

Test Report Serial Number: Test Report Date: Project Number: 45461429R2.0 6 March 2018 1397

# EMC Test Report - New Filing Applicant: Uniden America Corporation 3001 Gateway Drive Suite 130 Irving, Tx, 75063, USA FCC ID: IC Registration Number AMWUT420 513C-UT420 Product Model Number / HVIN Product Name / PMN PC88Elite PC88Elite

In Accordance With:

# FCC 47 CFR Part 95 Subpart D, Part 15 Subpart B

Licensed Non-Broadcast Station Transmitter (TNB)

# SS-GEN, RSS-236 Issue 1

Citizen Band (26.960 to 27.410 MHz)

Approved By:

Ben Hewson, President Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada



Test Lab Certificate: 2470.01





IC R

IC Registration 3874A-1

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc. © 2016 Celltech Labs Inc,



# **Table of Contents**

| 1.0 DOCUMENT CONTROL                              |   |
|---------------------------------------------------|---|
| 2.0 CLIENT AND DUT INFORMATION                    | 6 |
| 3.0 SCOPE                                         |   |
| 4.0 TEST RESULT SUMMARY                           | 8 |
| 5.0 NORMATIVE REFERENCES                          |   |
| 6.0 FACILITIES AND ACCREDITATIONS                 |   |
| 7.0 CONDUCTED POWER                               |   |
| 8.0 MODULATION RESPONSE                           |   |
| 9.0 OCCUPIED BANDWIDTH AND EMISSION MASKS         | - |
| 10 CONDUCTED OUT OF BAND SPURIOUS EMISSIONS       |   |
| 11.0 RADIATED SPURIOUS EMISSIONS                  |   |
| 12.0 FREQUENCY STABILITY                          |   |
| 13.0 RECEIVER RADIATED EMISSIONS - DOC            | - |
| APPENDIX A – TEST SETUP DRAWINGS AND CONDITIONS   |   |
| APPENDIX B – EQUIPMENT LIST AND CALIBRATION       |   |
| APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY   | - |
| EXHIBIT 1A – FCC 731 FORM                         |   |
| EXHIBIT 1B – ISED ANNEX I-II FORM                 |   |
| EXHIBIT 2A – FCC AGENT AUTHORITY                  |   |
| EXHIBIT 2B – ISED AGENT AUTHORITY                 |   |
| EXHIBIT 3A – FCC CONFIDENTIALITY REQUEST          |   |
| EXHIBIT 3B – ISED CANADIAN REP ATTESTATION LETTER |   |
| EXHIBIT 4A – RF EXPOSURE (MPE) REPORT - FCC       |   |
| EXHIBIT 4B – RF EXPOSURE (MPE) REPORT - ISED      |   |
| EXHIBIT 5 – LABEL SAMPLE                          |   |
| EXHIBIT 6 – LABEL LOCATION                        |   |
| EXHIBIT 7 –BLOCK DIAGRAM                          |   |
| EXHIBIT 8 –CIRCUIT DESCRIPTION                    |   |
| EXHIBIT 9 – SCHEMATIC DIAGRAM                     |   |
| EXHIBIT 10 – BOM                                  |   |
| EXHIBIT 11 – USER'S MANUAL                        |   |
| EXHIBIT 12 – ALIGNMENT PROCEDURE                  |   |
| EXHIBIT 13 – EXTERNAL PHOTOS                      |   |
| EXHIBIT 14 – INTERNAL PHOTOS                      |   |
| EXHIBIT 15 – SETUP PHOTOS                         |   |
|                                                   |   |



45461429 R2.0 6 March 2018

# **Table of Figures**

| Figure A.1 – Test Setup Conducted Measurements                                    | 41 |
|-----------------------------------------------------------------------------------|----|
| Figure A.2 – Test Setup Audio Modulation Response Measurements                    | 42 |
| Figure A.3 – Test Setup Radiated Emissions Measurements                           | 43 |
| Figure A.4 – Test Setup Frequency Stability Measurements                          | 44 |
| Figure E5.1 – Sample Label                                                        |    |
| Figure E6.1 – Label Location                                                      |    |
| Figure E12.1 – External Photo - DUT Front View                                    | 63 |
| Figure E12.2 – External Photo - DUT Rear View                                     |    |
| Figure E12.3 – External Photo - DUT w/ Accessories                                |    |
| Figure E12.4 – External Photo - DUT Top View                                      |    |
| Figure E12.5 – External Photo - DUT Bottom View                                   |    |
| Figure E12.6 – External Photo - DUT Right View                                    |    |
| Figure E12.7 – External Photo - DUT Left View                                     |    |
| Figure E13.1 – Internal Photo - DUT w/ Bottom Cover Removed                       |    |
| Figure E13.2 – Internal Photo – DUT w/ Top Cover Removed                          |    |
| Figure E13.3 – Internal Photo – Front Control Assembly – Rear View                |    |
| Figure E13.4 – Internal Photo – Front Control Assembly – Front View               |    |
| Figure E13.5 – Internal Photo – Front Control Assembly – Component View           |    |
| Figure E13.6 – Internal Photo – PCB – Top View                                    |    |
| Figure E13.7 – Internal Photo – PCB – Bottom View                                 |    |
| Figure E13.8 – Internal Photo – PCB – Audio Amplifier Section                     |    |
| Figure E13.9 – Internal Photo – PCB – Audio Amplifier Section – Heat Sink Removed |    |
| Figure E13.10 – Internal Photo – PCB – RF Amplifier Section                       |    |
| Figure E14.1 – Setup Photo – Frequency Stability – DUT in Environmental Chamber   |    |
| Figure E14.2 – Setup Photo – Frequency Stability - External Equipment             |    |
| Figure E14.3 – Setup Photo – Radiated Emissions < 1GHz                            | 80 |

# Table of Plots

| Plot 8.1 – Audio Frequency and Low Pass Filter Response                                            |    |
|----------------------------------------------------------------------------------------------------|----|
| Plot 8.1 – Audio Frequency and Low Pass Filter Response<br>Plot 8.2 – Modulation Limiting Response |    |
| Plot 9.1 – Occupied Bandwidth Channel 1                                                            |    |
| Plot 9.2 – Occupied Bandwidth Channel 19                                                           |    |
| Plot 9.3 – Occupied Bandwidth Channel 40                                                           |    |
| Plot 10.1 – Conducted Out of Band Emissions, 30MHz – 300MHz, Channel 1                             |    |
| Plot 10.2 – Conducted Out of Band Emissions, Channel 1, 2 <sup>nd</sup> Harmonic                   |    |
| Plot 10.3 – Conducted Out of Band Emissions, Channel 1, 3 <sup>rd</sup> Harmonic                   | 23 |
| Plot 10.4 – Conducted Out of Band Emissions, 30MHz – 300MHz, Channel 19                            | 24 |
| Plot 10.5 – Conducted Out of Band Emissions, Channel 19, 2 <sup>nd</sup> Harmonic                  | 25 |
| Plot 10.6 – Conducted Out of Band Emissions, Channel 19, 3 <sup>rd</sup> Harmonic                  |    |
| Plot 10.7 – Conducted Out of Band Emissions, 30MHz – 300MHz, Channel 40                            | 27 |
| Plot 10.8 – Conducted Out of Band Emissions, Channel 40, 2 <sup>nd</sup> Harmonic                  |    |
| Plot 10.9 – Conducted Out of Band Emissions, Channel 40, 3 <sup>rd</sup> Harmonic                  | 29 |
| Plot 11.1 – Radiated Spurious Emissions, 30MHz – 1000MHz, Vertical                                 |    |
| Plot 11.2 – Radiated Spurious Emissions, 30MHz – 1000MHz, Horizontal                               |    |
| Plot 13.1 – Receiver Radiated Emissions - Vertical                                                 |    |
| Plot 13.2 – Receiver Radiated Emissions - Horizontal                                               |    |



6 March 2018

# **Table of Tables**

| Table 7.1 – Summary of Conducted Power Measurements (RMS)               | 11 |
|-------------------------------------------------------------------------|----|
| Table 9.1 - Summary of Occupied Bandwidth and Emission Mask Results     | 19 |
| Table 10.1 – Summary of Conducted Out of Band Emissions                 | 30 |
| Table 11.1 – Summary of Radiated Spurious Emissions                     |    |
| Table 12.1 – Summary of Frequency Stability Results                     |    |
| Table 13.1 – Summary of Receiver Radiated Emissions                     |    |
| Table A.1 – Conducted Measurements Equipment and Environmental          |    |
| Table A.2 – Audio Modulation Equipment and Environmental                |    |
| Table A.3 – Radiated Emissions Equipment and Environmental              |    |
| Table A.4 – Frequency Stability Measurement Equipment and Environmental |    |



# **1.0 DOCUMENT CONTROL**

| Revision History |                         |                                            |                        |          |                               |  |                       |
|------------------|-------------------------|--------------------------------------------|------------------------|----------|-------------------------------|--|-----------------------|
| Sam              | ples Tested By:         | Art Voss, P.Eng.                           | Date(s) of Evaluation: |          | Date(s) of Evaluation: 22 Feb |  | 22 Feb - 27 Feb, 2017 |
| Repo             | Art Voss, P.Eng.        |                                            | Report Reviewed By:    |          | Ben Hewson                    |  |                       |
| Report           | Description of Revision |                                            | Revised                | Revised  | Revision Date                 |  |                       |
| Revision         | Dest                    |                                            | Section                | Ву       | nevision Date                 |  |                       |
| 1.0              |                         | Draft Release                              | n/a                    | Art Voss | 25 February 2018              |  |                       |
| 2.0              |                         | ences to Previous Part 95D<br>Requirements | ALL                    | Art Voss | 6 March 2018                  |  |                       |



## **2.0 CLIENT AND DUT INFORMATION**

| Client Information                    |                                             |  |  |  |
|---------------------------------------|---------------------------------------------|--|--|--|
| Applicant Name                        | Uniden America Corportation                 |  |  |  |
|                                       | 3001 Gateway Drive, Suite 130               |  |  |  |
| Applicant Address                     | Irving, TX, 75063                           |  |  |  |
|                                       | USA                                         |  |  |  |
|                                       | DUT Information                             |  |  |  |
| Device Identifier(s):                 | FCC ID: AMWUT420                            |  |  |  |
| Device identifier (S).                | IC: 513C-UT420                              |  |  |  |
| Device Type:                          | Mobile CB Radio Transceiver                 |  |  |  |
| Type of Equipment:                    | Analog Transceiver                          |  |  |  |
| Device Model(s) / HVIN:               | PC88Elite                                   |  |  |  |
| Device Marketing Name / PMN:          | PC88Elite                                   |  |  |  |
| Firmware Version ID Number / FVIN:    | n/a                                         |  |  |  |
| Host Marketing Name / HMN:            | n/a                                         |  |  |  |
| Test Sample Serial No.:               | T/A Sample - Identical Prototype            |  |  |  |
| Transmit Frequency Range:             | 26.965 - 27.405 MHz (Chan. 1-40)            |  |  |  |
| Number of Channels:                   | 40                                          |  |  |  |
| Manuf. Max. Rated Output Power:       | 4.0W AM                                     |  |  |  |
| Manuf. Max. Rated BW/Data Rate:       | 8kHz                                        |  |  |  |
| Antenna Make and Model:               | n/a                                         |  |  |  |
| Antenna Type and Gain:                | External Whip, 0dBi nominal (3dBi maximum). |  |  |  |
| Modulation:                           | AM                                          |  |  |  |
| Mode:                                 | n/a                                         |  |  |  |
| Emission Designator:                  | 5K60A3E                                     |  |  |  |
| DUT Power Source:                     | 13.8 VDC External (Nominal)                 |  |  |  |
| Deviation(s) from standard/procedure: | None                                        |  |  |  |
| Modification of DUT:                  | None                                        |  |  |  |



#### 3.0 SCOPE

This Certification Report was prepared on behalf of:

#### **Uniden America Corporation**

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC CFR 47 Part §2.1091 and §2.1093, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in a separate exhibit from this report.

This *Equipment* is subject to FCC Declaration of Conformity (DoC). DoC evaluations were performed on this *Equipment* and the results of the DoC evaluation appear in a separate exhibit from this report.

| I attest that the data reported herein is true and accurate within the tolerance of the Measurement<br>Instrument Uncertainty; that all tests and measurements were performed in accordance with<br>accepted practices or procedures; and that all tests and measurements were performed by me or<br>by trained personnel under my direct supervision. The results of this investigation are based<br>solely on the test sample(s) provided by the client which were not adjusted, modified or altered in | Art Voss, P.Eng.<br>Technical Manager<br>Celltech Labs Inc. | 4 0 € ESSION<br>6 0 € ESSION<br>6 0 € CONTROL<br>6 0 € C |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| any manner w hatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance w ith ISO/IEC 17025.                                                                                                                                                                                                                                                                                                                                            | 25 February 2018<br>Date                                    | And the Angineer and a state of the state of                                                                                                                                                                                                                                                                                |

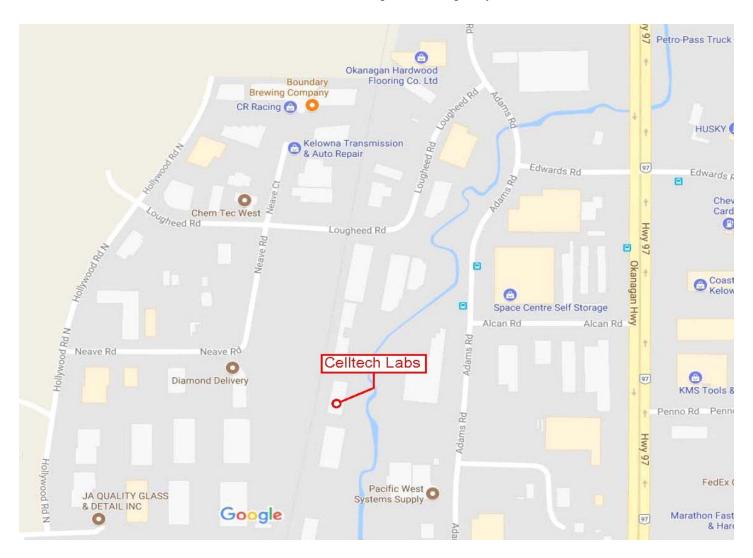


# 4.0 TEST RESULT SUMMARY

| TEST SUMMARY                                               |                                 |                                  |               |                 |             |          |  |
|------------------------------------------------------------|---------------------------------|----------------------------------|---------------|-----------------|-------------|----------|--|
| leferenced Standard(s): FCC CFR Title 47 Parts 2, 95D, 15B |                                 |                                  |               |                 |             |          |  |
| Section                                                    | Description of Test             | Procedure Applicable Rule Applic |               | Applicable Rule | Test        | Result   |  |
| Section                                                    | Description of rest             | Reference                        | Part(s) FCC   | Part(s) ISEDC   | Date        | nesuit   |  |
| 7.0                                                        | Conducted Power (Fundemental)   | ANSI/TIA/EIA-382-A               | §2.1046       | RSS-Gen         | 22 Feb 2018 | Complie  |  |
| 7.0                                                        | Conducted Fower (Fundemental)   | ANSI C63.4:2014                  | §95.967       | RSS-236 5.2     | 221602010   | Complie  |  |
| 8.0                                                        | Modulation Response             | ANSI/TIA/EIA-603-D               | §2.1047       | RSS-Gen         | 24 Feb 2018 | Complie  |  |
| 0.0                                                        | Modulation Response             | ANSI C63.4:2014                  | §95.975       | KSS-Gen         | 241602010   | Complie  |  |
|                                                            | Occupied Bandwidth              | ANSI/TIA/EIA-603-D               | §2.1049       | RSS-Gen         | 24 Feb 2018 | Complie  |  |
| 9.0                                                        |                                 | ANSI C63.4:2014                  | §95.973       | RSS-236 5.3.2   | 241602010   | Complie  |  |
| 5.0                                                        | Emission Mask                   | ANSI/TIA/EIA-603-D               | §2.1049       | RSS-Gen         | 24 Feb 2018 | Complie  |  |
|                                                            |                                 | ANSI C63.4:2014                  | §95.979       | RSS-236 5.4.4   | 241602010   | Complie  |  |
| 10.0                                                       | Conducted TX Spurious Emissions | ANSI/TIA/EIA-603-D               | §2.1051       | RSS-Gen         | 24 Feb 2018 | Complie  |  |
| 10.0                                                       | Conducted 1X Spunous Linissions | ANSI C63.4:2014                  | §95.979       | RSS-236 5.4.4   | 241602010   | complie  |  |
| 11.0                                                       | Radiated TX Spurious Emissions  | ANSI/TIA/EIA-603-D               | §2.1053       | RSS-Gen         | 29 Feb 2018 | Complie  |  |
| 11.0                                                       |                                 | ANSI C63.4:2014                  | §95.979       | RSS-236 5.4.4   | 291 60 2010 | Complie  |  |
| 12.0                                                       | Frequency Stability             | ANSI/TIA/EIA-603-D               | §2.1055       | RSS-Gen         | 25 Feb 2018 | Complie  |  |
| 12.0                                                       |                                 | ANSI C63.4:2014                  | §95.965       | NGO-Gen         | 201002010   | complies |  |
| 13.0                                                       | Radiated Receiver Emissions     | ANSI C63.4:2014                  | §15 Subpart B | RSS-Gen         | 29 Feb 2018 | Complie  |  |



# 5.0 NORMATIVE REFERENCES


|                          | Normative References                                                                       |
|--------------------------|--------------------------------------------------------------------------------------------|
| ANSI / ISO 17025:2005    | General Requirements for competence of testing and calibration laboratories                |
| IEEE/ANSI C63.4:2014     | Methods of Measurement of Radio-Noise Emissions from Low-Voltage                           |
|                          | Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz                        |
| ANSI/TIA/EIA-382-A       | Minimum Standards - Citizens Band Radion Service Amplitude Modulated (AM) Transceivers     |
|                          | Operating in the 27MHz Band                                                                |
| CFR Title 47 Part 2      | Code of Federal Regulations                                                                |
| Title 47:                | Telecommunication                                                                          |
| Part 2:                  | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations              |
| CFR Title 47 Part 95     | Code of Federal Regulations                                                                |
| Title 47:                | Telecommunication                                                                          |
| Subpart D:               | Citizens Band (CB) Radio Service                                                           |
| CFR Title 47 Part 15     | Code of Federal Regulations                                                                |
| Title 47:                | Telecommunication                                                                          |
| Part 15:                 | Radio Frequency Devices                                                                    |
| Subpart B:               | Unintensional Radiators                                                                    |
| Industry Canada Spectrur | n Management & Telecommunications Policy                                                   |
| RSS-Gen Issue 4:         | General Requirements and Information for the Certification of Radiocommunication Equipment |
| Industry Canada Spectrur | n Management & Telecommunications Policy                                                   |
| RSS-236 lssue 1:         | General Radio Service Equipment Operating in the Band 26.960 to 27.410 MHz (Citizens Band) |
|                          |                                                                                            |



## **6.0 FACILITIES AND ACCREDITATIONS**

## Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Industry Canada under Test Site File Number IC 3874A-1. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.





# 7.0 CONDUCTED POWER

| Test Conditions                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Normative Reference                                                                                                                                                                                                                                                                                                                                                     | e FCC 47 CFR §2.1046, §95.967, RSS-236                                                                           |  |
| Limits                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |  |
| 47 CFR §95.967                                                                                                                                                                                                                                                                                                                                                          | Each CBRS transmitter type must be designed such that the transmitter power can not exceed the following limits: |  |
| 47 01 17 300.007                                                                                                                                                                                                                                                                                                                                                        | (a) When transmitting amplitude modulated (AM) voice signals, the mean carrier power must not exceed 4 Watts.    |  |
| RSS-236 5.2                                                                                                                                                                                                                                                                                                                                                             | The transmitter output power shall not exceed 4.0 watts for a DSB mode of operations.                            |  |
| Test Setup                                                                                                                                                                                                                                                                                                                                                              | Appendix A Figure A.1                                                                                            |  |
| Measurement Proce                                                                                                                                                                                                                                                                                                                                                       | dure                                                                                                             |  |
| The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port.<br>The SA Detector was set to Max Peak with the RBW set to ≥ the OBW of the DUT. The output power of the DUT was<br>set to the manufacturer's highest rated setting. The SA trace was set to Max Hold with Marker 1 set to Peak and the<br>value recorded. |                                                                                                                  |  |

# Table 7.1 – Summary of Conducted Power Measurements (RMS)

| Conducted Power Measurement                       |                                                 |  |
|---------------------------------------------------|-------------------------------------------------|--|
| Measured Output Power (Ch 1): 3.64W (35.61dBm)    |                                                 |  |
| Measured Output Power (Ch 19):                    | 3.64W (35.60dBm)                                |  |
| Measured Output Power (Ch 40):                    | 3.15W (35.46dBm)                                |  |
|                                                   | I <sub>Rx</sub> = 0.28A, I <sub>Tx</sub> =1.18A |  |
| FCC CFR 47 §2.1033( c )(8): Power to Transmitter: | I <sub>Xmitter</sub> = 0.90A                    |  |
|                                                   | (13.6VDC)(2.62) = 12.24W                        |  |
| Manufacturer's Rated Output Power:                | 4.0W                                            |  |
| FCC/ISED Limit:                                   | 4.0W                                            |  |
| Result:                                           | Complies                                        |  |



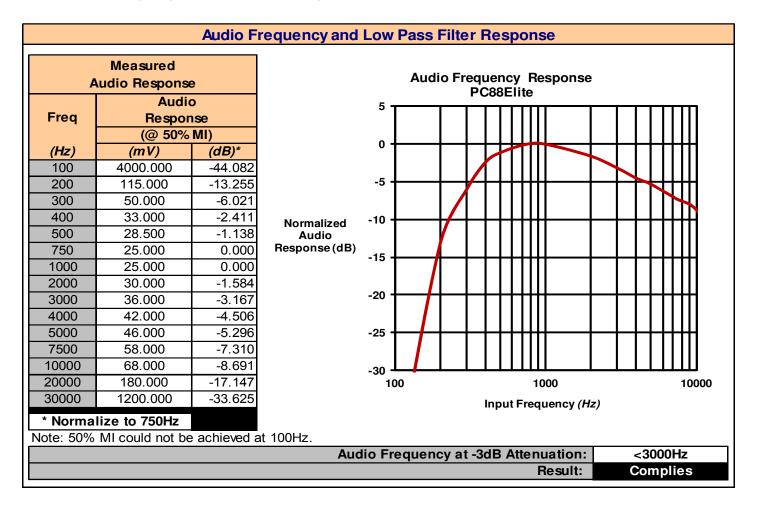
# **8.0 MODULATION RESPONSE**

| Test Conditions     |                                                                                                                                                                                                                                         |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normative Reference | FCC 47 CFR §2.1047, §95.975, RSS-236 5.3.2                                                                                                                                                                                              |
| Limits              |                                                                                                                                                                                                                                         |
| 47 CFR §2.1047      | a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted.                                                |
|                     | Each CBRS transmitter type must be designed such that the modulation characteristics are in compliance with the rules in this section.                                                                                                  |
| 47 CFR §95.975      | (a) When emission type A3E is transmitted with voice modulation, the modulation percentage must be at least 85%, but not more than 100%.                                                                                                |
|                     | (b) When emission type A3E is transmitted by a CBRS transmitter having a transmitter output power of more than 2.5 W, the transmitter must contain a circuit that automatically prevents the modulation percentage from exceeding 100%. |
| RSS-236             | When emission type A3E is transmitted by a CB transmitter having a total power of greater than 2.5 W, the CB transmitter must automatically prevent the modulation from exceeding 100%.                                                 |
| Test Setup          | Appendix A Figure A.2                                                                                                                                                                                                                   |

## **Measurement Procedure**

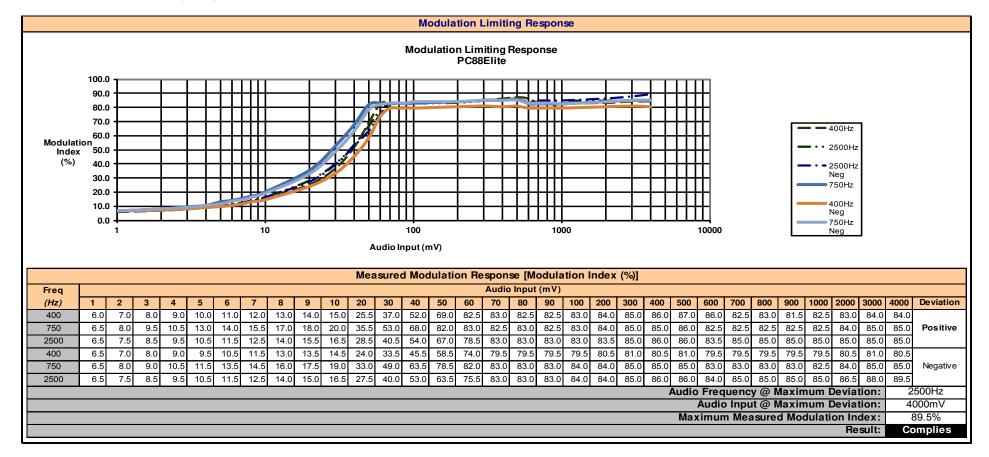
## TIA 382 25.2 Transmitter Audio Frequency Response

Operate the transmitter under standard test conditions and monitor the output with a modulation monitor or calibrated test receiver. The audio input signal applied through a suitable impedance matching network, as specified by the manufacturer, shall be adjusted to obtain 50% modulation at the maximum audio frequency response of the transmitter, and this point shall be taken as the 0 dB reference level. Vary the modulating frequency from 100 Hz to 10,000 Hz and record the input levels necessary to maintain a constant 50% modulation.


Graph the audio level in dB relative to the 0 dB reference level as a function of the modulating frequency. Record any audio frequency where it is impossible to perform the measurement.

## TIA 382 24.2.2 Transmitter Modulation Limiting

The transmitter is modulated by a sinusoidal audio signal applied to the microphone input jack. First the audio input frequency is adjusted to deliver 50% modulation at the audio frequency that produces the maximum modulation level. Record the modulation input level (mV) and use this level as O dB for plotting modulation limiting. Increment the audio signal level to 40 dB above the reference level. Record the modulation level (%). Repeat the measurements using a 400 Hz and a 2500 Hz sinusoidal audio signal. Record the modulation level (%). Perform for both positive and negative modulation.




## Plot 8.1 – Audio Frequency and Low Pass Filter Response



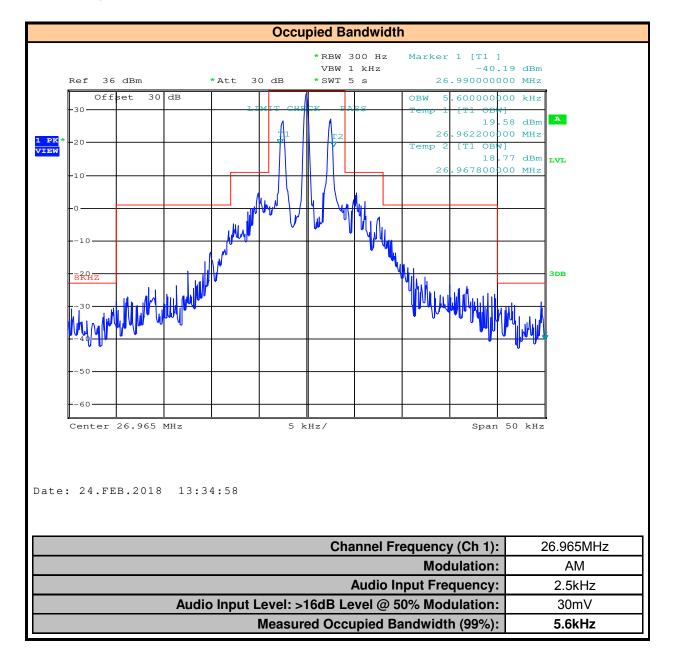


#### Plot 8.2 – Modulation Limiting Response



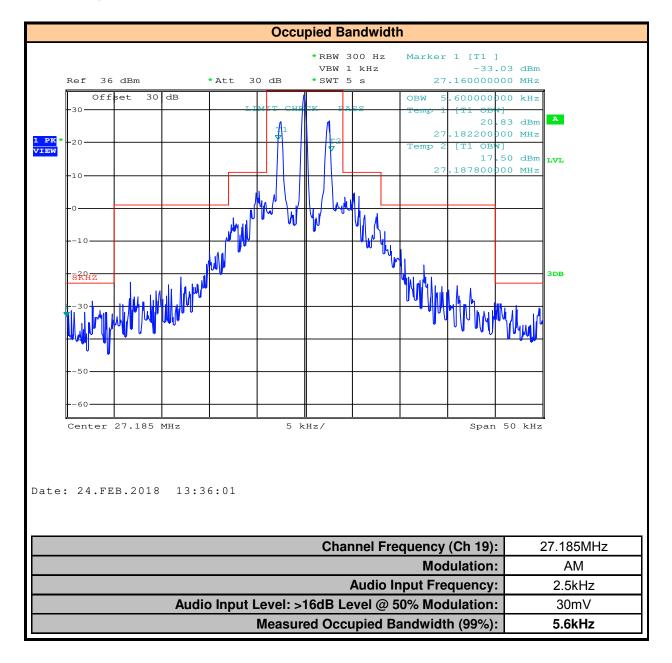


# 9.0 OCCUPIED BANDWIDTH AND EMISSION MASKS


| Test Conditions    |                                                                                                                                                                                                           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normative Referenc | e FCC 47 CFR §2.1049, §95.973, RSS-236                                                                                                                                                                    |
| Limits             |                                                                                                                                                                                                           |
| 47 CFR §95.973     | Each CBRS transmitter type must be designed such that the occupied bandwidth does not exceed the authorized bandwidth for the emission type under test.                                                   |
|                    | (a) AM. The authorized bandwidth for emission type A3E is 8 kHz.                                                                                                                                          |
| RSS-236 5.3.2      | The authorized bandwidth for emission type A1D or A3E is 8 kHz.                                                                                                                                           |
|                    | Each CBRS transmitter type must be designed to comply with the applicable unwanted emissions limits in this section.                                                                                      |
|                    | (a) Attenuation requirements. The power of unwanted emissions must be attenuated below the transmitter output power in Watts (P) as specified in the applicable paragraphs listed in the following table: |
|                    | For A3E (1), (3), (5), (6)                                                                                                                                                                                |
| 47 CFR §95.979     | (1) 25 dB (decibels) in the frequency band 4 kHz to 8 kHz removed from the channel center frequency;                                                                                                      |
|                    | (3) 35 dB in the frequency band 8 kHz to 20 kHz removed from the channel center frequency                                                                                                                 |
|                    | (5) 53 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 250% of the authorized bandwidth.                                                                     |
|                    | (6) 60 dB in any frequency band centered on a harmonic (i.e., an integer multiple of two or more times) of the carrier frequency.                                                                         |
|                    | For A1D and A3E:                                                                                                                                                                                          |
|                    | _ At least 25 dB on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.                                              |
| RSS-236 4.4.4      | _ At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.                                             |
|                    | _ At least 53 + 10 log10 (T) dB on any frequency removed from the center of the authorized bandwidth by more than 250%.                                                                                   |
|                    | _ At least 60 dB on any frequency twice or greater than twice the fundamental frequency.                                                                                                                  |
| Test Setup         | Appendix A Figure A.1                                                                                                                                                                                     |
| Measurement Proce  | dure                                                                                                                                                                                                      |
| TIA 200 02 0       | Transmitter Medulation Occupied Randwidth                                                                                                                                                                 |

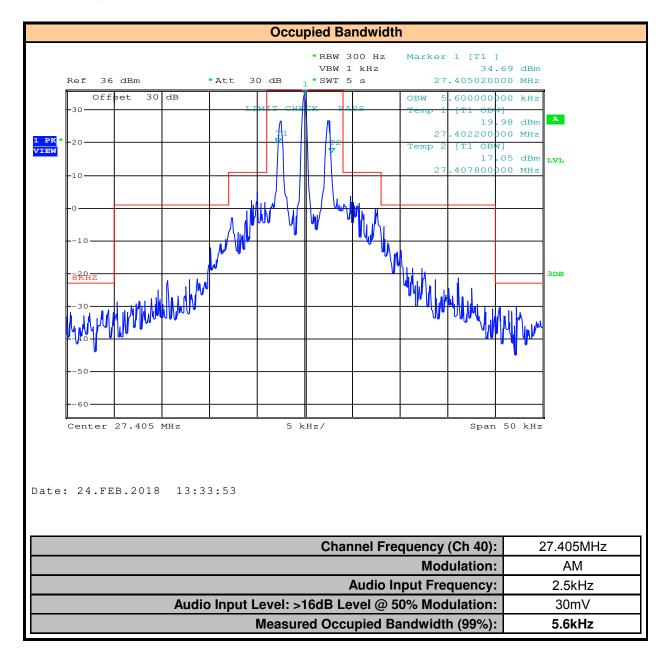
## TIA 382 23.2 Transmitter Modulation Occupied Bandwidth

The transmitter is modulated by a sinusoidal audio signal applied to the microphone input jack. First, the frequency is adjusted to deliver 50% modulation at the highest audio response level (minimum applied audio level). Then the audio signal level is increased 16 dB and the audio frequency is readjusted to 2500 Hz The analyzer is adjusted to display each of the discrete modulation sidebands and their respective harmonic products within +/- 50 kHz of the carrier frequency.




## Plot 9.1 – Occupied Bandwidth Channel 1






## Plot 9.2 – Occupied Bandwidth Channel 19





## Plot 9.3 – Occupied Bandwidth Channel 40





#### Table 9.1 - Summary of Occupied Bandwidth and Emission Mask Results

|               |                 |            | Measured Authorized   |           | Emission | Emission |            |
|---------------|-----------------|------------|-----------------------|-----------|----------|----------|------------|
| Channel       | Frequency       | Modulation | Occupied<br>Bandwidth | Bandwidth | Margin   | Mask     | Designator |
|               | (MHz)           |            | (kHz)                 | (kHz)     | (kHz)    |          |            |
| 1             | 26.965          | AM         | 5.6                   | 8.0       | 2.4      | PASS     | 5K60A3E    |
| 19            | 27.185          | AM         | 5.6                   | 8.0       | 2.4      | PASS     | 5K60A3E    |
| 40            | 27.405          | AM         | 5.6                   | 8.0       | 2.4      | PASS     | 5K60A3E    |
| argin = Autho | rized BW - Meas | ured BW    |                       |           |          |          |            |
|               |                 |            |                       |           | Result:  | Com      | plies      |

## §95.971 CBRS emission types.

Each CBRS transmitter type must be designed such that its capabilities are in compliance with the emission type rules in this section.

(a) Permitted emission types. CBRS transmitter types may transmit only AM voice emission type A3E and SSB voice emission types J3E, R3E, or H3E

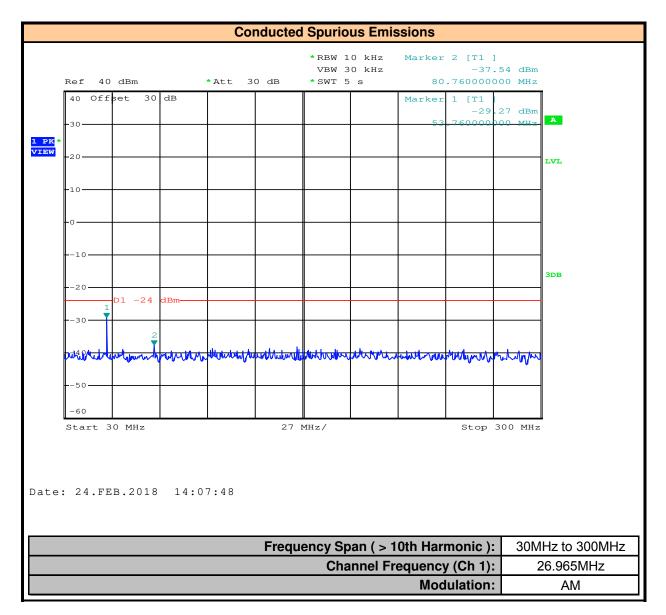
This device only transmits AM voice emission type A3E

Result:

Complies

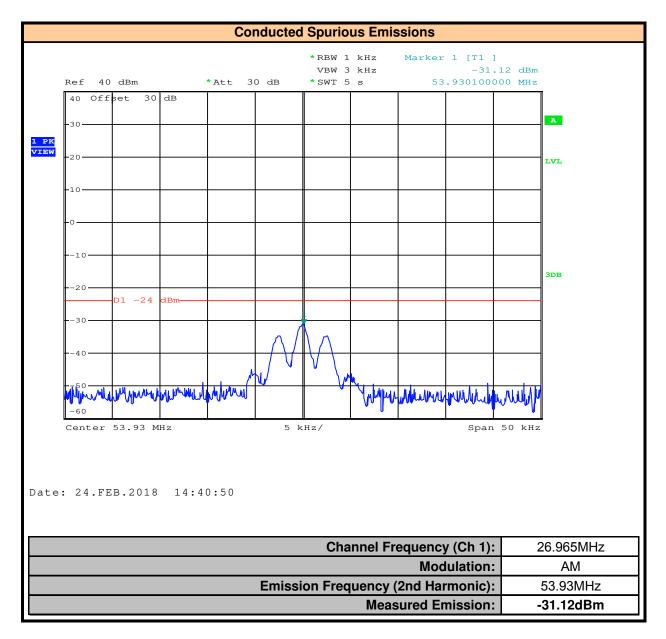


# **10 CONDUCTED OUT OF BAND SPURIOUS EMISSIONS**


| Test Conditions   |                                                                                                                                                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | e FCC 47 CFR §95.979, RSS-236                                                                                                                                                                             |
| Limits            |                                                                                                                                                                                                           |
|                   | Each CBRS transmitter type must be designed to comply with the applicable unwanted emissions limits in this section.                                                                                      |
|                   | (a) Attenuation requirements. The power of unwanted emissions must be attenuated below the transmitter output power in Watts (P) as specified in the applicable paragraphs listed in the following table: |
|                   | For A3E (1), (3), (5), (6)                                                                                                                                                                                |
| 47 CFR §95.979    | (1) 25 dB (decibels) in the frequency band 4 kHz to 8 kHz removed from the channel center frequency;                                                                                                      |
|                   | (3) 35 dB in the frequency band 8 kHz to 20 kHz removed from the channel center frequency                                                                                                                 |
|                   | (5) 53 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 250% of the authorized bandwidth.                                                                     |
|                   | (6) 60 dB in any frequency band centered on a harmonic (i.e., an integer multiple of two or more times) of the carrier frequency.                                                                         |
|                   | For A1D and A3E:                                                                                                                                                                                          |
|                   | _ At least 25 dB on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.                                              |
| RSS-236 4.4.4     | _ At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.                                             |
|                   | _ At least 53 + 10 log10 (T) dB on any frequency removed from the center of the authorized bandwidth by more than 250%.                                                                                   |
|                   | _ At least 60 dB on any frequency twice or greater than twice the fundamental frequency.                                                                                                                  |
| Test Setup        | Appendix A A.1                                                                                                                                                                                            |
| Measurement Proce | dure                                                                                                                                                                                                      |
| TIA 382 21 2      | Transmitter Conducted Spurious and Harmonic Emissions                                                                                                                                                     |

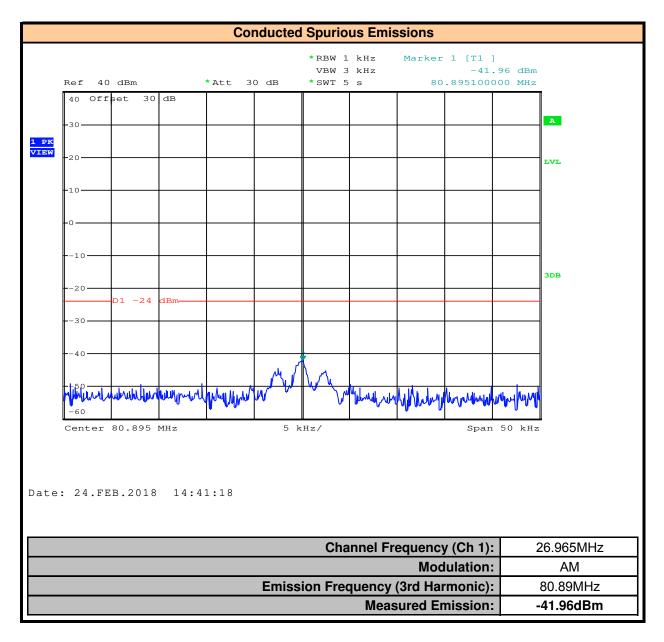
TIA 382 21.2 Transmitter Conducted Spurious and Harmonic Emissions

The transmitter RF output shall be connected to the standard nonradiating output load. The output shall be sampled and displayed using spectrum analysis techniques. 2500 Hz modulation shall be applied at a level 16 dB above that required to produce 50% modulation at the frequency of maximum response. The sampled output shall be analyzed from the lowest frequency generated in the equipment to the 10th harmonic of the fundamental signal and the levels of all spurious outputs attenuated not more than 20 dB below the maximum required attenuation shall be recorded.



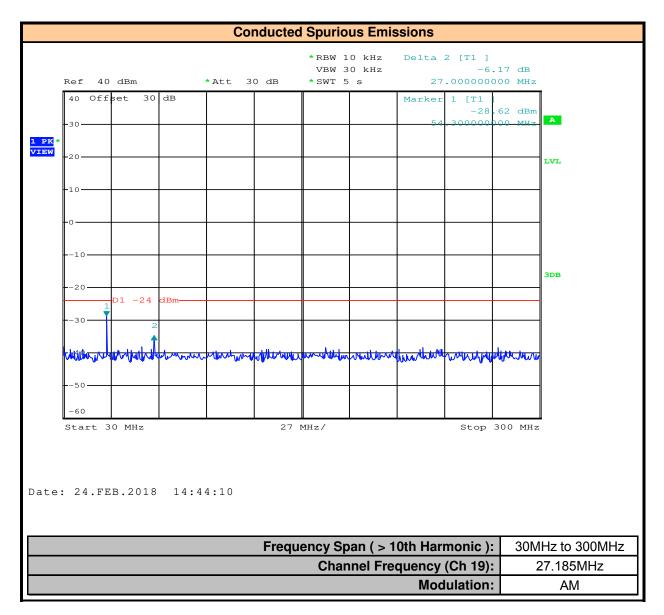

## Plot 10.1 - Conducted Out of Band Emissions, 30MHz - 300MHz, Channel 1





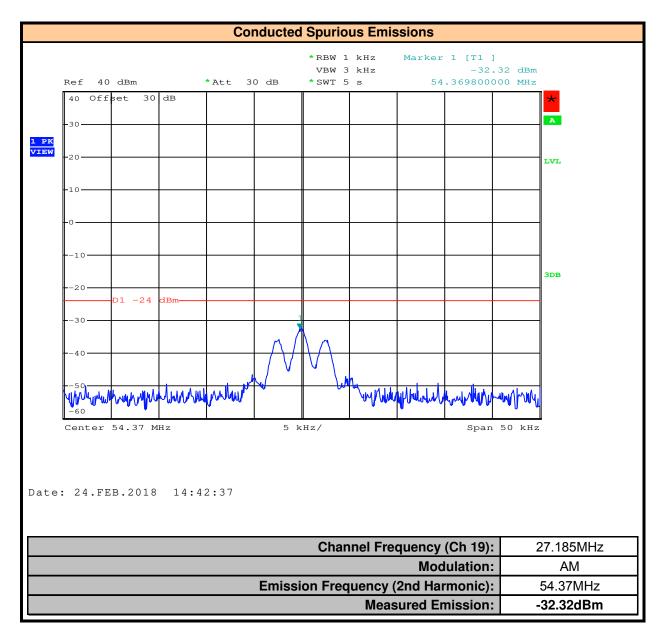

# Plot 10.2 – Conducted Out of Band Emissions, Channel 1, 2<sup>nd</sup> Harmonic





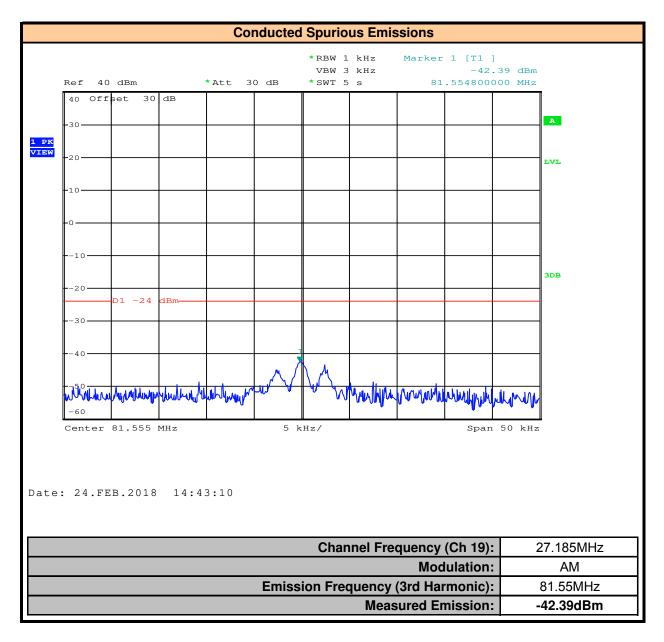

# Plot 10.3 – Conducted Out of Band Emissions, Channel 1, 3rd Harmonic





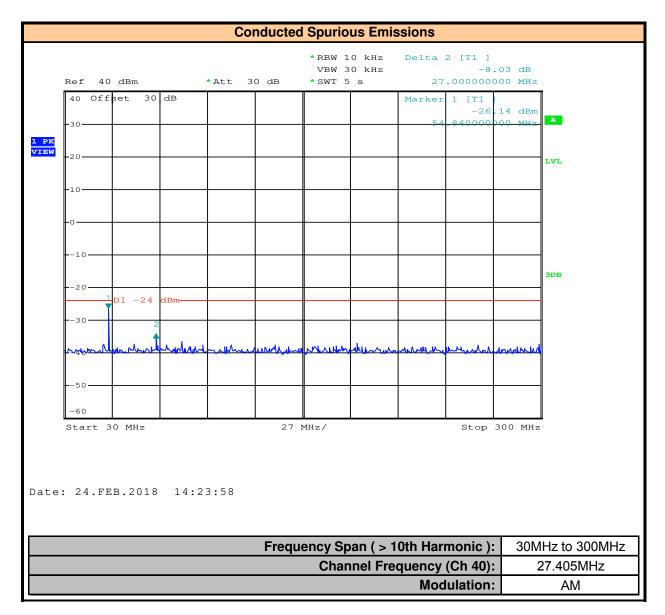

## Plot 10.4 - Conducted Out of Band Emissions, 30MHz - 300MHz, Channel 19





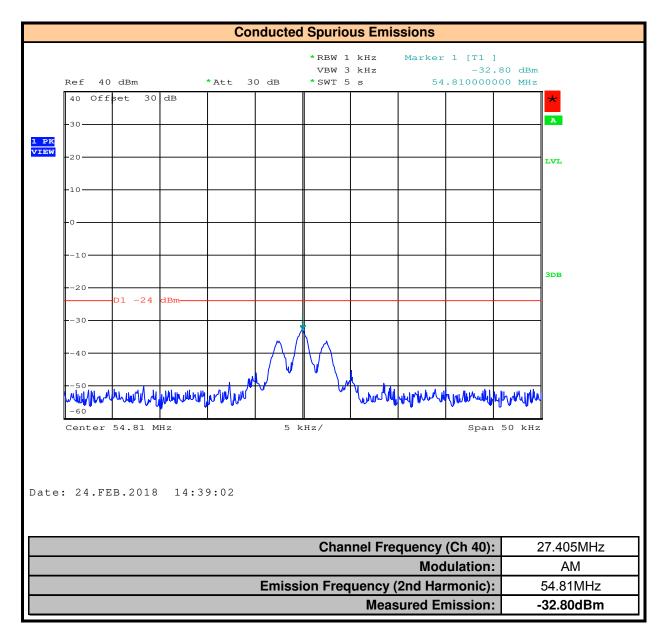

# Plot 10.5 – Conducted Out of Band Emissions, Channel 19, 2<sup>nd</sup> Harmonic





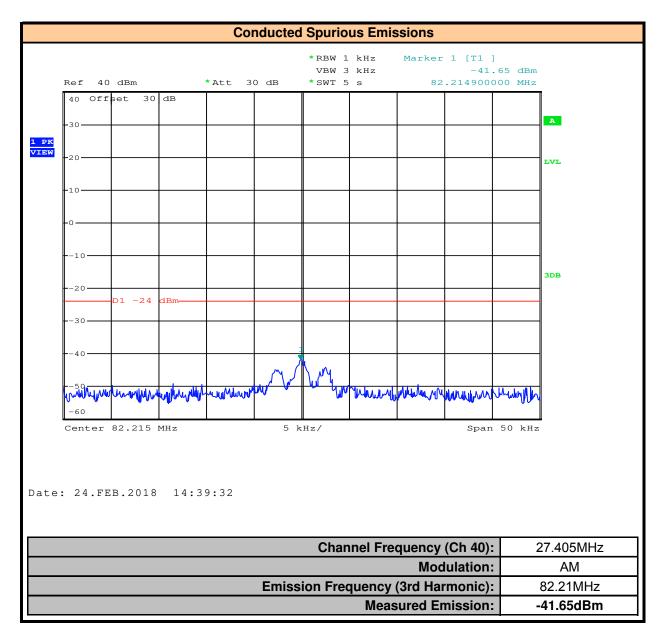

# Plot 10.6 – Conducted Out of Band Emissions, Channel 19, 3<sup>rd</sup> Harmonic






## Plot 10.7 - Conducted Out of Band Emissions, 30MHz - 300MHz, Channel 40






## Plot 10.8 – Conducted Out of Band Emissions, Channel 40, 2<sup>nd</sup> Harmonic





# Plot 10.9 – Conducted Out of Band Emissions, Channel 40, 3<sup>rd</sup> Harmonic





## Table 10.1 – Summary of Conducted Out of Band Emissions

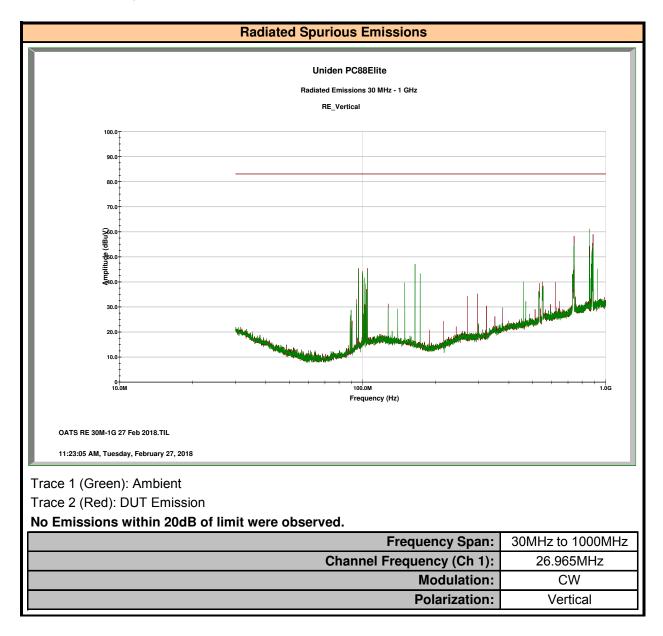
| Channel          | Emission         |            | Fundemental | Out of Band       |             |       |        |
|------------------|------------------|------------|-------------|-------------------|-------------|-------|--------|
| Frequency        | _                | DUT        | Power       | Emission          | Attenuation | Limit | Margin |
|                  | Frequency        | Modulation | [P]         | [P <sub>E</sub> ] |             |       |        |
| (MHz)            | (MHz)            |            | (dBm)       | (dBm)             | [dB]        | (dB)  | (dB)   |
| 26.065           | 53.93            |            | 36.0        | -31.1             | 67.1        | 60.0  | 7.12   |
| 26.965           | 80.89            |            | 36.0        | -42.0             | 78.0        | 60.0  | 17.96  |
| 27.185           | 54.37            | AM         | 36.0        | -32.3             | 68.3        | 60.0  | 8.32   |
|                  | 81.55            | AIVI       | 36.0        | -42.4             | 78.4        | 60.0  | 18.39  |
| 27.405           | 54.81            | 1          | 36.0        | -32.8             | 68.8        | 60.0  | 8.80   |
| 27.405           | 82.21            | 1          | 36.0        | -41.7             | 77.7        | 60.0  | 17.65  |
| ttenuation = P   | - P <sub>E</sub> |            |             |                   |             |       | -      |
| largin = Limit - | Attenuation      |            |             |                   |             |       |        |
|                  |                  |            |             |                   | Result:     | Con   | nplies |

Data for fundamental and spurious emissions presented using a peak detector.



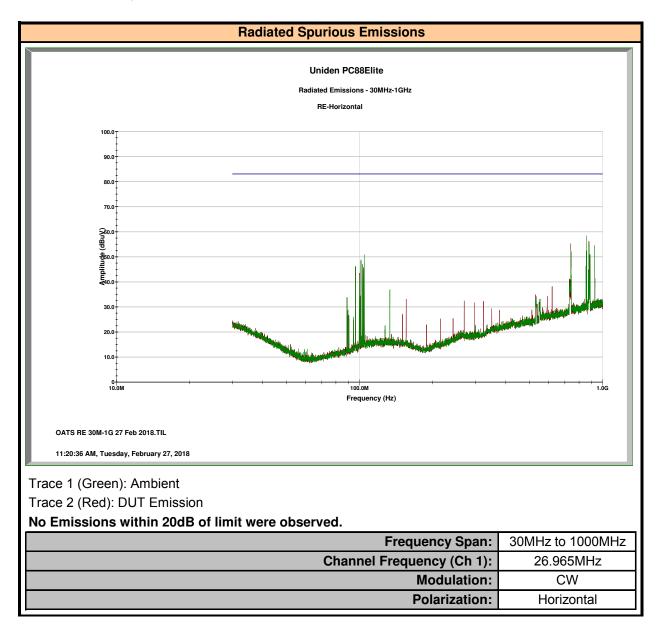
# **11.0 RADIATED SPURIOUS EMISSIONS**

| Test Conditions<br>Normative Referenc | e FCC 47 CFR §95.979, RSS-236                                                                                                                                                                             |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limits                                |                                                                                                                                                                                                           |
|                                       | Each CBRS transmitter type must be designed to comply with the applicable unwanted emissions limits in this section.                                                                                      |
|                                       | (a) Attenuation requirements. The power of unwanted emissions must be attenuated below the transmitter output power in Watts (P) as specified in the applicable paragraphs listed in the following table: |
|                                       | For A3E (1), (3), (5), (6)                                                                                                                                                                                |
| 47 CFR §95.979                        | (1) 25 dB (decibels) in the frequency band 4 kHz to 8 kHz removed from the channel center frequency;                                                                                                      |
|                                       | (3) 35 dB in the frequency band 8 kHz to 20 kHz removed from the channel center frequency                                                                                                                 |
|                                       | (5) 53 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 250% of the authorized bandwidth.                                                                     |
|                                       | (6) 60 dB in any frequency band centered on a harmonic (i.e., an integer multiple of two or more times) of the carrier frequency.                                                                         |
|                                       | For A1D and A3E:                                                                                                                                                                                          |
|                                       | _ At least 25 dB on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.                                              |
| RSS-236 4.4.4                         | _ At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.                                             |
|                                       | _ At least 53 + 10 log10 (T) dB on any frequency removed from the center of the authorized bandwidth by more than 250%.                                                                                   |
|                                       | _ At least 60 dB on any frequency twice or greater than twice the fundamental frequency.                                                                                                                  |
| Test Setup                            | Appendix A Figure A.3                                                                                                                                                                                     |
| Measurement Proce                     | dure                                                                                                                                                                                                      |
|                                       |                                                                                                                                                                                                           |


TIA 382 22.2 Transmitter Radiated Spurious and Harmonic Emissions

The transmitter shall be terminated in a nonradiating dummy load and shall be keyed but not modulated.

For each spurious frequency, raise and lower the receiver antenna to obtain a maximum reading on the FIM with the antenna at horizontal polarity. Then the turntable should be rotated to further increase this maximum reading. Repeat this procedure of raising and lowering the antenna and rotating the turntable until the highest possible signal has been obtained. The effect of the simulated accessory connections shall be noted, so that the measurement series producing the maximum radiation level can be recorded.




## Plot 11.1 – Radiated Spurious Emissions, 30MHz – 1000MHz, Vertical





## Plot 11.2 - Radiated Spurious Emissions, 30MHz - 1000MHz, Horizontal

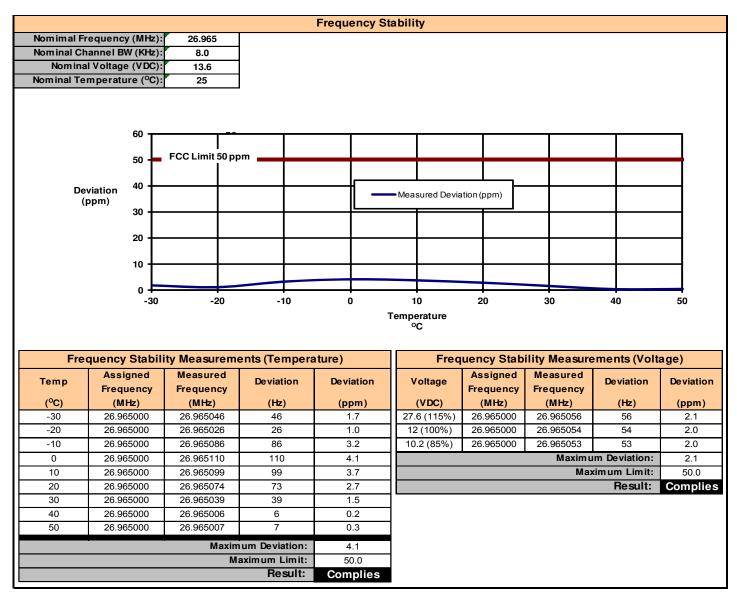




#### Table 11.1 – Summary of Radiated Spurious Emissions

| Channel                          | Emission         |                   | Fundemental  | Out of Band                   |             |       |        |  |  |  |  |
|----------------------------------|------------------|-------------------|--------------|-------------------------------|-------------|-------|--------|--|--|--|--|
| Frequency                        | Frequency        | DUT<br>Modulation | Power<br>[P] | Emission<br>[P <sub>E</sub> ] | Attenuation | Limit | Margin |  |  |  |  |
| (MHz)                            | (MHz)            |                   | (dBm)        | (dBm)                         | [dB]        | (dB)  | (dB)   |  |  |  |  |
| 26.965                           | n/a              | CW                | 36.0         | n/a                           | n/a         | 60.0  | n/a    |  |  |  |  |
| Attenuation = P - P <sub>E</sub> |                  |                   |              |                               |             |       |        |  |  |  |  |
| Margin = Limit - Attenuation     |                  |                   |              |                               |             |       |        |  |  |  |  |
|                                  | Result: Complies |                   |              |                               |             |       |        |  |  |  |  |
|                                  |                  |                   |              | Notes:                        |             |       |        |  |  |  |  |
|                                  |                  |                   | No           | tes:                          |             |       |        |  |  |  |  |




# **12.0 FREQUENCY STABILITY**

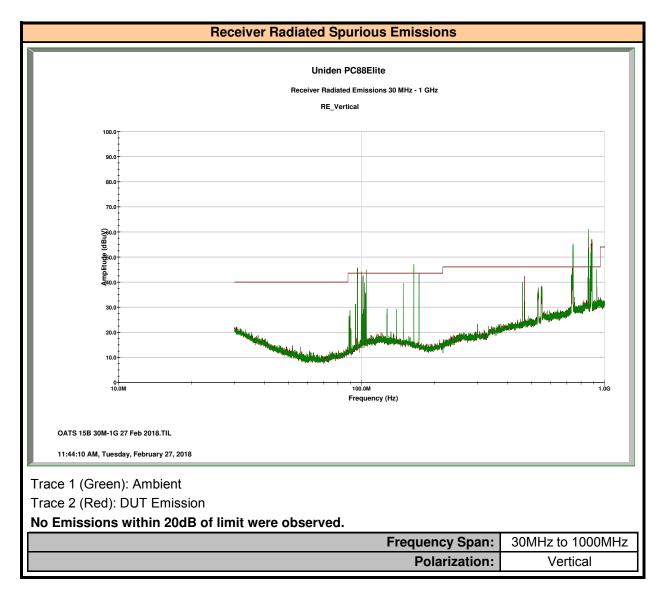
| Test Conditions                                                                                 |                                                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Normative Reference                                                                             | FCC 47 CFR §2.1055, §95.965, RSS-Gen                                                                                                                                                                                                                                                      |  |  |  |
| Limits                                                                                          |                                                                                                                                                                                                                                                                                           |  |  |  |
| 47 CFR §95.965                                                                                  | Each CBRS transmitter type must be designed such that the transmit carrier frequency (or in the case of SSB transmissions, the reference frequency) remains within 50 parts-per-<br>million of the channel center frequencies specified in §95.963 under all normal operating conditions. |  |  |  |
| Test Setup                                                                                      | Appendix A Figure A.4                                                                                                                                                                                                                                                                     |  |  |  |
| Measurement Proce                                                                               | dure                                                                                                                                                                                                                                                                                      |  |  |  |
| 47 CFR §2.1055                                                                                  | Frequency Stability                                                                                                                                                                                                                                                                       |  |  |  |
| (a) The frequency stability shall be measured with variation of ambient temperature as follows: |                                                                                                                                                                                                                                                                                           |  |  |  |
| (1) From -30° to +50° c                                                                         | entigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.                                                                                                                                                                                          |  |  |  |
| more than 10° centigrad                                                                         | ements shall be made at the extremes of the specified temperature range and at intervals of not<br>de through the range. A period of time sufficient to stabilize all of the components of the<br>h temperature level shall be allowed prior to frequency measurement.                    |  |  |  |
| (d) The frequency stabi                                                                         | lity shall be measured with variation of primary supply voltage as follows:                                                                                                                                                                                                               |  |  |  |
| (4) ) (                                                                                         |                                                                                                                                                                                                                                                                                           |  |  |  |

(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.



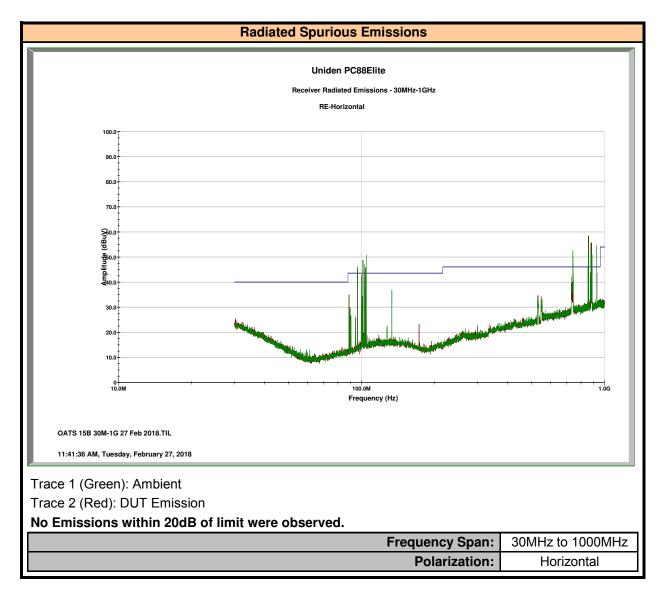
Table 12.1 – Summary of Frequency Stability Results






## **13.0 RECEIVER RADIATED EMISSIONS - DOC**

| Test Conditions     | Test Conditions                |  |  |  |  |
|---------------------|--------------------------------|--|--|--|--|
| Normative Reference | ce FCC 47 CFR §15.109, RSS-Gen |  |  |  |  |
| Limits              |                                |  |  |  |  |
|                     | 30-88MHz: 40dBuV/m             |  |  |  |  |
| FCC §15.109         | 88-216MHz: 43.5dBuV/m          |  |  |  |  |
| 1 00 910.100        | 216-960MHz: 46dBuV/m           |  |  |  |  |
|                     | > 960MHz: 54dBuV/m             |  |  |  |  |
| Test Setup          | Appendix A Figure A.3          |  |  |  |  |




## Plot 13.1 - Receiver Radiated Emissions - Vertical





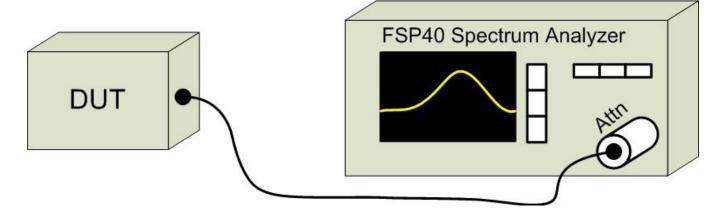
## Plot 13.2 - Receiver Radiated Emissions - Horizontal





## Table 13.1 – Summary of Receiver Radiated Emissions

| Channel                              | Emission                  |                   | Fundemental                  | Out of Band                                   |                     |               |                       |
|--------------------------------------|---------------------------|-------------------|------------------------------|-----------------------------------------------|---------------------|---------------|-----------------------|
| Frequency<br><i>(MHz)</i>            | Frequency<br><i>(MHz)</i> | DUT<br>Modulation | Power<br>[P]<br><i>(dBm)</i> | Emission<br>[P <sub>E</sub> ]<br><i>(dBm)</i> | Attenuation<br>[dB] | Limit<br>(dB) | Margin<br><i>(dB)</i> |
| n/a                                  | n/a                       | n/a               | n/a                          | n/a                                           | n/a                 | See Mask      | n/a                   |
| Attenuation = P<br>/largin = Limit - | -                         |                   |                              |                                               |                     |               |                       |
| Result: Complies                     |                           |                   |                              |                                               |                     |               |                       |
| Notes:                               |                           |                   |                              |                                               |                     |               |                       |

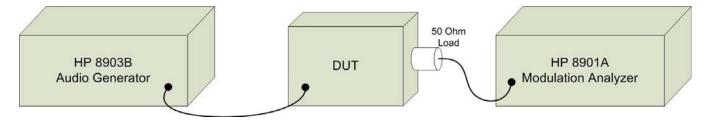



# **APPENDIX A – TEST SETUP DRAWINGS AND CONDITIONS**

Table A.1 – Conducted Measurements Equipment and Environmental

|                | Environmental Conditions (Typical) |        |                   |  |  |  |
|----------------|------------------------------------|--------|-------------------|--|--|--|
| Temper         | ature                              | 25°C   |                   |  |  |  |
| Humidity       |                                    | <60%   |                   |  |  |  |
| Barome         | metric Pressure 101 +/- 3kPa       |        |                   |  |  |  |
| Equipment List |                                    |        |                   |  |  |  |
| Asset          | Manufacturer                       | Model  | Description       |  |  |  |
| Number         |                                    | Number |                   |  |  |  |
| 00241          | R&S                                | FSU40  | Spectrum Analyzer |  |  |  |

## Figure A.1 – Test Setup Conducted Measurements






## Table A.2 – Audio Modulation Equipment and Environmental

| Environ         | Environmental Conditions (Typical) |                 |                          |  |  |  |  |  |
|-----------------|------------------------------------|-----------------|--------------------------|--|--|--|--|--|
| Temper          | ature                              | 25°C            | 25°C                     |  |  |  |  |  |
| Humidit         | у                                  | <60%            |                          |  |  |  |  |  |
| Barome          | tric Pressure                      | 101 +/- 3kPa    |                          |  |  |  |  |  |
| Equipment List  |                                    |                 |                          |  |  |  |  |  |
| Asset<br>Number | Manufacturer                       | Model<br>Number | Description              |  |  |  |  |  |
| 00028           | HP                                 | 8901A           | Modulation Analyzer      |  |  |  |  |  |
| 00027           | HP                                 | 8903B           | Audio Analyzer/Generator |  |  |  |  |  |

## Figure A.2 – Test Setup Audio Modulation Response Measurements





## Table A.3 – Radiated Emissions Equipment and Environmental

| Environ         | mental Condit | ions (Typical)      |                          |
|-----------------|---------------|---------------------|--------------------------|
| Temper          | ature         | 3°C                 |                          |
| Humidit         | y             | <60%                |                          |
| Barome          | tric Pressure | 101 +/- 3kPa        |                          |
| Equipm          | ent List      |                     |                          |
| Asset<br>Number | Manufacturer  | Model<br>Number     | Description              |
| 00051           | HP            | 8566B               | Spectrum Analyzer        |
| 00049           | HP            | 85650A              | Quasi-peak Adapter       |
| 00047           | HP            | 85685A              | RF Preselector           |
| 00072           | EMCO          | 2075                | Mini-mast                |
| 00073           | EMCO          | 2080                | Turn Table               |
| 00071           | EMCO          | 2090                | Multi-Device Controller  |
| 00265           | Miteq         | JS32-00104000-58-5P | Microwave L/N Amplifier  |
| 00241           | R&S           | FSU40               | Spectrum Analyzer        |
| 00050           | Chase         | CBL-6111A           | Bilog Antenna            |
| 00275           | Coaxis        | LMR400              | 25m Cable                |
| 00276           | Coaxis        | LMR400              | 4m Cable                 |
| 00278           | TILE          | 34G3                | TILE Test Software       |
| 00034           | ETS           | 3115                | Double Ridged Guide Horn |

CNR: Calibration Not Required

COU: Calibrate On Use

## Figure A.3 – Test Setup Radiated Emissions Measurements

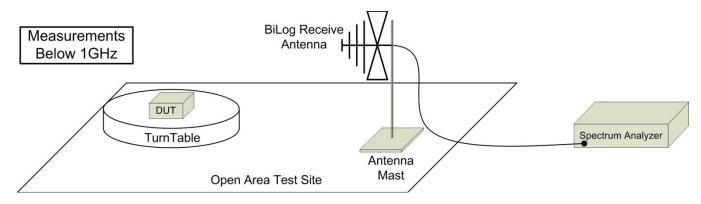
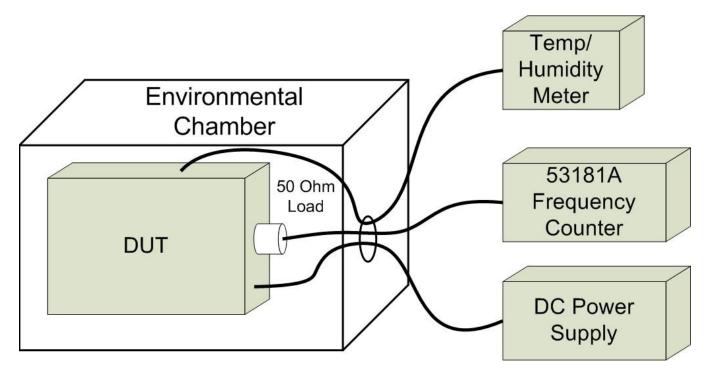






Table A.4 – Frequency Stability Measurement Equipment and Environmental

| Test Con        | Test Conditions |                                        |                       |  |  |  |  |  |
|-----------------|-----------------|----------------------------------------|-----------------------|--|--|--|--|--|
| Temperature     |                 | -30°C to +50°C at 10°C Increments      |                       |  |  |  |  |  |
| Humidity        |                 | <100% Non Condensating                 |                       |  |  |  |  |  |
| Voltage (VDC)   |                 | 11.7VDC(85%) - 13.8VDC - 15.9VDC(115%) |                       |  |  |  |  |  |
| Equipm          | Equipment List  |                                        |                       |  |  |  |  |  |
| Asset<br>Number | Manufacturer    | Model<br>Number                        | Description           |  |  |  |  |  |
| n/a             | ESPEC           | ECT-2                                  | Environmental Chamber |  |  |  |  |  |
| 00003           | HP              | 53181A                                 | Frequency Counter     |  |  |  |  |  |
| n/a             | HP              | E3611A                                 | Power Supply          |  |  |  |  |  |
| 00234           | WWR             | 61161-378                              | Temp/Humidity Meter   |  |  |  |  |  |

## Figure A.4 – Test Setup Frequency Stability Measurements





# **APPENDIX B – EQUIPMENT LIST AND CALIBRATION**

| Equ | Equipment List  |              |                     |                  |                          |             |             |  |  |
|-----|-----------------|--------------|---------------------|------------------|--------------------------|-------------|-------------|--|--|
| (*) | Asset<br>Number | Manufacturer | Model<br>Number     | Serial<br>Number | Description              | Last        | Calibration |  |  |
|     |                 |              |                     |                  |                          | Calibrated  | Interval    |  |  |
| *   | 00050           | Chase        | CBL-6111A           | 1607             | Bilog Antenna            | 23 Jun 2017 | Triennial   |  |  |
|     | 00034           | ETS          | 3115                | 6267             | Double Ridged Guide Horn | 02 Dec 2015 | Triennial   |  |  |
|     | 00035           | ETS          | 3115                | 6276             | Double Ridged Guide Horn | 02 Dec 2015 | Triennial   |  |  |
| *   | 00047           | HP           | 85685A              | 2837A00826       | RF Preselector           | 23 Jun 2017 | Triennial   |  |  |
| *   | 00049           | HP           | 85650A              | 2043A00162       | Quasi-peak Adapter       | 23 Jun 2017 | Triennial   |  |  |
| *   | 00051           | HP           | 8566B               | 2747A05510       | Spectrum Analyzer        | 23 Jun 2017 | Triennial   |  |  |
| *   | 00223           | HP           | 8901A               | 3749A07154       | Modulation Analyzer      | 27 Dec 2017 | Triennial   |  |  |
| *   | 00224           | HP           | 8903B               | 3729A18691       | Audio Analyzer           | 28 Dec 2017 | Triennial   |  |  |
| *   | 00241           | R&S          | FSU40               | 100500           | Spectrum Analyzer        | 23 Apr 2015 | Triennial   |  |  |
|     | 00005           | HP           | 8648D               | 3847A00611       | Signal Generator         | 21 Jun 2017 | Triennial   |  |  |
|     | 00006           | R&S          | SMR20               | 100104           | Signal Generator         | 29 May 2017 | Triennial   |  |  |
|     | 00243           | Rigol        | DS1102E             | DS1ET150502164   | Oscilloscope             | 7 Nov 2017  | Triennial   |  |  |
|     | 00254           | LeCroy       | WM8600A             | 532              | Oscilloscope             | NCR         | n/a         |  |  |
|     | 00110           | Gigatronics  | 8652A               | 1875801          | Power Meter              | 29 Feb 2016 | Triennial   |  |  |
|     | 00237           | Gigatronics  | 80334A              | 1837001          | Power Sensor             | 23 Jun 2014 | Triennial   |  |  |
|     | 00232           | ETS Lindgren | HI-6005             | 91440            | Isotropic E-Field Probe  | 18 Dec 2017 | Triennial   |  |  |
| *   | 00003           | HP           | 53181A              | 3736A05175       | Frequency Counter        | 21 Jun 2017 | Triennial   |  |  |
|     | 00257           | Com-Power    | LI-215A             | 191934           | LISN                     | 5 Jan 2018  | Triennial   |  |  |
|     | 00041           | AR           | 10W1000C            | 27887            | Power Amplifier          | NCR         | n/a         |  |  |
|     | 00106           | AR           | 5SIG4               | 26235            | Power Amplifier          | NCR         | n/a         |  |  |
|     | 00280           | AR           | 25A250AM6           | 22702            | Power Amplifier          | NCR         | n/a         |  |  |
|     | 00265           | Miteq        | JS32-00104000-58-5P | 1939850          | Microwave L/N Amplifier  | COU         | n/a         |  |  |
|     | 00071           | EMCO         | 2090                | 9912-1484        | Multi-Device Controller  | n/a         | n/a         |  |  |
|     | 00072           | EMCO         | 2075                | 0001-2277        | Mini-mast                | n/a         | n/a         |  |  |
|     | 00073           | EMCO         | 2080                | 0002-1002        | Turn Table               | n/a         | n/a         |  |  |
| *   | 00081           | ESPEC        | ECT-2               | 0510154-B        | Environmental Chamber    | CNR         | n/a         |  |  |
| *   | 00234           | VWR          | 61161-378           | 140320430        | Temp/Humidity Meter      | New         | Triennial   |  |  |
|     | 00236           | Nokia        | -                   | 236              | ESD Table                | NCR         | n/a         |  |  |
|     | 00255           | Expert ESD   | A4001               | A4001-155        | ESD Target               | COU         | n/a         |  |  |
|     | 00064           | NARDA        | 3020A               | n/a              | Bi-Directional Coupler   | COU         | n/a         |  |  |
|     | 00263           | Koaxis       | KP10-1.00M-TD       | 263              | 1m Armoured Cable        | COU         | n/a         |  |  |
| *   | 00263B          | Koaxis       | KP10-1.00M-TD       | 263B             | 1m Armoured Cable        | COU         | n/a         |  |  |
|     | 00264           | Koaxis       | KP10-7.00M-TD       | 264              | 1m Armoured Cable        | COU         | n/a         |  |  |
|     | 00275           | TMS          | LMR400              | n/a              | 25m Cable                | COU         | n/a         |  |  |
| *   | 00276           | TMS          | LMR400              | n/a              | 4m Cable                 | COU         | n/a         |  |  |
|     | 00277           | TMS          | LMR400              | n/a              | 4m Cable                 | COU         | n/a         |  |  |
| *   | 00278           | TILE         | 34G3                | n/a              | TILE Test Software       | NCR         | n/a         |  |  |
| Ren | ted Equi        | pment        |                     |                  |                          |             |             |  |  |
|     |                 |              |                     |                  |                          |             |             |  |  |
|     |                 |              |                     |                  |                          |             |             |  |  |

\* Used during the course of this investigation

CNR: Calibration Not Required

COU: Calibrate On Use



# **APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY**

|     | CISPR 16-4 Measurement Uncertainty (ULAB)                                                                                                             |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Thi | This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2             |  |  |  |  |  |  |
|     | 30MHz - 200MHz                                                                                                                                        |  |  |  |  |  |  |
|     | $U_{LAB} = 5.14 dB$ $U_{CISPR} = 6.3 dB$                                                                                                              |  |  |  |  |  |  |
|     | 200MHz - 1000MHz                                                                                                                                      |  |  |  |  |  |  |
|     | $U_{LAB} = 5.90 dB$ $U_{CISPR} = 6.3 dB$                                                                                                              |  |  |  |  |  |  |
|     | 1GHz - 6GHz                                                                                                                                           |  |  |  |  |  |  |
|     |                                                                                                                                                       |  |  |  |  |  |  |
|     | $U_{LAB} = 4.80 dB$ $U_{CISPR} = 5.2 dB$                                                                                                              |  |  |  |  |  |  |
|     | 6GHz - 18GHz                                                                                                                                          |  |  |  |  |  |  |
|     | $U_{LAB} = 5.1 dB$ $U_{CISPR} = 5.5 dB$                                                                                                               |  |  |  |  |  |  |
|     | If the calculated uncertainty <b>U</b> <sub>lab</sub> is <b>less</b> than <b>U</b> <sub>CISPR</sub> then:                                             |  |  |  |  |  |  |
| 1   | Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit                                                                |  |  |  |  |  |  |
| 2   | Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit                                                           |  |  |  |  |  |  |
|     | If the calculated uncertainty <b>U</b> <sub>lab</sub> is <b>greater</b> than <b>U</b> <sub>CISPR</sub> then:                                          |  |  |  |  |  |  |
| 3   | Compliance is deemed to occur if NO measured disturbance, increased by (U <sub>lab</sub> - U <sub>CISPR</sub> ), exceeds the disturbance limit        |  |  |  |  |  |  |
| 4   | 4 Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U <sub>lab</sub> - U <sub>CISPR</sub> ), EXCEEDS the disturbance limit |  |  |  |  |  |  |