

Excellence in Compliance Testing

Certification Test Report

**FCC ID: AMH101001
IC: 10124A-101001**

**FCC Rule Part: 15.247
IC Radio Standards Specification: RSS-210**

ACS Report Number: 12-2035.W06.1A

**Manufacturer: Locus Solutions LLC
Model: SmartTraxx Portable**

**Test Begin Date: March 23, 2012
Test End Date: February 25, 2013**

Report Issue Date: March 12, 2013

FOR THE SCOPE OF ACCREDITATION UNDER CERTIFICATE NUMBER AT-1533

This report must not be used by the client to claim product certification, approval, or endorsement by ACLASS, ANSI, or any agency of the Federal Government.

Project Manager:

**Thierry Jean-Charles
EMC Engineer
Advanced Compliance Solutions, Inc.**

Reviewed by:

**Kirby Munroe
Director, Wireless Certifications
Advanced Compliance Solutions, Inc.**

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 28 pages

TABLE OF CONTENTS

1	GENERAL	3
1.1	Purpose	3
1.2	Product Description.....	3
1.3	Test Methodology and Considerations	3
2	TEST FACILITIES	4
2.1	Location.....	4
2.2	Laboratory Accreditations/Recognitions/Certifications	4
2.3	Radiated & Conducted Emissions Test Site Description	5
3	APPLICABLE STANDARD REFERENCES.....	7
4	LIST OF TEST EQUIPMENT.....	8
5	SUPPORT EQUIPMENT	9
6	EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM	9
7	SUMMARY OF TESTS.....	10
7.1	Antenna Requirement – FCC: Section 15.203	10
7.2	6 dB Bandwidth - FCC: Section 15.247(a)(2) 99% Bandwidth IC: RSS-210 A8.2(a).....	10
7.3	Peak Output Power - FCC Section 15.247(b)(3) IC: RSS-210 A8.4(4)	15
7.4	Band-Edge Compliance and Spurious Emissions-FCC 15.247(d) IC:RSS-210 A8.5.....	17
7.5	Power Spectral Density - FCC Section 15.247(e) IC: RSS-210 A8.2(b)	26
8	CONCLUSION.....	28

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations and Industry Canada's Radio Standards Specification RSS-210.

1.2 Product Description

The Locus Solutions, LLC. SmartTraxx Portable is a 2.4 GHz wireless transceiver. The unit also encloses a Quake Global Q4000 transceiver module which incorporates a GPS receiver and a Telit GSM wireless transceiver module (FCC ID:RI7GE865 / IC: 5131A-GE865).

The SmartTraxx Portable concatenates the local sensor information from the Locus Solutions Smart Tags with position data from the GPS receiver and transmits the data package to a central motoring facility through a GSM cellular network.

Technical Information:

Band of Operation: 2405 MHz - 2480 MHz
Number of Channels: 16
Modulation Format: OQPSK
Antenna Type/Gain: 1/4 Wave Dipole Antenna, 2.15 dBi (Zigbee)
Operating Voltage: 12 VDC (Battery)

Additional Antennas: PCB Antenna, 0 dBi (GSM)
Active Patch Antenna, 27 dBi (GPS)

Manufacturer Information:

Locus Solutions LLC
14924 Corporate Rd S
Jupiter, FL 33478

Test Sample Serial Number(s): 41002086

Test Sample Condition: The unit was in good operating condition with no physical damages.

1.3 Test Methodology and Considerations

The Locus Solutions, Inc. SmartTraxx Portable was programmed via Hyperterminal. The power settings were set to level 4 across the range of operation for the evaluation for both radiated and RF conducted emissions measurements.

The RF conducted measurements were performed directly at the RF output of the unit.

For the radiated emissions evaluation, the unit was setup in the orientation of typical installation. The unit was also evaluated for collocation with the Telit wireless module for both the GSM 850 and the PCS 1900 bands. All intermodulation products for the collocated radios transmitting at the same time were found to be compliant to the limits of 15.209/RSS-Gen.

The evaluation for the unintentional emissions is documented separately in a Verification Report.

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

Advanced Compliance Solutions, Inc.
3998 FAU Blvd, Suite 310
Boca Raton, Florida 33431
Phone: (561) 961-5585
Fax: (561) 961-5587
www.acstestlab.com

FCC Test Firm Registration #: 587595
Industry Canada Lab Code: 4175C

2.2 Laboratory Accreditations/Recognitions/Certifications

ACS is accredited to ISO/IEC 17025 by ANSI-ASQ National Accreditation Board under their ACCLASS program and has been issued certificate number AT-1533 in recognition of this accreditation. Unless otherwise specified, all test methods described within this report are covered under the ISO/IEC 17025 scope of accreditation.

2.3 Radiated & Conducted Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

The EMC radiated test facility consists of an RF-shielded enclosure. The interior dimensions of the indoor semi-anechoic chamber are approximately 48 feet (14.6 m) long by 36 feet (10.8 m) wide by 24 feet (7.3 m) high and consist of rigid, 1/8 inch (0.32 cm) steel-clad, wood core modular panels with steel framing. In the shielded enclosure, the faces of the panels are galvanized and the chamber is self-supporting. 8-foot RF absorbing cones are installed on 4 walls and the ceiling. The steel-clad ground plane is covered with vinyl floor.

The turntable is driven by pneumatic motor, which is capable of supporting a 2000 lb. load. The turntable is flushed with the chamber floor which it is connected to, around its circumference, with a continuous metallic loaded spring. An EMCO Model 1050 Multi-device Controller controls the turntable position.

A pneumatic motor is used to control antenna polarizations and height relative to the ground. The height information is displayed on the control unit EMCO Model 1050.

The control room is an RF shielded enclosure attached to the semi-anechoic chamber with two bulkhead panels for connecting RF, and control cables. The dimension of the room is 7.3 m x 4.9 m x 3 m high and the entrance doors of both control and conducted rooms are 3 feet (0.91 m) by 7 feet (2.13 m).

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3.1-1 below:

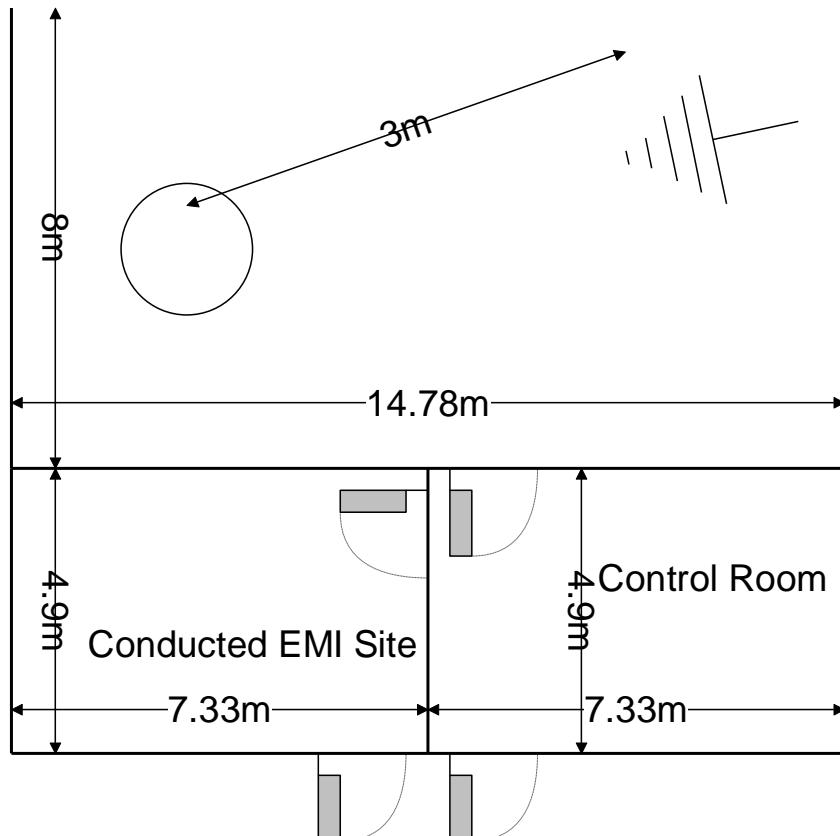


Figure 2.3.1-1: Semi-Anechoic Chamber Test Site

2.3.2 Conducted Emissions Test Site Description

The dimensions of the shielded conducted room are $7.3 \times 4.9 \times 3 \text{ m}^3$. As per ANSI C63.4 2003 requirements, the data were taken using two LISNs; a Solar Model 8028-50 50 Ω /50 μH and an EMCO Model 3825, which are installed as shown in Photograph 3. For 220 V, 50 Hz, a Polarad LISN (S/N 879341/048) is used in conjunction with a 1 kVA, 50 Hz/220 V EDGAR variable frequency generator, Model 1001B, to filter conducted noise from the generator.

A diagram of the room is shown below in figure 2.3.2-1:

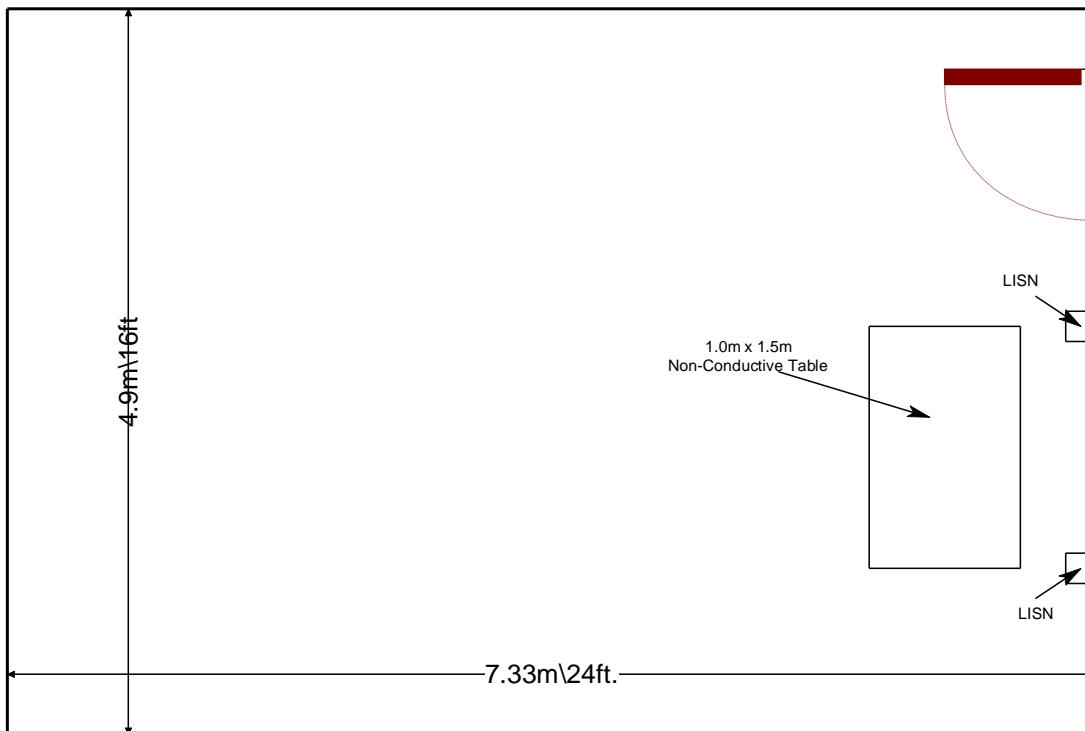


Figure 2.3.2-1: AC Mains Conducted EMI Site

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ❖ ANSI C63.4-2003: Method of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the 9KHz to 40GHz
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2013
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2013
- ❖ KDB Publication No. 558074 – Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247, October 2012.
- ❖ Industry Canada Radio Standards Specification: RSS-210 - Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, Issue 8, December 2010.
- ❖ Industry Canada Radio Standards Specification: RSS-GEN – General Requirements and Information for the Certification of Radiocommunication Equipment, Issue 3, December 2010.

4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment

AssetID	Manufacturer	Model #	Equipment Type	Serial #	Last Calibration Date	Calibration Due Date
523	Agilent	E7405	Spectrum Analyzers	MY45103293	1/5/2011	1/5/2013
523	Agilent	E7405	Spectrum Analyzers	MY45103293	1/8/2013	1/8/2015
524	Chase	CBL6111	Antennas	1138	1/7/2011	1/7/2013
524	Chase	CBL6111	Antennas	1138	1/7/2013	1/7/2015
2006	EMCO	3115	Antennas	2573	3/2/2011	3/2/2013
2008	COM-Power	AH-826	Antennas	81009	NCR	NCR
2011	Hewlett-Packard	HP 8447D	Amplifiers	2443A03952	1/2/2012	1/2/2013
2011	Hewlett-Packard	HP 8447D	Amplifiers	2443A03952	12/31/2012	12/31/2013
2037	ACS Boca	Chamber EMI Cable Set	Cable Set	2037	1/2/2012	1/2/2013
2037	ACS Boca	Chamber EMI Cable Set	Cable Set	2037	1/1/2013	1/1/2014
2044	QMI	N/A	Cables	2044	1/2/2012	1/2/2013
2044	QMI	N/A	Cables	2044	12/31/2012	12/31/2013
2070	Mini Circuits	VHF-8400+	Filter	2070	1/19/2012	1/19/2013
2070	Mini Circuits	VHF-8400+	Filter	2070	12/31/2012	12/31/2013
2072	Mini Circuits	VHF-3100+	Filter	30737	1/19/2012	1/19/2013
2072	Mini Circuits	VHF-3100+	Filter	30737	12/31/2012	12/31/2013
2075	Hewlett Packard	8495B	Attenuators	2626A11012	1/2/2012	1/2/2013
2075	Hewlett Packard	8495B	Attenuators	2626A11012	12/31/2012	12/31/2013
2076	Hewlett Packard	HP5061-5458	Cables	2076	1/2/2012	1/2/2013
2076	Hewlett Packard	HP5061-5458	Cables	2076	12/29/2012	12/29/2013
2082	Teledyne Storm Products	90-010-048	Cables	2082	6/6/2011	6/6/2012
2082	Teledyne Storm Products	90-010-048	Cables	2082	5/31/2012	5/31/2013
2086	Merrimac	FAN-6-10K	Attenuators	23148-83-1	12/30/2011	12/30/2012
2086	Merrimac	FAN-6-10K	Attenuators	23148-83-1	12/29/2012	12/29/2013
2089	Agilent Technologies, Inc.	83017A	Amplifiers	3123A00214	12/22/2011	12/22/2012
2089	Agilent Technologies, Inc.	83017A	Amplifiers	3123A00214	12/20/2012	12/20/2013
2091	Agilent Technologies, Inc.	8573A	Spectrum Analyzers	2407A03233	12/12/2011	12/12/2013
2095	ETS Lindgren	TILE4! - Version 4.2.A	Software	85242	NCR	NCR

NCR=No Calibration Required

5 SUPPORT EQUIPMENT

Table 5-1: Support Equipment

Item #	Type Device	Manufacturer	Model/Part #	Serial #
1	The EUT is a standalone device with no provision for support equipment.			

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

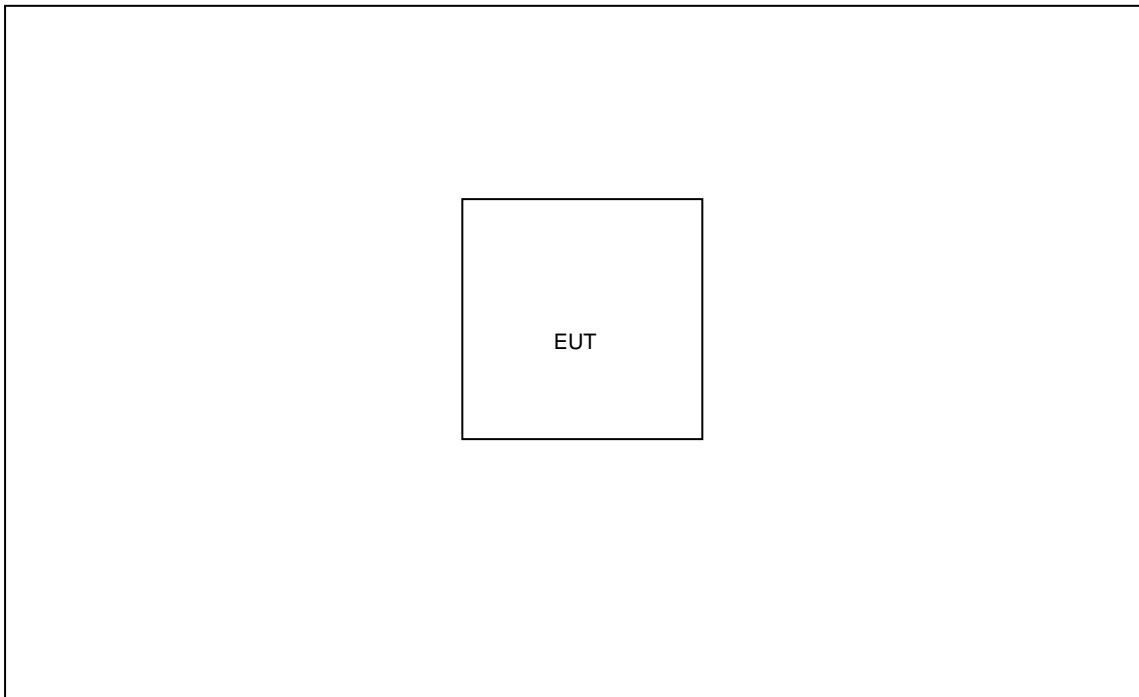


Figure 6-1: Test Setup

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC: Section 15.203

The SmartTraxx Portable uses an 1/4 dipole underneath the plastic enclosure. The antenna is not easily accessible to the end user thus meeting the requirements of 15.203.

7.2 6 dB Bandwidth - FCC: Section 15.247(a)(2) 99% Bandwidth IC: RSS-210 A8.2(a)

7.2.1 Measurement Procedure

The 6dB bandwidth was measured in accordance with the FCC KDB Publication No. 558074 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (47 CFR 15.247)" DTS (6 dB) Channel Bandwidth Option 1. The RBW of the spectrum analyzer was set to 30 kHz and VBW 100 kHz. Span was set large enough to capture the entire emissions and >> RBW.

The 99% occupied bandwidth was measured with the spectrum analyzer span set to fully display the emission, including the emissions skirts. The RBW was to 1% of the span. The occupied 99% bandwidth was measured by using a delta marker at the lower and upper frequencies leading to 0.5% of the total power.

7.2.2 Measurement Results

Results are shown below.

Table 7.2.2-1: 6dB / 99% Bandwidth

Frequency [MHz]	6dB Bandwidth [kHz]	99% Bandwidth (kHz)
2405	1673	2870
2440	1687	2840
2475	1673	2860

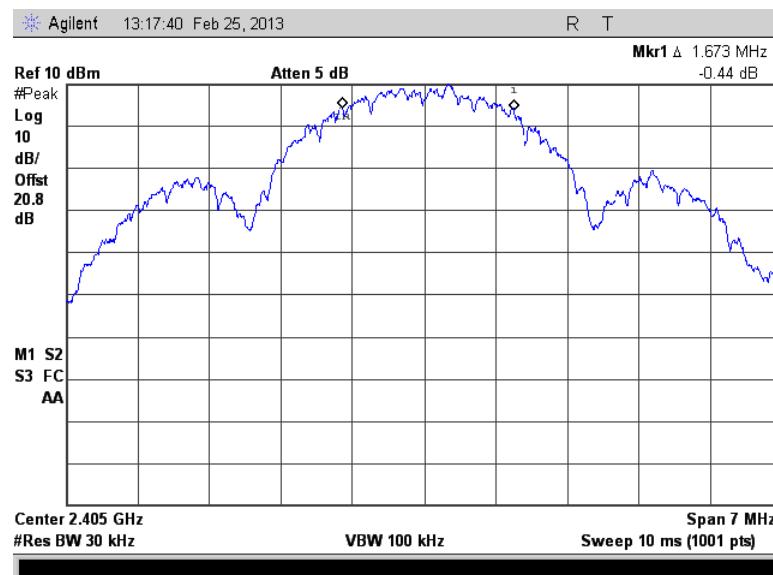


Figure 7.2.2-1: 6dB BW - Low Channel

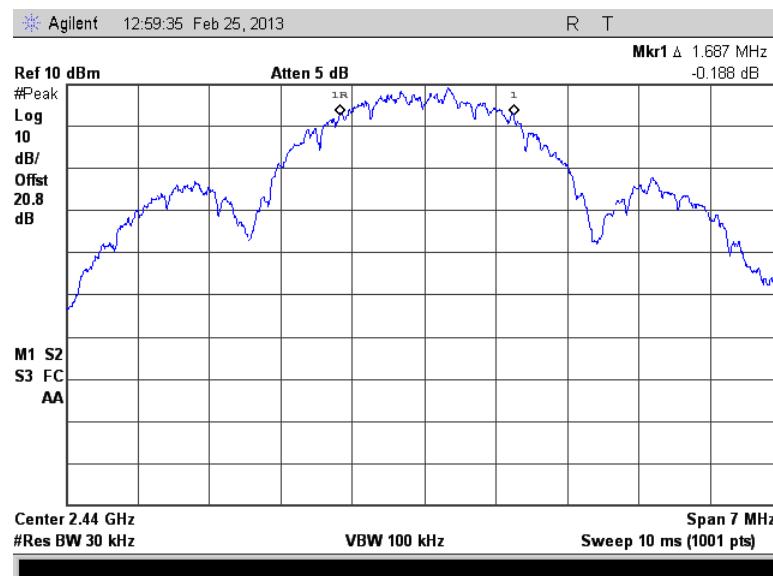


Figure 7.2.2-2: 6dB BW - Middle Channel

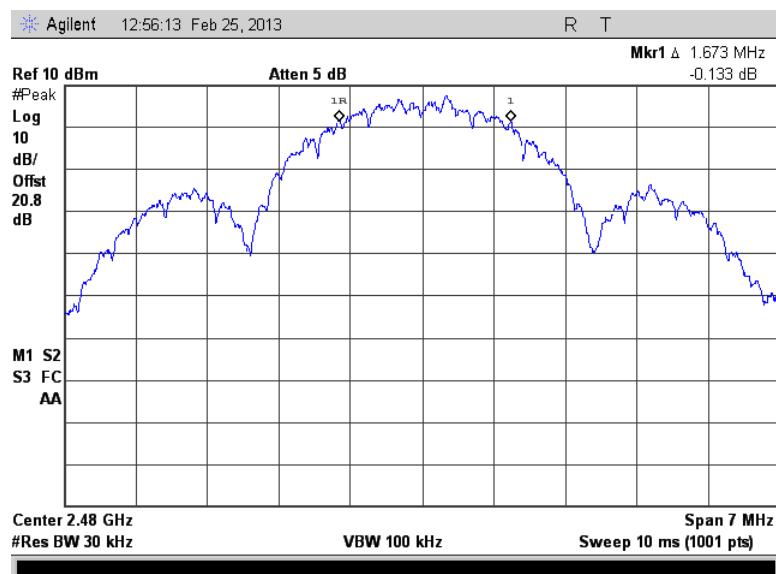


Figure 7.2.2-3: 6dB BW - High Channel

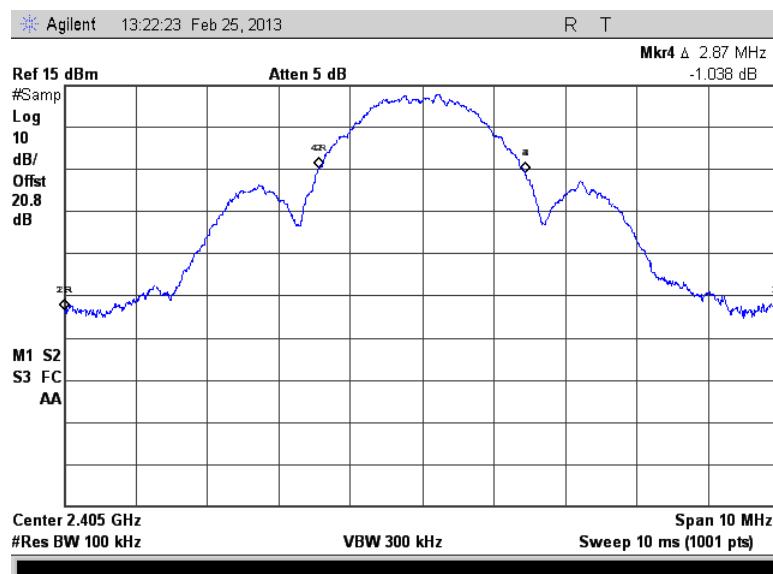


Figure 7.2.2-4: 99% OBW - Low Channel

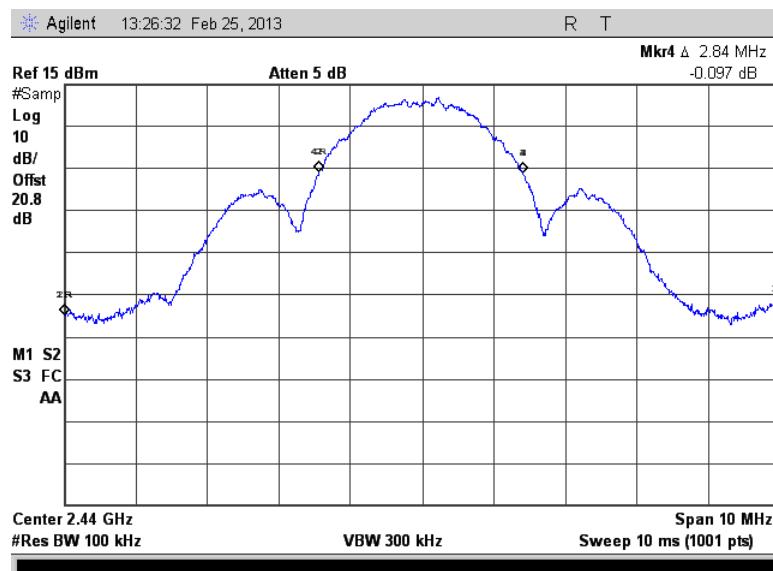


Figure 7.2.2-5: 99% OBW - Middle Channel

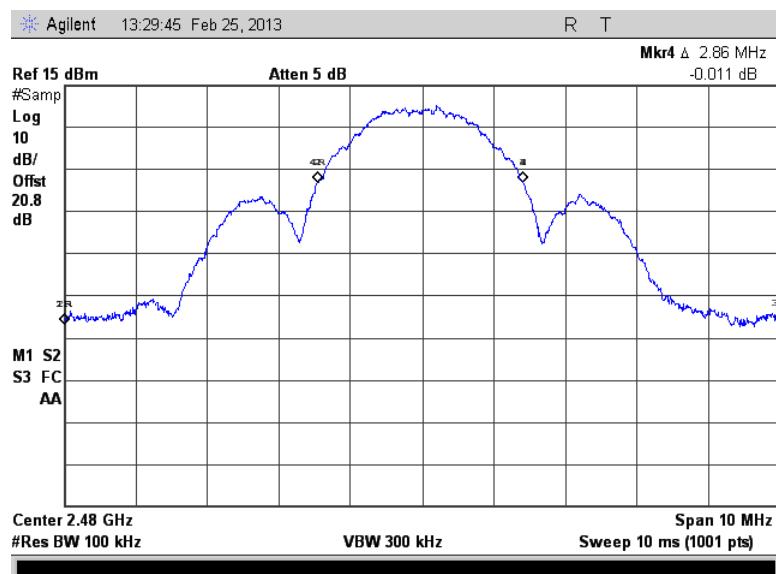


Figure 7.2.2-6: 99% OBW - High Channel

7.3 Peak Output Power - FCC Section 15.247(b)(3) IC: RSS-210 A8.4(4)

7.3.1 Measurement Procedure (Conducted Method)

The Peak Output Power was measured in accordance with the FCC KDB Publication No. 558074 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (47 CFR 15.247)" Maximum Peak Conducted Output Power Option 2. The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer through suitable attenuation. Data was collected with the EUT operating at maximum power per channelization.

7.3.2 Measurement Results

Results are shown below.

Table 7.3.2-1: RF Output Power

Frequency [MHz]	Level [dBm]
2405	19.86
2440	18.80
2475	17.01

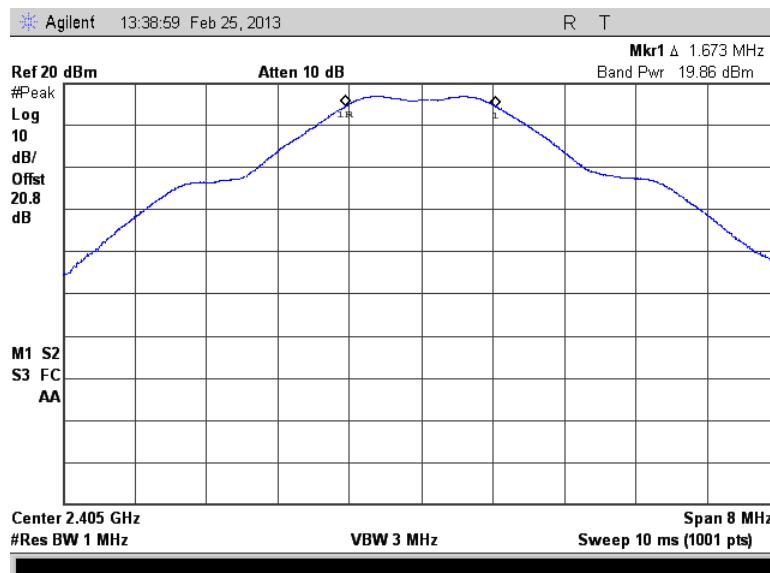


Figure 7.3.2-1: RF Output Power - Low Channel

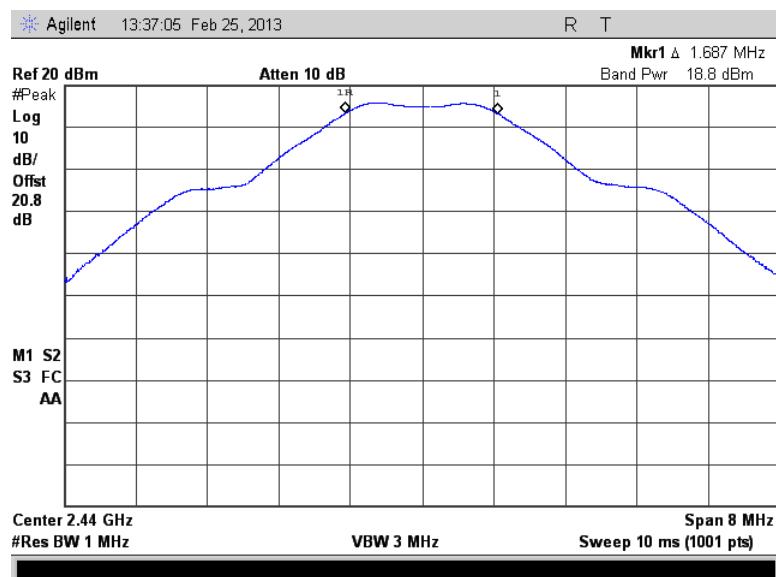


Figure 7.3.2-2: RF Output Power - Middle Channel

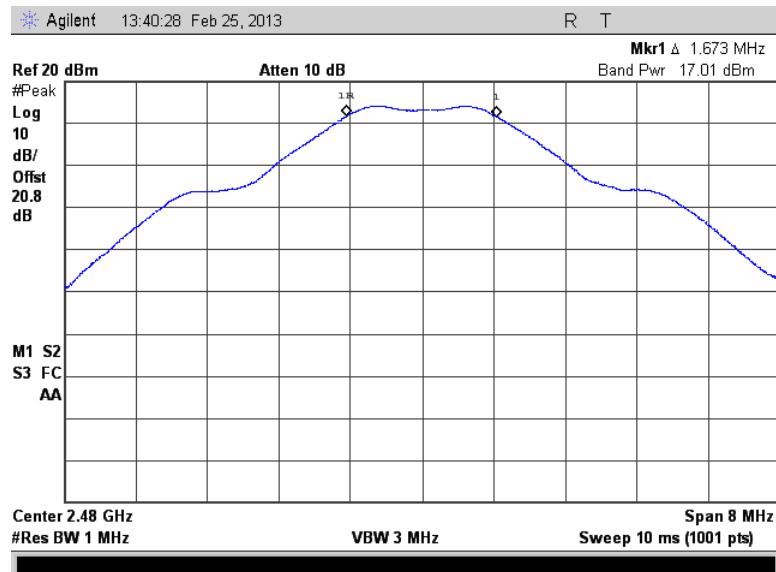


Figure 7.3.2-3: RF Output Power - High Channel

7.4 Band-Edge Compliance and Spurious Emissions-FCC 15.247(d) IC:RSS-210 A8.5

7.4.1 Band-Edge Compliance of RF Conducted Emissions

7.4.1.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer via suitable attenuation. The EUT was investigated at the lowest and highest channel available to determine band-edge compliance. For each measurement the spectrum analyzer's RBW was set to 100 kHz, and the VBW was set to 300 kHz. The reference level was determined by measuring the PSD level in any 100 kHz bandwidth within the DTS channel bandwidth.

7.4.1.2 Measurement Results

Results are shown below.

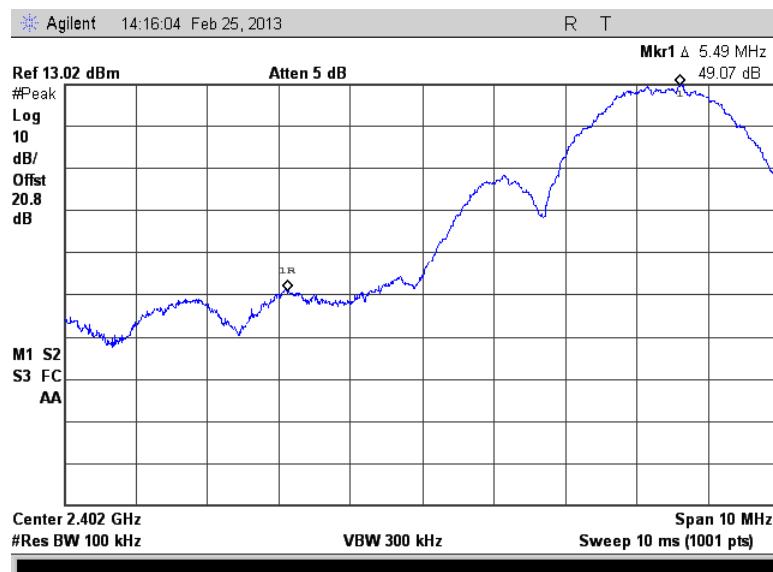


Figure 7.4.1.2-1: Lower Band-edge

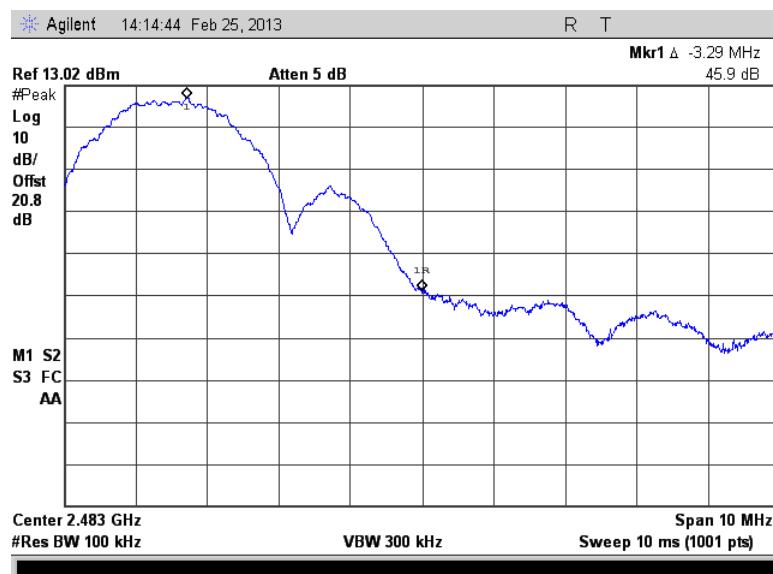


Figure 7.4.1.2-2: Upper Band-edge

7.4.2 RF Conducted Spurious Emissions

7.4.2.1 Measurement Procedure

The RF Conducted Spurious Emissions were measured in accordance with the FCC KDB Publication No. 558074 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (47 CFR 15.247)". The RF output port of the equipment under test was directly connected to the input of the spectrum analyzer. The EUT was investigated for conducted spurious emissions from 30MHz to 26 GHz, 10 times the highest fundamental frequency. Measurements were made at the low, center and high channels of the EUT. For each measurement, the spectrum analyzer's RBW was set to 100 kHz and the VBW was set to 300 kHz. The peak Max Hold function of the analyzer was utilized. The reference level was determined by measuring the PSD level in any 100 kHz bandwidth within the DTS channel bandwidth.

7.4.2.2 Measurement Results

Results are shown below.

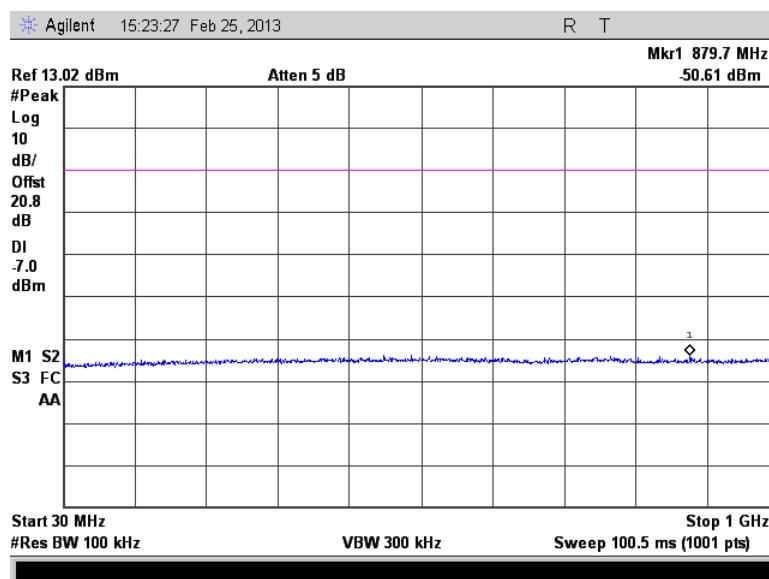


Figure 7.4.2.2-1: 30 MHz – 1 GHz – Low Channel

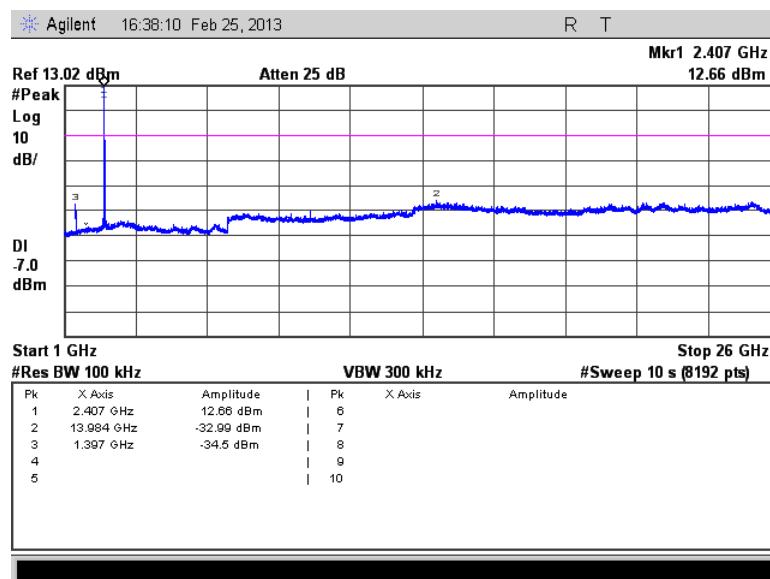


Figure 7.4.2.2-2: 1 GHz – 26 GHz – Low Channel

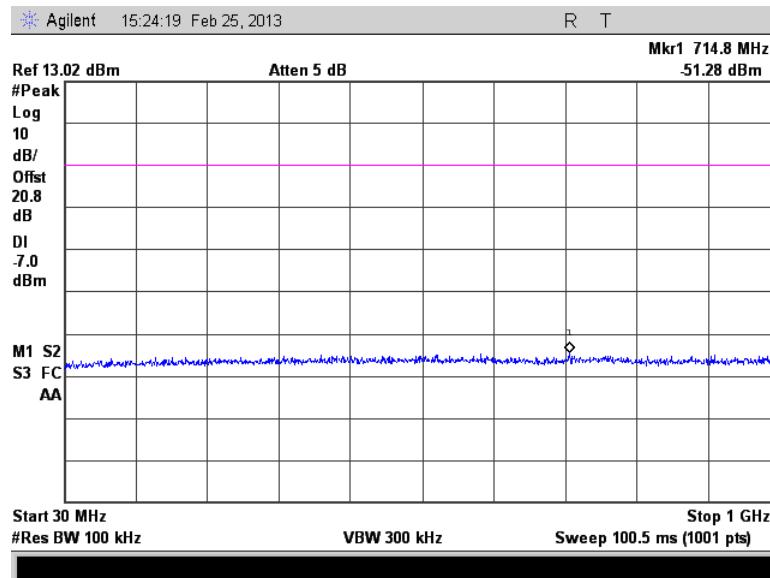


Figure 7.4.2.2-3: 30 MHz – 1 GHz – Middle Channel

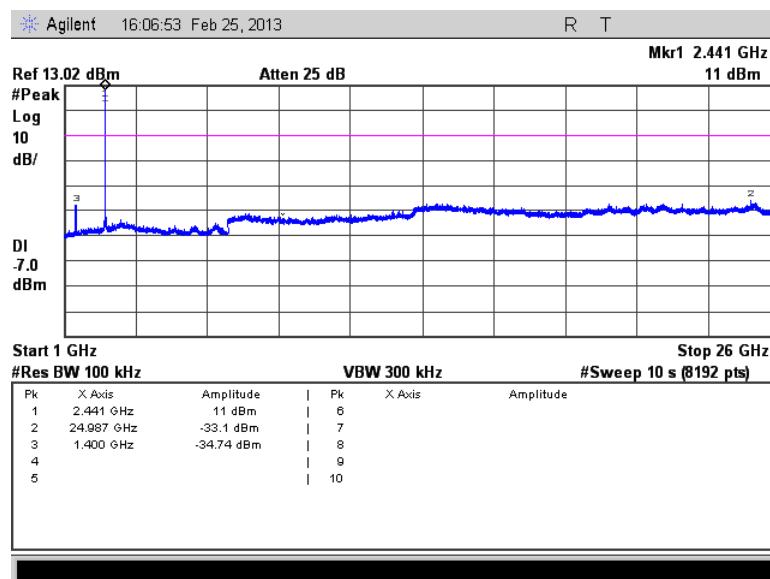


Figure 7.4.2.2-4: 1 GHz – 26 GHz – Middle Channel

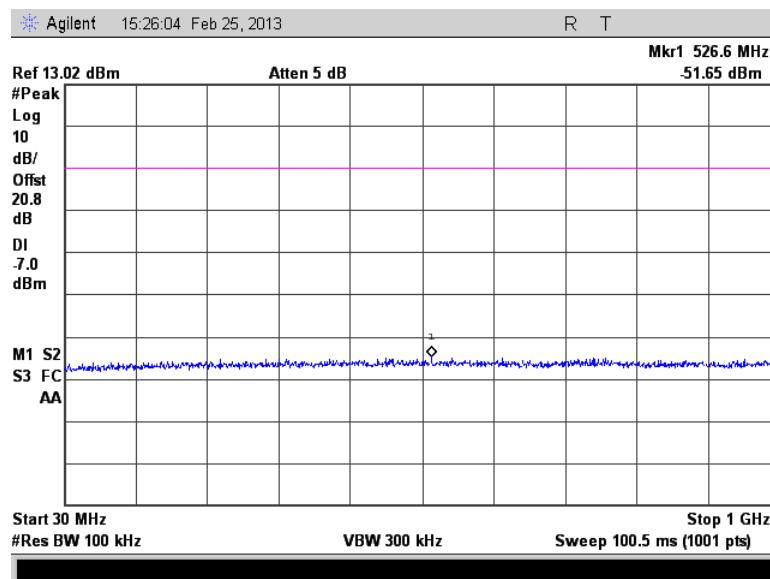


Figure 7.4.2.2-5: 30 MHz – 1 GHz – High Channel

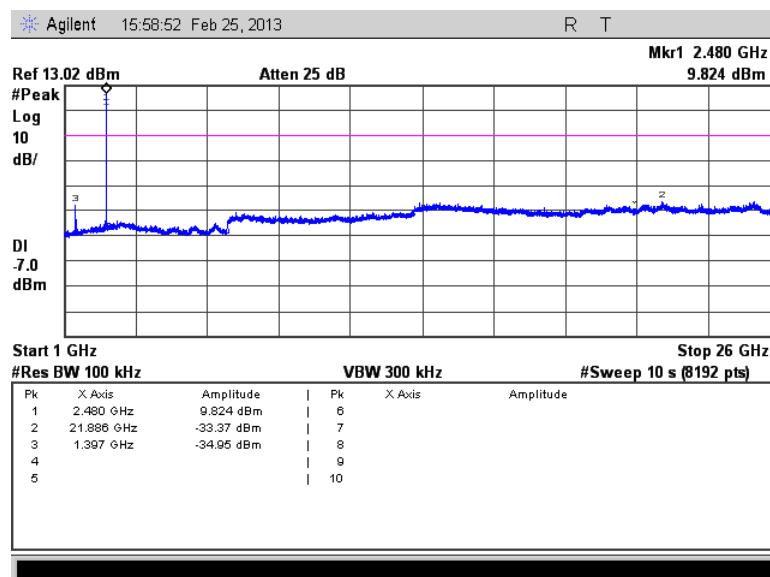


Figure 7.4.2.2-6: 1 GHz – 26 GHz –High Channel

7.4.3 Radiated Spurious Emissions - FCC Section 15.205 IC: RSS-210 2.2, RSS-GEN 7.2.5**7.4.3.1 Measurement Procedure**

Radiated emissions tests were made over the frequency range of 30MHz to 26GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000MHz, peak and average measurements made with RBW of 1 MHz and VBW of 3MHz and 10 Hz respectively.

Each emission found to be in a restricted band was compared to the applicable radiated limits. A duty cycle correction factor of $20 \cdot \log(1.476\%) \approx -36.62$ dB was applied to the spurious emissions showing the same pulsing signatures as the fundamental. The justification for the correction is documented in the customer's theory of operation.

7.4.3.2 Measurement Results

Radiated spurious and band-edge emissions found in the band of 30MHz to 26GHz are reported below.

Table 7.4.3.2-1: Radiated Spurious Emissions Tabulated Data

Frequency (MHz)	Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel 2405 MHz										
2390	69.39	49.36	H	-9.03	60.36	3.71	74.0	54.0	13.6	50.3
2390	69.45	50.13	V	-9.03	60.42	4.48	74.0	54.0	13.6	49.5
4810	59.17	52.13	H	-1.45	57.72	14.06	74.0	54.0	16.3	39.9
4810	57.31	49.62	V	-1.45	55.86	11.55	74.0	54.0	18.1	42.4
12025	62.33	51.86	H	11.28	73.61	26.52	83.5	63.5	9.9	37.0
12025	60.67	50.91	V	11.28	71.95	25.57	83.5	63.5	11.6	37.9
19240	42.87	30.53	H	9.25	52.12	3.16	83.5	63.5	31.4	60.3
19240	42.62	30.26	V	9.25	51.87	2.89	83.5	63.5	31.6	60.6
Middle Channel 2440 MHz										
4880	62.47	55.49	H	-1.27	61.20	17.60	74.0	54.0	12.8	36.4
4880	61.63	54.57	V	-1.27	60.36	16.68	74.0	54.0	13.6	37.3
7320	65.38	56.64	H	3.20	68.58	23.22	74.0	54.0	5.4	30.8
7320	64.20	55.51	V	3.20	67.40	22.09	74.0	54.0	6.6	31.9
12200	59.18	49.06	H	11.12	70.30	23.56	83.5	63.5	13.2	39.9
12200	58.55	48.79	V	11.12	69.67	23.29	83.5	63.5	13.8	40.2
19520	42.26	29.05	H	9.51	51.77	1.94	83.5	63.5	31.7	61.6
19520	42.91	29.32	V	9.51	52.42	2.21	83.5	63.5	31.1	61.3
High Channel 2480 MHz										
2483.5	82.20	73.63	H	-8.66	73.54	28.36	74.0	54.0	0.5	25.6
2483.5	81.32	72.04	V	-8.66	72.66	26.77	74.0	54.0	1.3	27.2
4960	59.21	53.79	H	-1.06	58.15	16.11	74.0	54.0	15.9	37.9
4960	59.45	52.18	V	-1.06	58.39	14.50	74.0	54.0	15.6	39.5
7440	62.32	52.02	H	3.52	65.84	18.93	74.0	54.0	8.2	35.1
7440	61.51	51.34	V	3.52	65.03	18.25	74.0	54.0	9.0	35.8
12400	49.57	36.69	H	10.93	60.50	11.01	83.5	63.5	23.0	52.5
12400	51.36	39.17	V	10.93	62.29	13.49	83.5	63.5	21.2	50.0
19840	42.41	29.16	H	10.92	53.33	3.46	83.5	63.5	30.2	60.0
19840	42.60	29.29	V	10.92	53.52	3.59	83.5	63.5	30.0	59.9

Notes:

- The average measurements are further corrected with a duty cycle correction factor of $20 \log(1.476/100) \approx -36.62$ dB. The justification for the correction factor is provided in the customer's Theory of Operation Certification Exhibit.
- All emissions above 10 GHz were measured at 1m distance. The limits are corrected accordingly using the distance factor of $20 \log(3/1) \approx 9.5$ dB.
- All emissions above 19840 MHz were attenuated below the limits and the noise floor of the measurement equipment.

Table 7.4.3.2-2: Radiated Spurious Emissions Tabulated Data

Frequency (MHz)	Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Spurious Emissions other than harmonics										
1395.97	71.64	58.41	H	-14.26	57.38	44.15	74.0	54.0	16.6	9.9
1395.97	73.75	60.39	V	-14.26	59.49	46.13	74.0	54.0	14.5	7.9
4730	57.20	33.08	H	-1.66	55.54	31.42	74.0	54.0	18.5	22.6
4771	56.91	32.87	H	-1.55	55.36	31.32	74.0	54.0	18.6	22.7
4792.4	56.34	32.84	H	-1.50	54.84	31.34	74.0	54.0	19.2	22.7
4841	55.32	32.60	H	-1.37	53.95	31.23	74.0	54.0	20.1	22.8
4892	56.76	32.77	H	-1.24	55.52	31.53	74.0	54.0	18.5	22.5
4945	55.95	32.09	H	-1.10	54.85	30.99	74.0	54.0	19.2	23.0
4967	56.23	32.60	H	-1.05	55.18	31.55	74.0	54.0	18.8	22.4
4997	56.22	32.14	H	-0.97	55.25	31.17	74.0	54.0	18.7	22.8
5087	55.86	32.46	H	-0.74	55.12	31.72	74.0	54.0	18.9	22.3

Note:

- The emissions above do not present the same pulsing characteristics as the transmitter. Therefore, the duty cycle correction factor is not applicable for these measurements.

7.4.3.3 Sample Calculation:

$$R_C = R_U + CF_T$$

Where:

CF_T	=	Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)
R_U	=	Uncorrected Reading
R_C	=	Corrected Level
AF	=	Antenna Factor
CA	=	Cable Attenuation
AG	=	Amplifier Gain
DC	=	Duty Cycle Correction Factor

$$\text{Duty Cycle Correction Factor} = 20 \times \log(1.476/100) \approx -36.62 \text{ dB}$$

Example Calculation: Peak

$$\text{Corrected Level: } 69.39 - 9.03 = 60.36 \text{ dB}\mu\text{V/m}$$

$$\text{Margin: } 74 \text{ dB}\mu\text{V/m} - 60.36 \text{ dB}\mu\text{V/m} = 13.6 \text{ dB}$$

Example Calculation: Average

$$\text{Corrected Level: } 49.36 - 9.03 - 36.62 = 3.71 \text{ dB}\mu\text{V/m}$$

$$\text{Margin: } 54 \text{ dB}\mu\text{V/m} - 3.71 \text{ dB}\mu\text{V/m} = 50.3 \text{ dB}$$

7.5 Power Spectral Density - FCC Section 15.247(e) IC: RSS-210 A8.2(b)

7.5.1 PSD Measurement Procedure (Conducted Method)

The power spectral density was measured in accordance with the FCC KDB Publication No. 558074 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (47 CFR 15.247)" Measurement Option 1. The RF output port of the EUT was directly connected to the input of the spectrum analyzer. Offset values were input for cable and attenuation. The spectrum analyzer RBW was set to 3 kHz and VBW 10 kHz. Span was adjusted to 1.5 times the 6 dB bandwidth and the sweep time was set to auto.

7.5.2 Measurement Results

Results are shown below.

Table 7.5.2-1: Power Spectral Density

Frequency (MHz)	PSD/3kHz (dBm)	Limit (dBm)	Margin (dB)
2405	3.698	8	4.302
2440	2.37	8	5.63
2475	0.853	8	7.147

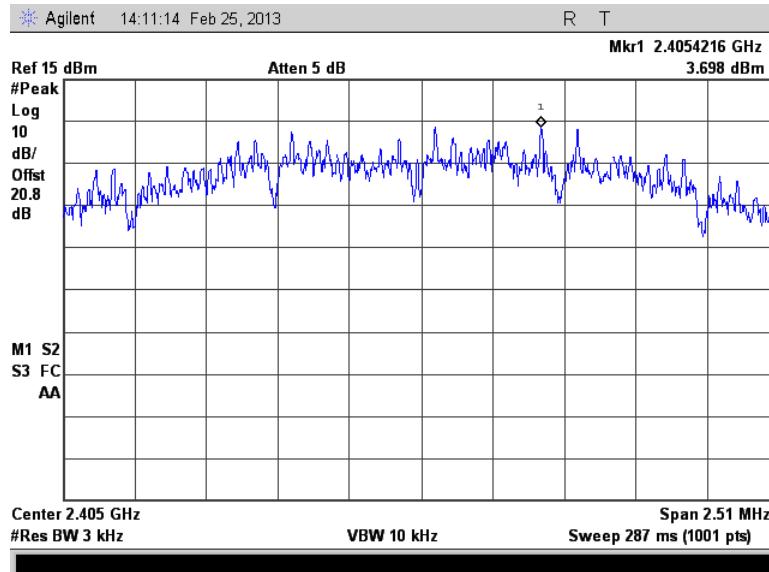


Figure 7.5.2-1: Power Spectral Density - Low Channel

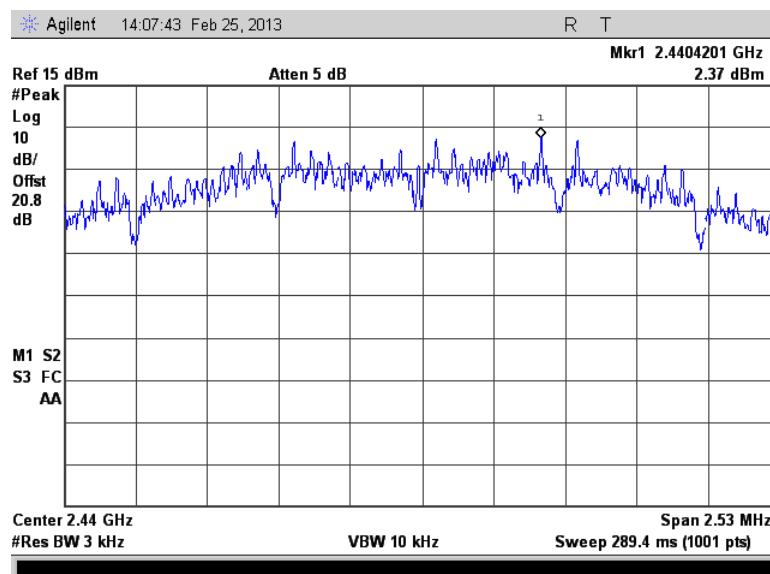


Figure 7.5.2-2: Power Spectral Density - Middle Channel

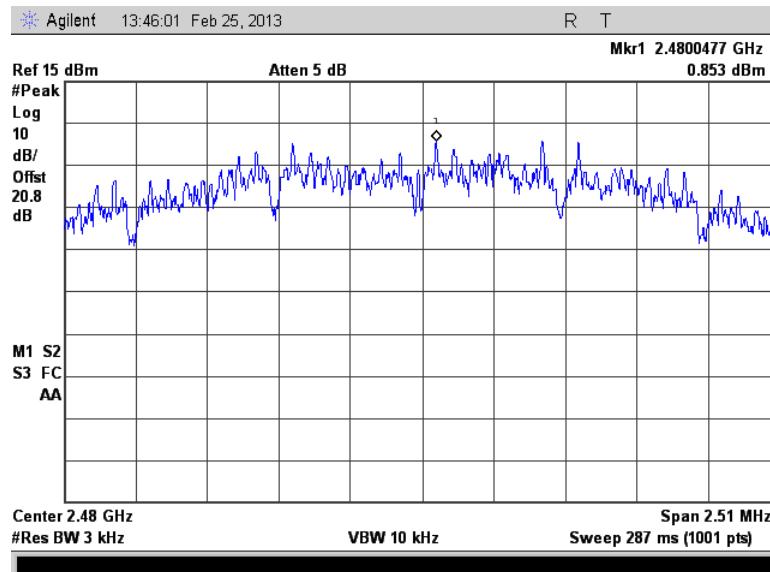


Figure 7.5.2-3: Power Spectral Density – High Channel

8 CONCLUSION

In the opinion of ACS, Inc. the SmartTraxx Portable, manufactured by Locus Solutions LLC meets the requirements of FCC Part 15 subpart C and Industry Canada's Radio Standards Specification RSS-210.

END REPORT