

Report Issue Date
March 27, 2007

<u>Test Report Serial No.</u> 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

RF EXPOSURE EVALUATION

SPECIFIC ABSORPTION RATE

SAR TEST REPORT

FOR

UNIDEN AMERICA CORPORATION

PORTABLE UHF FRS/GMRS PTT RADIO TRANSCEIVER

MODEL(S): GMR1035

IDENTIFIER(S)	FCC ID: AMWUT030	IC: 513C-UT030					
Test Standard(s) and Procedure(s)	FCC OET Bulletin 65, Supplement C (01-01)						
	Industry Canada RSS-102 Issue 2						

Test Report Serial No. 032107AMW-T824-S95U

Test Report Revision No.

Revision 1.0 (Initial Release)

Test Lab and Location

Celltech Compliance Testing & Engineering Lab
(Celltech Labs Inc.)
1955 Moss Court
Kelowna, BC
Canada
V1Y 9L3

Certificate No. 2470.01

Test Report Prepared By:

Cheri Frangiadakis Test Report Writer Celltech Labs Inc. **Test Report Reviewed By:**

Jonathan Hughes General Manager Celltech Labs Inc.

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030		niden*		
Model(s):	GM	R1035	DUT Type:	Portable	FM UHF FRS/GM				
2007 Celltech La	7 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs In								

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Test Lab and Location

CELLTECH LABS INCORPORATED

Testing and Engineering Services 1955 Moss Court

Kelowna, B.C. Canada V1Y 9L3

Phone: 250-448-7047 Fax: 250-448-7046

e-mail: info@celltechlabs.com web site: www.celltechlabs.com

Max. RF Output Power Tested:

Company Information

UNIDEN AMERICA CORPORATION

Engineering Services Office 181 N. Country Club Road Lake City, SC 29560 United States

FCC IDENTIFIER: AMWUT030 IC IDENTIFIER: 513C-UT030 Model(s): GMR1035

Rule Part(s) Applied: FCC 47 CFR §2.1093; Health Canada Safety Code 6
Test Procedure(s): FCC OET Bulletin 65, Supplement C (Edition 01-01)

Industry Canada RSS-102 Issue 2

Device Description: Portable FM UHF FRS/GMRS PTT Radio Transceiver Transmit Frequency Range(s): 462.5500 - 462.7250 MHz (GMRS Channels 15-22)

462.5625 - 462.7125 MHz (FRS/GMRS Channels 1-7) 467.5625 - 467.7125 MHz (FRS Channels 8-14) 230 mW (23.6 dBm) ERP (462.5625 MHz) GMRS Ch. 1

Antenna Type(s) Tested: External Fixed Stubby Battery Type(s) Tested: Alkaline AAA x3 (4.5 V)

Body-Worn Accessories Tested: n/a (radio does not have provision for body-worn transmit operation)

Audio Accessories Tested: n/a (radio does not have provision for audio accessory)

Max. SAR Level(s) Evaluated: Face-held: 0.437 W/kg (1g) - 50% duty cycle

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 2 for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By:

Sean Johnston SAR Lab Manager Celltech Labs Inc.

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030		niden°		
Model(s):	GM	R1035	DUT Type:	Portable	FM UHF FRS/GM	ı			
2007 Celltech La	elltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs In								

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate

Report Revision No. Revision 1.0

RF Exposure Category
General Population

TABLE OF CONTENTS								
1.0 INTRODUCTION	4							
2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)	4							
3.0 SAR MEASUREMENT SYSTEM	5							
4.0 MEASUREMENT SUMMARY	6							
5.0 DETAILS OF SAR EVALUATION	7							
6.0 EVALUATION PROCEDURES	7							
7.0 SYSTEM PERFORMANCE CHECK	8							
8.0 SIMULATED EQUIVALENT TISSUES	9							
9.0 SAR SAFETY LIMITS	9							
10.0 ROBOT SYSTEM SPECIFICATIONS	10							
11.0 PROBE SPECIFICATION (ET3DV6)	11							
12.0 SIDE PLANAR PHANTOM	11							
13.0 VALIDATION PLANAR PHANTOM	11							
14.0 DEVICE HOLDER	11							
15.0 TEST EQUIPMENT LIST	12							
16.0 MEASUREMENT UNCERTAINTIES	13							
MEASUREMENT UNCERTAINTIES (CONT.)	14							
17.0 REFERENCES	15							
APPENDIX A - SAR MEASUREMENT DATA								
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	20							
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	23							
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	25							
APPENDIX E - SYSTEM VALIDATION	29							
APPENDIX F - PROBE CALIBRATION	30							

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	Uniden*		
Model(s):	GM	R1035	DUT Type:	Portable	FM UHF FRS/GM			
2007 Celltech La	ibs Inc.	This docur	ment is not to be repro	oduced in whole	or in part without the pr	rior written perm	nission of Celltech Labs	Inc. Page 3 of 30

Report Issue Date
March 27, 2007

<u>Test Report Serial No.</u> 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

1.0 INTRODUCTION

This measurement report demonstrates compliance of the Uniden America Corporation Model(s): GMR1035 Portable UHF FRS/GMRS PTT Radio Transceiver FCC ID: AMWUT030 with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C (Edition 01-01) (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the provisions of the rules are included within this test report.

2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)

		FCC Ru	le Part	47 CI	FR §2.1093					
Rule Part(s)		Health	Canada	a Safe	ety Code 6					
Total Bound (v/s)		FCC OET Bulle	etin 65,	Supp	olement C (01-01)					
Test Procedure(s)		Industry (Canada	RSS	-102 Issue 2					
Device Description	Р	ortable FM UHF F	RS/GN	/IRS F	PTT Radio Transceiv	ver .				
RF Exposure Category		General Popula	tion / U	ncont	rolled Environment					
FCC IDENTIFIER			AMW	UT03	30					
IC IDENTIFIER			513C-	-UT03	30					
Device Model(s)			GMF	R1035	5					
Test Sample Serial No.		None			Identical Prote	otype				
	462.5500) - 462.7250 MHz			GMRS Channel	s 15-22				
Transmit Frequency Range(s)	462.5625	5 - 462.7125 MHz		FRS/GMRS Channels 1-7						
	467.5625	5 - 467.7125 MHz			FRS Channels	8-14				
Max. RF Output Power Tested	230 mW	23.6 dBm	ER	Р	462.5625 MHz	GMRS Ch. 1				
Antenna Type(s) Tested		Ext	ernal F	ixed S	Stubby					
Battery Type(s) Tested	Alkaline AAA (x3) 4.5 V									
Body-Worn Accessories Tested	n/a - radio does not have provision for body-worn transmit operation									
Dody-Worll Accessories Tested	(belt-clip accessory supplied with radio for carry/storage purpose only)									
Audio Accessories Tested	n/a - radio does not have provision for audio accessory									

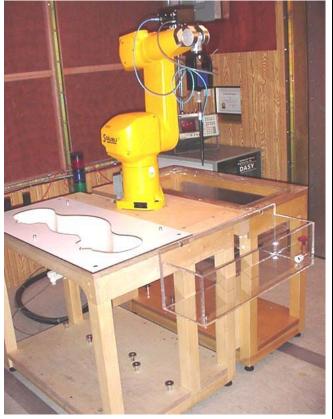
Company:	Unid	en Americ	a Corporation	FCC ID:	Uniden*			
Model(s):	GM	R1035	DUT Type:	Portable	FM UHF FRS/GM			
2007 Celltech La	abs Inc.	This docur	ment is not to be repro	oduced in whole	or in part without the pr	rior written perm	nission of Celltech Labs	Inc. Page 4 of 30

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population



3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with Plexiglas validation phantom

DASY4 SAR Measurement System with Plexiglas side planar phantom

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030		niden*		
Model(s):	GM	R1035	DUT Type:	Portable	FM UHF FRS/GM				
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs								Page 5 of 30

Test Report Serial No. 032107AMW-T824-S95U Description of Test(s)

Specific Absorption Rate

Report Revision No. Revision 1.0

ilac-MRA Certificate No. 2470.01

RF Exposure Category General Population

Report Issue Date March 27, 2007

4.0 MEASUREMENT SUMMARY

					S	AR E	VALU	IATI	ON R	ESU	JLTS						
Test	Test Freq.	Cł	nannel	Tes		ttery	DU1 Positi to Plai	on	DUT Spacii to Plar	ng	Start Power (ERP)		red SA N/kg)	ıR	SAR Drift During	Scaled with d	lroop
Type				Mod	e iy	/pe	Phantom		Phanto		(LIXI)		Cycle		Test	Duty	Cycle
	MHz		1								mW	100%	50%	%	dB	100%	50%
Face-held	462.5625	1	GMRS	CW	Alka	Alkaline Front Side			2.5 cı	m	230	0.806	0.40	03	-0.348	0.873	0.437
ANSI / IEE	E C95.1 200	5 - SA	FETY LIN	LIMIT BRAIN: 1.6 W/kg (averaged over 1 gram) Uncontrolled Ex									tial Peak sure / Gen	eral Popu	lation		
Т	est Date(s)				Mar	rch 23,	, 2007			P	Atmosph	eric Pressu	re		101.9		kPa
Meas	ured Fluid T	уре			450	MHz	Iz Brain				Relativ	e Humidity			31		%
Diele	ctric Consta	ınt		IEEE Target		Mea	sured	Dev	viation	1	Ambient	Temperatur	re		22.4		°C
	ε _r		4	3.5	<u>+</u> 5%		14.4	+	2.1%		Fluid T	emperature			21.3		°C
	Conductivity			EEE Ta	rget	Mea	sured	Dev	viation		Flui	Fluid Depth			≥ 15		cm
σ (mho/m)			0	87	<u>+</u> 5%	0	0.88	+	1.2%		ρ (Kg /m³)				1	000	
					The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.												
		;										MHz; ther tion 01-01				el data	only is
		;	3. co	mplete	d the ra	adio w		ed d				charged ba es were re					
No	te(s)	,										the duration llt as shown					
		,	5. A	SAR-ve	ersus-Ti	me po	ower dro	ор е	valuatio	n wa	as perfoi	med and th	ne tes	t plot	is shown	in Appe	ndix A.
			6. rer		l within							the SAR ev reported					
												re were me 8753ET Ne					
			8. Th	e SAR	evaluat	tion w	as perfo	rme	d within	24 h	ours of	the system	perfo	rman	ice check		

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	513C-UT030		niden*	
Model(s):	GM	R1035	DUT Type:	Portable	FM UHF FRS/GM	L			
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior w							nission of Celltech Labs	Inc.	Page 6 of 30

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

General Population

Certificate No. 2470.01

5.0 DETAILS OF SAR EVALUATION

The Uniden America Corporation Model(s): GMR1035 Portable FM UHF FRS/GMRS PTT Radio Transceiver FCC ID: AMWUT030 was compliant for localized Specific Absorption Rate (General Population / Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

- 1. The DUT was evaluated in a face-held configuration with the front of the radio placed parallel to the outer surface of the planar phantom. A 2.5 cm separation distance was maintained between the front of the DUT and the outer surface of the planar phantom.
- 2. The DUT does not have an audio connector and therefore does not support body-worn operation. The supplied belt-clip is for carry/storage purpose only.
- 3. The RF conducted output power of the DUT could not be measured due to a non-detachable antenna. The DUT was evaluated for SAR at the maximum conducted power level preset by the manufacturer.
- 4. The DUT was evaluated for SAR at the maximum ERP level measured by the manufacturer prior to the SAR evaluation.
- 5. The power drift of the DUT during the SAR evaluation was measured by the DASY4 system.
- 6. The area scan evaluation was performed with fully charged batteries. After the area scan was completed the radio was cooled down and the batteries were replaced with fully charged batteries prior to the zoom scan evaluation.
- 7. The DUT was tested in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 8. The SAR evaluation was performed using a Plexiglas side-planar phantom.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

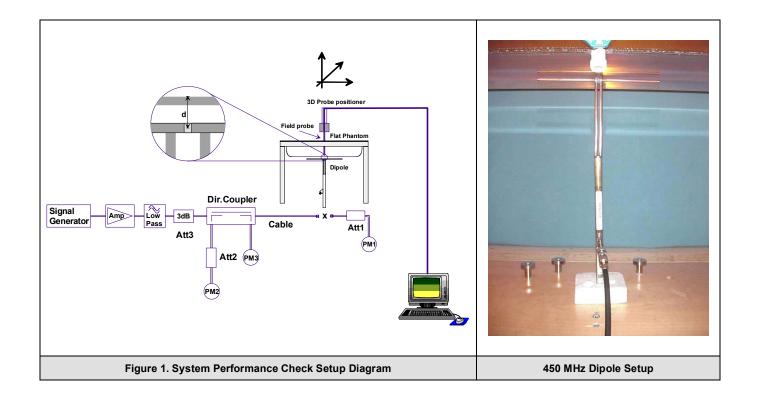
Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	Uniden*		
Model(s):	GM	R1035	DUT Type:	Portable	FM UHF FRS/GM			
2007 Celltech La	ibs Inc.	This docur	ment is not to be repro	oduced in whole	or in part without the pr	rior written pern	nission of Celltech Labs	Inc. Page 7 of 30

Report Issue Date
March 27, 2007

<u>Test Report Serial No.</u> 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population



Certificate No. 2470.01

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed using a Plexiglas planar phantom and 450MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an ALS-PR-DIEL Dielectric Probe Kit and HP 8753ET Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of +10% (see Appendix B for system performance check test plot).

	SYSTEM PERFORMANCE CHECK EVALUATION															
Test	Equiv. SAR 1g Tissue (W/kg)			Dielectric Constant ε _r			Conductivity σ (mho/m)			ρ (16 - 16 - 3)	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.	
Date	Freq. MHz	dz Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
Mar 23	Brain 450	1.23 ±10%	1.29	+4.9%	43.5 ±5%	44.4	+2.1%	0.87 ±5%	0.88	+1.2%	1000	22.4	21.3	≥ 15	31	101.9
								red prior to and after the system performance check to ensure the temperature remained reported during the dielectric parameter measurements.							emained	
			2. The SAR evaluation was performed within 24 hours of the system performance check.													

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030	Uniden
Model(s):	I(s): GMR1035 DUT Type:		Portable	FM UHF FRS/GM				
2007 Celltech Labs Inc. This document is not to be repre				oduced in whole	or in part without the pr	rior written perm	nission of Celltech Labs	Inc. Page 8 of 30

Report Issue Date
March 27, 2007

<u>Test Report Serial No.</u> 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

General Population

Certificate No. 2470.01

8.0 SIMULATED EQUIVALENT TISSUES

The 450MHz brain simulated tissue mixture consisted of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection made to ensure air bubbles were not trapped during the mixing process. The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

SIMULATED TISSUE MIXTURE									
INGREDIENT	450 MHz Brain								
INGREDIENT	System Performance Check & DUT Evaluation								
Water	38.56 %								
Sugar	56.32 %								
Salt	3.95 %								
HEC	0.98 %								
Bactericide	0.19 %								

9.0 SAR SAFETY LIMITS

	SAR (\	N/kg)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Company:	Unid	en Americ	ca Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030	"nahiden
Model(s):	s): GMR1035 DUT Type:		Portable	FM UHF FRS/GM				
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be repre				or in part without the pr	rior written perm	nission of Celltech Labs	Inc. Page 9 of 30

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category
General Population

10.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
Software	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1387
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Phantom(s)	
Evaluation Phantom	
Туре	Side Planar Phantom
Shell Material	Plexiglas
Bottom Thickness	2.0 mm ± 0.1 mm
Outer Dimensions	75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)
Validation Phantom (≤ 450MHz)	
Туре	Planar Phantom
Shell Material	Plexiglas
Bottom Thickness	6.2 mm ± 0.1 mm
Outer Dimensions	86.0 cm (L) x 39.5 cm (W) x 21.8 cm (H)

	Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°	
	Model(s):	GM	GMR1035 DUT Type:		Portable FM UHF FRS/GMRS PTT Radio Transceiver						
Γ	2007 Celltech La	ibs Inc.	This docur	ment is not to be repro	oduced in whole	or in part without the pr	rior written perm	nission of Celltech Labs	Inc.	Page 10 of 30	

Dimensions:

Date(s) of Evaluation March 23, 2007

Report Issue Date March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

RF Exposure Category Description of Test(s) Specific Absorption Rate **General Population**

Report Revision No.

Revision 1.0

11.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

10 MHz to > 6 GHz; Linearity: \pm 0.2 dB Frequency:

(30 MHz to 3 GHz)

Directivity: \pm 0.2 dB in brain tissue (rotation around probe axis)

± 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: $\pm 0.2 dB$

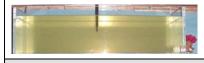
 \pm 0.2 mm repeatability in air and clear liquids over Surface Detect:

diffuse reflecting surfaces Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

General dosimetry up to 3 GHz Application:


Compliance tests of mobile phone

ET3DV6 E-Field Probe

12.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

Side Planar Phantom

13.0 VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted to the table of the DASY4 compact system.

Validation Planar Phantom

14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030					
Model(s):	GM	R1035	DUT Type:	Portable	FM UHF FRS/GM	RS PTT Rad	io Transceiver	Ш				
2007 Celltech La	abs Inc	This docu	ment is not to be repro	oduced in whole	or in part without the p	rior written perm	nission of Celltech Labs	Inc	Pa			

<u>Test Report Serial No.</u> 032107AMW-T824-S95U Report Revision No.
Revision 1.0

Report Issue Date Description of Test(s)

March 27, 2007 Specific Absorption Rate

RF Exposure Category
General Population

15.0 TEST EQUIPMENT LIST

	TEST	EQUIPMENT	ASSET NO.	SERIAL NO.	DA	TE	CALIBRATION
USED		DESCRIPTION	ASSET NO.	SERIAL NO.	CALIB	RATED	DUE DATE
х	Schmid	& Partner DASY4 System	-	-		-	-
х	-DAS	Y4 Measurement Server	00158	1078	N	/A	N/A
х		-Robot	00046	599396-01	N	/A	N/A
х		-DAE4	00019	353	21Jun06		21Jun07
х	-E	T3DV6 E-Field Probe	00016	1387	16N	lar07	16Mar08
	-E	X3DV4 E-Field Probe	00213	3600	24J	an07	24Jan08
	-300	OMHz Validation Dipole	00023	135	230	ct06	23Oct07
х	-450	OMHz Validation Dipole	00024	136	23N	lar07	23Mar08
	021	EMUz Validation Dinala	00022	411	Brain	28Mar06	28Mar07
	-038	5MHz Validation Dipole	00022	411	Body	18Jan07	18Jan08
	000	MHz Validation Dinala	00020	054	Brain	06Jun06	06Jun07
	-900MHz Validation Dipole		00020	054	Body	06Jun06	06Jun07
	-164	0MHz Validation Dipole	00212	0175	Brain	14Aug06	14Aug07
	100	OMI I= Validation Dinale	00021	247	Brain	08Jun06	08Jun07
	-1800MHz Validation Dipole -1900MHz Validation Dipole -2450MHz Validation Dipole		00021	247	Body	21Mar07	21Mar08
			00022	151	Brain	20Mar07	20Mar08
			00032	151	Body	02Feb07	02Feb08
			00025	150	Body	24Apr06	24Apr07
		-5200MHz			Body	18Jul06	18Jul07
	5GHz	-5500MHz	00126	1031	Body	14Nov06	14Nov07
	Validation Dipole	-5800MHz		1031	Brain	27Feb07	27Feb08
		-3000IVITZ			Body	18Jul06	18Jul07
	-6	SAM Phantom V4.0C	00154	1033	N	/A	N/A
	-B	arski Planar Phantom	00155	03-01	N	/A	N/A
х	-Plexiç	glas Side Planar Phantom	00156	161	N	/A	N/A
х	-Plexiglas	S Validation Planar Phantom	00157	137	N	/A	N/A
х	ALS-PF	R-DIEL Dielectric Probe Kit	00160	260-00953	N	/A	N/A
х	Gigatr	onics 8652A Power Meter	00110	1835801	12A	pr06	12Apr07
	Gigatro	onics 8652A Power Meter	80000	1835267	22J	an07	22Jan08
х	Gigatro	nics 80701A Power Sensor	00012	1834350	22J	an07	22Jan08
	Gigatro	nics 80701A Power Sensor	00014	1833699	22J	an07	22Jan08
х	HP 8	753ET Network Analyzer	00134	US39170292	18A	pr06	18Apr07
х	HP 8	8648D Signal Generator	00005	3847A00611	N	/A	N/A
	Rohde & Scl	nwarz SMR40 Signal Generator	00006	100104	06A	pr06	06Apr07
х	Amplifier Re	esearch 5S1G4 Power Amplifier	00106	26235	N	/A	N/A
		408B Spectrum Analyzer	00015	US39240170	05F	eb07	05Feb08
	Anritsu Ra	adio Communication Analyzer	00208	6200241241	06J	un06	06Jun07

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030	Uniden*
Model(s):	(s): GMR1035 DUT Type:		Portable	FM UHF FRS/GM				
2007 Celltech Labs Inc. This document is not to be repre				oduced in whole	or in part without the pr	rior written perm	nission of Celltech Labs	Inc. Page 12 of 30

Report Issue Date March 27, 2007 <u>Test Report Serial No.</u> 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

16.0 MEASUREMENT UNCERTAINTIES

UN	ICERTAINT	Y BUDGET FOR	R DEVICE EVAL	UATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (450 MHz)	8.0	Normal	1	1	8.0	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	∞
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	8
Spatial resolution	0	Rectangular	1.732050808	1	0.0	8
Boundary effects	1	Rectangular	1.732050808	1	0.6	8
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	8
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	8
Response time	0.8	Rectangular	1.732050808	1	0.5	8
Integration time	2.6	Rectangular	1.732050808	1	1.5	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	8
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	× ×
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	8
Test Sample Related						
Device positioning	2.9	Normal	1	1	2.9	12
Device holder uncertainty	3.6	Normal	1	1	3.6	8
Power drift	5	Rectangular	1.732050808	1	2.9	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	8
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	8
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	5	Normal	1	0.6	3.0	∞
Combined Standard Uncertaint	12.65					
Expanded Uncertainty (k=2)	25.31					

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Company:	Unid	Uniden America Corporation		FCC ID:	AMWUT030	IC ID:	513C-UT030		niden*
Model(s):	GMR1035 DUT Type:		Portable FM UHF FRS/GMRS PTT Radio Transceiver						
2007 Celltech Labs Inc. This document is not to be repre				oduced in whole	or in part without the pr	rior written pern	nission of Celltech Labs	Inc.	Page 13 of 30

Report Issue Date March 27, 2007

Description of Test(s)

Specific Absorption Rate

Revision 1.0

RF Exposure Category

Report Revision No.

General Population

MEASUREMENT UNCERTAINTIES (Cont.)

UN	ICERTAINT'	Y BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (450 MHz)	8.0	Normal	1	1	8.0	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	1	Rectangular	1.732050808	1	0.6	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0	Rectangular	1.732050808	1	0.0	∞
Integration time	0	Rectangular	1.732050808	1	0.0	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	5	Normal	1	0.6	3.0	∞
Combined Standard Uncertainty	11.20					
Expanded Uncertainty (k=2)	22.39					

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°
Model(s):	GM	R1035	DUT Type:	Portable FM UHF FRS/GMRS PTT Radio Transceiver					
2007 Celltech La	bs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Inc.	Page 14 of 30	

Report Issue Date
March 27, 2007

<u>Test Report Serial No.</u> 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

17.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] ANSI/IEEE C95.1-2005 "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz", New York: IEEE, April 2006.

Company:	Unid	Uniden America Corporation			AMWUT030	IC ID:	513C-UT030		niden*
Model(s):	GM	R1035	DUT Type:	Portable FM UHF FRS/GMRS PTT Radio Transceiver					
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab						nission of Celltech Labs	Inc.	Page 15 of 30	

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX A - SAR MEASUREMENT DATA

Company:	Unid	Uniden America Corporation			AMWUT030	IC ID:	513C-UT030		niden*
Model(s):	GM	R1035	DUT Type:	Portable FM UHF FRS/GMRS PTT Radio Transceiver					
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs In						Inc.	Page 16 of 30	

March 27, 2007

 March 23, 2007
 032107AMW-T824-S95U

 Report Issue Date
 Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category
General Population

Date Tested: 03/23/2007

Face-Held SAR - 462.5625 MHz - Channel 1 (GMRS)

DUT: Uniden GMR1035; Type: Portable UHF FRS/GMRS PTT Radio Transceiver; Serial: Prototype

Ambient Temp: 22.4°C; Fluid Temp: 21.3°C; Barometric Pressure: 101.9 kPa; Humidity: 31%

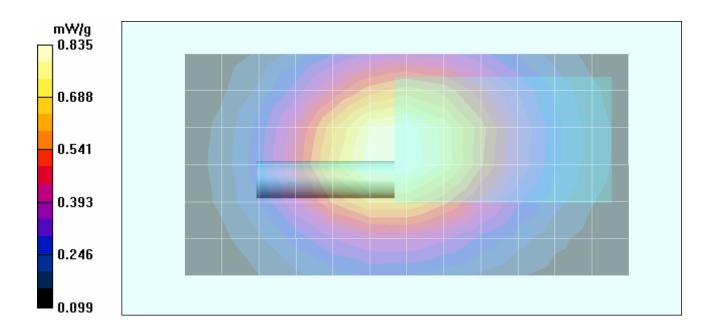
Communication System: FM UHF AAA Alkaline Batteries x3 (4.5 V) RF Output Power: 230 mW (ERP)

Frequency: 462.5625 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 462.563 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 44.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(7, 7, 7); Calibrated: 16/03/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - GMRS Channel 1 Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm


Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - GMRS Channel 1

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

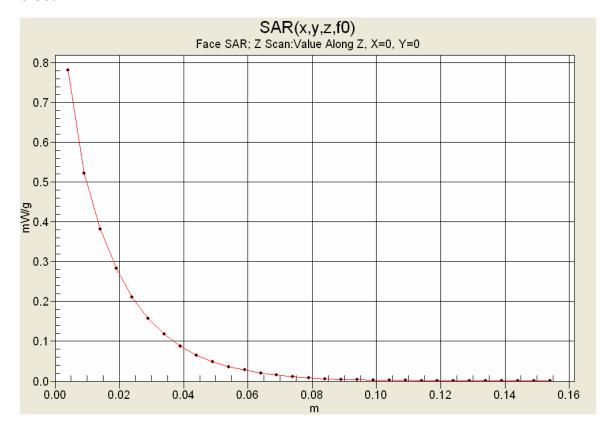
Reference Value = 31.3 V/m; Power Drift = -0.348 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.806 mW/g; SAR(10 g) = 0.557 mW/g Maximum value of SAR (measured) = 0.835 mW/g

Company:	Unid	en Americ	ca Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030	Uniden°
Model(s):	GM	R1035	DUT Type:	Portable	FM UHF FRS/GM	io Transceiver		
2007 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Inc. Page 17 of 30	

Report Issue Date
March 27, 2007


<u>Test Report Serial No.</u> 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

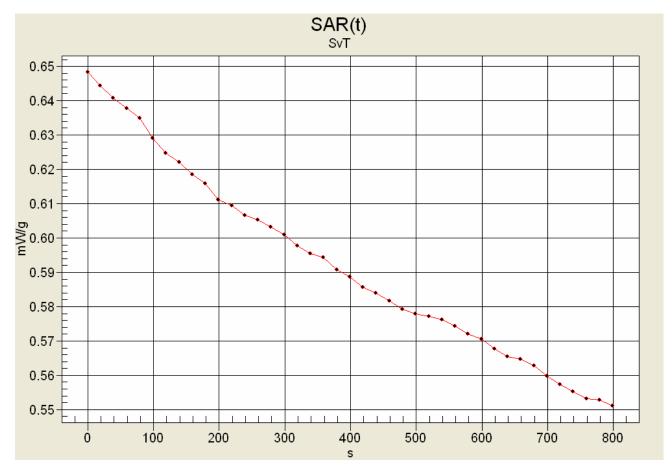
RF Exposure Category
General Population

Z-Axis Scan

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°
Model(s):	GM	R1035	DUT Type:	Portable FM UHF FRS/GMRS PTT Radio Transceiver					
2007 Celltech La	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Inc.	Page 18 of 30	

Report Issue Date
March 27, 2007

<u>Test Report Serial No.</u> 032107AMW-T824-S95U


<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

SAR-versus-Time Power Droop Evaluation

Face-Held Configuration Alkaline Batteries (4.5 V) Fixed Stubby Antenna Channel 1 - 462.5625 MHz

Max. SAR: 0.648 mW/g

Min. SAR: 0.551 mW/g (-0.704 dB) SAR after 340s: 0.595 mW/g (-0.371 dB)

(340s = Zoom Scan Duration) (800s = Area Scan Duration)

Company:	Unid	Uniden America Corporation			AMWUT030	IC ID:	513C-UT030		niden°
Model(s):	GM	R1035	DUT Type:	Portable FM UHF FRS/GMRS PTT Radio Transceiver					
2007 Celltech La	007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs In						Inc.	Page 19 of 30	

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

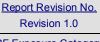
<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Company:	Unio	len Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°
Model(s):	GN	IR1035	DUT Type:	Portable FM UHF FRS/GMRS PTT Radio Transceiver					
2007 Celltech I	abs Inc.	This docu	ment is not to be repro	oduced in whole	Inc.	Page 20 of 30			

Report Issue Date
March 27, 2007


<u>Test Report Serial No.</u> 032107AMW-T824-S95U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

General Population

General Population Certificate No. 2470.01

Date Tested: 03/23/2007

System Performance Check - 450 MHz Dipole

DUT: Dipole 450 MHz; Asset: 00024; Serial: 136; Validation: 03/23/2007

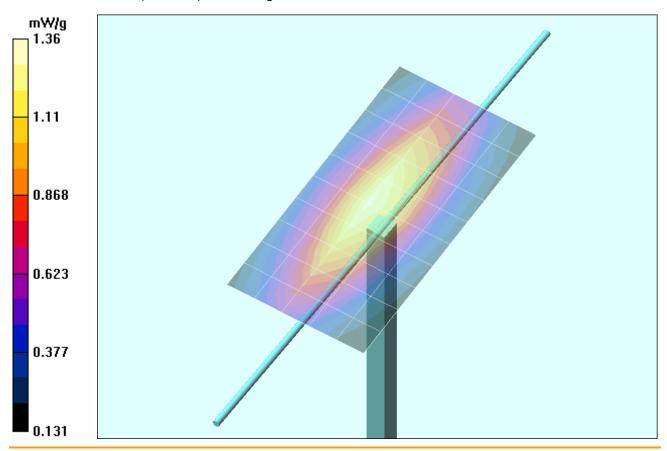
Ambient Temp: 22.4°C; Fluid Temp: 21.3°C; Barometric Pressure: 101.9 kPa; Humidity: 31%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; $\sigma = 0.88$ mho/m; $\varepsilon_r = 44.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(7, 7, 7); Calibrated: 16/03/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

450 MHz Dipole - System Performance Check/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm

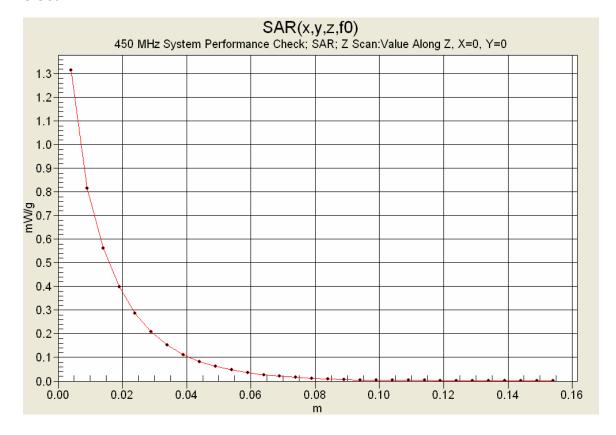
450 MHz Dipole - System Performance Check/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 38.7 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 2.27 W/kg

SAR(1 g) = 1.29 mW/g; SAR(10 g) = 0.824 mW/g Maximum value of SAR (measured) = 1.36 mW/g

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030	Uniden*
Model(s):	GM	R1035	DUT Type:	Portable	FM UHF FRS/GM			
2007 Celltech La	abs Inc.	This docur	ment is not to be repro	oduced in whole	or in part without the pr	rior written perm	nission of Celltech Labs	Inc. Page 21 of 30


Report Issue Date March 27, 2007 <u>Test Report Serial No.</u> 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

Z-Axis Scan

Company	':	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°
Model(s)	:	GM	R1035	DUT Type:	Portable FM UHF FRS/GMRS PTT Radio Transceiver					
2007 Cellted	h Lal	bs Inc.	This docur	ment is not to be repro	oduced in whole	Inc.	Page 22 of 30			

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Company	r :	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°
Model(s)	:	GM	R1035	DUT Type:	Portable FM UHF FRS/GMRS PTT Radio Transceiver					
2007 Cellted	h La	bs Inc.	This docur	ment is not to be repro	oduced in whole	Inc.	Page 23 of 30			

Report Issue Date

March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

Description of Test(s)

Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category
General Population

450 MHz System Performance Check & DUT Evaluation (Brain)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Fri 23/Mar/2007
Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

*******	******	*****	******	******
Freq	FCC_eH	_	_	Test_s
0.3500	44.70	0.87	46.82	0.80
0.3600	44.58	0.87	46.59	0.81
0.3700	44.46	0.87	46.27	0.82
0.3800	44.34	0.87	45.81	0.83
0.3900	44.22	0.87	45.85	0.84
0.4000	44.10	0.87	45.51	0.84
0.4100	43.98	0.87	45.18	0.85
0.4200	43.86	0.87	45.02	0.86
0.4300	43.74	0.87	44.83	0.86
0.4400	43.62	0.87	44.57	0.88
0.4500	43.50	0.87	44.41	0.88
0.4600	43.45	0.87	44.34	0.89
0.4700	43.40	0.87	43.95	0.90
0.4800	43.34	0.87	43.87	0.91
0.4900	43.29	0.87	43.73	0.92
0.5000	43.24	0.87	43.31	0.93
0.5100	43.19	0.87	42.86	0.93
0.5200	43.14	0.88	43.11	0.94
0.5300	43.08	0.88	42.67	0.94
0.5400	43.03	0.88	42.90	0.95
0.5500	42.98	0.88	42.40	0.97

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden*
Model(s):	GM	R1035	DUT Type:	Portable FM UHF FRS/GMRS PTT Radio Transceiver					
2007 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs I						Inc.	Page 24 of 30

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

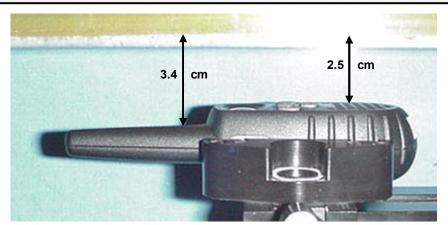
RF Exposure Category
General Population

APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°	
Model(s):	GM	GMR1035 DUT Type:		Portable FM UHF FRS/GMRS PTT Radio Transceiver						
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the pr				rior written perm	nission of Celltech Labs	Inc.	Page 25 of 30			

March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U March 23, 2007 Report Issue Date


Description of Test(s) Specific Absorption Rate Report Revision No. Revision 1.0

RF Exposure Category **General Population**

FACE-HELD SAR TEST SETUP PHOTOGRAPHS

2.5 cm Spacing from Front of DUT to Planar Phantom

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°
Model(s):	GM	GMR1035 DUT Type:		Portable FM UHF FRS/GMRS PTT Radio Transceiver					
2007 Celltech Labs Inc. This document is not to be reprodu				oduced in whole	or in part without the p	rior written pern	nission of Celltech Labs	Inc.	Page 26 of 30

Report Issue Date March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

Description of Test(s) Specific Absorption Rate Report Revision No. Revision 1.0

RF Exposure Category **General Population**

DUT PHOTOGRAPHS

Front of DUT

Back of DUT

Belt-clip for carry/storage purpose only DUT does not support body-worn transmit operation

Top end of DUT

Bottom end of DUT

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°
Model(s):	del(s): GMR1035 DUT Type:		Portable FM UHF FRS/GMRS PTT Radio Transceiver						
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Inc.	Page 27 of 30

Report Issue Date
March 27, 2007

<u>Test Report Serial No.</u> 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

DUT PHOTOGRAPHS

Left Side of DUT

Right Side of DUT

DUT Battery Compartment

DUT with Alkaline AAA Batteries

Company:	Unid	en Americ	ca Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°
Model(s):	GMR1035 DUT Type:		Portable FM UHF FRS/GMRS PTT Radio Transceiver						
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						Inc.	Page 28 of 30		

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX E - SYSTEM VALIDATION

Company:	Uniden America Corporation			FCC ID:	AMWUT030	IC ID:	513C-UT030		niden*	
Model(s):	GM	GMR1035 DUT Type:		Portable FM UHF FRS/GMRS PTT Radio Transceiver						
2007 Celltech Labs Inc. This document is not to be repro				oduced in whole	or in part without the p	rior written perm	nission of Celltech Labs	Inc.	Page 29 of 30	

Evaluation Type:

System Validation

450 MHz

Validation Dipole:

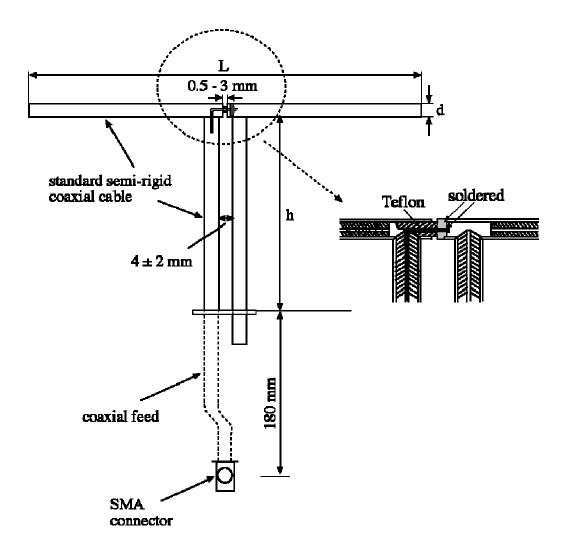
450 MHz SYSTEM VALIDATION

Type:	450 MHz Validation Dipole
Asset Number:	00024
Serial Number:	136
Place of Validation:	Celltech Labs Inc.
Date of Validation:	March 23, 2007

Celltech Labs Inc. hereby certifies that the system validation was performed on the date indicated above.

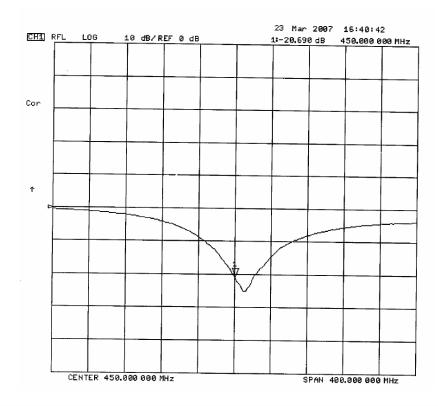
Validated by:

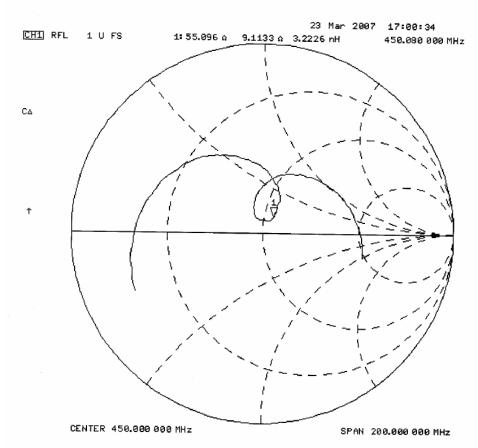
Approved by: Spencer Watson

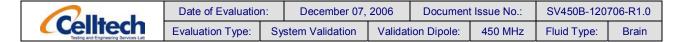

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 450MHz $Re{Z} = 55.096\Omega$


 $Im{Z} = 9.1133\Omega$


Return Loss at 450MHz -20.690dB



Date of Evaluatio	n:	December 07,	2006	Document	t Issue No.:	SV450B-120	706-R1.0
Evaluation Type:	Sy	stem Validation	Validat	ion Dipole:	450 MHz	Fluid Type:	Brain

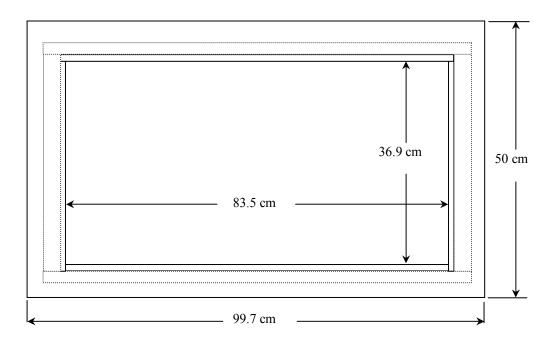
2. Validation Dipole VSWR Data

3. Validation Dipole Dimensions

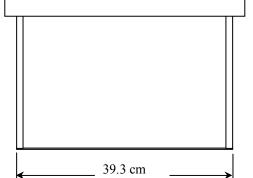
Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

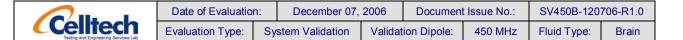
4. Validation Phantom

The validation phantom (planar) was constructed using relatively low-loss tangent Plexiglas material.


The inner dimensions of the validation phantom are as follows:

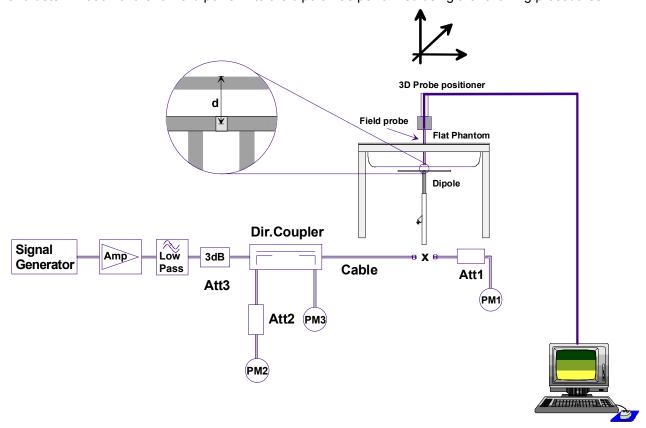

Length: 83.5 cm Width: 36.9 cm Height: 21.8 cm


The bottom section of the validation phantom is constructed of 6.2 ± 0.1 mm Plexiglas.


5. Dimensions of Plexiglas Planar Phantom

Brain

6. 450 MHz System Validation Setup



7. 450 MHz Validation Dipole Setup

8. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

9. Measurement Conditions

The validation phantom was filled with 450 MHz brain tissue simulant.

Relative Permittivity: 44.4 (+2.1% deviation from target)

Conductivity: 0.88 mho/m (+1.2% deviation from target)

Fluid Temperature: 21.3° C Fluid Depth: ≥ 15.0 cm

Environmental Conditions:

Ambient Temperature: 22.4°C Humidity: 31 % Barometric Pressure: 101.9kPa

The 450 MHz brain tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	38.56%
Sugar	56.32%
Salt	3.95%
HEC	0.98%
Dowicil 75	0.19%
450 MHz Target Dielectric Parameters at 22 °C	$\varepsilon_{\rm r}$ = 43.5 (+/- 5%) σ = 0.87 S/m (+/- 5%)

10. 450 MHz System Validation Results

SAR @ 0.25W Input averaged over 1g (W/kg)				SAR @ 1W Input averaged over 1g (W/kg)			
IEEE T	arget	Measured Deviation		IEEE Target		Measured	Deviation
1.23	+/- 10%	1.28	+4.1%	4.92 +/- 10%		5.12	+4.1%
SAR @ 0.25W Input averaged over 10g (W/kg)			SAR @ 1W Input averaged over 10g (W/kg)				
IEEE Target Measured Deviation			IEEE Target Measured Deviatio			Deviation	
0.825	+/- 10%	0.820	-0.60%	3.30	+/- 10%	3.28	-0.60%
The results have been normalized to 1W (forward power) into the dipole.							

450 MHz - System Validation - 450 MHz Dipole - March 23, 2007

DUT: Dipole 450 MHz; Asset: 00024; Serial: 136

Ambient Temp: 22.4°C; Fluid Temp: 21.3°C; Barometric Pressure: 101.9 kPa; Humidity: 31%

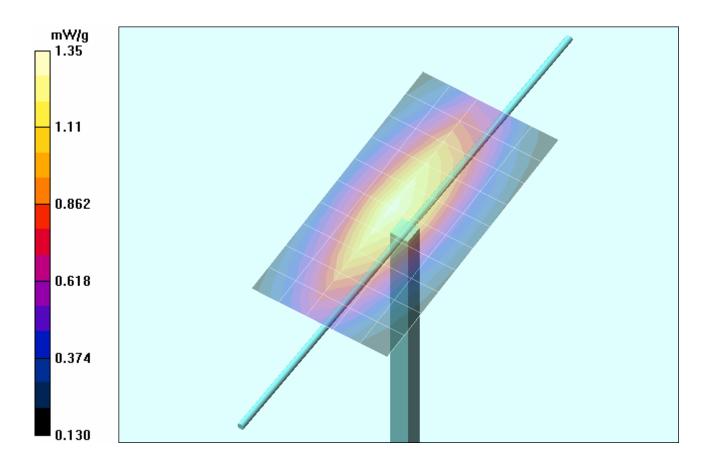
Communication System: CW

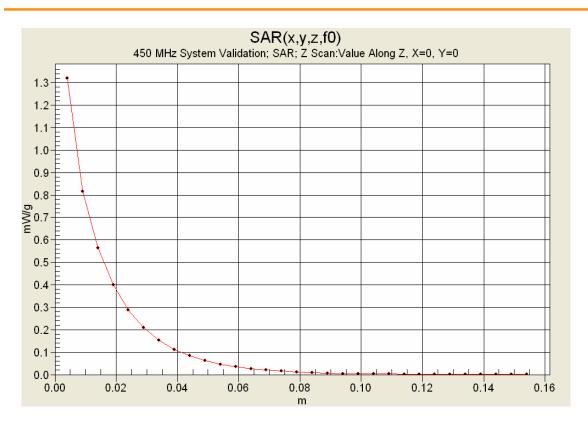
Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; $\sigma = 0.88$ mho/m; $\varepsilon_r = 44.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(7, 7, 7); Calibrated: 16/03/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

450 MHz System Validation/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm


450 MHz System Validation/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 38.7 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 1.28 mW/g; SAR(10 g) = 0.820 mW/g Maximum value of SAR (measured) = 1.35 mW/g

11. Measured Fluid Dielectric Parameters

System Validation - 450 MHz Dipole

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Fri 23/Mar/2007

Freq Frequency (GHz)

FCC_eH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC OET 65 Supplement C (June 2001) Limits for Head Sigma

	F00 -I	1500 -1	IT4 -	T4 -
Freq	_	HFCC_st	_	Test_s
0.3500	44.70	0.87	46.82	0.80
0.3600	44.58	0.87	46.59	0.81
0.3700	44.46	0.87	46.27	0.82
0.3800	44.34	0.87	45.81	0.83
0.3900	44.22	0.87	45.85	0.84
0.4000	44.10	0.87	45.51	0.84
0.4100	43.98	0.87	45.18	0.85
0.4200	43.86	0.87	45.02	0.86
0.4300	43.74	0.87	44.83	0.86
0.4400	43.62	0.87	44.57	0.88
0.4500	43.50	0.87	44.41	0.88
0.4600	43.45	0.87	44.34	0.89
0.4700	43.40	0.87	43.95	0.90
0.4800	43.34	0.87	43.87	0.91
0.4900	43.29	0.87	43.73	0.92
0.5000	43.24	0.87	43.31	0.93
0.5100	43.19	0.87	42.86	0.93
0.5200	43.14	0.88	43.11	0.94
0.5300	43.08	0.88	42.67	0.94
0.5400	43.03	0.88	42.90	0.95
0.5500	42.98	0.88	42.40	0.97

Date(s) of Evaluation March 23, 2007

Report Issue Date
March 27, 2007

Test Report Serial No. 032107AMW-T824-S95U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX F - PROBE CALIBRATION

Company:	Unid	en Americ	a Corporation	FCC ID:	AMWUT030	IC ID:	513C-UT030		niden°
Model(s):	GM	R1035 DUT Type:		Portable FM UHF FRS/GMRS PTT Radio Transceiver			L		
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 30 of 30						Page 30 of 30			

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ET3-1387_Mar07

Accreditation No.: SCS 108

Client Celitech Labs

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1387

Calibration procedure(s) QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date: March 16, 2007

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Name Function Signature
Calibrated by: Katja Pokovic Technical Manager

Approved by: Fin Bomholt R&D Director

Issued: March 19, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1387_Mar07

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1387_Mar07 Page 2 of 9

ET3DV6 SN:1387 March 16, 2007

Probe ET3DV6

SN:1387

Manufactured:

September 21, 1999

Last calibrated:

March 16, 2006

Recalibrated:

March 16, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1387 March 16, 2007

DASY - Parameters of Probe: ET3DV6 SN:1387

Sensitivity in Free Space^A Diode Compression^B

1.68 ± 10.1% $\mu V/(V/m)^2$ DCP X 91 mV 1.73 ± 10.1% $\mu V/(V/m)^2$ DCP Y 92 mV

NormZ 1.73 ± 10.1% $\mu V/(V/m)^2$ DCP Z 92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

NormX

NormY

Boundary Effect

TSL 835 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance

SAR_{be} [%] Without Correction Algorithm

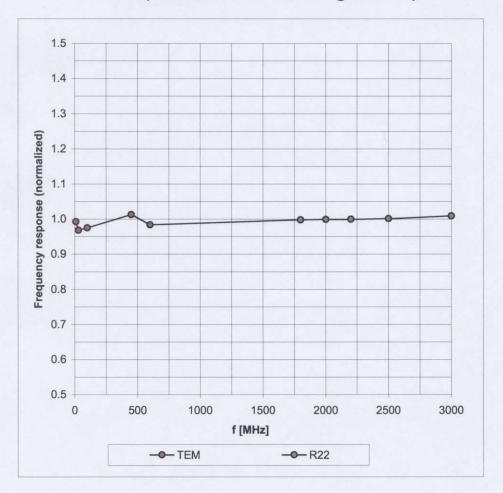
8.2 3.7

SAR_{be} [%] With Correction Algorithm

0.8 0.9

Sensor Offset

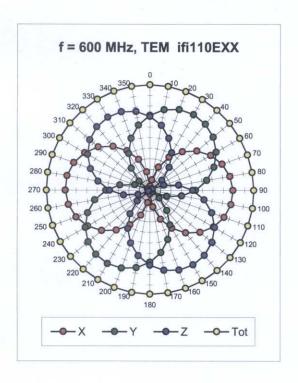
Probe Tip to Sensor Center 2.7 mm

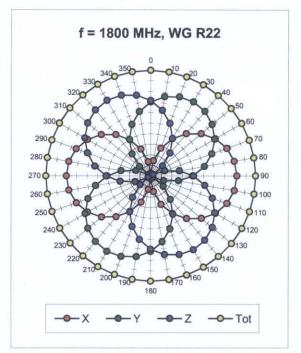

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

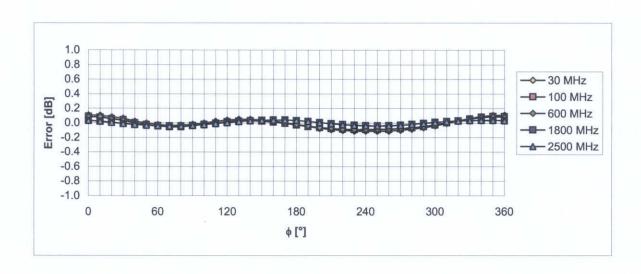
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field

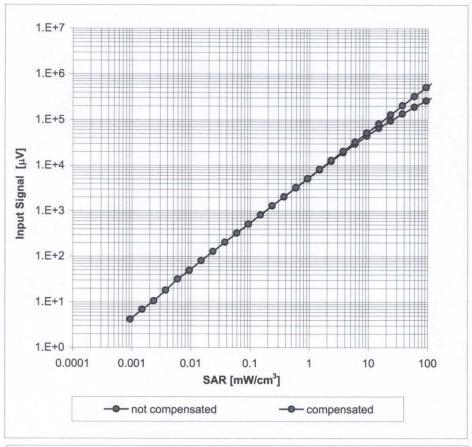

(TEM-Cell:ifi110 EXX, Waveguide: R22)

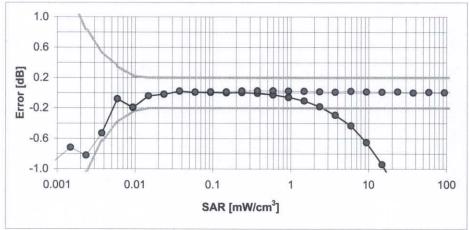



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ET3DV6 SN:1387 March 16, 2007

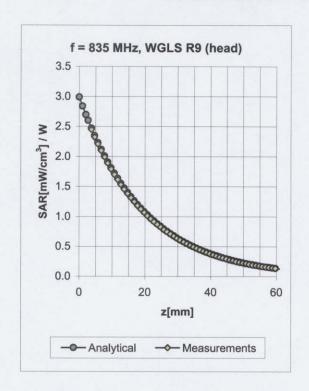
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

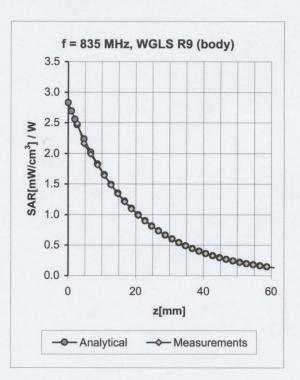




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

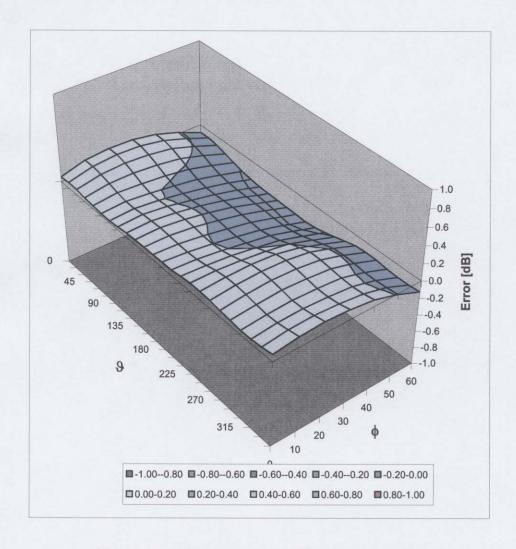
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF l	Jncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.36	2.45	6.25	± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.34	2.66	6.18	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1387
Place of Assessment:	Zurich
Date of Assessment:	March 20, 2007
Probe Calibration Date:	March 16, 2007

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

f = 150 MHz	ConvF	$7.8 \pm 10\%$	$\varepsilon_r = 52.3 \pm 5\%$
			$\sigma = 0.76 \pm 5\% \text{ mho/m}$
			(head tissue)
			Medit more assumed a lateral and a lateral a
f = 300 MHz	ConvF	$7.3 \pm 9\%$	$\varepsilon_r = 45.3 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
f = 450 MHz	ConvF	$7.0 \pm 8\%$	$\varepsilon_r = 43.5 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
f = 750 MHz	ConvF	$6.3 \pm 8\%$	$\varepsilon_r = 41.8 \pm 5\%$
			$\sigma = 0.89 \pm 5\% \text{ mho/m}$
			(head tissue)
			(17000 170000)
f = 150 MHz	ConvF	$7.8 \pm 10\%$	$\varepsilon_r = 61.9 \pm 5\%$
			$\sigma = 0.80 \pm 5\% \text{ mho/m}$
			(body tissue)
			(cod) (cod)
f = 450 MHz	ConvF	$6.9 \pm 8\%$	$\varepsilon_r = 56.7 \pm 5\%$
			$\sigma = 0.94 \pm 5\% \text{ mho/m}$
			(body tissue)
f = 750 MHz	ConvF	$6.0 \pm 8\%$	$\varepsilon_r = 55.4 \pm 5\%$
			$\sigma = 0.96 \pm 5\% \text{ mho/m}$
			(body tissue)
			()

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.