

## **RF Exposure Evaluation**

According to KDB 447498 and part 2.1093, Unless specifically required by the *published RF exposure KDB procedures*, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding *SAR Test Exclusion Threshold* condition(s), listed below, is (are) satisfied.

For 100 MHz to 6 GHz and test separation distances  $\leq$  50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]  $\cdot [\sqrt{f_{(GHz)}}] \leq$  3.0 for 1-g SAR, and  $\leq$  7.5 for 10-g extremity SAR, where

 $f_{(GHz)}$  is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

## Here,

## **ForZigbeemode**

| N | flax Power(mW) | Frequency(MHz) | Min. distance(mm) | Calc. thresholds | limit |
|---|----------------|----------------|-------------------|------------------|-------|
|   | 2.15           | 2480           | 5                 | 0.667            | 3.0   |

according to ANSI C63.10

where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m, ---  $10^{((dBuV/m)/20)}/10^6$ 

d = measurement distance in meters (m) ---3m

Field strength =100.24dBuV/m @3m

Ant gain =1.69dBi, so gt =1.48

So pt =  $(E \times d)^2/30 \times gt = {[10^{100.24/20)}/10^6 \times 3]^2/30 \times 1.48} \times 1000 \text{ mW} = 2.15 \text{mW}$ 

So a SAR test is not required.