

Global United Technology Services Co., Ltd.

Report No.: GTS202009000154-01

TEST REPORT

SCR Engineers Ltd. **FCC Applicant:**

18 Hamelacha street, Poleg Industrial Zone, P.O.B 13564. Address:

Netanya 42138, Israel

SCR engineers LTD IC Applicant:

18 Hamelacha Netanya 4250553 Israel Address:

Manufacturer/Factory: SCR Engineers Ltd.

18 Hamelacha street, Poleg Industrial Zone, P.O.B 13564. Address of

Manufacturer/Factory: Netanya 42138, Israel

Equipment Under Test (EUT)

eSense Flex V2 TAG Product Name:

Model No.: AMUT05

Trade Mark: **SCR**

AMUT05 FCC ID:

26436-AMUT05 IC:

FCC CFR Title 47 Part 15 Subpart C Section 15.249 **Applicable standards:**

> RSS-Gen Issue 5 **RSS-210 Issue 10**

Date of sample receipt: September 15, 2020

Date of Test: September 16, 2020-October 12, 2020

October 13, 2020 Date of report issued:

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 29

2 Version

Version No.	Date	Description
00	October 13, 2020	Original

Prepared By:	Tiger. Cha	Date:	October 13, 2020
	Project Engineer		
Check By:	Reviewer	Date:	October 13, 2020

3 Contents

		Page
1	COVER PAGE	1
2	2 VERSION	2
_		
3	3 CONTENTS	3
4	1 TEST SUMMARY	4
	4.1 MEASUREMENT UNCERTAINTY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
	5.7 TEST LOCATION	
	5.8 ADDITIONAL INSTRUCTIONS	
6	TEST INSTRUMENTS LIST	9
7	7 TEST RESULTS AND MEASUREMENT DATA	11
	7.1 ANTENNA REQUIREMENT	11
	7.2 RADIATED EMISSION METHOD	12
	7.2.1 Field Strength of The Fundamental Signal	14
	7.2.2 Spurious emissions	
	7.2.3 Bandedge emissions	
	7.3 20DB OCCUPY BANDWIDTH	27
8	TEST SETUP PHOTO	29
9	EUT CONSTRUCTIONAL DETAILS	29
		2 3

4 Test Summary

Test Item	Section	Result
Antenna requirement	15.203 RSS-Gen Section 6.8	Pass
AC Power Line Conducted Emission	15.207	N/A
AC Fower Line Conducted Emission	RSS-Gen Section 8.8	IN/A
Field strength of the fundamental signal	15.249 (a)	Pass
Field strength of the fundamental signal	RSS-210 B10(a)	Pass
Sourious amissions	15.249 (a) (d)/15.209	Pass
Spurious emissions	RSS-Gen Clause 8.9&8.10	Pass
Rond adap	15.249 (d)/15.205	Pass
Band edge	RSS-Gen Clause 8.9&8.10	Pass
20dB Occupied Bandwidth and 99%	15.215 (c)	Pass
Occupied Bandwidth	RSS-Gen 6.7	rass

Remarks:

- 1. Test according to ANSI C63.10: 2013 and ANSI C63.4: 2014..
- 2. Pass: The EUT complies with the essential requirements in the standard.
- 3. N/A:Not applicable

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30MHz-200MHz	3.8039dB	(1)	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)	
Radiated Emission	1GHz-18GHz	4.29dB	(1)	
Radiated Emission	18GHz-40GHz	3.30dB	(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)	
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.				

5 General Information

5.1 General Description of EUT

••• ••••••••••••••••••••••••••••••••••	
Product Name:	eSense Flex V2 TAG
Model No.:	AMUT05
S/N:	N/A
Hardware Version:	70.02.0
Software Version:	EAR_TAG_G2_RF_CERTIFICATION_22-JUL-2020
Test sample(s) ID:	GTS202009000154-1
Sample(s) Status	Engineered sample
Operation Frequency:	2405MHz~2480MHz
Channel numbers:	16
Channel separation:	5MHz
Modulation technology:	QPSK
Antenna Type:	PCB OMNI-Directional
Antenna gain:	Max 1.69dBi
Power supply:	Battery: DC 3V, 1000mAh

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
11	2405MHz	15	2425MHz	19	2445MHz	23	2465MHz
12	2410MHz	16	2430MHz	20	2450MHz	24	2470MHz
13	2415MHz	17	2435MHz	21	2455MHz	25	2475MHz
14	2420MHz	18	2440MHz	22	2460MHz	26	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2445MHz
The Highest channel	2480MHz

5.2 Test mode

	Transmitting mode	Keep the EUT in continuously transmitting mode.	
--	-------------------	---	--

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

-			
Axis	X	Y	Z
Field Strength(dBuV/m)	98.31	100.24	99.23

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software Special test software prebuilt-in by manufacturer	
Power level setup	Default

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021	
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021	
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021	
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021	
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021	
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021	

RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021

Gene	General used equipment:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date	Cal.Due date					
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021					
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021					

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

RSS-Gen 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

EUT Antenna:

The antenna is integral antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details.

7.2 Radiated Emission Method

n Method									
FCC Part15 C	FCC Part15 C Section 15.209								
RSS-210 B10(a	a)& RSS-210 l	B10(b)& RSS-	Gen Claus	e 8.9&8.10					
ANSI C63.10:2	013 and RSS-	-Gen							
Frequency	Detector	RBW	VBW	Remark					
9kHz- 150kHz	Quasi-peak	200Hz	300Hz	Quasi-peak Value					
150kHz- 30MHz	Quasi-peak	9kHz	10kHz	Quasi-peak Value					
30MHz- 1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value					
Above 1GHz	Peak	1MHz	3MHz	Peak Value					
Above 1G112	Peak	1MHz	10Hz	Average Value					
Freque	ency	Limit (dBuV	/m @3m)	Remark					
2400144-2	2400MHz-2483.5MHz 94.00 Average Value 114.00 Peak Value								
2400WII 12-2									
		Limit (u	V/m)	Remark					
0.009MHz-0	0.490MHz		Quasi-peak Value						
				Quasi-peak Value					
				Quasi-peak Value					
				Quasi-peak Value					
				Quasi-peak Value					
				Quasi-peak Value					
960MHz	:-1GHz			Quasi-peak Value					
Above	1GHz			Average Value Peak Value					
Emissions radio	atad autaida a								
harmonics, sha fundamental or	all be attenuate to the genera	ed by at least I radiated emi	50 dB belov	w the level of the					
For radiated e	emissions fro	m 9kHz to 30	OMHz						
Turn Table	Test Antenna Turn Table								
	FCC Part15 C RSS-210 B10(a ANSI C63.10:2 BKHz to 25GHz Measurement I Frequency 9kHz- 150kHz 150kHz- 30MHz- 30MHz- 1GHz Above 1GHz Frequency 0.009MHz-0 0.490MHz-1 1.705MHz-1 30MHz-2 216MHz-2 216MHz-2 960MHz Above Emissions radinal or whichever is the second or which which which which we will also second or which which which which we will also second or which which which	FCC Part15 C Section 15.20 RSS-210 B10(a)& RSS-210 II ANSI C63.10:2013 and RSS- 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9kHz- Quasi-peak 150kHz Quasi-peak 30MHz- Quasi-peak 30MHz- Quasi-peak 1GHz Above 1GHz Peak Peak Frequency 2400MHz-2483.5MHz Frequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30.0MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside of harmonics, shall be attenuate fundamental or to the general whichever is the lesser attention. For radiated emissions fro	FCC Part15 C Section 15.209 RSS-210 B10(a)& RSS-210 B10(b)& RSS- ANSI C63.10:2013 and RSS-Gen SkHz to 25GHz	FCC Part15 C Section 15.209					

Report No.: GTS202009000154-01 Test Antenna FUT Turn Table. < 80cm > Turn Table Receiver Preamplifier. For radiated emissions above 1GHz < 3m > Test Antenna < 1m ... 4m > EUT. Turn Table <150cm Preamplifier-Receiver-1. The EUT was placed on the top of a rotating table (0.8m for below Test Procedure: 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Refer to section 5.2 for details Test mode: Test environment: 52% Press.: 1012mbar Temp.: 25 °C Humid.: Test results: **Pass**

Measurement data:

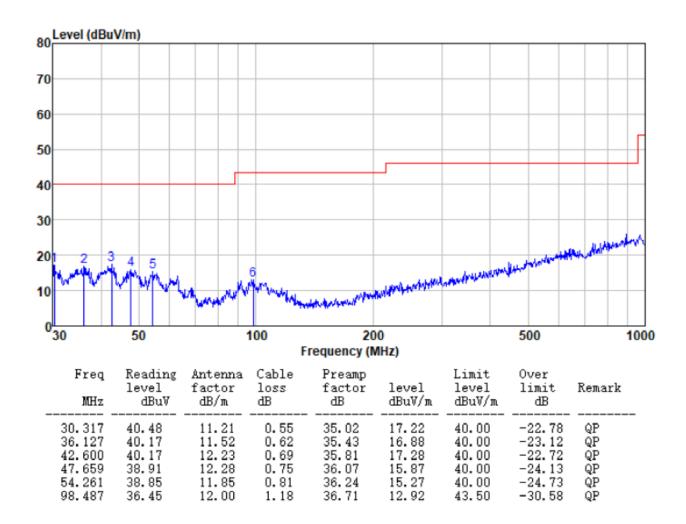
7.2.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2405.00	88.23	27.43	5.40	30.26	90.80	114.00	-23.20	Vertical
2405.00	97.23	27.43	5.40	30.26	99.80	114.00	-14.20	Horizontal
2445.00	87.37	27.53	5.43	30.14	90.19	114.00	-23.81	Vertical
2445.00	96.86	27.53	5.43	30.14	99.68	114.00	-14.32	Horizontal
2480.00	86.14	27.64	5.47	30.09	89.16	114.00	-24.84	Vertical
2480.00	97.22	27.64	5.47	30.09	100.24	114.00	-13.76	Horizontal

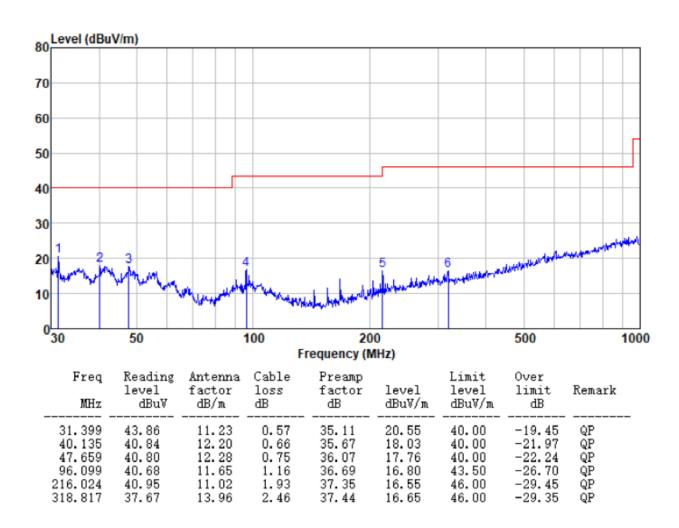
Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2405.00	79.64	27.43	5.40	30.26	82.21	94.00	-11.79	Vertical
2405.00	88.05	27.43	5.40	30.26	90.62	94.00	-3.38	Horizontal
2445.00	77.83	27.53	5.43	30.14	80.65	94.00	-13.35	Vertical
2445.00	87.61	27.53	5.43	30.14	90.43	94.00	-3.57	Horizontal
2480.00	77.01	27.64	5.47	30.09	80.03	94.00	-13.97	Vertical
2480.00	87.08	27.64	5.47	30.09	90.10	94.00	-3.90	Horizontal


7.2.2 Spurious emissions

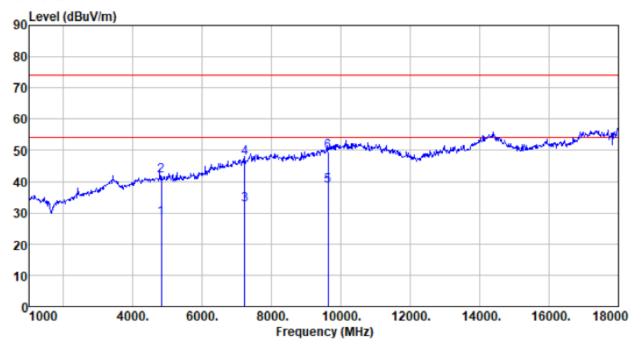
■ Below 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

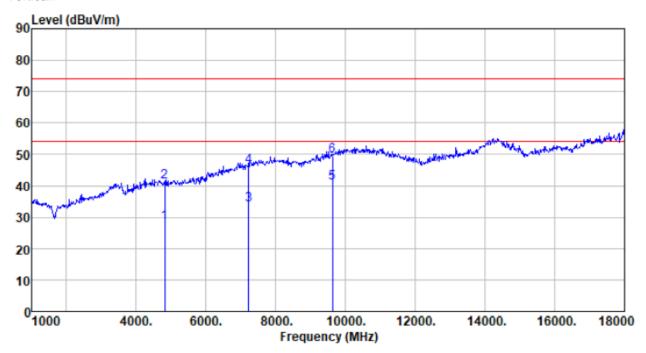

■ Below 1GHz

Horizontal:

Vertical:

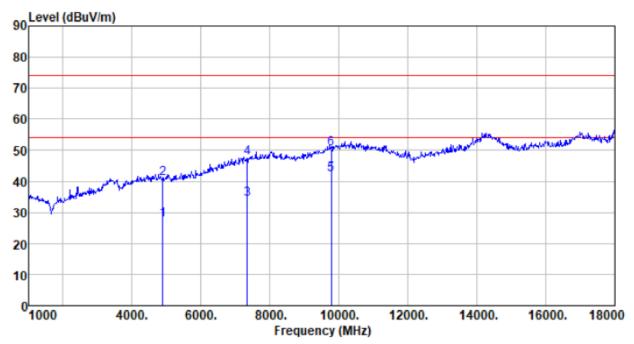


■ Above 1GHz


Horizontal:

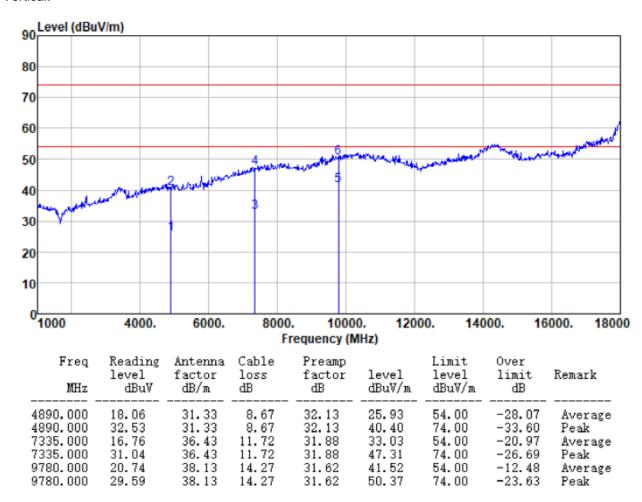
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
4810.000	20.61	31. 20	8.60	32.09	28.32	54.00	-25.68	Average
4810.000	34.03	31. 20	8.60	32.09	41.74	74.00	-32.26	Peak
7215.000	16.80	36. 20	11.66	31.99	32.67	54.00	-21.33	Average
7215.000	31.48	36. 20	11.66	31.99	47.35	74.00	-26.65	Peak
9620.000	17.99	37. 93	14.14	31.60	38.46	54.00	-15.54	Average
9620.000	28.89	37. 93	14.14	31.60	49.36	74.00	-24.64	Peak

Vertical:

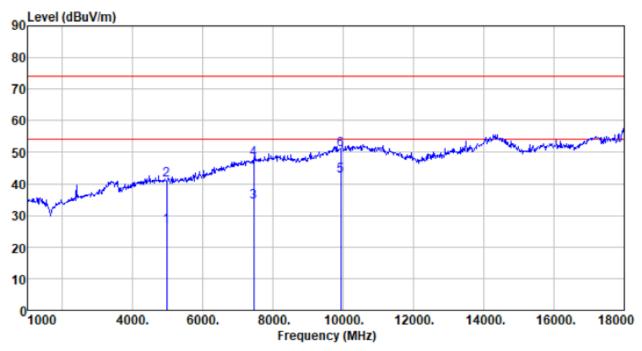


	Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
4810 7215 7215 9620	.000 .000 .000 .000 .000	20.68 33.52 18.04 30.19 20.23 29.16	31. 20 31. 20 36. 20 36. 20 37. 93 37. 93	8.60 8.60 11.66 11.66 14.14 14.14	32.09 32.09 31.99 31.99 31.60 31.60	28.39 41.23 33.91 46.06 40.70 49.63	54.00 74.00 54.00 74.00 54.00 74.00	-25.61 -32.77 -20.09 -27.94 -13.30 -24.37	Average Peak Average Peak Average Peak

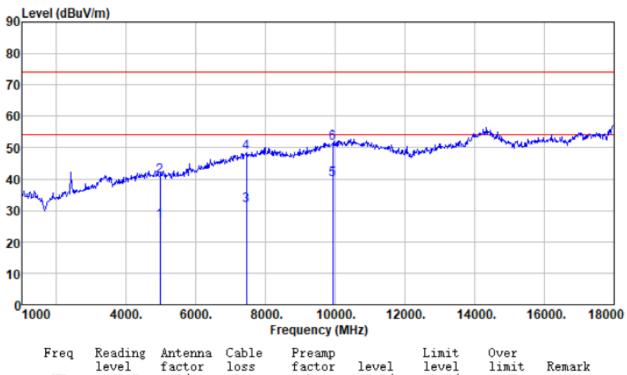
Test channel: Middle


Horizontal:

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
4890.000	19.62	31.33	8. 67	32.13	27. 49	54.00	-26.51	Average
4890.000	33.14	31.33	8. 67	32.13	41. 01	74.00	-32.99	Peak
7335.000	18.04	36.43	11. 72	31.88	34. 31	54.00	-19.69	Average
7335.000	31.32	36.43	11. 72	31.88	47. 59	74.00	-26.41	Peak
9780.000	21.26	38.13	14.27	31.62	42.04	54.00	-11.96	Avera
9780.000	29.76	38.13	14.27	31.62	50.54	74.00	-23.46	Peak


Vertical:

Test channel: Highest


Horizontal:

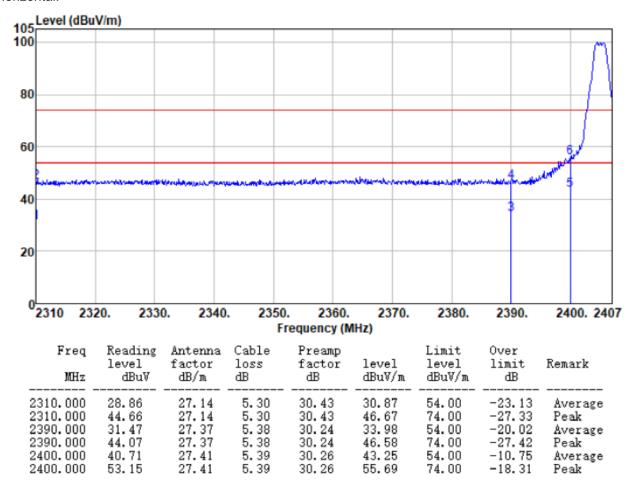
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
4960.000 4960.000	18.64 33.15	31.44 31.44	8.73 8.73	32.16 32.16	26.65 41.16	54.00 74.00	-27.35 -32.84	Average Peak
7440.000	17.45	36.66	11.79	31.78	34.12	54.00	-19.88	Average
7440.000 9920.000	31.15 21.76	36.66 38.30	11.79 14.38	31.78 31.88	47.82 42.56	74.00 54.00	-26.18 -11.44	Peak Average

Vertical:

Freq	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
4960.000	18.55	31.44	8.73	32.16	26.56	54.00	-27.44	Average
4960.000	32.86	31.44	8.73	32.16	40.87	74.00	-33.13	Peak
7440.000	14.77	36.66	11.79	31.78	31.44	54.00	-22.56	Average
7440.000	31.90	36.66	11.79	31.78	48.57	74.00	-25.43	Peak
9920.000	18.97	38.30	14.38	31.88	39.77	54.00	-14.23	Average
9920.000	30.82	38.30	14.38	31.88	51.62	74.00	-22.38	Peak

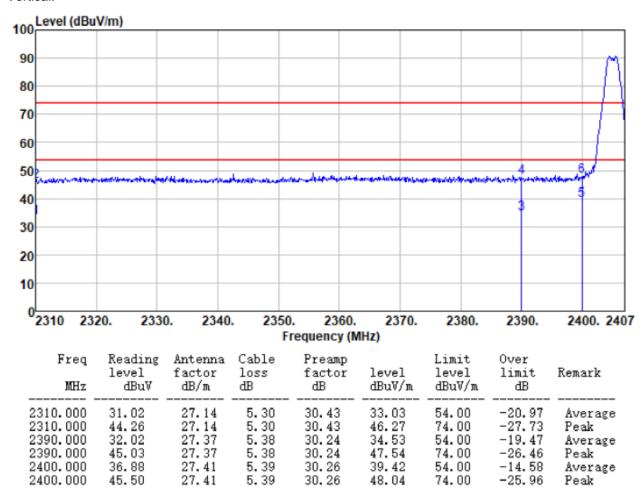
Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

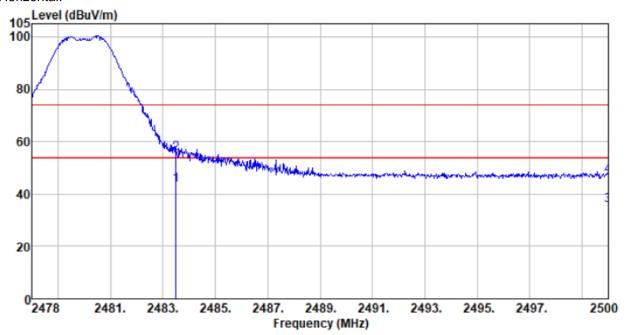


7.2.3 Bandedge emissions

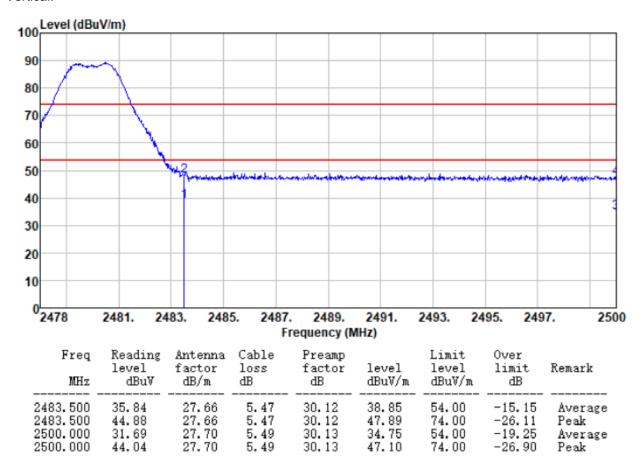
All of the restriction bands were tested, and only the data of worst case was exhibited.


Test channel:	Lowest channel
---------------	----------------

Horizontal:

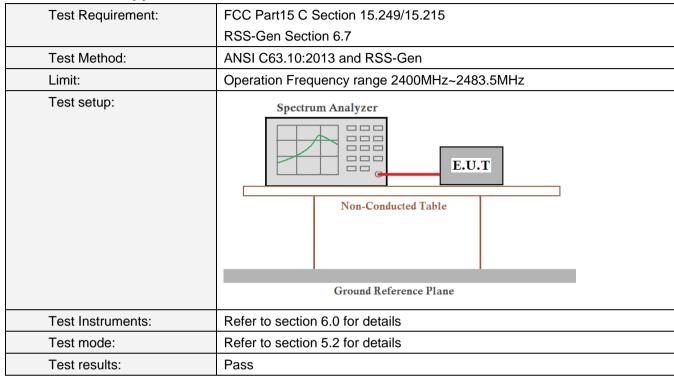

Vertical:

Test channel: Highest channel


Horizontal:

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
2483.500	40.48	27.66	5.47	30.12	43.49	54.00	-10.51	Average
2483.500	52.43	27.66	5.47	30.12	55.44	74.00	-18.56	Peak
2500.000	32.49	27.70	5.49	30.13	35.55	54.00	-18.45	Average
2500.000	43.64	27.70	5.49	30.13	46.70	74.00	-27.30	Peak

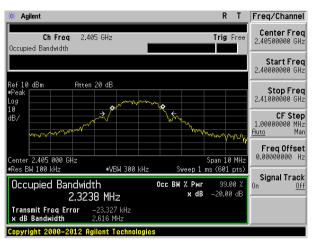
Vertical:



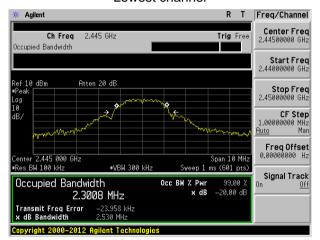
Remark:

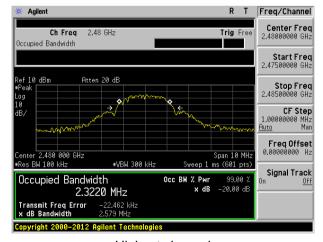
Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.3 20dB Occupy Bandwidth


Measurement Data

Test channel	20dB bandwidth(MHz)	Result
Lowest	2.616	Pass
Middle	2.530	Pass
Highest	2.579	Pass


Test channel	99% bandwidth(MHz)	Result
Lowest	2.3238	
Middle	2.3008	Pass
Highest	2.3220	


Test plot as follows:

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----