54 dB (18 GHz - 26 GHz)
4.30 dB (26 GHz - 40 GHz)
3.32 dB (150 kHz - 30 MHz)
nty expressed at approximately the


3. Equipment Used During Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
⊠Radiation 3#cha	mber	®	,	0	_
EMI Test Receiver	R&S	ESU26	100472	May 19, 2022	1 Year
Spectrum analyzer	Agilent	E4447A	MY50180031	May 17, 2022	1 Year
Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	Sep. 29, 2022	1 Year
Trilog Broadband Antenna	Schwarzbeck	VULB 9163	01429	Jul. 22, 2022	1 Year
Double Ridged Horn Antenna	Schwarzbeck	BBHA9120 D	02468	Sep. 29, 2022	1 Year
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	790	May 06, 2022	1 Year
Pre-amplifier	COM-POWER	PAM-118A	18040084	Aug.17, 2022	1 Year
Pre-amplifier	COM-POWER	PAM-840A	461369 🕓	Apr. 11, 2022	1 Year
RE Cable	N/A	JCT26S-NJ-NJ-1.5 M	M+1.5M	Aug.17, 2022	1 Year
RF Cable	Yuhu Technology	JCTB810-NJ-NJ-9 M	21123964	May. 19,2022	1 Year
RF Cable	Yuhu Technology	ZT26S-SMAJ-SMA J-1M	21073466	Aug.17, 2022	1 Year
Test software	Tonscend	JS32-RE	V 5.0.0.1	N/A	N/A
Test software	Audix	E3 🔬	V 6.1.1.1	N/A	N/A
Power Line Con	ducted Emissions	s Test 1#			
Test Receiver	R&S	ESCI	100551	Aug. 26, 2022	1 Year
LISN 1	R&S	ENV216	101109	Aug. 26, 2022	1 Year
LISN 2	R&S	ESH2-Z5	100309	Aug. 26, 2022	1 Year
Pulse Limiter	R&S	ESH3-Z2	101242	Aug. 26, 2022	1 Year
CE Cable 1	HUBSER	N/A	W10.01	Aug. 26, 2022	1 Year
Test software	Audix	E3	V 6.11111b	N/A	N/A
Test Receiver	R&S	ESCI	100551	Aug. 26, 2022	1 Year


4. Radiated Emission

4.1. Block diagram of test setup


In 3 m Anechoic Chamber, test setup diagram for 9 kHz - 30 MHz:

In 3 m Anechoic Chamber, test setup diagram for 30 MHz - 1 GHz:

In 3 m Anechoic Chamber, test setup diagram for frequency above 1 GHz:

Note: For harmonic emissions test an appropriate high pass filter was inserted in the input port of AMP.

4.2. Limit

(1) FCC 15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.1772&4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.2072&4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6

MHz	MHz	MHz	GHz
0.090-0.110	12.51975-12.52025	240-285	3.5-4.4
0.495-0.505	12.57675-12.57725	322-335.4	4.5-5.15
2.1735-2.1905	13.36-13.41	399.9-410	5.35-5.46
3.020-3.026	16.42-16.423	608-614	7.25-7.75
4.125-4.128	16.69475-16.69525	960-1427	8.025-8.5
4.1772&4.17775	16.80425-16.80475	1435-1626.5	9.0-9.2
4.2072&4.20775	25.5-25.67	1645.5-1646.5	9.3-9.5
5.677-5.683	37.5-38.25	1660-1710	10.6-12.7
6.215-6.218	73-74.6	1718.8-1722.2	13.25-13.4
6.26775-6.26825	74.8-75.2	2200-2300	14.47-14.5
6.31175-6.31225	108-138	2310-2390	15.35-16.2
8.291-8.294	149.9-150.05	2483.5-2500	17.7-21.4
8.362-8.366	156.52475-156.52525	2655-2900	22.01-23.12
8.37625-8.38675	156.7-156.9	3260-3267	23.6-24.0
8.41425-8.41475	162.0125-167.17	3332-3339	31.2-31.8
12.29-12.293	167.72-173.2	3345.8-3358	36.43-36.5
			Above 38.6

RSS-Gen section 8.10 Restricted frequency bands*

* Certain frequency bands listed in table and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

(2) FCC 15.209 Limit & RSS-Gen section 8.9 Limit

FREQUENCY	DISTANCE	FIELD STRENG	GTHS LIMIT
MHz	Meters	μV/m	dB(µV)/m
0.009 ~ 0.490	300	2400/F(kHz)	67.6-20log(F)
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F)
1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV)/i 54.0 dB(μV)/m	

Note: (1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9 - 90 kHz, 110 - 490 kHz and above 1000 MHz, radiated emissions limits in these three bands are based on measurements employing an average detector.

(2) At frequencies below 30 MHz, measurement may be performed at a distance closer than that specified, and the limit at closer measurement distance can be extrapolated by below formula:

 $Limit_{3m}(dBuV/m) = Limit_{30m}(dBuV/m) + 40Log(30m/3m)$

(3) Limit for this EUT

The emissions appearing within 15.205 restricted frequency bands shall not exceed the limits

shown in 15.209, and the emissions appearing within RSS-Gen section 8.10 Restricted frequency bands shall not exceed the limits shown in RSS-Gen section 8.9, all the other emissions shall be at least 20 dB below the fundamental emissions or comply with 15.209 limits and RSS-Gen section 8.9 limits.

4.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1 GHz and 150 cm above the ground plane inside a fully-anechoic chamber for above 1 GHz.
- (2) Test antenna was located 3 m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used	Test antenna distance
9 kHz - 30 MHz	Active Loop antenna	3 m
30 MHz - 1 GHz	Trilog Broadband Antenna	3 m
1 GHz - 18 GHz	Double Ridged Horn Antenna (1 GHz - 18 GHz)	3 m
18 GHz - 40 GHz	Horn Antenna (18 GHz - 40 GHz)	1 m

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, Antenna was located 3 m from EUT, the loop antenna was positioned in three antenna orientations (parallel, perpendicular, and round-parallel), for each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable, and the lowest height of the magnetic antenna shall be 1 m above the ground. For measurement above 30 MHz, the trilog Broadband Antenna or Horn Antenna was located 3 m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

(3) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9 kHz to 25 GHz:

(a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1 m to 4 m (Except loop antenna, it's fixed 1 m above ground.)

(b) Change work frequency or channel of device if practicable.

(c) Change modulation type of device if practicable.

(d) Change power supply range from 85% to 115% of the rated supply voltage

(e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.

Spectrum frequency from 9 kHz to 25 GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 18 GHz to 25 GHz, so below final test was performed with frequency range from 9 kHz to 18 GHz.

- (4) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipment and all of the interface cables were changed according to ANSI C63.10:2013 on Radiated Emission test.
- (5) The emissions from 9 kHz to 1 GHz were measured based on CISPR QP detector except for the frequency bands 9 90 kHz, 110 490 kHz, for emissions from 9 kHz 90 kHz,110 kHz 490 kHz and above 1 GHz were measured based on average detector, for emissions above 1 GHz, peak emissions also be measured and need comply with Peak limit.
- (6) The emissions from 9 kHz to 1 GHz, QP or average values were measured with EMI receiver with below RBW.

Frequency band	RBW
9 kHz - 150 kHz	200 Hz
150 kHz - 30 MHz	9 kHz 💿
30 MHz - 1 GHz	120 kHz

- (7) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1 MHz, VBW is set at 3 MHz for Peak measure; According ANSI C63.10:2013 clause 4.1.4.2.2 procedure for average measure.
- (8) X axis, Y axis, Z axis are tested, and worse setup X axis is reported.

4.4. Test result

Pass. (See below detailed test result)

All the emissions except fundamental emission from 9 kHz to 25 GHz were comply with 15.209 limits and RSS-Gen section 8.9 limits.

Note1: According exploratory test, the emission levels are 20 dB below the limit detected from 9 kHz to 30 MHz and 18 GHz to 25 GHz, so the final test was performed with frequency range from 30 MHz to 18 GHz and recorded in below.

Note2: 30 MHz ~ 25 GHz: (Scan with GFSK, π /4-DQPSK and 8DPSK, the worst case is 8DPSK Mode)

Note3: For emissions below 1 GHz, according exploratory explorer test, when change Tx Mode and channel, have no distinct influence on emissions level, so for emissions below 1 GHz, the final test was only performed with EUT working in 8DPSK, Tx 2402 MHz mode.

Note4: For emissions above 1 GHz. If peak results comply with AV limit, AV Result is deemed to comply with AV limit.

Dongguan Dongdian Testing Service Co., Ltd.

Radiated Emission test (below 1 GHz) **TR-4-E-009 Radiated Emission Test Result**

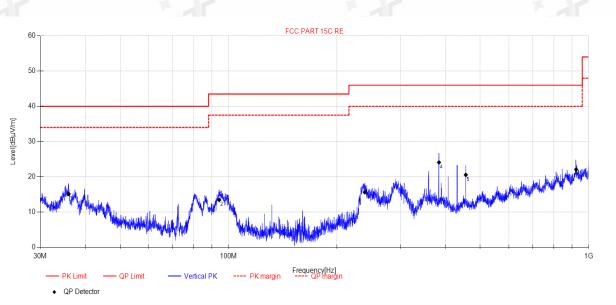
Test Da	ate:	2022-11-28			Tested By:	Johnson Huan	g
EUT:		Multi-Channel subwoofer	Soundbar w	ith wireless	Model Number:	BAR 700	
Test M	ode:	TX Mode			Power Supply:	AC 120V/60Hz	
Condit	ion:	Temp:23.4°C;⊦	łumi:46.5%;	Press:100.3kPa	Test Site:	DDT 3# Chaml	per
File Pa	th:	d:\ts\2022 repo	ort data\Q22	112306-BAR700\F	CC BELOW 1G\2	0221128-111624_	H (
Memo:		вт					
				FCC PART 15			
	60			FCC PART IS			
	50						
	40						
[m//h							
Level[dBµV/m]	30					5	L
	20			3	- MANN		
	10-	Mindender Mindender States and a states of the states of t			Kurath The The	the signal and an an an an and an	
	0		100		-		
	JUM PK Lin	nit — QP Limit -	Horizontal PK	Frequency[]	Hz] margin		
	QP D						

Final	Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	36.13	28.43	-20.48	7.95	40.00	32.05	QP	Horizontal
2	81.31	32.27	-24.19	8.08	40.00	31.92	QP	Horizontal
3	132.09	42.82	-23.33	19.49	43.50	24.01	QP	Horizontal
4	288.47	40.14	-17.52	22.62	46.00	23.38	QP	Horizontal
5	384.01	44.27	-15.13	29.14	46.00	16.86	QP	Horizontal
6	916.73	31.03	-5.95	25.08	46.00	20.92	QP	Horizontal

Note:

Result Level = Read Level + Factor
 If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.


TR-4-E-009 Radiated Emission Test Result

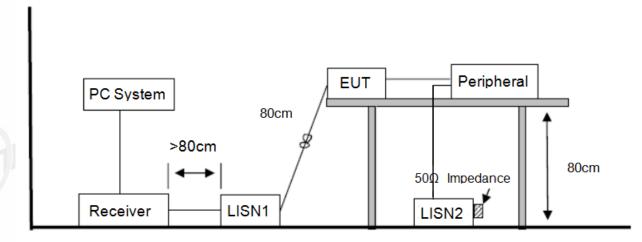
Test Date:	2022-11-28	Tested By:	Johnson Huang
EUT:	Multi-Channel Soundbar with wireless subwoofer	Model Number:	BAR 700
Test Mode:	TX Mode	Power Supply:	AC 120V/60Hz
Condition:	Temp:23.4°C;Humi:46.5%;Press:100.3kPa	Test Site:	DDT 3# Chamber
File Path:	d:\ts\2022 report data\Q22112306-BAR700\F	FCC BELOW 1G\20	221128-111643_V

Memo:

ΒT

NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	35.97	35.69	-20.53	15.16	40.00	24.84	QP	Vertical
2	94.21	34.48	-21.04	13.44	43.50	30.06	QP	Vertical
3	239.05	34.19	-18.57	15.62	46.00	30.38	QP	Vertical
4	384.01	39.22	-15.13	24.09	46.00	21.91	QP	Vertical
5	455.98	34.44	-13.89	20.55	46.00	25.45	QP	Vertical
6	923.18	27.95	-5.87	22.08	46.00	23.92	QP	Vertical

Note:


1. Result Level = Read Level + Factor

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

5. Power Line Conducted Emission

5.1. Block diagram of test setup

5.2. Power line conducted emission limits

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)
150 kHz ~ 500 kHz	[©] 66 ~ 56*	[©] 56 ~ 46*
500 kHz ~ 5 MHz	56	46
5 MHz ~ 30 MHz	60	50

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

5.3. Test procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 5.1 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

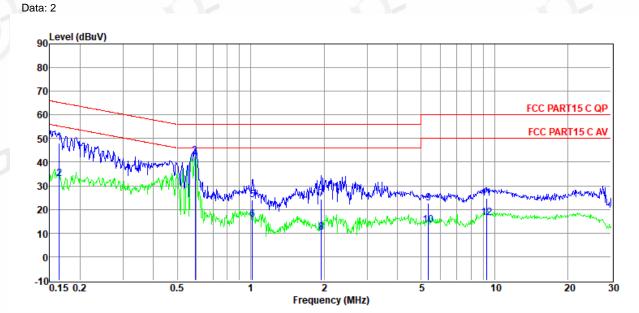
After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded. The bandwidth of test receiver is set at 9 kHz.


5.4. Test result

Pass. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits. Note2: "-----" means Peak detection; "-----" means Average detection. Note3: Pre-test AC conducted emission at both voltage AC 120V/60Hz and AC 240V/50Hz, recorded worse case.

TR-4-E-010 Conducted Emission Test Result

Test Site	: DDT 1# Shield Room	D:\2022 CE report date\Q22112306-2E BAR 700\FCC.EM6				
Test Date	: 2022-12-01	Tested By	: Bairong			
EUT	. Multi-Channel Soundbar with wireless subwoofer	Model Number	: BAR 700			
Power Supply	: AC 120V/60Hz	Test Mode	: TX mode			
Condition	: TEMP:24.6°C, RH:54.1%, BP:101.1kPa	: 2021 1# ENV216/NEUTRAL				
Memo	: BT					

Item	Freq.	Read Level	LISN Factor	Cable Loss	Pulse Limiter Factor	Result Level	Limit Line	Over Limit	Detector	Phase
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.16	28.44	9.80	0.01	9.92	48.17	65.25	-17.08	QP	NEUTRAL
2	0.16	13.32	9.80	0.01	9.92	33.05	55.25	-22.20	Average	NEUTRAL
3	0.59	23.06	9.65	0.02	9.91	42.64	56.00	-13.36	QP	NEUTRAL
4	0.59	22.03	9.65 🕓	0.02	9.91	41.61	[®] 46.00	-4.39	Average	[©] NEUTRAL
5	1.02	4.40	9.70	0.03	9.89	24.02	56.00	-31.98	QP	NEUTRAL
6	1.02	-3.76	9.70	0.03	9.89	15.86	46.00	-30.14	Average	NEUTRAL
7	1.95	4.68	9.60	0.04	9.89	24.21	56.00	-31.79	QP	NEUTRAL
8	1.95	-9.41	9.60	0.04	9.89	10.12	46.00	-35.88	Average	NEUTRAL
9	5.36	3.01	9.70	0.07	9.93	22.71	60.00	-37.29	QP	NEUTRAL
10	5.36	-6.43	9.70	0.07	9.93	13.27	50.00	-36.73	Average	NEUTRAL
11	9.25	5.07	9.76	0.10	9.94	24.87	60.00 🕓	-35.13	QP	NEUTRAL
12	9.25	-3.31	9.76	0.10	9.94	16.49	50.00	-33.51	Average	NEUTRAL

Note:

- 1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

TR-4-E-010 Conducted Emission Test Result

Test Site	: DDT 1# Shield Room	D:\2022 CE report date\Q22112306-2E BAR 700\FCC.EM6					
Test Date	: 2022-12-01	Tested By	: Bairong				
EUT	. Multi-Channel Soundbar with wireless subwoofer	Model Number	: BAR 700				
Power Supply	: AC 120V/60Hz	Test Mode	: TX mode				
Condition	: TEMP:24.6°C, RH:54.1%, BP:101.1kPa	LISN	: 2021 1# ENV216/LINE				
Memo	: BT						
Data: 24							
90 80	BuV)						
70 60 50			FCC PART15 C QP FCC PART15 C AV				
40	M. M. Mary Mary and a shift						

Frequency (MHz)										
Item (Mark)	Freq.	Read Level (dBµV)	LISN Factor	Cable Loss	Pulse Limiter Factor (dB)	Result Level	Limit Line (dBµV)	Over Limit	Detector	Phase
1	0.16	26.83	9.66	0.01	9.92	46.42	65.30	-18.88	QP	LINE
2	0.16	12.21	9.66	0.01	9.92	31.80	55.30	-23.50	Average	LINE
3	0.59	23.19	9.55	0.02	9.91	42.67	56.00	-13.33	QP	LINE
4	0.59	19.16	9.55 🕓	0.02	9.91	38.64	[®] 46.00	-7.36	Average	[®] LINE
5	2.03	7.22	9.50	0.04	9.89	26.65	56.00	-29.35	QP	LINE
6	2.03	-3.65	9.50	0.04	9.89	15.78	46.00	-30.22	Average	LINE
7	3.49	7.26	9.58	0.05	9.91	26.80	56.00	-29.20	QP	LINE
8	3.49	-3.11	9.58	0.05	9.91	16.43	46.00	-29.57	Average	LINE
9	8.02	8.71	9.50	0.09	9.94	28.24	60.00	-31.76	QP	LINE
10	8.02	-0.20	9.50	0.09	9.94	19.33	50.00	-30.67	Average	LINE
11	27.27	1.86	9.68	0.20	9.99	21.73	60.00 🕓	-38.27	QP	LINE
12	27.27	-5.30	9.68	0.20	9.99	14.57	50.00	-35.43	Average	LINE

2

5

10

20

30

Note:

-10¹⁰0.15 0.2

- 1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss.
- If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).

0.5

4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

END OF REPORT

Report No.:DDT-R22112306-2E01

7. Photos of the EUT

Please refer to appendix III