

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

Shayne Zhu
Jerry Womg

Moms ru

TEST REPORT

FCC ID.....: AMW70001

Applicant's name...... Uniden America Corporation

Manufacturer...... Uniden America Corporation

Test item description FLOATING VHF MARINE RADIO

Trade Mark: UNIDEN, West Marine

Model/Type reference MHS335BT

Listed Model(s)...... VHF470B, VHF470G

Standard.....: IEC 62238

Date of receipt of test sample....... Sept. 15, 2017

Date of testing...... Sept. 18, 2017 – Oct. 16, 2017

Date of issue...... Oct. 16, 2017

Result: PASS

Compiled by

(position+printed name+signature) .: File administrators Shayne Zhu

Supervised by

(position+printed name+signature) .: Project Engineer Jerry Wang

Approved by

(position+printed name+signature) .: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Contents

<u> </u>	IESIS	IANDARDS AND TEST DESCRIPTION	4
1.1.	Test Stan	dards	4
1.2.	Report ve	ersion	4
1.3.	Test Desc		5
<u>2.</u>	SUMMA	7	
			_
2.1.	Client Info	7	
2.2.	Product D	7	
2.3. 2.4.	Test frequ EUT opera	8	
2.4. 2.5.	EUT confi		8 8
<u>3.</u>	TEST E	ENVIRONMENT	9
3.1.	Address of	of the test laboratory	9
3.2.	Test Facil		9
3.3.	_	nental conditions	10
3.4.		t of the measurement uncertainty	11
3.5.	Equipmer	nts Used during the Test	12
<u>4.</u>	TEST C	CONDITIONS AND RESULTS	14
4.1.		ental Requirement	14
	4.1.1.	Vibration test	14
	4.1.2.	Temperature tests	15
4.2.		er Requirement	16
	4.2.1. 4.2.2.	Frequency error (demodulated DSC signal)	16 18
	4.2.2. 4.2.3.	Carrier Power (Conducted) Frequency Deviation	20
	4.2.4.	Sensitivity of the modulator, including microphone	24
	4.2.5.	Audio frequency response	25
	4.2.6.	Audio frequency harmonic distortion of the emission	27
	4.2.7.	Adjacent Channel Power	29
	4.2.8.	Conducted spurious emissions conveyed to the antenna	31
	4.2.9.	Transient frequency behaviour of the transmitter	33
	4.2.10.	Residual modulation of the transmitter	35
	4.2.11.	Frequency error (demodulated DSC signal)	36
	4.2.12.	Modulation index for DSC	37
	4.2.13.	Modulation rate for DSC	38
4.0	4.2.14.	Testing of generated call sequences	39
4.3.	4.3.1.	for Radiotelephone Requirement	40 40
	4.3.1. 4.3.2.	Harmonic distortion and rated audio frequency output power Audio frequency response	42
	4.3.2.	Maximum Usable Sensitivity	44
	4.3.4.	Co-channel rejection	46
	4.3.5.	Adjacent channel selectivity	47
	4.3.6.	Spurious Response Rejection	49
	4.3.7.	Intermodulation response	51
	4.3.8.	Blocking or Desensitization	52
	4.3.9.	Conducted spurious emissions	54
	4.3.10.	Receiver noise and hum level	56
	4.3.11.	Squelch operation	57
	4.3.12.	Squelch hysteresis	59
	4.3.13.	Multiple watch characteristic	60
4.4.	Receiver	for DSC Requirement	61

Report No : TRE1709	9011504	Page 3 of 70	Issued: 2017-10	-16
4.4.1.	Receiver for D	DSC decoder		61
4.4.2.	Co-channel re	ejection		62
4.4.3.	Adjacent chan	inel selectivity		63
4.4.4.	Spurious resp	onse and blocking immunity		64
4.4.5.	Intermodulation	on response		65
4.4.6.	Dynamic rang	e		66
4.4.7.	Spurious emis	ssions		67
4.4.8.	Verification of	correct decoding of various types of	DSC calls	68
4.4.9.		TS and AIS channel management D		69
4.4.10.	Simultaneous	reception		70
5 FYTERN	AI AND INT	TERNAL PHOTOS OF THE	FUT	7.0

Report No : TRE1709011504 Page 4 of 70 Issued: 2017-10-16

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

<u>IEC 62238:2003</u>-Maritime navigation and radiocommunication equipment and systems –VHF radiotelephone equipment incorporating Class "D" Digital Selective Calling (DSC) – Methods of testing and required test results

1.2. Report version

Version No.	Date of issue	Description
00	Oct. 16, 2017	Original

Report No : TRE1709011504 Page 5 of 70 Issued: 2017-10-16

1.3. Test Description

Environmental Requirement				
Toot item	Standards requirement	Re	sult	
Test item	(IEC62238)	Pass	N/A	
Vibration test	Sub-clause 7.4			
Temperature tests	Sub-clause 7.5	\boxtimes		
Transmit	ter Requirement			
Test item	Standards requirement	Re	sult	
rest item	(IEC62238)	Pass	N/A	
Frequency error	Sub-clause 8.1	\boxtimes		
Carrier power	Sub-clause 8.2			
Frequency deviation	Sub-clause 8.3	\boxtimes		
Sensitivity of the modulator, including microphone	Sub-clause 8.4	\boxtimes		
Audiofrequency response	Sub-clause 8.5			
Audiofrequency harmonic distortion of the emission	Sub-clause 8.6	\boxtimes		
Adjacent channel power	Sub-clause 8.7	\boxtimes		
Conducted spurious emissions conveyed to the antenna	Sub-clause 8.8			
Transient frequency behaviour of the transmitter	Sub-clause 8.9			
Residual modulation of the transmitter	Sub-clause 8.10			
Frequency error (DSC signal)	Sub-clause 8.11			
Modulation index for DSC	Sub-clause 8.12			
Modulation rate for DSC	Sub-clause 8.13			
Testing of generated call sequences	Sub-clause 8.14	\boxtimes		
Receiver for Radi	otelephone Requirement			
Test item	Standards requirement	Re	sult	
restitem	(IEC62238)	Pass	N/A	
Harmonic distortion and rated audiofrequency output power	Sub-clause 9.1			
Audiofrequency response	Sub-clause 9.2	\boxtimes		
Maximum usable sensitivity	Sub-clause 9.3	\boxtimes		
Co-channel rejection	Sub-clause 9.4			
Adjacent channel selectivity	Sub-clause 9.5			
Spurious response rejection	Sub-clause 9.6			
Intermodulation response	Sub-clause 9.7	\boxtimes		
Blocking or desensitization	Sub-clause 9.8	\boxtimes		
Spurious emissions	Sub-clause 9.9	\boxtimes		
Receiver residual noise level	Sub-clause 9.10	\boxtimes		
Squelch operation	Sub-clause 9.11	\boxtimes		
Squelch hysteresis	Sub-clause 9.12	\boxtimes		
Multiple watch characteristic	Sub-clause 9.13	\boxtimes		

Receiver for DSC Requirement					
Test item	Standards requirement	Re	sult		
rest item	(IEC62238)	Pass	N/A		
Maximum usable sensitivity	Sub-clause 10.1				
Co-channel rejection	Sub-clause 10.2				
Adjacent channel selectivity	Sub-clause 10.3	\boxtimes			
Spurious response and blocking immunity	Sub-clause 10.4	\boxtimes			
Intermodulation response	Sub-clause 10.5	\boxtimes			
Dynamic range	Sub-clause 10.6	\boxtimes			
Spurious emissions	Sub-clause 10.7	\boxtimes			
Verification of correct decoding of various types of DSC calls	Sub-clause 10.8	\boxtimes			
Reaction to VTS and AIS channel management DSC transmissions	Sub-clause 10.9	\boxtimes			
Simultaneous reception	Sub-clause 10.10	\boxtimes			
Maximum usable sensitivity	Sub-clause 10.1	\boxtimes			

Note:

N/A means not applicable

Report No : TRE1709011504 Page 7 of 70 Issued: 2017-10-16

2. **SUMMARY**

2.1. Client Information

Applicant:	Uniden America Corporation		
Address:	3001 Gateway Drive Suite 130, Irving, Texas, United States		
Manufacturer:	Uniden America Corporation		
Address:	3001 Gateway Drive Suite 130, Irving, Texas, United States		

2.2. Product Description

Name of EUT:	FLOATING VHF MARINE RADIO			
Trade mark:	UNIDEN, West Marine			
Model/Type reference:	MHS335BT			
Listed Model(s):	VHF470B, VHF470G			
Power supply:	DC 7.4V from re-charge Lion DC 6.0V from dry battery	battery		
Adapter information:	Model:SAW12-120-1000UD Input:100-240Va.c.,50/60Hz,0.3A Output: 12Vd.c., 1000mA			
Marine Radio				
Operation Frequency Range:	Tx: 156.05MHz to 157.425MHz Rx: 156.05MHz to 161.6MHz			
Rated Output Power:	6W (37.78dBm) for DSC			
Modulation Type:	Analog Voice:	FM		
iniodulation Type.	Digital Data:	FSK		
Channel Separation:	Analog Voice:	☐ 12.5kHz		
	Angles Voice:	12.5kHz Channel Separation:		
Faciacian Decimates	Analog Voice:	⊠25kHz Channel Separation: 16K0F3E		
Emission Designator:	Digital Data	☐12.5kHz Channel Separation:		
	Digital Data:	⊠25kHz Channel Separation: 16K0G2B		
Antenna Type:	External			

Note:

Pre-scan the test voltage 7.4V and 6.0V, only show the worst test result at 7.4V.

2.3. Test frequency list

Mode	Madulation	Toot Channel	Test Frequ	uency (MHz)		
	Modulation	Test Channel	TX	RX		
Analog Voice		CH _L (CH60)	156.025	160.025		
	FM	CH _M (CH16)	156.8	156.8		
		CH _H (CH88)	157.425	157.425		

Mode	Modulation	Test Channel	Test Frequ	iency (MHz)
Mode	Modulation	rest Chamilei	TX	RX
Digital Data(DSC)	FSK	CH _{M1} (CH70)	156.525	156.525

2.4. EUT operation mode

Toot mode	Transmitting	Pagaiving		Power lev	rel	Analog/FM
Test mode	Transmitting	Receiving	High	Mid	Low	25kHz
TX1	√		√			√
TX2	√			√		√
TX3	√				√	√
RX1		√				√

Test mode Transmitting		Pagaiving		States		Digital Data(DSC)/FSK
restiniode	Transmitting	Receiving	В	Υ	B+Y	25kHz
TX4	√		√			√
TX5	√			√		√
TX6	√				√	√
RX2		√				√

 $[\]ensuremath{\checkmark}$: is operation mode.

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer

0	Power Cable	Length (m):	/
		Shield :	Unshielded
		Detachable :	Undetachable
0	Multimeter	Manufacturer:	/
		Model No.:	/

Report No: TRE1709011504 Page 9 of 70 Issued: 2017-10-16

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No : TRE1709011504 Page 10 of 70 Issued: 2017-10-16

3.3. Environmental conditions

	Temperature	15 °C to 35 °C				
	Relative humidity	20 % to 75 %.				
Normal Conditon			Nominal mains voltage			
Condition	Voltage	Lead-acid battery	1.1 * the nominal voltage of the battery			
	voltage	Other	the normal test voltage shall be that declared by the equipment provider			
			quipment intended for mounting below deck			
	Temperature	□ –25 °C and +55 °C for equipment intended for mounting above deck.				
		☐ -10 °C to +55 °C for Base stations for indoor/controlled climate conditions				
Extreme	Voltage	☐Mains voltage	\pm 10 %* the nominal mains voltage			
Conditon		Secondary battery power sources	1,3 and 0,9 multiplied by the nominal voltage of the battery			
		⊠Other	For equipment using other power sources, the extreme test voltages shall be as stated by the manufacturer.			
Normal Cor	nditon	V _N =nominal Voltage	DC 7.4V			
Nomai Coi	iditori	T _N =normal Temperature	25 °C			
		V _L =lower Voltage	DC 6.0V			
Extreme Co	nditon	T _L =lower Temperature	-20 °C			
Extreme Co	muiton	V _H =higher Voltage	DC 7.4V			
		T _H =higher Temperature	55 °C			

Report No : TRE1709011504 Page 11 of 70 Issued: 2017-10-16

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 9KHz-30MHz	2.20 dB	(1)
Radiated Emission 30~1000MHz	4.65 dB	(1)
Radiated Emission 1~18GHz	5.16 dB	(1)
Radiated Emission 18-40GHz	5.54 dB	(1)
Occupied Bandwidth	35 Hz	(1)
FM deviation	25 Hz	(1)
Audio level	0.62 dB	(1)
Low Pass Filter Response	0.76 dB	(1)
Modulation Limiting	0.42 %	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No : TRE1709011504 Page 12 of 70 Issued: 2017-10-16

3.5. Equipments Used during the Test

AC&DC Power Conducted Emission							
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.			
Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2016/11/13			
EMI Test Receiver	Rohde&Schwarz	ESCS 30	100038	2016/11/13			
Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2016/11/13			
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A			
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2016/11/13			
Artificial Mains	Rohde&Schwarz	ESH3-Z6	100210	2016/11/13			
Artificial Mains	Rohde&Schwarz	ESH3-Z6	100211	2016/11/13			
Test cable	ENVIROFLEX	3651	1101902	2016/11/13			

Modulation Characteristic						
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.		
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2016/11/13		
RF Cable	Chengdu E-Microwave			2016/11/13		

Frequency Stability				
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2016/11/13
Signal Generator	Rohde&Schwarz	SMT03	100059	2016/11/13
Climate Chamber	ESPEC	EL-10KA	05107008	2016/11/13
RF Cable	Chengdu E-Microwave			2016/11/13

Transmitter Radiated Spu	rious Emission& Effe	ective Radiated I	Power	
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.
Ultra-Broadband Antenna	Rohde&Schwarz	HL562	100015	2016/11/13
EMI Test Receiver	Rohde&Schwarz	ESI 26	100009	2016/11/13
RF Test Panel	Rohde&Schwarz	TS/RSP	335015/0017	N/A
HORN ANTENNA	Rohde&Schwarz	HF906	100039	2016/11/13
Loop Antenna	Rohde&Schwarz	HZ-9	838622\013	2016/11/13
Turntable	ETS	2088	2149	N/A
Antenna Mast	ETS	2075	2346	N/A
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2016/11/13
Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2016/11/13
HORN ANTENNA	ShwarzBeck	9120D	1012	2016/11/13
HORN ANTENNA	ShwarzBeck	9120D	1011	2016/11/13
TURNTABLE	MATURO	TT2.0		N/A
ANTENNA MAST	MATURO	TAM-4.0-P		N/A
Test cable	Siva Cables Italy	RG 58A/U	W14.02	2016/11/13

Maximum Transmitter Pov Mask	wer & Spurious Ems	sion On Antenna	Port & Occupied E	Bandwidth & Emission
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.
Receiver	Rohde&Schwarz	ESI 26	100009	2016/11/13
Attenuator	R&S	ESH3-22	100449	2016/11/13
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2016/11/13
High-Pass Filter	Anritsu	MP526B	6220875256	2016/11/13
High-Pass Filter	Anritsu	MP526D	6220878392	2016/11/13
Spectrum Analzyer	Aglient	E4407B	MY44210775	2016/11/13
Spectrum Analzyer	Rohde&Schwarz	FSP40	1164.4391.40	2016/11/13
SPECTRUM ANALYZER	Agilent	E4407B	MY44210775	2016/11/13
Attenuator	Chengdu E-Microwave	EMCAXX- 10RNZ-3		2016/11/13
RF Cable	Chengdu E-Microwave			2016/11/13
Combiner	Chengdu E-Microwave	EMPD-T-2-180- 10-600		2016/11/13

Transient Frequency Behavior							
Name of Equipment Manufacturer Model Serial Number Last Ca							
Signal Generator	Rohde&Schwarz	SMT03	100059	2016/11/13			
Storage Oscilloscope	Tektronix	TDS3054B	B033027	2016/11/13			
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2016/11/13			
RF Cable	Chengdu E-Microwave			2016/11/13			

The calibration interval was one year.

Report No : TRE1709011504

Report No : TRE1709011504 Page 14 of 70 Issued: 2017-10-16

4. TEST CONDITIONS AND RESULTS

4.1. Environmental Requirement

4.1.1. Vibration test

TEST RESULTS:

Complies

Please refer to the below test data:

Frequency Error:

6	Test conditions		Frequency Error(kHz)			Linait	
Operation Mode	Temperature(°C)	Voltage (V)	CH _L	CH _M	CH _H	Limit (kHz)	Result
TX1	T _N	V _N	0.05	0.06	0.05	±1.5	Pass

Operation Mode	Test conditions		Frequency Error(kHz)				
	Temperature(°C)	Voltage (V)	CH _L	CH _M	СНн	Limit (kHz)	Result
TX3	T_N	V _N	0.05	0.04	0.06	±1.5	Pass

Carrier power:

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
			CH∟	37.38		
TX1	T_N	V_N	CH _M	37.62	34.77~37.78	Pass
			СНн	37.55		

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
			CH∟	29.15		
TX3	T_N	V_N	CH _M	29.18	20~30	Pass
			СНн	29.32		

Maximum usable sensitivity:

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured (dBuV)	Limit (dB)	Result
			CH∟	-5.3		
RX1	T_N	V_N	CH _M	-4.7	≤+6.0	Pass
			СНн	-5.3		

Report No : TRE1709011504 Page 15 of 70 Issued: 2017-10-16

4.1.2. Temperature tests

TEST RESULTS: Complies

Please refer to the below test data:

Frequency Error:

	Operation Mode	Test conditions		Frequency Error(kHz)			Lineit		
		Temperature(°C)	Voltage (V)	CH _L	CH _M	СНн	Limit (kHz)	Result	
	TX1	T _N	V_N	0.04	0.04	0.04	±1.5	Pass	

	Test conditions		Frequency Error(kHz)			Limeit	
Operation Mode	Temperature(°C)	Voltage (V)	CH _L	CH _M	СНн	Limit (kHz) Resu	Result
TX3	T_N	V_N	0.05	0.04	0.05	±1.5	Pass

Carrier power:

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
			CH _L	37.69		
TX1	T_N	V_N	CH _M	37.74	34.77~37.78	Pass
			СНн	37.68		

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
			CH _L	29.33		
TX3	T_N	V_N	CH _M	29.34	20~30	Pass
			СНн	29.25		

Maximum usable sensitivity:

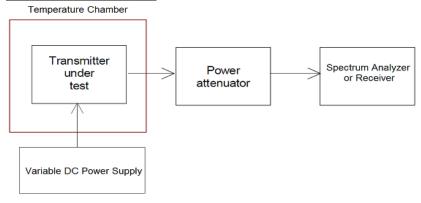
Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured (dBuV)	Limit (dB)	Result
			CH _L	-5.3		
RX1	T_N	V_N	CH _M	-6.0	≤+6.0	Pass
			CH _H	-6.2		

4.2. Transmitter Requirement

4.2.1. Frequency error (demodulated DSC signal)

The frequency error is the difference between the measured carrier frequency and its nominal value.

LIMIT


IEC 62238 Sub-clause 8.1.3

The frequency error shall be within \pm 1,5 kHz.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.1.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Operation Mode	Test conditions		F	Frequency Error (kHz)			
	Temperature (℃)	Voltage (V)	CH _L	СНм	СНн	Limit (kHz)	Result
	T _N	V _N	0.115	0.118	0.112		Pass
	V_L	V_{H}	0.101	0.104	0.103	±1.5	
TX1		V_L	0.119	0.111	0.112		
	Ŧ	V_{H}	0.117	0.106	0.110		
	T _H	V_{L}	0.111	0.101	0.113		

Operation Mode	Test conditions		F	Frequency Error (kHz)			
	Temperature (℃)	Voltage (V)	CH∟	СНм	СНн	Limit (kHz)	Result
	T_N	V_N	0.113	0.124	0.104		Pass
	V_{L}	V_{H}	0.102	0.112	0.110	±1.5	
TX2		V_L	0.102	0.120	0.113		
	Тн	V_{H}	0.112	0.110	0.118		
		V_{L}	0.108	0.121	0.103		

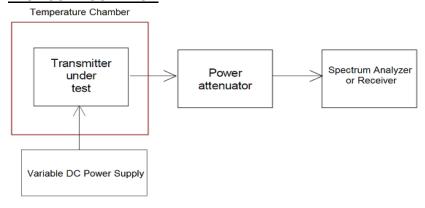
Operation Mode	Test conditions		F	Frequency Error (kHz)			
	Temperature (℃)	Voltage (V)	CH _L	СНм	СНн	Limit (kHz)	Result
	T _N	V _N	0.114	0.121	0.105		Pass
	V_{L}	V_{H}	0.114	0.115	0.105]	
TX3		V_{L}	0.110	0.112	0.100	±1.5	
	Тн	V_{H}	0.114	0.116	0.118		
		V_{L}	0.104	0.104	0.106		

Report No : TRE1709011504 Page 18 of 70 Issued: 2017-10-16

4.2.2. Carrier Power (Conducted)

The carrier power is the mean power delivered to the artificial antenna during one radio frequency cycle in the absence of modulation. The rated output power is the carrier power declared by the manufacturer.

LIMIT


IEC 62238 Sub-clause 8.2.3

with the output power switch set at maximum, the carrier power shall remain between 3 W and 6 W. With the output power switch at minimum, the carrier power shall remain between 0,1 W and 1 W.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.2.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Report No:	: TRE1	709011504
------------	--------	-----------

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
			CH∟	37.76		
	T_N	V_N	CH _M	37.69	34.77~37.78	
			CH _H	37.77		
			CH _L	37.56		
	V_L	V _H	CH _M	37.52		Pass
			CH _H	37.59	34.77~37.78	
		V_{L}	CH _L	37.57		
TX1			CH _M	37.52		
			CH _H	37.58		
			CH _L	37.58		
		V_{H}	CH _M	37.58		
	V		CH _H	37.60	24 77 27 70	
	V_{H}		CH∟	37.56	34.77~37.78	
		V_{L}	CH _M	37.54		
			CH _H	37.58		

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
			CH _L	29.37		
	T_N	V_N	CH _M	29.62	20~30	
			СН _н	29.53		
			CH _L	29.33		
	V_{L}	V _H	CH _M	29.58	20~30	Pass
			CH _H	29.49		
		V _L	CH _L	29.30		
TX3			CH _M	29.55		
			CH _H	29.46		
			CH _L	29.26		
		V_{H}	CH _M	29.51		
	V		CH _H	29.42	20. 20	
	V_{H}		CH _L	29.22	20~30	
		V_{L}	CH _M	29.47		
			CH _H	29.38		

Page 20 of 70 Issued: 2017-10-16 Report No: TRE1709011504

4.2.3. Frequency Deviation

For the purpose of the present document, the frequency deviation is the difference between the instantaneous frequency of the modulated radio frequency signal and the carrier frequency.

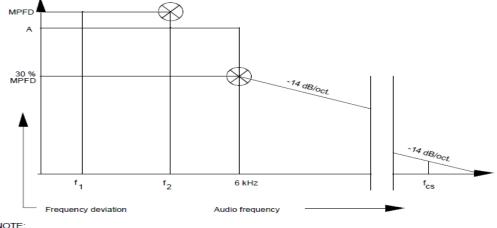
<u>LIMIT</u>

IEC 62238 Sub-clause 8.3.3

with the output power switch set at maximum, the carrier power shall remain between 3 W and 6 W. With the output power switch at minimum, the carrier power shall remain between 0,1 W and 1 W.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.3.2 for the measurement method.


The maximum permissible frequency deviation shall be:

25 kHz channels: \pm 5 kHz. 12,5 kHz channels: \pm 2,5 kHz.

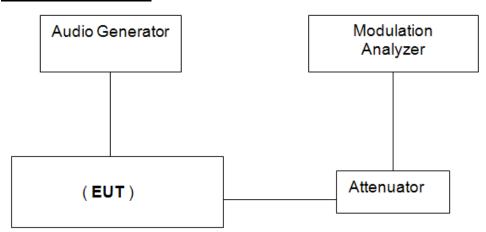
between 3,0 kHz/2,55 kHz and 6,0 kHz: shall not exceed the frequency deviation at a modulation frequency of 3.0 kHz/2.55 kHz.

At 6,0 kHz the deviation shall be not more than 30,0 % of the maximum permissible frequency deviation. between 6,0 kHz and a frequency equal to the channel separation for which the equipment is intended shall not exceed that given by a linear representation of the frequency deviation (dB) relative to the modulation frequency, starting at the 6,0 kHz limit and having a slope of -14,0 dB per octave.

These limits are illustrated in figure 1.

NOTE:

NOTE.
Abbreviations:
f. lowest appropriate frequency


3,0 kHz (for 25 kHz channel separation), or f₂

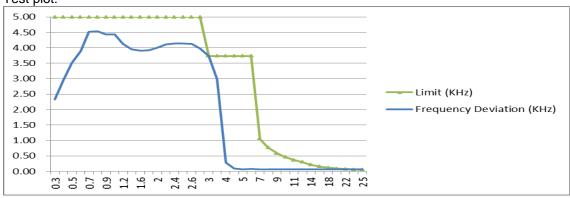
2,55 kHz (for 12,5 kHz channel separation)
Maximum Permissible Frequency Deviation, clause 8.3.2.1 MPFD

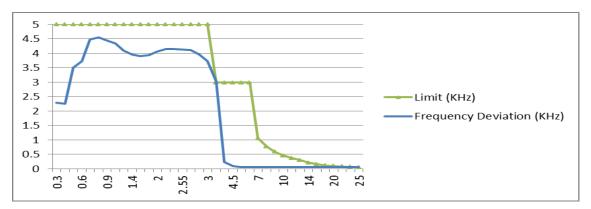
measured frequency deviation at f2 frequency equal to channel separation

Figure 1: Frequency deviation

TEST CONFIGURATION

TEST MODE:


Report No : TRE1709011504 Page 21 of 70


Please reference to the section 2.4

TEST RESULTS

Please refer to the below test data:

Test plot:

Issued: 2017-10-16

Test Result:

	TX1:CH _M		
Modulation Frequency (kHz)	Frequency Deviation (kHz)	Limit (kHz)	Result
0.30	2.33	5.00	Pass
0.40	2.97	5.00	Pass
0.50	3.52	5.00	Pass
0.60	3.89	5.00	Pass
0.70	4.53	5.00	Pass
0.80	4.54	5.00	Pass
0.90	4.44	5.00	Pass
1.00	4.44	5.00	Pass
1.20	4.12	5.00	Pass
1.40	3.95	5.00	Pass
1.60	3.90	5.00	Pass
1.80	3.92	5.00	Pass
2.00	4.01	5.00	Pass
2.20	4.11	5.00	Pass
2.40	4.14	5.00	Pass
2.55	4.13	5.00	Pass
2.60	4.12	5.00	Pass
2.80	3.97	5.00	Pass
3.00	3.74	3.74	Pass
3.50	2.98	3.74	Pass
4.00	0.28	3.74	Pass
4.50	0.09	3.74	Pass
5.00	0.07	3.74	Pass
6.00	0.08	3.74	Pass
7.00	0.07	1.05	Pass
8.00	0.07	0.77	Pass
9.00	0.07	0.58	Pass
10.00	0.07	0.46	Pass
11.00	0.07	0.37	Pass
12.00	0.07	0.30	Pass
14.00	0.07	0.21	Pass
16.00	0.07	0.15	
18.00	0.07	0.12	Pass
20.00	0.07	0.09	Pass
22.00	0.07	0.07	Pass
24.00	0.07	0.06	Pass
25.00	0.07	0.05	Pass

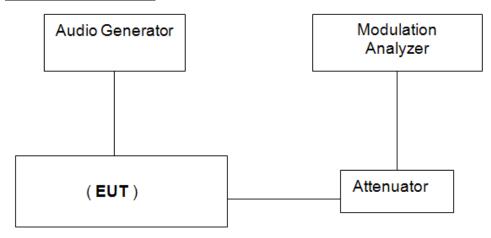
	TX3:CH _M		
Modulation Frequency (kHz)	Frequency Deviation (kHz)	Limit (kHz)	Result
0.30	2.29	5.00	Pass
0.40	2.24	5.00	Pass
0.50	3.49	5.00	Pass
0.60	3.73	5.00	Pass
0.70	4.48	5.00	Pass
0.80	4.55	5.00	Pass
0.90	4.44	5.00	Pass
1.00	4.33	5.00	Pass
1.20	4.10	5.00	Pass
1.40	3.95	5.00	Pass
1.60	3.90	5.00	Pass
1.80	3.94	5.00	Pass
2.00	4.05	5.00	Pass
2.20	4.14	5.00	Pass
2.40	4.15	5.00	Pass
2.55	4.13	5.00	Pass
2.60	4.11	5.00	Pass
2.80	3.95	5.00	Pass
3.00	3.72	5.00	Pass
3.50	3.02	3.72	Pass
4.00	0.23	3.72	Pass
4.50	0.09	3.72	Pass
5.00	0.05	3.72	Pass
6.00	0.05	2.98	Pass
7.00	0.05	1.05	Pass
8.00	0.05	0.77	Pass
9.00	0.05	0.58	Pass
10.00	0.05	0.46	Pass
11.00	0.05	0.37	Pass
12.00	0.05	0.30	Pass
14.00	0.05	0.21	Pass
16.00	0.05	0.15	Pass
18.00	0.05	0.12	Pass
20.00	0.05	0.09	Pass
22.00	0.05	0.07	Pass
24.00	0.05	0.06	Pass
25.00	0.05	0.05	Pass

Report No : TRE1709011504 Page 24 of 70 Issued: 2017-10-16

4.2.4. Sensitivity of the modulator, including microphone

This characteristic expresses the capability of the transmitter to produce sufficient modulation when an audio frequency signal corresponding to the normal mean speech level is applied to the microphone.

LIMIT


IEC 62238 Sub-clause 8.4.3

The resulting frequency deviation shall be between \pm 1,5 kHz and \pm 3 kHz.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.4.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Operation Mode	Test Channel	Measured (kHz)	Limit (kHz)	Result
	CH _L	2.21		
TX1	CH _M	2.17	±1.5 \sim ±3	Pass
	CH _H	2.08		

Operation Mode	Test Channel	Measured (kHz)	Limit (kHz)	Result
	CH _L	2.14		
TX2	CH _M	2.18	±1.5 \sim ±3	Pass
	CH _H	2.08		

4.2.5. Audio frequency response

The audio frequency response is the frequency deviation of the transmitter as a function of the modulating frequency.

LIMIT

IEC 62238 Sub-clause 8.5.3

The audio frequency response shall be within +1 dB and -3 dB of a 6 dB/octave line passing through the reference point (see figure 2). The upper limit frequency shall be 2,55 kHz for 12,5 kHz channels.

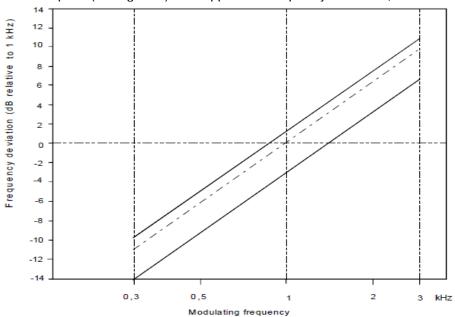
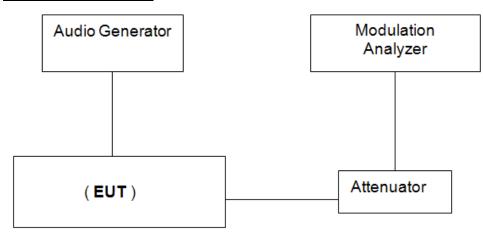
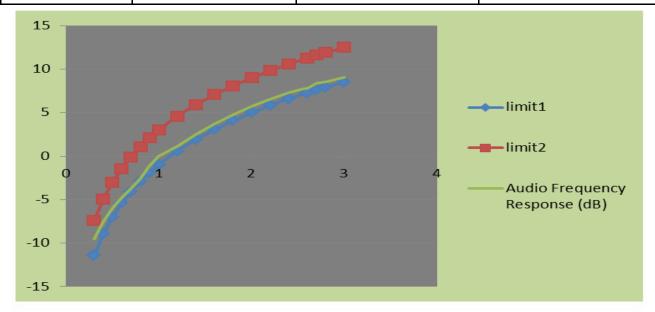



Figure 2: Audio frequency response

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.5.2 for the measurement method.

TEST CONFIGURATION


TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Note: We tested TX1 and TX2 all channel, recorded worst case TX1 for CH_{M} .

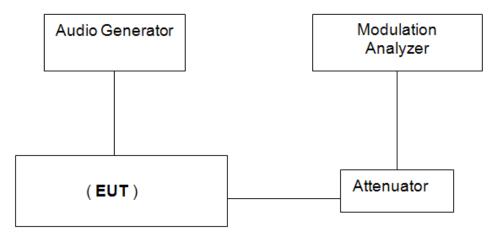
	TX1:CH _M							
Frequency (kHz)	Frequency Deviation (kHz)	1kHz Reference Deviation (kHz)	Audio Frequency Response (dB)					
0.3	0.334	1	-9.52					
0.4	0.420	1	-7.54					
0.5	0.504	1	-5.96					
0.6	0.577	1	-4.77					
0.7	0.649	1	-3.75					
0.8	0.743	1	-2.58					
0.9	0.880	1	-1.11					
1	1.000	1	0.00					
1.2	1.139	1	1.13					
1.4	1.335	1	2.51					
1.6	1.533	1	3.71					
1.8	1.726	1	4.74					
2	1.932	1	5.72					
2.2	2.123	1	6.54					
2.55	2.312	1	7.28					
2.4	2.429	1	7.71					
2.6	2.446	1	7.77					
2.7	2.621	1	8.37					
2.8	2.679	1	8.56					
3	2.841	1	9.07					

Report No : TRE1709011504 Page 27 of 70 Issued: 2017-10-16

4.2.6. Audio frequency harmonic distortion of the emission

The harmonic distortion of the emission modulated by an audio frequency signal is defined as the ratio, expressed as a percentage, of the root mean square (rms) voltage of all the harmonic components of the fundamental modulation frequency to the total rms voltage of the modulation signal after linear demodulation

LIMIT


IEC 62238 Sub-clause 8.6.3

The harmonic distortion shall not exceed 10 %.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.6.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Operation Mode	Temperature (°C)	Voltage (V)	Modulated Frequency (kHz)	Test Channel	Measured (%)	Limit (%)	Result
				CH∟	4.80		
			0.3	CH _M	4.80		
				СНн	4.90		
				CH∟	2.40		
	T_N	V_N	0.5	CH _M	2.60	≤10	
				CH _H	2.50		
				CH∟	1.70		
			1.0	CH _M	1.70		
				CH _H	1.60		
				CH _L	3.89		
TX1		V_{H}	1.0	CH _M	2.75		Pass
	т			CH _H	4.00		
	T_L			CH∟	3.16		
		V_{L}	1.0	CH _M	2.96		
				CH _H	3.23	≤10	
				CH∟	2.13	≥10	
		V_{H}	1.0	CH _M	3.37		
	_			CH _H	2.49		
	T _H -	V_L	1.0	CH∟	3.01		
				CH _M	2.75		
				CH _H	2.19		
			0.3	CH∟	4.70		
		V _N		CH _M	5.20		
				CH _H	5.30		
				CH∟	2.60		
	T_N		0.5	CH _M	2.70	≤10	
				CH _H	2.70		
				CH∟	1.90		
			1.0	CH _M	1.80		
				CH _H	1.90		
				CH∟	3.42		
TX3		V_{H}	1.0	CH _M	2.61		Pass
	т			CH _H	2.96		
	T_L			CH∟	2.85		
		V_{L}	1.0	CH _M	2.18		
				CH _H	3.85	≤10	
				CH _L	2.08	≪ 10	
		V_{H}	1.0	CH _M	2.43		
	т			СНн	3.35		
	T _H			CH∟	3.95		
		V_{L}	1.0	CH _M	3.17		
				CH _H	3.45		

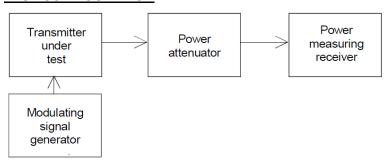
Report No : TRE1709011504 Page 29 of 70 Issued: 2017-10-16

4.2.7. Adjacent Channel Power

The adjacent channel power is that part of the total power output of a transmitter under defined conditions of modulation, which falls within a specified passband centred on the nominal frequency of either of the adjacent channels. This power is the sum of the mean power produced by the modulation, hum and noise of the transmitter.

LIMIT

IEC 62238 Sub-clause 8.7.3


The adjacent channel power shall not exceed a value of:

25 kHz channel: 70 dB below the carrier power of the transmitter without any need to be below 0,2 μ W. 12 kHz channel: 60 dB below the carrier power of the transmitter without any need to be below 0,2 μ W.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.7.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

TX1						
Test Channel	Test Channel	Measurement Power (dBc)	Limit (dB)	Result		
CH∟	Lower adjacent	-72.24	< 70	Desa		
	Upper adjacent	-71.98	≤-70	Pass		
СП	Lower adjacent	-72.75	< 70	Pass		
CH _M	Upper adjacent	-73.74	≤-70	Pass		
CH _H	Lower adjacent	-73.95	< 70	Door		
	Upper adjacent	-72.74	≤-70	Pass		

TX3						
Test Channel	Test Channel	Measurement Power (dBc)	Limit (dB)	Result		
CH∟	Lower adjacent	-73.21	< 70	Dana		
	Upper adjacent	-73.14	≤-70	Pass		
CH	Lower adjacent	-72.16	< 70	Door		
CH _M	Upper adjacent	-74.51	≤-70	Pass		
O.I.	Lower adjacent	-73.40	≤-70	Door		
CH _H	Upper adjacent	-73.30	≈-70	Pass		

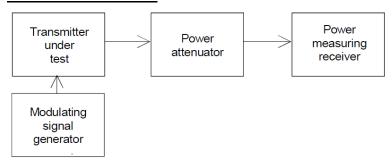
Report No : TRE1709011504 Page 31 of 70 Issued: 2017-10-16

4.2.8. Conducted spurious emissions conveyed to the antenna

Conducted spurious emissions are emissions on a frequency or frequencies which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions.

.

LIMIT


IEC 62238 Sub-clause 8.8.3

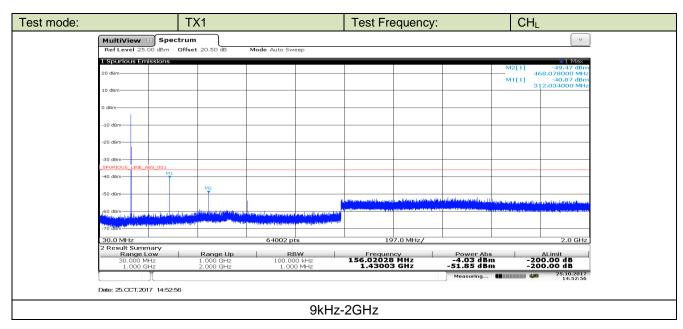
The power of any conducted spurious emission on any discrete frequency shall not exceed 0,25µW(-36dBm).

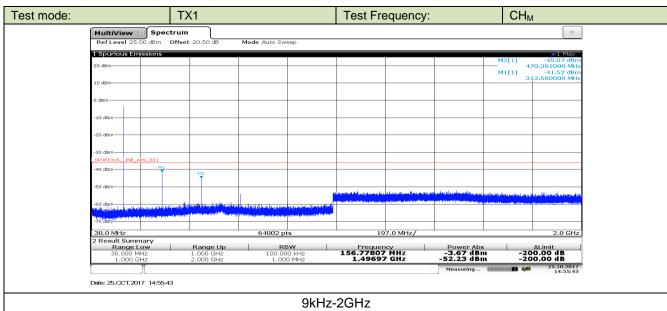
TEST PROCEDURE

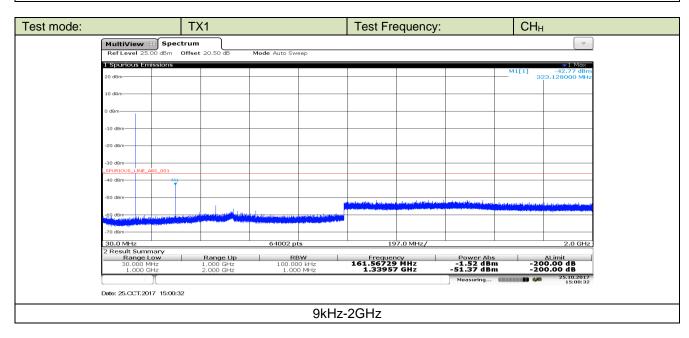
Please refer to IEC 62238 Sub-clause 8.8.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:


Please reference to the section 2.4


TEST RESULTS


Please refer to the below test data:

Note:

We tested TX1 to TX6, recorded worst case for TX1.

Report No : TRE1709011504 Page 33 of 70 Issued: 2017-10-16

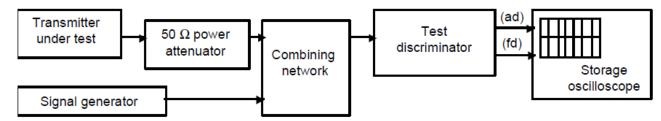
4.2.9. Transient frequency behaviour of the transmitter

The residual modulation of the transmitter is the ratio, in decibels, of the demodulated radiofrequency signal in the absence of wanted modulation, to the modulated radiofrequency signal produced when the normal test modulation is applied.

.

LIMIT

IEC 62238 Sub-clause 8.9.3


During the period of time t_1 and t_3 the frequency difference shall not exceed the value of one channel separation. The frequency difference, after the end of t_2 , shall be within the limit of the frequency error of $\pm 1,5$ kHz.

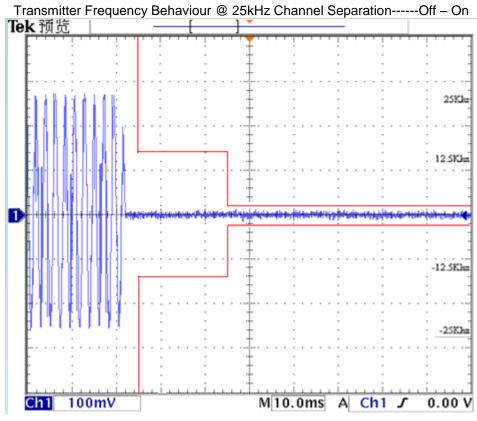
During the period of time t_2 the frequency difference shall not exceed the value of half a channel separation. Before the start of t_3 the frequency difference shall be within the limit of the frequency error of ± 1.5 kHz.

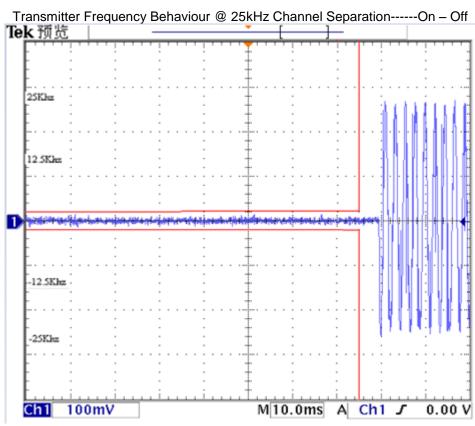
TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.9.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:


Please reference to the section 2.4


TEST RESULTS

Please refer to the below test data:

Note:

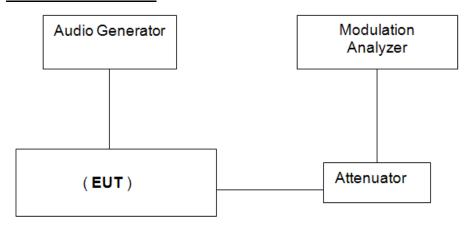
We tested TX1 to TX3,recorded worst case at TX1 for CH_M.

Report No : TRE1709011504 Page 35 of 70 Issued: 2017-10-16

4.2.10. Residual modulation of the transmitter

The residual modulation of the transmitter is the ratio, in dB, of the demodulated RF signal in the absence of wanted modulation, to the demodulated RF signal produced when the normal test modulation is applied.

<u>LIMIT</u>


IEC 62238 Sub-clause 8.10.3

The residual modulation shall not exceed -40 dB on either 25 kHz or 12,5 kHz channels.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.10.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Operation Mode	Test Channel	Measured (dB)	Limit (dB)	Result
	CH _L	-43.89		
TX1	CH _M	-45.23	≤-40	Pass
	СНн	-45.15		

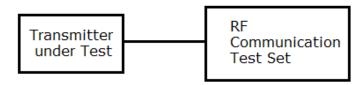
Operation Mode	Test Channel	Measured (dB)	Limit (dB)	Result
	CH _L	-45.02		
TX3	CH _M	-45.03	≪-40	Pass
	CH _H	-44.18		

Report No : TRE1709011504 Page 36 of 70 Issued: 2017-10-16

4.2.11. Frequency error (demodulated DSC signal)

The frequency error for the B- and the Y-state is the difference between the measured frequency from the demodulator and the nominal values.

LIMIT


IEC 62238 Sub-clause 8.11.3

The measured frequency from the demodulator at any time for the B-state shall be within 2 100 Hz \pm 10 Hz and for the Y-state within 1 300 Hz \pm 10 Hz.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.11.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

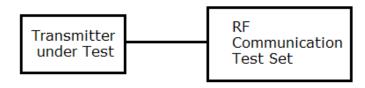
Operation Test condition		Test conditions Frequency Error (kHz)		Limit		
Mode	Temperature(℃)	Voltage(V)	CH _{M1}	(Hz)	Result	
	$\begin{array}{c c} & T_{N} \\ \hline T_{L} \\ \hline T_{H} \end{array}$	V _N	2100.002			
		т	V_{H}	2100.001		
TX4		V_{L}	2100.002	2100 ± 10	Pass	
т		V_{H}	2100.003			
		V_{L}	2100.003			

Operation Test condition		ons	Frequency Error (KHz)	Limit		
Mode	Temperature(℃)	Voltage(V)	CH _{M1}	(Hz)	Result	
	T _N T _L	V_N	1300.002			
		т	V _H	1300.002		
TX5		V_L	1300.002	1300 ± 10	Pass	
т	V_{H}	1300.003				
	T _H	V_L	1300.002			

Report No : TRE1709011504 Page 37 of 70 Issued: 2017-10-16

4.2.12. Modulation index for DSC

This test measures the modulation index in the B and Y states.


LIMIT

IEC 62238 Sub-clause 8.12.3 The modulation index shall be 2,0 \pm 10 %.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.12.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

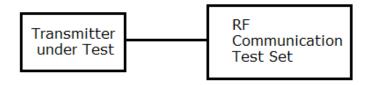
Please reference to the section 2.4

TEST RESULTS

Operation Mode	Test Channel	Test Channel Modulation index		Result
TX4	CH _{M1}	2.03	2.0 ± 10 %	Pass
TX5	CH _{M1}	2.01	2.0 ± 10 %	Pass

Report No : TRE1709011504 Page 38 of 70 Issued: 2017-10-16

4.2.13. Modulation rate for DSC


The modulation rate is the bit stream speed measured in bit/s.

LIMIT

IEC 62238 Sub-clause 8.13.3

The frequency shall be 600 Hz \pm 30 ppm corresponding to a modulation rate of 1 200 baud.

TEST CONFIGURATION

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 8.13.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

	ration ode	Test Channel	Modulation rate (Hz)	Limit	Result
Т	X6	CH _{M1}	600.002	600Hz ± 30 ppm	Pass

Report No : TRE1709011504 Page 39 of 70 Issued: 2017-10-16

4.2.14. Testing of generated call sequences

Generated call sequences are call which comply with the requirements of ITU-R. Recommendation M.493-10.

Requirement

IEC 62238 Sub-clause 8.14.3

The requirements of ITU-R Recommendation M.493-14 regarding message composition and content shall be met.

The generated calls shall be analyzed with the calibrated apparatus for correct configuration of the signal format, including time diversity. It shall be verified that, after transmission of a DSC call, the transmitter re-tunes to the original channel. However, in the case of a distress call, the transmitter shall tune to channel 16 and automatically select the maximum power. The telecommands used and the channels tested for switching shall be stated in the test report.

TEST RESULTS

□ Passed □	Not Applicable
----------------	----------------

Call Sent	Received without error	Telecommand 1	Telecommand 2
Distress	Yes	100	126
All Ships Urgency	Yes	100	126
All Ships Safety	Yes	100	126
Individual Routine	Yes	100	126
Group Routine	Yes	100	126

Report No : TRE1709011504 Page 40 of 70 Issued: 2017-10-16

4.3. Receiver for Radiotelephone Requirement

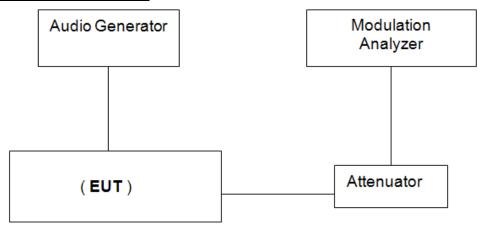
4.3.1. Harmonic distortion and rated audio frequency output power

The harmonic distortion at the receiver output is defined as the ratio, expressed as a percentage, of the total rms voltage of all the harmonic components of the modulation audio frequency to the total rms voltage of the signal delivered by the receiver.

The rated audio frequency output power is the value stated by the manufacturer to be the maximum power available at the output, for which all the requirements of the present document are met.

<u>LIMIT</u>

IEC 62238 Sub-clause 9.1.3


The rated audio frequency output power shall be at least 0,2 W in the loudspeaker.

The harmonic distortion shall not exceed 10 %

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.1.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Report No : TRE1709011504 Page 41 of 70 Issued: 2017-10-16

Harmonic distortion:

RX1					
Signals Level (dBµV)	Modulated Frequency (kHz)	Test Frequency (MHz)	Measured (%)	Limit (%)	Result
		CH _L	2.60		
	0.3	CH _M	2.40		
		CH _H	2.60		
		CH∟	1.80		
60	0.5	CH _M	1.80	≤10	Pass
		CH _H	1.70		
	1.0	CH∟	1.20	-	
		CH _M	1.00		
		CH _H	1.10		
		CH _L	3.10		
	0.3	CH _M	3.20		
		CH _H	3.20		
		CH _L	2.80		
100	0.5	CH _M	2.70	≤10	Pass
		CH _H	2.80]	
		CH _L	3.70		
	1.0	CH _M	3.70		
		CH _H	3.60		

rated audio frequency output power:

RX1					
Test Channel	Measured (W)	Limit (W)	Result		
CH _L	2.02				
CH _M	2.03	≥0.2	Pass		
CH _H	2.02				

Report No : TRE1709011504 Page 42 of 70 Issued: 2017-10-16

4.3.2. Audio frequency response

The audio frequency response is the variation in the receiver's audio frequency output level as a function of the modulating frequency of a received radio frequency signal modulated with constant deviation.

LIMIT

IEC 62238 Sub-clause 9.2.3

The audio frequency response shall not deviate by more than +1 dB or -3 dB from a characteristic giving the output level as a function of the audio frequency, decreasing by 6 dB per octave and passing through the measured point at 1 kHz (figure 5).

Certified Intrinsically Safe equipment need not comply with the limits below 700 Hz.

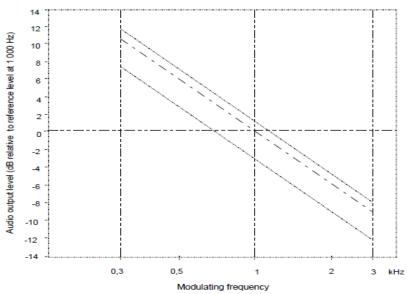
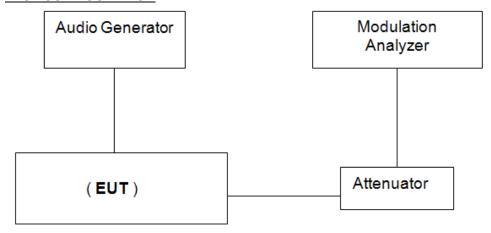



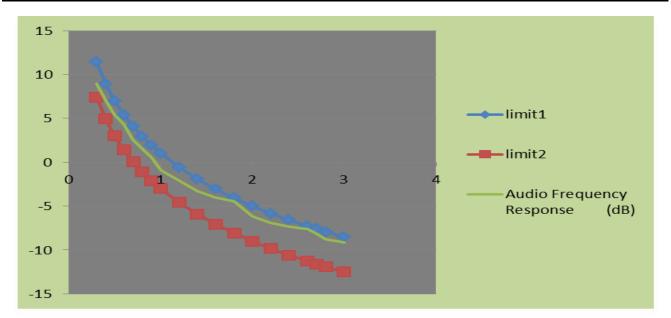
Figure 5: Audio frequency response

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.2.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:


Please reference to the section 2.4

Report No : TRE1709011504 Page 43 of 70 Issued: 2017-10-16

TEST RESULTS

 $oxed{oxed}$ Passed $oxed{oxed}$ Not Applicable

	RX1:CH _M						
Frequency (kHz)	Frequency Deviation (kHz)	1kHz Reference Deviation (kHz)	Audio Frequency Response (dB)				
0.3	0.37	1	8.98				
0.4	0.47	1	6.98				
0.5	0.56	1	5.39				
0.6	0.63	1	4.34				
0.7	0.78	1	2.54				
0.8	0.87	1	1.56				
0.9	0.98	1	0.49				
1	1.16	1	-0.94				
1.2	1.32	1	-2.10				
1.4	1.52	1	-3.30				
1.6	1.65	1	-3.99				
1.8	1.74	1	-4.46				
2	2.12	1	-6.19				
2.2	2.31	1	-6.92				
2.4	2.42	1	-7.34				
2.6	2.49	1	-7.60				
2.7	2.64	1	-8.09				
2.8	2.86	1	-8.79				
3	2.97	1	-9.11				

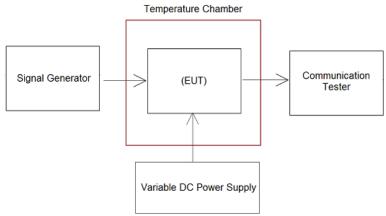
Report No : TRE1709011504 Page 44 of 70 Issued: 2017-10-16

4.3.3. Maximum Usable Sensitivity

The maximum usable sensitivity of the receiver is the minimum level of the signal (emf) at the nominal frequency of the receiver which, when applied to the receiver input with normal test modulation (clause 6.4), will produce:

- in all cases, an audio frequency output power of at least 50 % of the rated output power (clause 9.1); and
- a SINAD ratio of 20 dB, measured at the receiver output through a psophometric telephone filtering network such as described in ITU-T Recommendation O.41 [6].

LIMIT


IEC 62238 Sub-clause 9.3.3

The maximum usable sensitivity for either 25 kHz or 12,5 kHz channels shall not exceed +6 dB μ V (emf) under normal test conditions and +12 dB μ V (emf) under extreme test conditions.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.3.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Operation Mode	Temperature (°C)	Voltage (V)	Test Channel	Measured (dBuV)	Limit (dB)	Result
			CH _L	-7.00		
	T_N	V_N	CH _M	-7.30	≤+6.0	
			СНн	-7.50		
			CH _L	-7.20		
		V_{H}	CH _M	-7.20		
	_		CH _H	-7.30]	
	T_L		CH _L	-7.30		Pass
RX1		V_{L}	CH _M	-7.40		
			CH _H	-7.00	< .12.0	
			CH∟	CH _L -7.00 [≤]	≤+12.0	
		V_{H}	CH _M	-7.50]	
	_		CH _H	-7.30		
	T _H		CH∟	-7.30]	
		V_{L}	CH _M	-7.50		
			CH _H	-7.50	1	

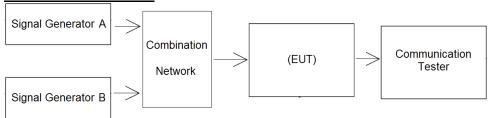
Report No : TRE1709011504 Page 46 of 70 Issued: 2017-10-16

4.3.4. Co-channel rejection

The co-channel rejection is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal, both signals being at the nominal frequency of the receiver.

<u>LIMIT</u>

IEC 62238 Sub-clause 9.4.3


The co-channel rejection ratio, at any frequency of the unwanted signal within the specified range, shall be between:

- -10 dB and 0 dB for 25 kHz channels
- -12 dB and 0 dB for 12,5 kHz channels

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.4.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

	RX1					
Test Channel	Measurement Offset (kHz)	SG B – SG A (dB)	Limit (dB)	Result		
	-3	-8.30				
CH∟	0	-9.70	-10~0	Pass		
	3	-9.80				
	-3	-8.20				
CH _M	0	-9.50	-10∼0	Pass		
	3	-9.30				
	-3	-8.70				
СНн	0	-9.40	-10~0	Pass		
	3	-9.30				

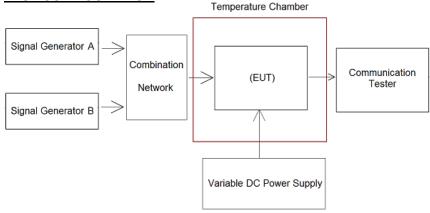
Report No : TRE1709011504 Page 47 of 70 Issued: 2017-10-16

4.3.5. Adjacent channel selectivity

The adjacent channel selectivity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal which differs in frequency from the wanted signal by the nominal channel spacing.

LIMIT

IEC 62238 Sub-clause 9.5.3


25 kHz channels: the adjacent channel selectivity shall be not less than 70 dB under normal test conditions and not less than 60 dB under extreme test conditions.

12,5 kHz channels: the adjacent channel selectivity shall be not less than 60 dB under normal test conditions and not less than 50 dB under extreme test conditions.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.5.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

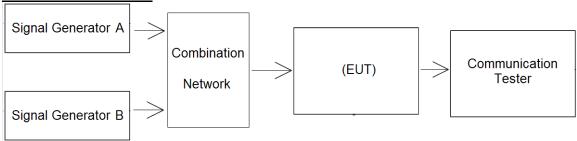
RX1						
Test C Temperature (°C)	Voltage (V)	Test Channel	Measurement Position	SG B – SG A (dB)	Limit (dB)	Result
		CH∟	Lower adjacent	78.80		
		On	Upper adjacent	79.00		
т	V_N	CH _M	Lower adjacent	78.40	≥70	Pass
T _N \	۷N	CITM	Upper adjacent	79.00	<i>>1</i> 0	F 455
		СНн	Lower adjacent	85.00		
		СПН	Upper adjacent	78.40		
		CH	Lower adjacent	78.40		
		CH∟	Upper adjacent	79.80		
	M	CII	Lower adjacent	80.20	>00	Daga
	V_{H}	CH _M	Upper adjacent	78.40	≥60	Pass
_		O.L.	Lower adjacent	80.00		
		CH _H	Upper adjacent	79.40		
T∟	V_L	CH _L	Lower adjacent	80.20	- ≥60	Pass
			Upper adjacent	78.80		
		CH _M	Lower adjacent	80.40		
			Upper adjacent	79.00		
		СНн	Lower adjacent	78.50		
			Upper adjacent	80.10		
		CLI	Lower adjacent	79.80		
		CH∟	Upper adjacent	79.20		
	.,	CII	Lower adjacent	79.40	>00	Daga
	V_{H}	CH _M	Upper adjacent	79.50	≥60	Pass
		CLI	Lower adjacent	79.20		
T		СH _н	Upper adjacent	79.10		
T _H		CLI	Lower adjacent	79.80		_
		CH∟	Upper adjacent	79.30		
	V	СП	Lower adjacent	79.90	>60	Doos
	V_{L}	CH _M	Upper adjacent	79.20	≥60	Pass
		CH	Lower adjacent	78.60		
		СНн	Upper adjacent	80.30		

Report No : TRE1709011504 Page 49 of 70 Issued: 2017-10-16

4.3.6. Spurious Response Rejection

The spurious response rejection is a measure of the capability of the receiver to discriminate between the wanted modulated signal at the nominal frequency and an unwanted signal at any other frequency at which a response is obtained.

LIMIT


IEC 62238 Sub-clause 9.6.3

At any frequency separated from the nominal frequency of the receiver by more than 25 kHz, the spurious response rejection ratio shall be not less than 70 dB.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.6.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

	RX1						
Test Channel	Spurious Frequency (MHz)	SG B – SG A (dB)	Limit (dB)	Result			
	203.425	81.5					
CH	567.475	81.5	≥70	Pass			
CH _L	524.675	80.8	270				
	160.850	160.850 81.2					
	199.600	81.2		Pass			
CH _M	556.000	81.7	≥70				
CH _M	513.200	80.3	270				
	157.025	82.1					
	204.400	82.4					
CH	570.400	80.9	≥70	Pass			
CH _H	527.600	81.0	210				
	161.825	82.2					

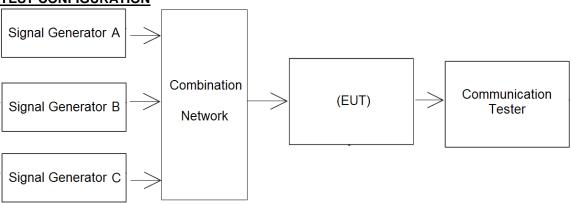
An increment sweep was made between 100 kHz - 2000 MHz with no other significant responses detected.

Report No : TRE1709011504 Page 51 of 70 Issued: 2017-10-16

4.3.7. Intermodulation response

The intermodulation response is a measure of the capability of a receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of two or more unwanted signals with a specific frequency relationship to the wanted signal frequency.

<u>LIMIT</u>


IEC 62238 Sub-clause 9.7.3

The intermodulation response ratio shall not be less than 68 dB.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.7.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

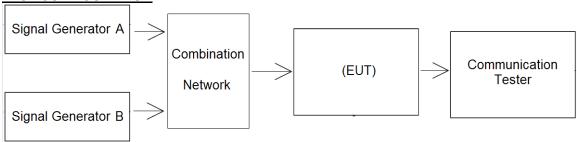
		RX1			
Test Channel	Measurement Offset (kHz)		SG B/C – SG A	Limit	Result
	SG B	SG C	(dB)	(dB)	rtoduk
CH	-50	-100	71.20	≥68	Pass
CH _L	50	100	71.00		
CH	-50	-100	71.00	≥68	Door
CH _M	50	100	70.90	<i></i>	Pass
CII	-50	-100	71.30	≥68	Pass
CH _H	50	100	71.40	<i>></i> 00	rass

Report No : TRE1709011504 Page 52 of 70 Issued: 2017-10-16

4.3.8. Blocking or Desensitization

Blocking is a change (generally a reduction) in the wanted output power of the receiver or a reduction of the SINAD ratio due to an unwanted signal on another frequency.

<u>LIMIT</u>


IEC 62238 Sub-clause 9.8.3

The blocking level for any frequency within the specified ranges, shall be not less than 90 dBµV (emf), except at frequencies on which spurious responses are found

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.8.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

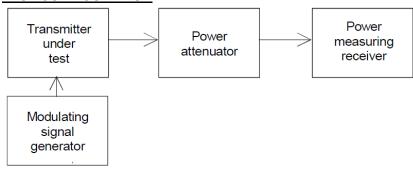
		RX1		
Test Channel	Measurement Offset (MHz)	SG B (dBµV)	Limit (dBµV)	Result
	-10	96.80		
	-5	95.00		
	-2	95.30		
CH∟	-1	92.70	≥90	Pass
CHL	1	90.90	<i>≥</i> 90	Pass
	2	95.20		
	5	96.90		
	10	96.80		
	-10	96.30		Pass
	-5	97.40		
	-2	96.00	≥90	
CH	-1	93.40		
CH _M	1	95.80		
	2	95.40		
	5	92.30		
	10	96.70		
	-10	95.30		
	-5	93.50		
	-2	93.20		
CH	-1	92.10	>00	Door
CH _H	1	94.20	≥90	Pass
	2	95.00		
	5	95.30		
	10	95.20		

Report No : TRE1709011504 Page 54 of 70 Issued: 2017-10-16

4.3.9. Conducted spurious emissions

Conducted spurious emissions from the receiver are components at any frequency, present at the receiver input port.

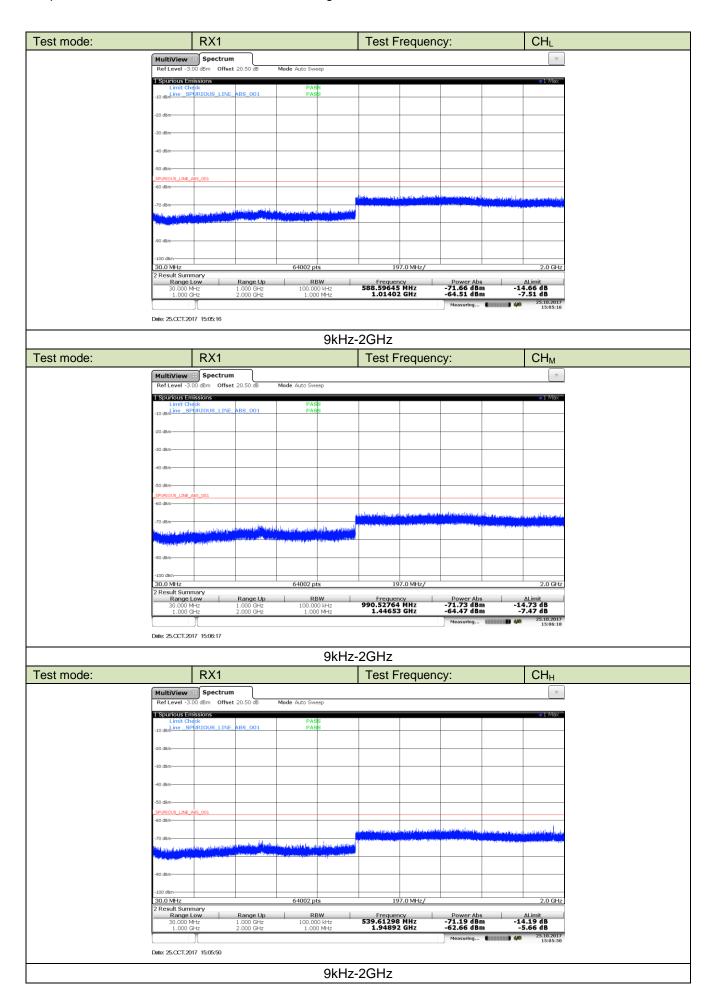
<u>LIMIT</u>


IEC 62238 Sub-clause 9.9.3

The power of any spurious radiation shall not exceed 2 nw(-57dBm) at any frequency in the range between 9 kHz and 2 GHz.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.9.2 for the measurement method.


TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

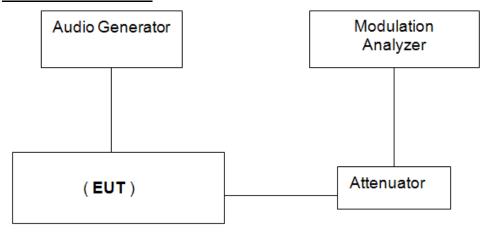
Issued: 2017-10-16

Report No : TRE1709011504 Page 56 of 70 Issued: 2017-10-16

4.3.10. Receiver noise and hum level

The receiver noise and hum level is defined as the ratio, in dB, of the audio frequency power of the noise and hum resulting from spurious effects of the power supply system or from other causes, to the audio frequency power produced by a high frequency signal of average level, modulated by the normal test modulation and applied to the receiver input.

LIMIT


IEC 62238 Sub-clause 9.10.3

The receiver noise and hum level shall not exceed -40 dB, relative to the modulated signal.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.10.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Operation Mode	Test Channel	Measured (dB)	Limit (dB)	Result	
	CH∟	-43.25			
RX1	CH _M	-43.93	≤-40	Pass	
	СН _н	-43.60			

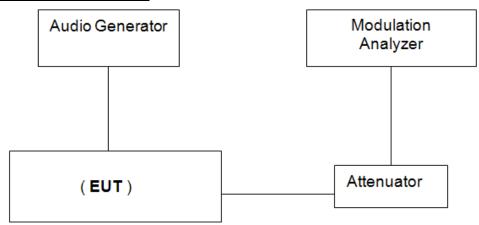
Report No : TRE1709011504 Page 57 of 70 Issued: 2017-10-16

4.3.11. Squelch operation

The purpose of the squelch facility is to mute the receiver audio output signal when the level of the signal at the receiver input is less than a given value.

LIMIT

IEC 62238 Sub-clause 9.11.3


Under the conditions specified in a) clause 9.11.2, the audio frequency output power shall not exceed -40 dB relative to the rated output power.

Under the conditions specified in b) clause 9.11.2, the input level shall not exceed +6 dB μ V (emf). Under the conditions specified in c) clause 9.11.2, the input signal shall not exceed +6 dB μ V (emf) when the control is set at maximum.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.11.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Under the conditions specified in a):

RX1						
Test Channel	Measured (dB)	Limit (dB)	Result			
CH _L	-45.26					
CH _M	-45.05	≤-40	Pass			
CH _H	-44.33					

Under the conditions specified in b):

Under the conditions specified	in b):						
	RX1						
Test Channel	Measured (dBµV)	Limit (dBµV)	Result				
CH _L	2.18		Pass				
CH _M	2.20	≤+6.0					
CH _H	2.15						
CH _L	22.92						
CH _M	23.81	≥20	Pass				
CH _H	24.04						

Under the conditions specified in c):

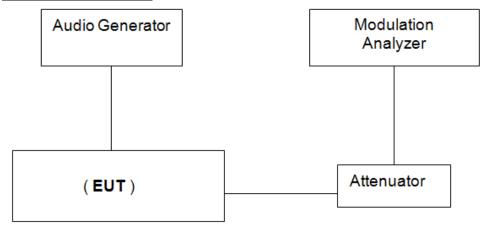
RX1						
Test Channel	Result					
CH _L	0.85					
CH _M	0.84	≤+6.0	Pass			
CH _H	0.68					

Report No : TRE1709011504 Page 59 of 70 Issued: 2017-10-16

4.3.12. Squelch hysteresis

Squelch hysteresis is the difference in dB between the receiver input signal levels at which the squelch opens and closes.

<u>LIMIT</u>


IEC 62238 Sub-clause 9.12.3

The squelch hysteresis shall be between 3 dB and 6 dB.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.12.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

RX1					
Test Channel	Measured (dB)	Limit (dB)	Result		
CH _L	4.31				
CH _M	4.50	3∼6	Pass		
CH _H	4.41				

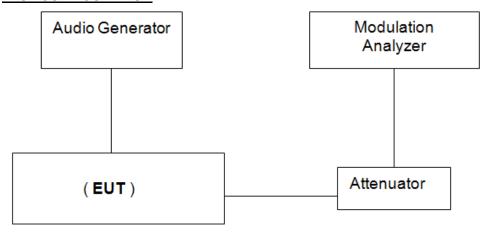
Report No : TRE1709011504 Page 60 of 70 Issued: 2017-10-16

4.3.13. Multiple watch characteristic

The scanning period is the time between the start of two successive samples of the priority channel in the absence of a signal on that channel.

<u>LIMIT</u>

IEC 62238 Sub-clause 9.13.3


The scanning period shall not exceed 2s.

The dwell time on the priority channel shall not exceed 150ms.

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 9.13.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

	scanning period (s)		
Operation Mode	CH _M	Limit (s)	Result
TX1	1	≤2	Pass

	Dwell Time(ms)			
Operation Mode	CH _M	Limit (ms)	Result	
TX1	100	≤150	Pass	

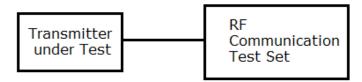
Report No : TRE1709011504 Page 61 of 70 Issued: 2017-10-16

4.4. Receiver for DSC Requirement

4.4.1. Receiver for DSC decoder

The maximum usable sensitivity of the receiver is the minimum level of the signal (e.m.f.) at the nominal frequency of the receiver which when applied to the receiver input with a test modulation will produce a bit error ratio of 10-2

LIMIT


IEC 62238 Sub-clause 10.1.3

The bit error ratio shall be equal to or less than 10-2

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 10.1.2 for the measurement method.

TEST CONFIGURATION

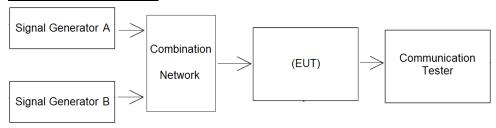
TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Operation	Test Condition			Measured	Limit	
Operation Mode	Temperature (°C)	Voltage (V)	Test Channel	(error ratio)	(error ratio)	Result
	т	V		0.0062	≤10 ⁻²	Pass
	T _N	V_N		0.0055	≪10	F 455
		V _H	CH _{M1}	0.0064	≤10 ⁻²	Pass
	т.			0.0067	~10	
RX2	T∟	V _L		0.0058	≤10 ⁻²	Pass
IXXZ				0.0052	≪10	
		V		0.0051	≤10 ⁻²	Pass
		V_{H}		0.0059	≪10	Pass
T _H	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0.0057	≤10 ⁻²	Door	
		V_L		0.0058	≪10	Pass

4.4.2. Co-channel rejection


The co-channel rejection is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal, both signals being at the nominal frequency of the receiver.

LIMIT

IEC 62238 Sub-clause 10.2.3

The bit error ratio shall be equal to or less than 10-2

TEST CONFIGURATION

TEST PROCEDURE

- 1) Configure the EUT as shown in figure .
- 2) Adjust the audio input for 20% of rated system deviation at 1kHz using this level as a reference.
- 3) Vary the Audio frequency from 300Hz to 3 kHz and record the frequency deviation.
- 4) Audio Frequency Response =20log10 (VFREQ/VREF).

TEST MODE:

Please refer to IEC 62238 Sub-clause 10.2.2 for the measurement method.

TEST RESULTS

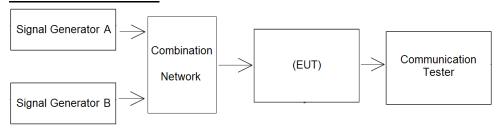
Operation Mode	Test Channel	Measurement Offset(kHz)	Measured (error ratio)	Limit(error ratio)	Result
		-3	0.0034		
RX2	CH _{M1}	0	0.0025	≤10 ⁻²	Pass
		3	0.0017		

Report No : TRE1709011504 Page 63 of 70 Issued: 2017-10-16

4.4.3. Adjacent channel selectivity

The adjacent channel selectivity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal which differs in frequency from the wanted signal by 25 kHz.

<u>LIMIT</u>


IEC 62238 Sub-clause 10.3.3

The bit error ratio shall be equal to or less than 10-2

TEST PROCEDURE

Please refer to IEC61138 Sub-clause 10.3.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

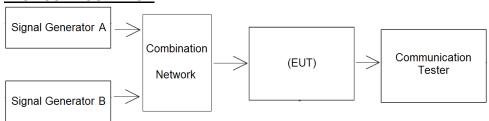
Please reference to the section 2.4

TEST RESULTS

0	Test Condition		T4		N4 1	Limit													
Operation Mode	Temperature (°C)	Voltage (V)	Test Channel	Measurement Position	Measured (error ratio)	(error ratio)	Result												
	T_N	V_N		Lower adjacent	0.0052	≤10 ⁻²	Pass												
	ı N	۷N		Upper adjacent	0.0064	//	Fa88												
	+												V	V_{H}		Lower adjacent	0.0039	≤10 ⁻²	Pass
		٧H	CH _{M1}	Upper adjacent	0.0084	10	rass												
	16	T _L V _L		Lower adjacent	0.0035	≤10 ⁻²	Pass												
RX2				Upper adjacent	0.0062														
		V _H		Lower adjacent	0.0077		Pass												
				Upper adjacent	0.0065		Pass												
	T _H			Lower adjacent	0.0087		_												
		V_L		Upper adjacent	0.0075	≤10 ⁻²	Pass												

Report No : TRE1709011504 Page 64 of 70 Issued: 2017-10-16

4.4.4. Spurious response and blocking immunity


The spurious response and blocking immunity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal with frequencies outside the pass band of the receiver.

LIMIT

IEC 62238 Sub-clause 10.4.3

The bit error ratio shall be equal to or less than 10-2

TEST CONFIGURATION

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 10.4.2 for the measurement method

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Please refer to the below test data:

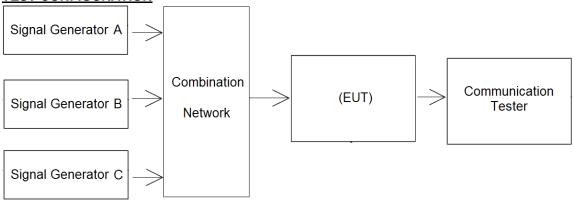
Spurious response test result:

Operation Mode	Test Channel	Spurious Frequency (MHz)	Measured (error ratio)	Limit (error ratio)	Result
		156.298	0.0068		
RX2	DV0	156.753	0.0074	≤10 ⁻²	Door
RX2 CH _{M1}	138.625	0.0056	≥ 10	Pass	
		174.425	0.0065		

Blocking immunity test result:

Operation Mode	Test Channel	Measurement Offset (MHz)	Measured (error ratio)	Limit (error ratio)	Result	
	CH _{M1}	-10	0.0077		Dave	
		-5	0.0085	≤10 ⁻²		
		-2	0.0079			
DVa		-1	0.0078			
RX2		1	0.0081	≥10	Pass	
		2	0.0067]		
		5	0.0075			
			10	0.0074		

4.4.5. Intermodulation response


The intermodulation response is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of two or more unwanted signals with a specific frequency relationship to the wanted signal frequency.

LIMIT

IEC 62238 Sub-clause 10.5.3

The bit error ratio shall be equal to or less than 10-2

TEST CONFIGURATION

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 10.5.2 for the measurement method.

TEST MODE:

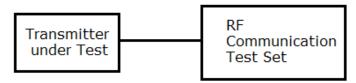
Please reference to the section 2.4

TEST RESULTS

	Operation Test		Measurement Offset(kHz)		Measured	Limit	Result
	Mode	Channel	SG B	SG C	(error ratio)	(error ratio)	rtoodit
	RX2 CH _{M1}	-50	-100	0.0088	≤10 ⁻²	Page	
		CH _{M1}	50	100	0.0074	<u></u> ≤10 ⁻	Pass

Report No : TRE1709011504 Page 66 of 70 Issued: 2017-10-16

4.4.6. Dynamic range


The dynamic range of the equipment is the range from the minimum to the maximum level of a radio frequency input signal at which the bit error ratio in the output of the decoder does not exceed a specified value.

Limit

IEC 62238 Sub-clause 10.6.3

The bit error ratio shall be equal to or less than 10-2

TEST CONFIGURATION

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 10.6.2 for the measurement method

TEST MODE:

Please reference to the section 2.4

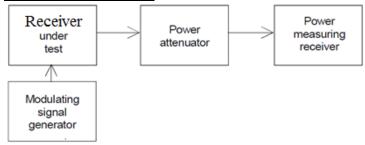
TEST RESULTS

Operation Mode	Test Channel	Measured(error ratio)	Limit(error ratio)	Result
RX2	CH _{M1}	0.0072	≤10 ⁻²	Pass

Report No: TRE1709011504 Page 67 of 70 Issued: 2017-10-16

4.4.7. Spurious emissions

Spurious emissions from the receiver are components at any frequency, present at the receiver input port.

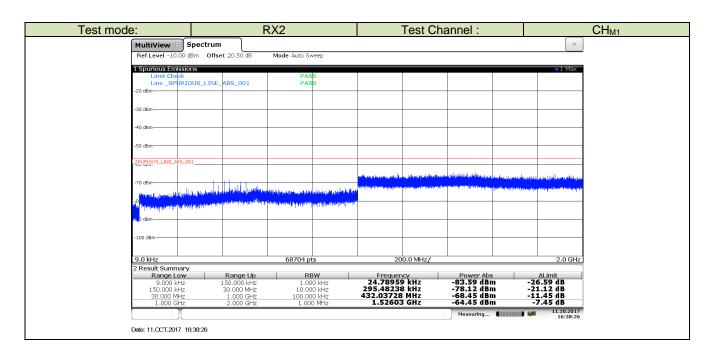

The level of spurious emissions shall be measured as the power level at the antenna.

Limit

IEC 62238 Sub-clause 10.7.3

The power of any spurious emission shall not exceed 2 nW at any frequency in the range between 9 kHz and 2 GHz.

TEST CONFIGURATION


TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 10.7.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Report No : TRE1709011504 Page 68 of 70 Issued: 2017-10-16

4.4.8. Verification of correct decoding of various types of DSC calls

DSC call sequences are calls that comply with ITU-R Recommendation M.493-14.

Requirement

The requirements of ITU-R Recommendation M.493-14 regarding message composition and content shall be met.

The decoded call sequences at the output of the receiver shall be examined for correct technical format, including error-check characters.

When receiver measurements are made by use of a printer or a computer, a check shall be made to ensure accordance between printer output and display indication.

It shall be verified that the equipment is capable of switching to a channel identified in the DSC call.

TEST RESULTS

t Applicable

Call Sent	Received (Y or N)	Telecommand 1	Telecommand 2
Distress	Υ	100	126
All Ships Distress Ack	Y	110	126
All Ships Distress Relay	Υ	112	126
All Ships Urgency	Υ	110	126
All Ships Safety	Υ	100	126
Individual Urgency	Υ	100	126
Individual Safety	Y	100	126
Individual Routine	Υ	100	126
Group Routine	V	100	126

Function Check	Result		
Confirm that the decoded call sequences at the output of the receiver have been examined for correct technical format, including error check characteristics.			
Errors found:			
Confirm that the checks have been made to ensure accordance between printer output and display			
Errors found:	No		
It has been verified that the equipment is capable of switching to a channel identified in the DSC call:	Yes		

Report No : TRE1709011504 Page 69 of 70 Issued: 2017-10-16

4.4.9. Reaction to VTS and AIS channel management DSC transmissions

VTS and AIS channel management DSC transmissions are any DSC transmissions that are in accordance with Recommendation ITU-R M.825 or M.1371.

Requirement

The equipment shall not sound an alarm, display a message (an accurate, imformative display is permissible but not required), transmit a response or suggest a transmitted response, lock up, or require operator intervention.

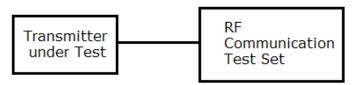
TEST RESULTS

⊠ Passed	■ Not Applicable	

Function Check	Received (Y or N)
Not sound an alarm	Υ
Not display a message(An accurate informative display is permissible but not required)	Υ
Not transmit a response	Υ
Not suggest a transmitted response	Υ
Not lock up	Υ
Not require operator intervention	Y

Report No : TRE1709011504 Page 70 of 70 Issued: 2017-10-16

4.4.10. Simultaneous reception


Simultaneous reception is the ability of the unit to correctly receive DSC traffic and radiotelephony traffic at the same time.

Limit

IEC 62238 Sub-clause 10.10.3

The bit error ratio shall be equal to or less than 10-2

TEST CONFIGURATION

TEST PROCEDURE

Please refer to IEC 62238 Sub-clause 10.10.2 for the measurement method.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Please refer to the below test data:

TEST RESULTS

Please refer to the below test data:

Operation Mode	Test Channel	Measured(SINAD ratio)	Limit (SINAD ratio)	Result
RX1	CH _M	38.5	≥20	Pass

Operation Mode	Test Channel	Measured(error ratio)	Limit(error ratio)	Result
RX2	CH _{M1}	0.0062	≤10 ⁻²	Pass

5. External and Internal Photos of the EUT

Reference to the test report No.: TRE1709011501.

-----End of Report-----