

849 NW State Road 45 Newberry, Fl. 32669 USA Phone: 352.472.5500 Fax: 352.472.2030 Email: info@timcoengr.com

FCC PART 15B / RSS-215

ANALOGUE SCANNING RECEIVER

COMBO TEST REPORT

Applicant	UNIDEN AMERICA CORPORATION
Address	3001 GATEWAY DRIVE SUITE 130 IRVING TEXAS USA 75063
FCC ID:	AMWUT416
IC	513C-UT416
Model Number	BearTracker 885
Product Description	CB RADIO WITH SCANNING RECEIVER
Date Sample Received	3/16/2017
Final Test Date	4/3/2017
Tested By	Tim Royer
Approved By	Sid Sanders
Test Results	PASS FAIL

Report	Version	Description	Issue Date
Number	Number		
422CUT17TestReport	Rev1	Initial Issue	4/3/2017
422CUT17TestReport	Rev2	Updated signature and added 38	4/19/2017
		dB Rejection results to page 5	

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

TABLE OF CONTENTS

GENERAL REM	IARKS
EUT SPECIFICA	TION
PERIPHERALS U	ISED FOR TESTING
TEST RESULTS	SUMMARY5
RADIATED SPU	RIOUS EMISSIONS
Test Data:	Tuned to 27.205MHz, 30 – 200 MHz Vertical Peak Plot
Test Data:	Tuned to 27.205MHz, 30 – 200 MHz Horizontal Peak Plot
Test Data:	Tuned to 162.425 MHz, 30 – 200 MHz Vertical Peak Plot
Test Data:	Tuned to 162.425 MHz, 30 – 200 MHz Horizontal Peak Plot
Test Data:	Tuned to 512 MHz, 30 – 200 MHz Vertical Peak Plot
Test Data:	Tuned to 512 MHz, 30 – 200 MHz Horizontal Peak Plot
Test Data:	Scanning CB bands, 30 – 200 MHz Vertical Peak Plot
Test Data:	Scanning CB bands, 30 – 200 MHz Horizontal Peak Plot
Test Data:	Scanning WX bands, 30 – 200 MHz Vertical Peak Plot
Test Data:	Scanning WX bands, 30 – 200 MHz Horizontal Peak Plot
Test Data:	Scanning all bands, 30 – 200 MHz Vertical Peak Plot
Test Data:	Scanning all bands, 30 – 200 MHz Horizontal Peak Plot
Test Data:	Tuned to 27.205MHz MHz, 200 - 1000 MHz Vertical Peak Plot23
Test Data:	Tuned to 27.205MHz MHz, 200 - 1000 MHz Horizontal Peak Plot
Test Data:	Tuned to 162.425 MHz, 200 - 1000 MHz Vertical Peak Plot25
Test Data:	Tuned to 162.425 MHz, 200 - 1000 MHz Horizontal Peak Plot
Test Data:	Tuned to 512 MHz, 200 - 1000 MHz Vertical Peak Plot
Test Data:	Tuned to 512 MHz, 200 - 1000 MHz Horizontal Peak Plot
Test Data:	Scanning CB bands, 200 - 1000 MHz Vertical Peak Plot
Test Data:	Scanning CB bands, 200 - 1000 MHz Horizontal Peak Plot
Test Data:	Scanning WX bands, 200 - 1000 MHz Vertical Peak Plot
Test Data:	Scanning WX bands, 200 - 1000 MHz Horizontal Peak Plot
Test Data:	Scanning all bands, 200 - 1000 MHz Vertical Peak Plot
Test Data:	Scanning all bands, 200 - 1000 MHz Horizontal Peak Plot
Test Data:	Scanning all bands, 200 - 1000 MHz Horizontal Peak Plot Cont
TEST EQUIPMEN	NT LIST

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 2 of 36

GENERAL REMARKS

The attached report shall not be reproduced except in full without the written permission of Timco Engineering Inc.

Summary

The device under test does:

- Fulfill the general approval requirements as identified in this test report and was selected by the customer.
- Not fulfill the general approval requirements as identified in this test report

Attestations

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report.

All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025 requirements.

I attest that the necessary measurements were made at:

Timco Engineering Inc. 849 NW State Road 45 Newberry, FL 32669

Tested by: Name and Title: Tim Royer, Project Manager/Testing Engineer

Date: 4/6/2017

Reviewed and approved by:

Name and Title: Sid Sanders, Engineer

Date: 4/11/17

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 3 of 36

EUT SPECIFICATION

This test results relates only	y to the items tested.				
EUT DESCRIPTION	CB RADIO WITH SCANNING RECEIVER				
REQUIREMENTS	CFR 47 FCC Part 15B, RSS-215 Issue 2, RSS-Gen Issue 4				
MODEL NUMBER	BearTracker 885				
TEST STANDARDS	ANSI C63.4 – 2014, FCC Part 15A, RSS-Gen Issue 4				
TEST FREQUENCIES	27.205, 162.425 & 512MHz				
	100–240Vac/50– 60Hz				
EUT POWER SOURCE	DC Power 13.8V				
	Battery Operated				
	Prototype				
TEST ITEM	Pre-Production				
	Production				
	Fixed				
TYPE OF EQUIPMENT	🖂 Mobile				
	Portable				
MODIFICATIONS TO EUT:	No Yes (explanation below)				
TEST MODE DESCRIPTION	Receive only, Tuned to three places in band and scanning.				
TEST FACILITIES	Timco Engineering Inc. located at 849 NW State Road 45 Newberry, FL 32669 USA.				
LABORATORY TEST CONDITION	Temperature: 24-26°C Relative humidity: 50-65% Barometric Pressure: 30.01"				

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 4 of 36

PERIPHERALS USED FOR TESTING

Description	Model	Connector	Length
Microphone	Bearcat	6 pin	1m
GPS Antenna		RJ12	2m

TEST RESULTS SUMMARY

Test Item	FCC Rule Part	RSS Specification	Result
Radiated Spurious Emissions	15.109	215 sec 5.1, GEN sec 7.1	Pass
Powerline Conducted Emissions	15.107	215, sec 5.1, GEN sec 8.8	N/A
38 dB Rejection	15.121	N/A	NA ⁽¹⁾

Notes:

Manufacturer provided attestation letter, no test required.

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 5 of 36

Rule Part No.: FCC Part 15 Subpart B, RSS-215 sec 5.1

Requirements: FCC Part 15.109(a), RSS GEN 7.1.2 Radiated Emission Limit

Clas	s B Field Strength I	Limits @ 3 Me	eters
Frequency (MHz)	Quasi-peak (dBuV/m)	Average (dBuV/m)	Peak (dBuV/m)
30 – 88	40.0	-	-
80 – 216	43.5	-	-
216 – 960	46.0	-	-
960 - 1000	54.0	-	-
> 1000	54.0	54	74

FCC Part 15.109(f) Radiated Emission Limit

For a receiver which employs terminals for the connection of an external receiving antenna, the receiver shall be tested to demonstrate compliance with the provisions of this section with an antenna connected to the antenna terminals unless the antenna conducted power is measured as specified in §15.111(a).

Procedure: FCC Part 15.33(b)(3) Frequency range of radiated measurements

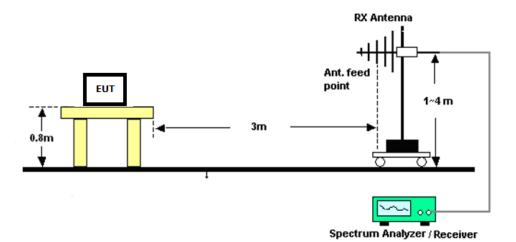
FCC Part 15.35(a) Measurement detector functions and bandwidths

ANSI C63.4 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment 9 kHz to 40 GHz

§ 6.2 Operating conditions

- § 6.3 Arrangement of EUT
- § 8.3.1 Exploratory radiated emissions measurements
- § 8.3.2 Final radiated emission measurements
- **Configuration:** The scanner receiver spurious emissions are to be measured when the receiver is in the scanning mode and repeated when the scanning is stopped.

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1


TABLE OF CONTENTS

Page 6 of 36

Setup:

Emissions 30 – 1000 MHz

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 7 of 36

Test Data: Tuned to 27.205MHz, 30 – 200 MHz Vertical Peak Plot

RC	> CHDE&S	CHW/	ARZ							07.	Apr 17 11:32	
Test Pola Verti	rity	с	ISPR 22 R	adiatec	l Disturb	ance	s					
Scan Scan Dete	Stop: 21 ctor: Ti	I Range) D MHz DO MHz race 1: MA DS_01										
Start	uency	Stop Frequenc	.	Step Size			Res BW	Meas Time	RF Atten	Preamp	Input	
	.000000 MHz				00 kHz			Hz 50 µs	Auto		INPUT1	
Ŷ	Step AUIO		Att 0 d	LE AUTO	REW MI PREJ		1 2	Mackes 1 11 18.7 199.76000	2 dBpV/m			
48⊍7 /n						10	x H 26 0					
L PX										SGL		
	-11									TDS		
	-51			_								
	-51											
	FCC_B					F				ac		
	-31											
				-	<u> </u>	h		Mula for the second	Mary Jack			
	free and the second second	alalal filmeri	Main (Main Courts	i hirikal	Harris Ch	₩£V	Verdervala	ACT.				
	30 MHz						1		200 MHz	I		
											Page 1 of 2	

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 8 of 36

Test Data: Tuned to 27.205MHz, 30 – 200 MHz Vertical Peak Plot Cont.

	rength Plo				
					07.Apr 17 11:32
Test S	pec	CISPR 22 Radiated Dis	turbances		
Polari Vertica					
Final	Measurement				
Meas Margir Subra	1: 3	s 0 dB			
Trace	Frequency	Level (dBµV/r	n) Detector	Delta Limit/dB	
1	35.000000000	MHz 11.79	Quasi Peak	-28.21	
1	41.200000000	MHz 10.68	Quasi Peak	-29.32	
1	75.280000000	MHz 7.49	Quasi Peak	-32.51	
1	87.840000000	MHz 11.79	Quasi Peak	-28.21	
	141.520000000	MHz 14.20	Quasi Peak	-29.30	
1			Quasi Peak	-27.32	

Page 2 of 2

Results Meets Requirements

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 9 of 36

513C-UT416

422CUT17TestReport_Rev1

Report:

Test Data: Tuned to 27.205MHz, 30 – 200 MHz Horizontal Peak Plot

3 Meter Fie	eld Strength Plot
	RÖHDE & SCHWARZ 07 Apr 17 11:34
	Test Spec CISPR 22 Radiated Disturbances Polarity Vertical
	Stepped Scan (1 Range) Scan Start 30 MHz
	Scan Stop: 200 MHz Detector: Trace 1: MAX PEAK Transducer: TDS_01
	Start Stop Step Meas RF Frequency Frequency Size Res BW Time Atten Preamp Input
	30.000000 MHz 200.000000 MHz 40.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1
	Step AUTO Att 0 dl AUTO PARAME OX 185.10000000 MAR dawd 31.1 100 MAR ////////////////////////////////////
	to be a superior of the state of the
	совия. 20 мя.
	Page 1 of 2
Results Me	ets Requirements
Applicant:	UNIDEN AMERICA CORPORATION TABLE OF CONTENTS
FCC ID: IC:	AMWUT416 513C-UT416

Page 10 of 36

Test Data: Tuned to 162.425 MHz, 30 – 200 MHz Vertical Peak Plot

					31.Mar 17 13:30
<u>Time Dom</u> Scan Start Scan Stop: Detector: Transducer:	30 MHz 200 MHz Trace 1: MAX P TDS_01	_			
Start Frequency	Stop Frequency	Step Size	Res BW	Meas RF Time Atten	Preamp Input
30.00000	00 MHz 200.00000				20 dB INPUT1
Step 8	TD AUTO FULSE AT	RB MT t 0 dB AU70 PR		arker 1 (T1) 12.33 dBµV/m 42.900000000 MHz	
48µ¥ 100 /m		LIMIN CHECK	100 MHz PN00		
-90					
-90					***
-70					
- 60					
-50					631 M
-10					
ent	Kimmontoneway		Marman	particular and a state of the s	
0		- Allow water			
30 NR	2			200 MH=	
Final Meas Meas Time:	<u>surement</u> 500 ms				
Margin: Subranges:	25 dB 6				
Trace	Frequency	Level (dBµV/m)		Delta Limit/dB	
1 41.	.600000000 MHz .820000000 MHz	17.48 11.12	Quasi Peak Quasi Peak Quasi Peak	-22.52 -28.88 -20.41	
1 65.	.380000000 MHz .460000000 MHz .530000000 MHz	19.59 20.35 16.49	Quasi Peak Quasi Peak Quasi Peak	-20.41 -19.65 -27.01	
	.360000000 MHz	16.03	Quasi Peak	-27.47	
					Page 1 of 1
					Fage For F

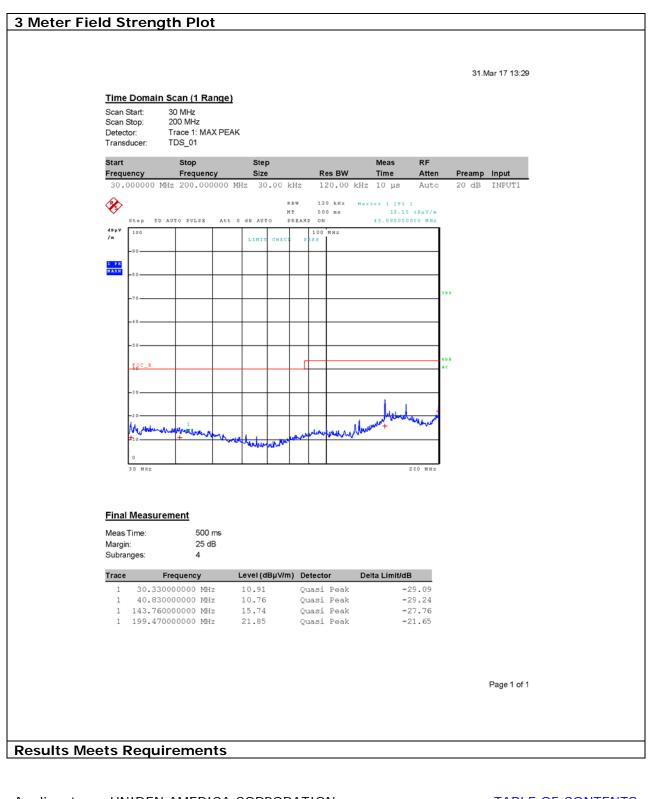

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 11 of 36

Test Data: Tuned to 162.425 MHz, 30 – 200 MHz Horizontal Peak Plot

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 12 of 36

Test Data: Tuned to 162.425 MHz, 30 – 200 MHz Horizontal Peak Plot

					07.Apr 17 11:34	
Test S Polarit Vertica	ty	CISPR 22 Radiated Di	isturbances			
Final	Measurement					
Meas Margin Subra	Time:	1 s 30 dB 5				
Trace	Frequence	cy Level (dBµV	(m) Detector	Delta Limit/dB		
	36.52000000 42.24000000 87.68000000 145.60000000 154.80000000) MHz 10.93) MHz 11.85) MHz 16.16	Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak	-28.89 -29.07 -28.15 -27.34 -27.05		

Page 2 of 2

Results Meets Requirements

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 13 of 36

Test Data: Tuned to 512 MHz, 30 – 200 MHz Vertical Peak Plot Cont.

Time D			>								03	3.Apr 17 10:3	6
Scan Sta Scan Sta Detector Transdu	art: op: :	<u>Scan (1 Ra</u> 30 MHz 200 MHz Trace 1: MA TDS_01											
Start Frequen	cv	Stop Frequen	cv	Ste			Res	BW	Meas Time	RF Atten	Pream	p Input	
30.00		z 200.00			0.00		120	.00 kH	z 10 µs	Auto			-
*	ep TD #	UTO PULSE	Att 0	dB AU	1	R D W M T PREAMI	120 1 500 1 9 0N		arker 1 [71 14.5 33.27000	8 dBµV∕m			
/=	00			LINIS	CHEC	E P.	100 MH	z					
1 PK	0												
[`											TB 5		
-7													
-6													
-5 F	сс_в					Г					608 AC		
											_		
	0								1				
λ υ ,	viller	wand	Man			men	moth	um	mantanna	historical			
٥				- lot-lui	with								
3 (MHz									200 MHz			
Final N	leasure	ment											
Meas Tir		500											
Margin: Subrang	es:	20 d 1	β										
Trace		requency		Level(c 16.28					Delta Limit/d				
1 1	.43.700	000000 ME	12	10.28		QU	asi P	eak	-	27.22			
												_	
												Page 1 of	1

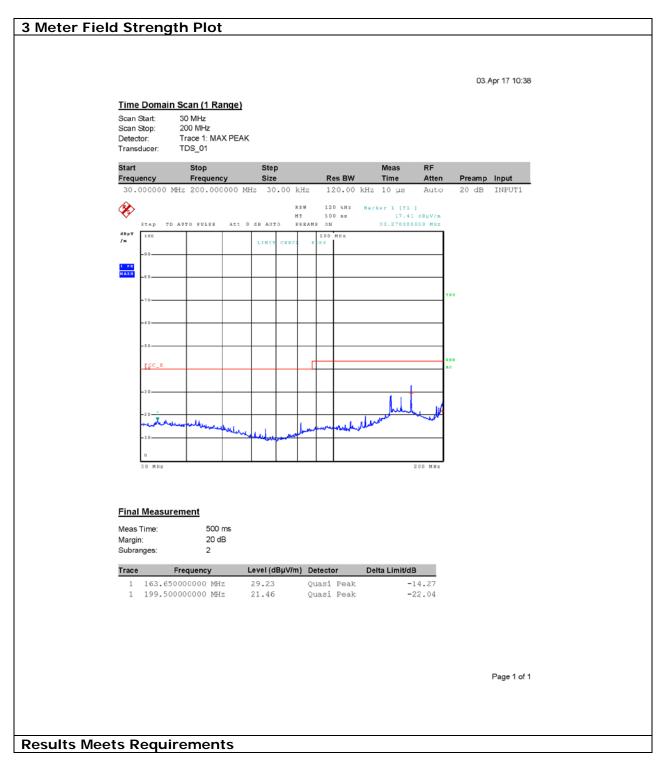
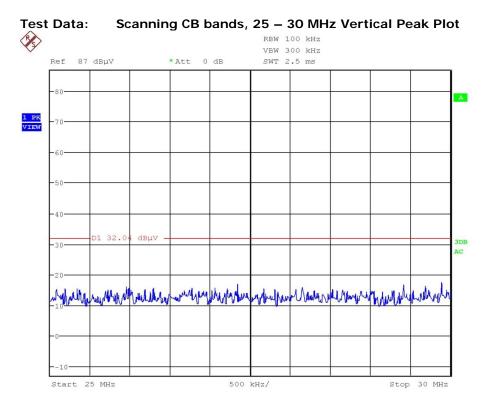

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 14 of 36

Test Data: Tuned to 512 MHz, 30 – 200 MHz Horizontal Peak Plot



Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 15 of 36

Date: 7.APR.2017 11:27:48

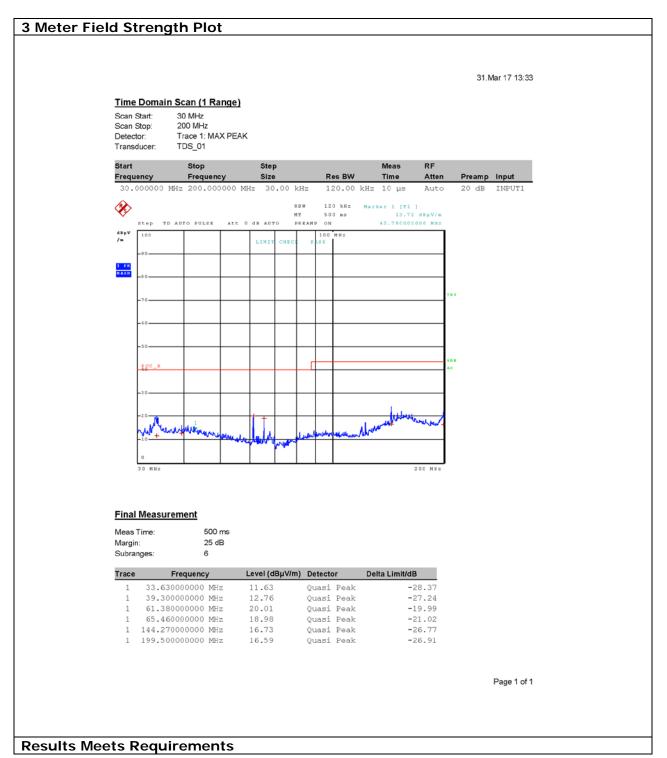

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

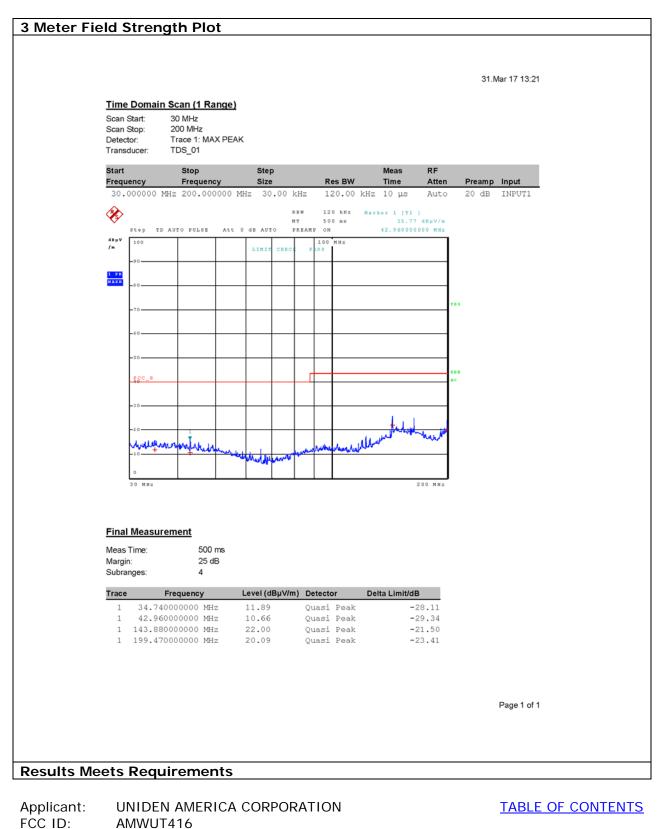
Page 16 of 36

Test Data: Scanning CB bands, 30 – 200 MHz Vertical Peak Plot

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

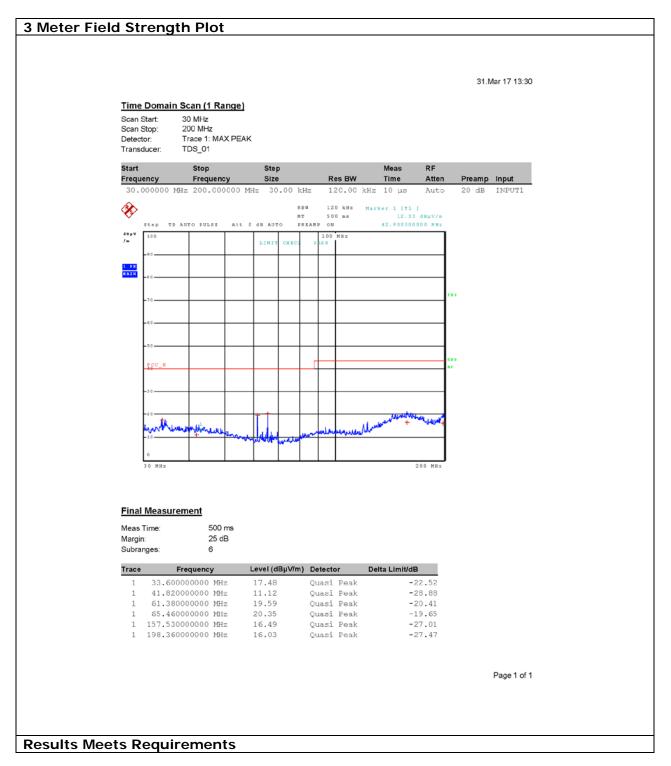
TABLE OF CONTENTS

Page 17 of 36


IC:

Report:

513C-UT416


422CUT17TestReport_Rev1

Test Data: Scanning CB bands, 30 – 200 MHz Horizontal Peak Plot

Test Data: Scanning WX bands, 30 – 200 MHz Vertical Peak Plot

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 19 of 36

Test Data: Scanning WX bands, 30 – 200 MHz Horizontal Peak Plot

eter Field	l Strengt	h Plot				
	<u>Time Domain</u>	Scan (1 Range)				31.Mar 17 13:29
	Scan Start: Scan Stop: Detector: Transducer:	30 MHz 200 MHz Trace 1: MAX PEAK TDS_01				
	Start Frequency	Stop Frequency	Step Size	Res BW	Meas RF Time Atten	Preamp Input
	%	Hz 200.000000 MHz	R 9 W M 7	500 ms	er 1 [71] 13.15 dBμV/m	20 dB INPUT1
	8top 7D 4Bp¥ /m	AUTO PULSE Att 0 d		ON 100 MHz 88	43.080000000 NHz	
	-90					
	-70			_		**
	- 60	+ + +		_		
	-50					58
	-10					ις
	-20	1			and wand we want	
	tro	un manana	entructure and	unioner Newer	· • · ·	
	0 30 MHz				200 MHz	
	Final Measure	ement				
	Meas Time: Margin: Subranges:	500 ms 25 dB 4				
	1 30.330	0000000 MHz 1		asi Peak	a Limit/dB -29.09	
	1 143.760	0000000 MHz 1	5.74 Qua	asi Peak asi Peak asi Peak	-29.24 -27.76 -21.65	
			Sec.			
						Page 1 of 1
		ements				

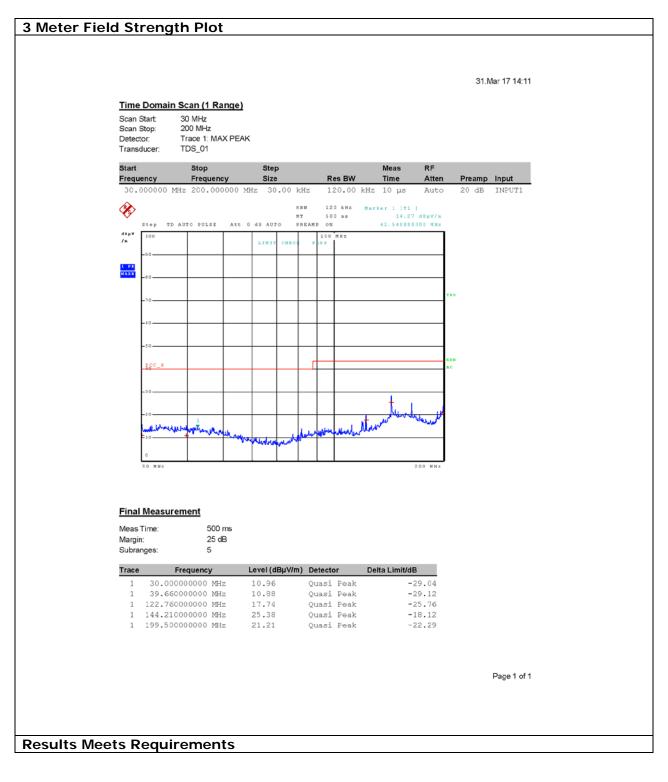

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 20 of 36

Test Data: Scanning all bands, 30 – 200 MHz Vertical Peak Plot

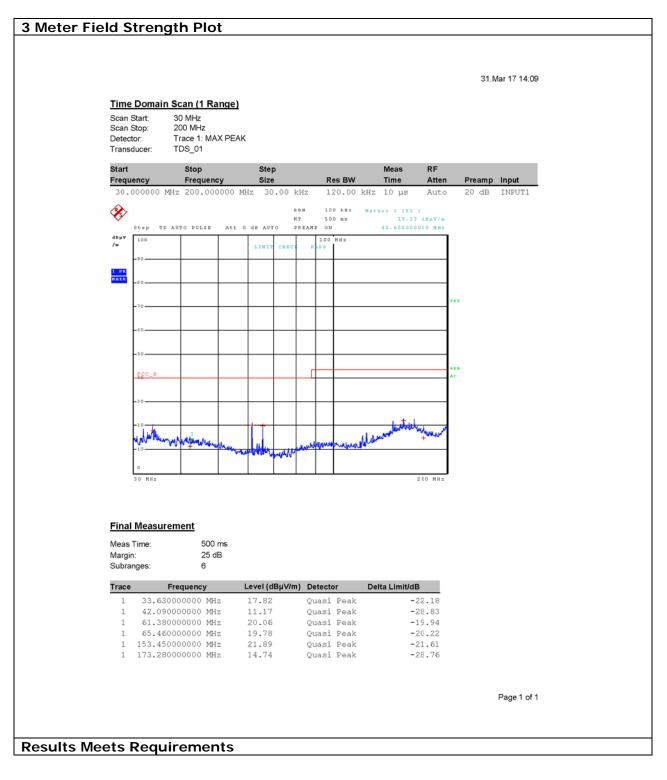

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 21 of 36

Test Data: Scanning all bands, 30 – 200 MHz Horizontal Peak Plot

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 22 of 36

Test Data: Tuned to 27.205MHz MHz, 200 - 1000 MHz Vertical Peak Plot

leter Fiel	d Strength Plot
	ROHDE & SCHWARZ
	03 Apr 17 11:35 Test Spec CISPR 22 Radiated Disturbances
	Polarity Vertical
	Time Domain Scan (1 Range)
	Scan Start. 200 MHz Scan Stop: 1 GHz
	Detector: Trace 1: MAX PEAK Transducer: TDS_01
	Start Stop Step Meas RF Frequency Frequency Size Res BW Time Atten Preamp Input
	200.000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUTI
	NI 1 27.65 dlyU/m Step ID AUTO PULSE ALL D dE AUTO PREAMP OM 504.500000000 МИ-
	dB ut 111 I U I U I U I U I U I U I U I U I U
	-11
	2V55042A
	- 27 - 27 - 27 - 27 - 27 - 27 - 27 - 27
	- 11
	200 MH= 1 GH=
	Final Measurement
	MeasTime: 1 s Margin: 25 dB
	Subranges: 1 Trace Frequency Level (dBµV/m) Detector Delta Limit/dB
	1 981.890000000 MHz 26.92 Quasi Peak -30.08
	Page 1 of 1
sults Mee	ets Requirements

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 23 of 36

Test Data: Tuned to 27.205MHz MHz, 200 - 1000 MHz Horizontal Peak Plot

ROHDI	E&SCH\	VARZ						00	Apr 17 11:34
Test Spec Polarity Horizontal <u>Time Dom</u>	ain Scan (1		Radiated Distu	rbances				03.	ыргтт 11.3ч
Scan Start: Scan Stop: Detector: Transducer:	TDS_01	MAX PEAK							
Start Frequency	Stop Frequ	ency	Step Size	Res B	w	Meas Time	RF Atte	n Preamp	Input
			Hz 30.00 kH			z 50 µs	Aut	•	INPUT1
8			RE NI	1 2	= 863	ackes 1 11 23.6	SS dByV/r	n	
111 Po 06	TO AUTO PULS	E ALL O		¥0 9%АЗ		505.79000	1 GH ж	<u> </u>	
/n			LINNI CHECK	PASS					
		1		-		+		1	
				_		+		70.5	
-51								1	
BN 5 5	A 20			1				1	
		1				+		508	
		-						AC.	
							and the second	2	
			لماريطم	untersonal and		Service - Ser			
are from the	And and and a start of the star	Mary Hardingon	CONC.MU						
-11						+	-	1	
200 %.	H x						1 GH	ļ	
								-	
<u>Final Meas</u>									
Meas Time: Margin:		s 5 dB							
Subranges:	1								
Trace	Frequency	L	.evel (dBµV/m)	Detector	C) elta Limit/(βB		
1 998.	.330000000	MHz	28.21	Quasi Pe	ak		-28.79		
									Page 1 of 1

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 24 of 36

Test Data: Tuned to 162.425 MHz, 200 - 1000 MHz Vertical Peak Plot

×													
ROP	IDE	& SCH	IWAR	Z								03./	Apr 17 09:36
Test Sp Polarity Vertical	,		CISPR	22 Radi	ated D	isturba	nces						
	Domai tart: top: r:	200 M 1 GHz	1: MAX PE	-									
Start Freque	ncy	Sto Fre	p quency		ep ze		Res I	3W	Meas Time		RF Atten	Preamp	Input
200.00	00000	MHz]	L.000000	GHz	30.00			00 kHz			Auto	20 dB	INPUT1
di uq /n - - - - - - - - - - - - - - - - - -	21			7 13	у с ну		iARG		327.290	15 dl	GH x	502 508 AC	
Meas T Margin: Subran; Frace	ime: ges:	rement Frequer 9000000		Level 29.9			etector uasi Pe		alta Limit	t/dB - 27.	.10		Page 1 of 1

Applicant:	UNIDEN AMERICA CORPORATION
FCC ID:	AMWUT416
IC:	513C-UT416
Report:	422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 25 of 36

Test Data: Tuned to 162.425 MHz, 200 - 1000 MHz Horizontal Peak Plot

ROHDE	& SCHWAR	Z				03 <i>.</i> #	Apr 17 09:30
Test Spec Polarity Horizontal	CISP	R 22 Radiated Disturb	ances				
	in Scan (1 Rang 200 MHz 1 GHz Trace 1: MAX P TDS_01	_					
Start Frequency	Stop Frequency	Step Size	Res BW	Meas Time	RF Atten	Preamp	Input
200.000000) GHz 30.00 kHz	120.00 kH		Auto		INPUT1
*		RBW MI	120 kHz 💥: 1 s	skes 1 \$1 37.17	d.By∀/m		
Step I	A STUS OTUA O		же о <u>и</u>	327.380000			
/n		LIMDI CHECK LIMH EN55022A	KARG KARG				
L PX							
-11					2.07		
- 51							
BN 5 5 0 2	24						
					509		
- 31	L.I.	Literar de alemantes de la comotida	mely we	Ver and a second and a second	h		
where the services	and interstant and the lower	W. N. Charles					
-11							
דאנא סס <u>כ</u>	I	l			1 GH =		
<u>Final Measu</u>	irem enf						
<u>r mai ivieasu</u> Meas Time:	1 s						
Margin: Subranges:	20 dB 1						
		Laud (dDe) (be)) of contar	olto Liveit/P	_		
Trace 1 327.3	Frequency 80000000 MHz	26.15 (D etector D Duasi Peak	elta Limit/dB - :	80.85		
							Page 1 of 1
							i aye TULT

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 26 of 36

Test Data: Tuned to 512 MHz, 200 - 1000 MHz Vertical Peak Plot

<page-header></page-header>	ical te Domain Scan (1 Range) In Start: 200 MHz n Stop: 1 GHz actor: Trace 1: MAX PEAK isoducer: TDS_01 t <u>Stop Frequency Size Res BWV Time Atten Preamp Input</u> .000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .0000000 MHz 1.000000 GHZ 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .0000000 MHz 1.000000 GHZ 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .0000000 MHz 1.000000 GHZ 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .0000000 MHz 1.000000 GHZ 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .0000000 MHz 1.000000 GHZ 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .0000000 MHz 1.000000 GHZ 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .0000000 MHz 1.000000 GHZ 30.00 kHz 100 0 yr 555.0000000 MHz .0000000 MHz 1.000000 GHZ 30.00 kHz 100 yr 555.0000000 MHz .0000000 MHz 1.000000 GHZ 30.00 kHz 100 yr 555.0000000 MHz .0000000 Hz 1.00000 GHZ 30.00 kHz 100 yr 555.0000000 MHz .0000000 Hz 1.00000 GHZ 30.00 kHz 100 yr 555.0000000 MHz .000000 Hz 1.00000 HZ 10 J KHZ J
200 MHZ 16HZ To HZ To JO Stop Step Res BW Meas RF Frequency Size Res BW Meas RF 1.000000 GHZ 30.00 kHZ 120.00 kHZ 50 µs Auto 20 GH INPUTI MW 120 kHZ MICKET [1] 1.1 22.22 dB W/M TO HZ 1.00000 GHZ MIC 100 KHZ 11.1 22.22 dB W/M TO HZ 1.00000 GHZ MIC 100 KHZ 11.1 1 TO HATO FOLSE ALC 0 GH AUTO MARK 11.1 1 TO HATO FO	ical PE Domain Scan (1 Range) In Start: 200 MHz In Stop: 1 GHz Setor: Trace 1: MAX PEAK Isducer: TDS_01 T T T T T T T T T T T T T T T T T T T
200 MHZ 16HZ To HZ To JO Stop Step Res BW Meas RF Frequency Size Res BW Meas RF 1.000000 GHZ 30.00 kHZ 120.00 kHZ 50 µs Auto 20 GH INPUTI MW 120 kHZ MICKET [1] 1.1 22.22 dB W/M TO HZ 1.00000 GHZ MIC 100 KHZ 11.1 22.22 dB W/M TO HZ 1.00000 GHZ MIC 100 KHZ 11.1 1 TO HATO FOLSE ALC 0 GH AUTO MARK 11.1 1 TO HATO FO	n Start: 200 MHz n Stop: 1 GHz setor: Trace 1: MAX PEAK isoducer: TDS_01 t t Stop Step Step Res BW Time Aften Preamp Input .000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.00000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.00000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.00000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.00000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.00000 GHz 30.00 kHz 120 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.00000 GHz 30.00 kHz 120 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.00000 GHz 30.00 kHz 120 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.00000 GHz 30.00 kHz 120 kHz 50 µs Auto 20 dB INPUT1 .000000 MHz 1.00000 GHz 30.00 kHz 120 kHz 50 µs Auto 20 dB INPUT1 .00000 FRAMP of 555.2000000 kHz 50 µs Auto 20 dB INPUT1 .00000 FRAMP of 555.2000000 kHz 50 µs Auto 20 dB INPUT1 .00000 FRAMP of 555.2000000 kHz 50 µs Auto 20 dB INPUT1 .00000 FRAMP of 555.2000000 kHz 50 µs Auto 20 dB INPUT1 .00000 FRAMP of 555.2000000 kHz 50 µs Auto 20 dB INPUT1 .00000 FRAMP of 555.200000 kHz 50 µs Auto 20 dB INPUT1 .00000 FRAMP of 555.200000 kHz 50 µs Auto 20 dB INPUT1 .00000 FRAMP of 555.2000 framP of 555.2000000 kHz 50 µs Auto 20 dB INPUT1 .00000 FRAMP of 555.2000 framP of 555.200000 framP of 555.200000 framP of 555.20000 framP of 555.200000 framP of 555.2000 framP of 555.2000 framP of 555.2000 framP of 555.20000 framP of 555.2000 framP of 5
Trace 1: MAX PEAK TB	Sector: Trace 1: MAX PEAK Isoducer: TDS_01 t Stop Step Meas RF Juency Frequency Size Res BW Time Atten Preamp Input .000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUTI .000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 1211 32.35 Auto 20 dB INPUTI .000000 FULSE Att 0 db Auto PRAMP OW 555.35000000 MMz 555.35000000 MMz 1 GHz .11
Stop Stop Stop Res BW Mean RF Atten Preamp Input 00 MH 1.000000 GH2 30.00 kH2 120.00 kH2 50 µS Auto 20 dB INPUTI AUTO PUEER ALL 0 40 AUTO FRAME 00 50.00 kH2 120.00 kH2 50 µS Auto 20 dB INPUTI AUTO PUEER ALL 0 40 AUTO FRAME 00 50.000000 KH2 1000000 KH2 1000000 KH2 1000000 KH2 10000000	t Stop Step Meas RF uency Frequency Size Res BW Time Atten Preamp Input .000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 FHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1 .000000 FHz 1.000000 GHz .000 kHz 1.000000 GHz .000 Hz .000 Hz .000 Hz .000 Hz .0000 Hz .000 Hz .
00 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUTI NBW 120 kHz NEXECCI [11] NE 32.25 dByV/m TO AGTO PUESE ALL 0 dB AGIO NEARE ON 355.25000000 M/m Image: Ima	.000000 MHz 1.000000 GHz 30.00 kHz 120.00 kHz 50 µs Auto 20 dB INPUT1
NO. ACCO POLSE ALE D GLADIO PILANE ON 32.31 GLADE VIE	Step TO AUTO PULSE ALE D 45 AUTO PREMP ON \$99,3000000 M/r 111 ITM 2 CARCA AAC I CH 1 11 ITM 2 CARCA AAAC I CH 1 11 ITM 2 CARCA AAAC I CH 1 11 ITM 2 CARCA AAAC I CH 1 11 ITM 2 CARCA IAAC I CH 1 11 ITM 2 CARCA I CH 1 11 I CH 1 I CH 1 12 I CH 1 I CH 1 13 I CH 1 I CH 1 14 I CH 1 I CH 1 15 I CH 1 I CH 1 16 I
List CARCX AAG List CARCX AAG List SUSSER	111 1181 T CRECK WARD 1 CR -11 1181 T CRECK WARD 1 CR -11 1 CR 1 CR
<u>surement</u> 15	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
<u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>s</u>	11 <
<u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>see</u> <u>s</u>	-11
surement 1 s	the share which are an and a start of the st
surement 1 s	the share which are an and a start of the st
surement 1 s	
<u>surem ent</u> 1 s	
1 s	200 KHz 1 GHz
1 s	
	al Measurement
	asTime: 1.s gin: 25.dB
1	
Frequency Level (dBµV/m) Detector Delta Limit/dB .380000000 MHz 28.21 Quasi Peak -28.79	
	Page 1 o

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 27 of 36

Test Data: Tuned to 512 MHz, 200 - 1000 MHz Horizontal Peak Plot

RC) DHDI	E&S	сни	/ARZ	:								
Test Polai Horiz	ity			CISPR :	22 Radi:	ated Distu	rbances					03.	Apr 17 10:3
<u>Tim</u> Scan Scan Dete	e Dom Start: Stop:	1 (Tra	0 M Hz ƏHz	<u>Range)</u> AX PEA									
Start			Stop		St		Deel	7.67	Meas		RF	Droomu	Innut
	uency 00000	0 MHz	Freque 1.0		Si GHz 3	ze 30.00 kH	Res [z 120.		Time Iz 50 p		Atten Auto		INPUT1
8 04	Step	ID AUI	D PULSE	Att	U dE A		1 a EAMP OX	ы та 19	ackec 1 3: 953.69	2.13 d 100000		1	
(n L 33	-91				LIM	2 CHECK EN22022	KARG A KARG				-		
L PX												TD 5	
	- 51												
	88221	0228										508 50	
	-31-									فالمكم	1		
		. J. J. A.	A Land and a	redshiple	والا والجنو	APPART.	us an in the	et when	YU SALANA				
	200 M		<u> </u>								1 GH 2		
Meas Marg	s Time:	sureme	1 9	dВ									
Trace	e	Freq	uency		Level	(dBµV/m)	Detector	[)elta Lim	it/dB			
1	953.	.69000	0000 M	Hz	27.1	1	Quasi Pe	ak		-29	.89		
													Page 1 of

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 28 of 36

Test Data: Scanning CB bands, 200 - 1000 MHz Vertical Peak Plot

ROHDE	& SCHWA	RZ							
Test Spec	CI	SPR 22 Rad	diated Distur	bances				31.1	/lar 17 15:16
Polarity Vertical									
Time Doma Scan Start: Scan Stop: Detector: Transducer:	<u>in Scan (1 Ra</u> 200 MHz 1 GHz Trace 1: MA) TDS_01								
Start Frequency	Stop Frequenc		Step Size	Res BW		leas ime	RF Atten	Preamp	Input
200.000000	MHz 1.000	DOO GHz	30.00 kH		kHz 5	0 μs	Auto	20 dB	INPUT1
Step	ID AUTO PULSE	Att 0 dB	Tik AUTO PRI	1 s Ermp ox	214	23.74		1	
4807) /n -91		LI	млі снеск	PASS			i GH z		
L 2X									
-11								705	
- 51									
BN 5502	2.4								
							_	AC	
-31-1		+			www	-	- w		
	dund the	deset.	Stewarner mer	and a carl a card and a card					
200 жж.							1 сн т]	
Final Measu	urem ent								
Meas Time: Margin: Subranges:	1 s 20 dB 1)							
Trace	Frequency		i (dBµV/m)			Limit/dB			
1 347.3	50000000 MHz	33.	21	Quasi Peak		-2	3.73		Page 1 of 1
									Fageloii

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 29 of 36

Test Data: Scanning CB bands, 200 - 1000 MHz Horizontal Peak Plot

ROHDE	&SCHW/	RZ					03.	Apr 17 08:34
Test Spec Polarity Horizontal	с	SPR 22 Radi	ated Disturk	oances				
	t in Scan (1 Ra 200 MHz 1 GHz Trace 1: MA TDS_01							
Start Frequency	Stop		ep ze	Res E	 Meas Time	RF Atten	Droamn	Innut
Frequency 200.000000	Frequence MHz 1.000				50 μs		-	INPUT1
469-97 //m -71 -71 -11 -11 -11 -11 -11 -11	enderstanderster	ALL D dE A	T CHECX 5 BV55022A	1 a ANP ON SARC \$ARC \$ARC	327.2600	21 d3yV/m kH- 00000 kH- 1 GH- 	7D5 5D8 &C	
Final Measu Meas Time: Margin: Subranges: Trace 1 327.2		Level	(dBµV/m) 6	Detector Quasi Pe	lta Limit/	1 сн. d B - 30.94		
								Page 1 of 1

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 30 of 36

Test Data: Scanning WX bands, 200 - 1000 MHz Vertical Peak Plot

Field Strer	ngth Plot							
R))HDE&SCHV	IARZ				31.1	1ar 17 15:06	
Pola Verti	rity	CISPR 22 Radiated Disturba Range)	nces					
Scar Dete Tran	sducer. TDS_01	АХ РЕАК						
Star Freq	t Stop uency Freque	Step ncy Size	Res BW	Meas Time	RF Atten	Preamp	Input	
		00000 GHz 30.00 kHz	120.00 kHz		Auto		INPUT1	
*	,	RE 07 81 T	120 kHz Ma 1 s		dBµV/m			
	Step ID AUIO PULS	ALL D OR AUTO PREAS	1 9 1 9 1 9	23.77	2 R.W 000			
de un /s		LINET CHECK	ASS		1 GH ±			
L 27.	_ ?!							
L 93								
	-11					7D.5		
					_			
	ASERSER							
						509 AC		
		+						
	-31		a company	-	-			
		we wanted and have a server and the						
	-11							
	200 %H x	l l	I	<u></u>	1 GH ±			
Mea Marg	<mark>al Measurem ent</mark> s Time: 1 gin: 20 ranges: 1	s dB						
Trac	e Frequency	Level (dBµV/m) D	etector D	elta Limit/dB				
	327.380000000 1	Hz 33.90 Q	uasi Peak	-2	3.10			
							Page 1 of 1	
oote Dog	uiromont							
eers ked	uirements							

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 31 of 36

Test Data: Scanning WX bands, 200 - 1000 MHz Horizontal Peak Plot

ROHDE	& SCHWARZ						
Test Spec		2 Radiated Disturba	ancos			31.Mar	17 15:04
Polarity Horizontal	0101112						
	in Scan (1 Range)						
Scan Start: Scan Stop: Detector: Transducer:	200 MHz 1 GHz Trace 1: MAX PEAF TDS_01	<					
Start Frequency	Stop Frequency	Step Size	Res BW	Meas Time	RF Atten	Preamp In	naut
200.000000		Hz 30.00 kHz	120.00 kH		Auto	20 dB I	
😵 Step I	ID AUTO PULSE ALL	REW NI MI OLUA ED O	120 к.H.z м 1 s MP ом	ckec 1 11 28.18 214.820000	dBµV/m		
dia 97 111	10 x010 P0152 x11	LINNT CHECK	ASS	214.22000	і сн.		
-21					+		
<u>L PX</u> NAXO - 11					+		
-11						os.	
- 51							
<u> 8</u> 45503	2.6				+	69	
- 51 1				www.www.www.	and the second		
ala Ma	and and produced and the second	and the state of the second state of the secon	An all and the second second		+		
- 11					+		
• 200 ЮЯх		l			1 GH =		
<u>Final Measu</u>	<u>urem ent</u>						
Meas Time: Margin:	1 s 20 dB						
Subranges:	1						
Trace 1 327.3	Frequency 80000000 MHz	Level (dBµV/m) [38.56 ()etector []uasi Peak	elta Limit/dB - 1	.8.44		
						Pa	age 1 of 1

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 32 of 36

Test Data: Scanning all bands, 200 - 1000 MHz Vertical Peak Plot

RO	HDE&	SCHWAF	Z							31.N	1ar 17 14:39	
Test 9 Polar Vertic	ity	CISP	R 22 Radi	iated Distur	bances							
Scan Scan Deteo	Start: 2 Stop: 1 stor: 1	i can (1 Rang 200 MHz I GHz Frace 1: MAX P FDS_01	_									
Start Frequ		Stop Frequency		tep ize	Res	3W	Meas Time		RF Atten	Preamp	Input	
200.	000000 MH:					00 kHz			Auto	20 dB	INPUT1	
×	Step ID A	A SELUS OIL	tt 0 dB J	REQ NI NUIO PRI		Hz 86 a	ckec 1 24 502.010	4.21 d	BµV/m 0 %H≠			
Po Bb /n	111			ат снеск	PASS				1 GH =			
L 58	- 21											
NATO										TDS		
	-11											
	- 51						-					
	ENSSO									508		
		-	-							ac.		
	-31	. 1		Jun	Note we wanter			- Dec.				
	non mand	ALL AND ALL AND ALL AND A										
	-11											
	200 MH x						1		1 GH ±			
<u>Fina</u>	l Measuren	<u>n ent</u>										
Margi	Time: n: anges:	1 s 20 dB 1										
Trace		equency		(dBµV/m)			elta Lim					
1	327.3800	00000 MHz	36.	12	Quasi Pe	ak		-20	.88		D 4 44	
											Page 1 of 1	

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 33 of 36

Test Data: Scanning all bands, 200 - 1000 MHz Horizontal Peak Plot

RO	HDE &	SCHW	ARZ								31.1	Mar 17 14:5	3	
Test S Polari Horizo	ty		CISPR 22	Radiate	d Disturb	ances								
	Domain Start: Stop: tor:	<u>Scan (1 F</u> 200 MHz 1 GHz Trace 1: M TDS_01												
Start Frequ	encv	Stop Freque	ICV	Step Size		Res	BW	Meas Time		RF Atten	Preamp	Input		
	000000 MH				.00 kHz		.00 kHz			Auto	20 dB	INPUT1	-	
Þ	Step ID.	AUTO PULSE	Att O	de AUI	REW MI D PREJ	120 k 1 s 1.89 O.W	.Н т Ма	ckec 1 32 214.820	.12 dB	m/Vy ×HXi I				
d⊒ u¶ ∕n	111			T 1993 I	сявск	2 2 2 A 9			i	GH z				
L PX														
	_11										¥D.5			
	_ 51													
	EN220224													
			+						-		AC			
	-31						معليله	mark	aller t	لعمير				
	The ander	for section the			مربور المسلحو مربور المسلحو	and a start of the			T					
	-11									_				
	200 MH x								1	GH x				
												Page 1 of	2	

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 34 of 36

Test Data: Scanning all bands, 200 - 1000 MHz Horizontal Peak Plot Cont.

trength I	201			
				31.Mar 17 14:53
pec	CISPR 22 Radiated Dis	turbances		
-				
Measurement				
1:	1 s 20 dB 4			
Frequen	cy Level (dBµV/r	n) Detector	Delta Limit/dB	
327.38000000	0 MHz 43.95 0 MHz 36.15	Quasi Peak Quasi Peak Quasi Peak Quasi Peak	-17.93 -13.05 -20.85 -31.55	
1	214.82000000 327.38000000 409.22000000	ty inital <u>Measurement</u> Time: 1 s n: 20 dB nges: 4 <u>Frequency Level (dBµV/n</u> 214.82000000 MHz 32.07 327.38000000 MHz 33.05	ty initial <u>Measurement</u> Time: 1 s n: 20 dB nges: 4 <u>Frequency Level (dBµV/m) Detector</u> 214.82000000 MHz 32.07 Quasi Peak 327.38000000 MHz 43.95 Quasi Peak 409.22000000 MHz 36.15 Quasi Peak	ty inital <u>Measurement</u> Time: 1 s 1 s 20 dB nges: 4 <u>Frequency Level(dBµV/m) Detector Delta Limit/dB</u> 214.82000000 MHz 32.07 Quasi Peak -17.93 327.38000000 MHz 43.95 Quasi Peak -13.05 409.22000000 MHz 36.15 Quasi Peak -20.85

Page 2 of 2

Results Meets Requirements

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

TEST EQUIPMENT LIST

Destas		N / -		0	
Device	Manufacturer	Model	Serial	Cal/Char	Due Date
		(00/1	Number	Date	N1 (A
DC Power	HP	6286A	1744A03842	N/A	N/A
Supply					
Antenna:	Eaton	94455-1	1096	07/14/15	07/14/17
Biconical					
1096					
Chamber					
Antenna:	Electro-	LPA-25	1122	07/14/15	07/14/17
Log-Periodic	Metrics				
1122					
CHAMBER	Panashield	3M	N/A	04/25/16	12/31/17
Software:	Timco	N/A	Version	N/A	N/A
Field			4.10.7.0		
Strength					
Program					
Antenna:	ETS-Lindgren	6502	00062529	11/18/15	11/18/17
Active	_				
EMI Test	Rohde &	ESU 40	100320	04/01/16	04/01/18
Receiver R &	Schwarz				
S ESU 40					
Chamber					
Coaxial Cable	Micro-Coax	Chamber 3	KMKM-0244-	08/09/16	08/09/18
- Chamber 3		cable set	01; KMKM-		
cable set		(Primary)	0670-00;		
(Primary)			KFKF-0198-		
			01		
Bore-sight	Sunol	TLT2	N/A	N/A	N/A
Antenna	Sciences				
Positioning					
Tower					

*EMI RECEIVER SOFTWARE VERSION

The receiver firmware used was version 4.43 Service Pack 3

END OF TEST REPORT

Applicant:UNIDEN AMERICA CORPORATIONFCC ID:AMWUT416IC:513C-UT416Report:422CUT17TestReport_Rev1

TABLE OF CONTENTS

Page 36 of 36