

Test Report S/N:	061705AMW-T649-S95U		
Test Date(s):	June 20, 2005	Issue 1	
Test Type:	FCC/IC SAR Evaluation		

APPENDIX E - SYSTEM VALIDATION

Applicant:	Uniden A	merica Corporation FCC ID: AMWUT005		IC ID: 513C-UT005				
Model:	GMR638-2	Portable FM UHF FRS/	GMRS PTT Radio Transceiver		462.5500 - 467.7125 MHz			
2005 Celltech I	_abs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				36 of 37		

450 MHz SYSTEM VALIDATION DIPOLE

Туре:	450 MHz Validation Dipole		
Serial Number:	136		
Place of Calibration:	Celltech Labs Inc.		
Date of Calibration:	November 4, 2004		

Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

Calibrated by:

Spencer Watton

Approved by:

Kussell W. Pupe

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 450MHz	Re{Z} = 54.041Ω
	lm{Z} = 5.5258Ω
Return Loss at 450MHz	-23.744dB

2. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

3. Validation Phantom

The validation phantom was constructed using relatively low-loss tangent Plexiglas material. The inner dimensions of the phantom are as follows:

Length:	83.5 cm
Width:	36.9 cm
Height:	21.8 cm

The bottom section of the validation phantom is constructed of 6.2 ± 0.1 mm Plexiglas.

4. Dimensions of Plexiglas Planar Phantom

5. 450 MHz System Validation Setup

450 MHz Validation Dipole Setup

6. Measurement Conditions

The planar phantom was filled with brain simulating tissue having the following parameters at 450 MHz:

Relative Permittivity:	42.9
Conductivity:	0.85 mho/m
Fluid Temperature:	21.9 °C
Fluid Depth:	≥ 15.0 cm

Environmental Conditions:

Ambient Temperature:	22.4 °C
Humidity:	31 %
Barometric Pressure:	103.2 kPa

The 450 MHz simulated brain tissue mixture consists of the following ingredients:

Ingredient	Percentage by weight
Water	38.56%
Sugar	56.32%
Salt	3.95%
HEC	0.98%
Dowicil 75	0.19%
450 MHz Target Dielectric Parameters at 22 °C	ε _r = 43.5 σ = 0.87 S/m

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	1.22	4.88	0.782	3.128	1.29
Test 2	1.23	4.92	0.791	3.164	1.30
Test 3	1.23	4.92	0.789	3.156	1.30
Test 4	1.23	4.92	0.790	3.160	1.31
Test 5	1.24	4.96	0.793	3.172	1.31
Test 6	1.24	4.96	0.792	3.168	1.31
Test 7	1.23	4.92	0.791	3.164	1.31
Test 8	1.23	4.92	0.789	3.156	1.30
Test 9	1.24	4.96	0.791	3.164	1.31
Test 10	1.23	4.92	0.789	3.156	1.31
Average Value	1.23	4.93	0.790	3.16	1.31

The results have been normalized to 1W (forward power) into the dipole.

IEEE Target over 1 cm^3 (1g) of tissue: 4.9 mW/g (+/- 10%)

```
Averaged over 1cm (1g) of tissue: 4.93 mW/g (deviation +0.6%)
```

IEEE Target over 10cm³ (10g) of tissue: 3.3 mW/g (+/- 10%)

Averaged over 10cm (10g) of tissue: 3.16 mW/g (deviation -4.2%)

450 MHz System Validation - November 4, 2004

DUT: Dipole 450 MHz; Model: D450V2; Serial: 136; Calibrated: 11/04/2004

Ambient Temp: 22.4 °C; Fluid Temp: 21.9 °C; Barometric Pressure: 103.2 kPa; Humidity: 31%

Communication System: CW

Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 (σ = 0.85 mho/m; ϵ_r = 42.9; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

450 MHz System Validation/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

450 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 2.15 W/kg **SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.782 mW/g**

450 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.2 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 2.16 W/kg **SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.791 mW/g**

450 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.1 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 2.16 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.789 mW/g

450 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.2 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 2.18 W/kg **SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.790 mW/g**

450 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.2 V/m; Power Drift = 0.009 dB Peak SAR (extrapolated) = 2.18 W/kg **SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.793 mW/g**

450 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.1 V/m; Power Drift = 0.007 dB Peak SAR (extrapolated) = 2.18 W/kg **SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.792 mW/g**

450 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.2 V/m; Power Drift = 0.004 dB Peak SAR (extrapolated) = 2.18 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.791 mW/g

450 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.2 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 2.16 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.789 mW/g

450 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 2.19 W/kg SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.791 mW/g

450 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.1 V/m; Power Drift = 0.007 dB Peak SAR (extrapolated) = 2.16 W/kg **SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.789 mW/g**

1 g average of 10 measurements: 1.23 mW/g 10 g average of 10 measurements: 0.790 mW/g

450MHz System Validation Measured Fluid Dielectric Parameters (Brain) November 04, 2004

Frequency	e'	e"
350.000000 MHz	45.3974	39.4988
360.000000 MHz	45.0834	38.7858
370.000000 MHz	44.8651	38.1777
380.000000 MHz	44.6622	37.6103
390.000000 MHz	44.3761	37.1472
400.000000 MHz	44.1745	36.5919
410.000000 MHz	43.8392	36.0417
420.000000 MHz	43.6277	35.5608
430.000000 MHz	43.3443	34.9958
440.000000 MHz	43.1200	34.5629
<mark>450.000000 MHz</mark>	<mark>42.8999</mark>	<mark>34.1583</mark>
460.000000 MHz	42.7154	33.7478
470.000000 MHz	42.4773	33.4083
480.000000 MHz	42.2998	33.0563
490.000000 MHz	42.0302	32.7340
500.000000 MHz	41.8641	32.3576
510.000000 MHz	41.6518	31.9703
520.000000 MHz	41.4863	31.6232
530.000000 MHz	41.2685	31.3144
540.000000 MHz	41.1027	30.8977
550.000000 MHz	40.9455	30.6347