# THE APPLICANT HAS BEEN CAUTIONED AS TO THE FOLLOWING:

### 15.21 INFORMATION TO USER.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

# 15.27(a) SPECIAL ACCESSORIES.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

# TABLE OF CONTENTS

| RULE          | DESCRIPTION                                        | AGE |
|---------------|----------------------------------------------------|-----|
|               |                                                    |     |
|               | Test Report                                        | 1   |
| 2.1033(c)     | General Information Required                       | 2   |
| 2.1033(c)(14) | Rule Summary                                       | 4   |
|               | Standard Test Conditions and Engineering Practices | 5   |
| 2.1046(a)     | Carrier Output Power (Conducted)                   | 6   |
| 2.1051        | Unwanted Emissions (Transmitter Conducted)         | 8   |
| 2.1053(a)     | Field Strength of Spurious Radiation               | 12  |
| 2.1049(c)(1)  | Emission Masks (Occupied Bandwidth)                | 15  |
| 90.214        | Transient Frequency Behavior                       | 20  |
| 2.1047(a)     | Audic Low Pass Filter (Voice Input)                | 24  |
| 2.1047(a)     | Audio Frequency Response                           | 27  |
| 2.1047(b)     | Modulation Limiting                                | 29  |
| 2.1055(a)(1)  | Frequency Stability (Temperature Variation)        | 32  |
| 2.1055(b)(1)  | Frequency Stability (Voltage Variation)            | 35  |
| 2.202(g)      | Necessary Bandwidth and Emission Bandwidth         | 36  |

1 of 36. PAGE NO.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

TEST REPORT a)

M. Flom Associates, Inc. b) Laboratory:

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107 (Canada: IC 2044) Chandler, AZ 85224

d98a0029 c) Report Number:

Kenwood Communications Corporation d) Client:

P.O. Box 22745

Long Beach, CA 90801-5745

TKR-820(N) e) Identification:

FCC ID: ALHTKR-820N-4

UHF REPEATER Description:

Not required unless specified in individual f) EUT Condition:

tests.

October 15, 1998 g) Report Date:

September 18, 1998 FUT Received:

As indicated in individual tests. h, j, k:

i) Sampling method: No sampling procedure used.

1) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

M. June V. Ent

The results presented in this report relate n) Results:

only to the item tested.

This report must not be reproduced, except in o) Reproduction:

full, without written permission from this

laboratory.

2 of 36.

# LIST OF GENERAL INFORMATION REQUIRED FOR CERTIFICATION

IN ACCORDANCE WITH FCC RULES AND REGULATIONS, VOLUME II, PART 2 AND TO

90

Sub-part 2.1033

(c) (1): NAME AND ADDRESS OF APPLICANT:

Kenwood Communications Corporation 2201 E. Dominguez St

P.O. Box 22745

Long Beach, CA 90801-5745

**VENDOR:** 

Kenwood Communications Corporation

P.O. Box 22745

Long Beach, CA 90801-5745

(c)(2): FCC ID: ALHTKR-820N-4

MODEL NO: TKR-820(N)

(c)(3): INSTRUCTION MANUAL(S):

PLEASE SEE ATTACHED EXHIBITS

(c)(4): TYPE OF EMISSION: 11K0F3E

(c) (5): FREQUENCY RANGE, MHz: 406 to 430

(c)(6): POWER RATING, Watts: 2 to 25

x Switchable \_\_\_\_ Variable \_\_\_\_ N/A

(c)(7): MAXIMUM POWER RATING, Watts: 500

3 of 36. PAGE NO.

Subpart 2.1033 (continued)

VOLTAGES & CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE, (c)(8): INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

> COLLECTOR CURRENT, A = per manual COLLECTOR VOLTAGE, Vdc = per manual SUPPLY VOLTAGE, Vac = 120

TUNE-UP PROCEDURE: (c)(9):

PLEASE SEE ATTACHED EXHIBITS

CIRCUIT DIAGRAM/CIRCUIT DESCRIPTION: Including description of circuitry & devices provided for (c)(10):determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

PLEASE SEE ATTACHED EXHIBITS

(c)(11): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS

(c)(12): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS

(c) (13): DIGITAL MODULATION DESCRIPTION:

ATTACHED EXHIBITS \_\_\_\_ N/A

TEST AND MEASUREMENT DATA: (c)(14):

FOLLOWS

PAGE NO. 4 of 36.

Sub-part 2.1033(c)(14): TEST AND MEASUREMENT DATA

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

5 of 36.

# STANDARD TEST CONDITIONS and ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of  $10^{\circ}$  to  $40^{\circ}$ C ( $50^{\circ}$  to  $104^{\circ}$ F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of  $10^{\circ}$  to  $90^{\circ}$  relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

PAGE NO. 6 of 36.

NAME OF TEST: Carrier Output Power (Conducted)

SPECIFICATION: 47 CFR 2.1046(a)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.1

TEST EQUIPMENT: As per attached page

# MEASUREMENT PROCEDURE

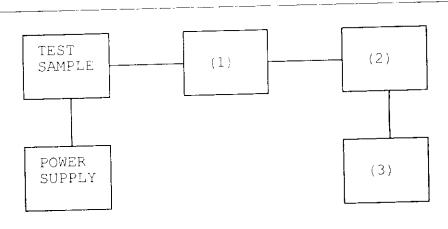
- The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an R. F. Power Meter.
- 2. Measurement accuracy is  $\pm 3\%$ .

# MEASUREMENT RESULTS (Worst case)

FREQUENCY OF CARRIER, MHz = 415.05

| POWER SETTING | R. F. POWER, WATTS |
|---------------|--------------------|
| Low           | 2                  |
| High          | 25                 |

SUPERVISED BY:


Morton Flom, P. Eng.

M. Just b. Ent

7 of 36.

# TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R. F. POWER OUTPUT TEST 2: FREQUENCY STABILITY



| Asset                                        | Description                                                                          | s/n                                    |
|----------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|
| i00122<br>i00123<br>i00069                   | AL ATTENUATOR<br>Narda 766-10<br>Narda 766-10<br>Bird 8329 (30 dB)<br>Sierra 661A-3D | 7802<br>7802A<br>1006<br>1059          |
| (2) <u>POWER</u> i00014 x i00039 x i00020    | METERS HP 435A HP 436A HP 8901A POWER MODE                                           | 1733A05836<br>2709A26776<br>2105A01087 |
| (3) FREQUE<br>i00042<br>x i00019<br>x i00020 | ENCY COUNTER HP 5383A HP 5334B HP 8901A FREQUENCY MODE                               | 1628A00959<br>2704A00347<br>2105A01087 |

8 of 36. PAGE NO.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)

47 CFR 2.1051 SPECIFICATION:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.13 GUIDE:

TEST EQUIPMENT: As per attached page

# MEASUREMENT PROCEDURE

The emissions were measured for the worst case as follows: 1.

(a): within a band of frequencies defined by the carrier

frequency plus and minus one channel.

(b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.

The magnitude of spurious emissions that are attenuated more 2. than 20 dB below the permissible value need not be specified.

ATTACHED FOR WORST CASE MEASUREMENT RESULTS: 3.

FREQUENCY OF CARRIER, MHz = 415.05

SPECTRUM SEARCHED, GHz = 0 to 10  $\times$  Fe

MAXIMUM RESPONSE, Hz = 2820

ALL OTHER EMISSIONS = 2 20 dB BELOW LIMIT

LIMIT(S), dBc

 $-(43+10\times LOG\ P) = -46\ (2\ Watts)$  $-(43+10\times LOG\ P) = -57\ (25\ Watts)$ 

SUPERVISED BY:

Morton Flom, P. Eng.


M. Sher bent

9 of 36.

# TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)

TEST B. OUT-OF-BAND SPURIOUS



19 of 36.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted) g98a0023: 1998-Oct-14 Wed 06:14:00

STATE: 1:Low Power

|                                                                                                                                                                                                                                                                                                                                                                            | SSION, MHZ                                                                                                                     | dBm LEVEL,                                   |                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 415.050000       829.         415.050000       1245.         415.050000       1660.         415.050000       2074.         415.050000       2490.         415.050000       2905.         415.050000       3319.         415.050000       4150.         415.050000       4265.         415.050000       4980.         415.050000       5395.         415.050000       5810. | 829000 -4<br>539000 -4<br>056000 -4<br>848000 -4<br>589000 -4<br>825000 -4<br>989000 -4<br>601000 -4<br>509000 -4<br>504000 -4 | 14.6 -71<br>13.4 -76<br>14.6 -71<br>38.4 -71 | 5.8 -29.8<br>6.7 -29.7<br>6.1 -29.1<br>1.1 -28.1<br>7.4 -31.4<br>7.6 -31.6<br>6.8 -30.8<br>7.6 -31.6<br>7.6 -31.6 |

<u>PAGE NO.</u> 11 of 36.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted) g98a0022: 1998-Oct-14 Wed 08:12:00 STATE: 2:High Power

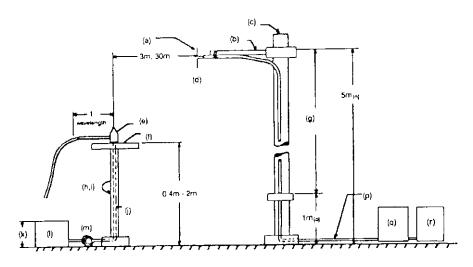
| FREQUENCY TUNED,                                                                                                                                                            | FREQUENCY                                                                                                                                                                                          | LEVEL, dBm                                                                                                               | LEVEL, dBc                                                                                                        | MARGIN, dB                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| MHz E  415.050000 83  415.050000 124  415.050000 20  415.050000 29  415.050000 33  415.050000 37  415.050000 41  415.050000 45  415.050000 45  415.050000 53  415.050000 53 | MISSION, MHz<br>29.954000<br>45.076000<br>60.103000<br>75.133000<br>90.141000<br>05.174000<br>20.208000<br>35.206000<br>50.138000<br>65.099000<br>80.492000<br>95.895000<br>10.682000<br>25.797000 | -32.6<br>-32.5<br>-23.9<br>-30<br>-22.5<br>-30.4<br>-32.3<br>-30.6<br>-33.6<br>-33.7<br>-33.6<br>-32.8<br>-27.6<br>-28.4 | -76.5<br>-76.4<br>-67.8<br>-73.9<br>-66.4<br>-74.3<br>-76.2<br>-74.5<br>-77.5<br>-77.5<br>-77.6<br>-77.5<br>-77.5 | -19.6<br>-19.5<br>-10.9<br>-17<br>-9.5<br>-17.4<br>-19.3<br>-17.6<br>-20.6<br>-20.7<br>-20.6<br>-19.8<br>-14.6<br>-15.4 |

PAGE NO. 12 of 36.

NAME OF TEST: Field Strength of Spurious Radiation

SPECIFICATION: 47 CFR 2.1053(a)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.12


TEST EQUIPMENT: As per attached page

# MEASUREMENT PROCEDURE

- A description of the measurement facilities was filed with the FCC and was found to be in compliance with the requirements of Section 15.38, by letter from the FCC dated March 3, 1997, FILE 31040/SIT. All pertinent changes will be reported to the Commission by up-date prior to March 2000.
- 2. At first, in order to locate all spurious frequencies and approximate amplitudes, and to determine proper equipment functioning, the test sample was set up at a distance of three meters from the test instrument. Valid spurious signals were determined by switching the power on and off.
- 3. In the field, the test sample was placed on a wooden turntable above ground at three (or thirty) meters away from the search antenna. Excess power leads were coiled near the power supply.
  - The cables were oriented in order to obtain the maximum response. At each emission frequency, the turntable was rotated and the search antennas were raised and lowered vertically.
- 4. The emission was observed with both a vertically polarized and a horizontally polarized search antenna and the worst case was used.
- The field strength of each emission within 20 dB of the limit was recorded and corrected with the appropriate cable and transducer factors.
- 7. The worst case for all channels is shown.
- 8. Measurement results: ATTACHED FOR WORST CASE

#### 13 of 36.

#### RADIATED TEST SETUP



#### NOTES:

- (a) Search Antenna Rotatable on boom
- (b) Non-metallic boom
- (c) Non-metallic mast
- (d) Adjustable horizontally
- (e) Equipment Under Test
- (f) Turntable
- (g) Boom adjustable in height.
- (h) External control cables routed horizontally at least one wavelength.
- (i) Rotatable

- (j)Cables routed through hollow turntable center
- (k) 30 cm or less
- (1) External power source
- (m) 10 cm diameter coil of excess cable
- (n) 25 cm (V), 1 m-7 m (V, H)
- (o) 25 cm from bottom end of 'V', 1m normally
- (p) Calibrated Cable at least 10m
   in length
- (q) Amplifier (optional)
- (r) Spectrum Analyzer

|   | Asset Description                                                   |                                                                                                                                                             | s/n                                                 | Cycle                                     | Last Cal                   |  |
|---|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|----------------------------|--|
| X | NSDUCER<br>100065<br>100033<br>100088<br>100089<br>100103<br>100085 | EMCO 3109B 100Hz-50MHz<br>Singer 94593-1 10kHz-32MHz<br>EMCO 3109-B 25MHz-300MHz<br>Aprel 2001 200MHz-1GHz<br>EMCO 3115 1GHz-18GHz<br>EMCO 3116 10GHz-40GHz | 2336<br>0219<br>2336<br>001500<br>9208-3925<br>2076 | 12 mo. 12 mo. 12 mo. 12 mo. 12 mo. 12 mo. | Oct-98<br>Oct-98<br>Oct-98 |  |
|   | LIFIER<br>i00028                                                    | HP 8449A                                                                                                                                                    | 2749A00121                                          | 12 mo.                                    | Mar-98                     |  |
|   | CTRUM A<br>100029<br>100033<br>100048                               | NALYZER<br>HP 8563E<br>HP 85462A<br>HP 8566B                                                                                                                | 3213A00104<br>3625A00357<br>2511AD1467              | 12 mo.<br>12 mo.<br>6 mo.                 | Dec-97<br>Mar-98           |  |

<u>PAGE NO.</u> 14 of 36.

NAME OF TEST: Field Strength of Spurious Radiation

ALL OTHER EMISSIONS = 2 20 dB BELOW LIMIT

| EMISSION, MHZ/HARMONIC | SPURIOUS LEVEL, dBc | ah |
|------------------------|---------------------|----|
| 2nd to 10th            |                     | 5  |

SUPERVISED BY:

Morton Flom, P. Eng.

PAGE NO. 15 of 36.

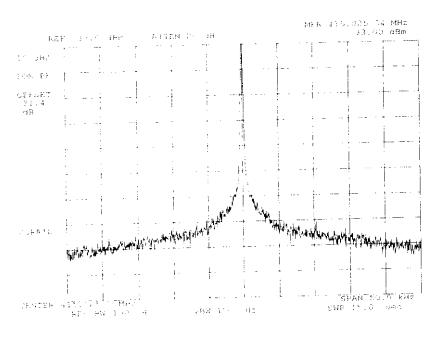
NAME OF TEST: Emission Masks (Occupied Bandwidth)

**SPECIFICATION:** 47 CFR 2.1049(c)(1)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

TEST EQUIPMENT: As per previous page

#### MEASUREMENT PROCEDURE


- 1. The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
- 2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ±2.5 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- 3. For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED

16 of 36.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g98a0017: 1998-Oct-14 Wed 07:55:00

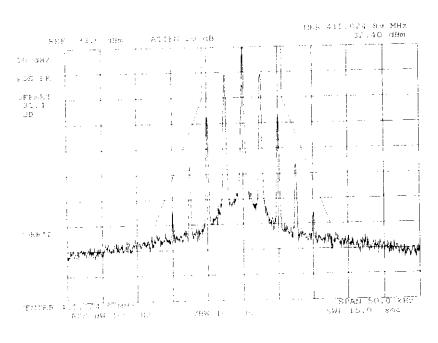
STATE: 1:Low Power



POWER:
MODULATION:

NONE

SUPERVISED BY:


Morton Flom, P. Eng.

17 of 36.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g98a0020: 1998-Oct-14 Wed 08:03:00

STATE: 1:Low Power



POWER: MODULATION:

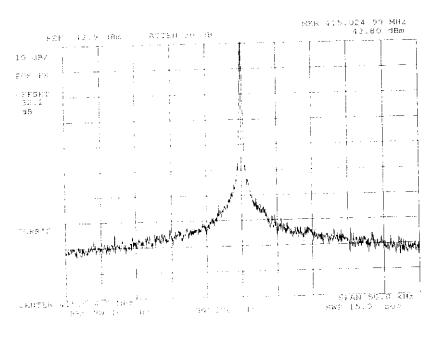
LOW

VOICE: 2500 Hz SINE WAVE

MASK: D, VHF/UHF 12.5kHz BW

SUPERVISED BY:

Morton Flom, P. Eng.


M. Thur P. Eng

PAGE NO. 18 of 36.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g98a0018: 1998-Oct-14 Wed 07:58:00

STATE: 2: High Power

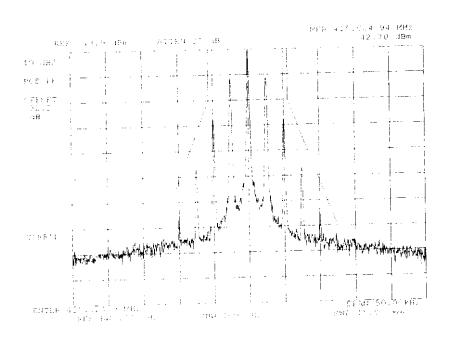


POWER: MODULATION:

HIGH NONE

SUPERVISED BY:

Morton Flom, P. Eng.


M. Thur P. Eug

19 of 36.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g98a0019: 1998-Oct-14 Wed 08:01:00

**ŠTATE: 2:**High Power



POWER: MODULATION:

HIGH

VOICE: 2500 Hz SINE WAVE

MASK: D, VHF/UHF 12.5kHz BW

SUPERVISED BY:

Morton Flom, P. Eng.

M. Ther P. Eng

PAGE NO. 20 of 36.

NAME OF TEST: Transient Frequency Behavior

SPECIFICATION: 47 CFR 90.214

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.19

TEST EQUIPMENT: As per attached page

# MEASUREMENT PROCEDURE

- 1. The EUT was setup as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a guide.
- The transmitter was turned on.
- 3. Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded as  $\underline{\text{step }f}$ .
- 4. The transmitter was turned off.
- 5. An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step f, as measured at the output of the combiner. This level was then fixed for the remainder of the test and is recorded at step h.
- 6. The oscilloscope was setup using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).
- 7. The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as step 1.
- 8. The <u>carrier on-time</u> as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The <u>carrier off-time</u> as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

LEVELS MEASURED:

 step f, dBm = -17.9

 step h, dBm = -38.1

 step l, dBm = 12.7

Morton Flom, P. Eng.

SUPERVISED BY:

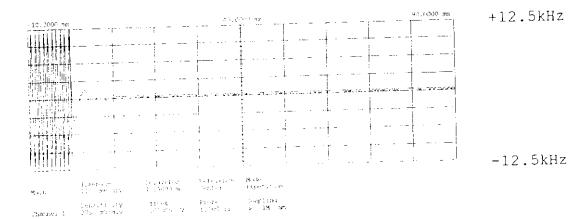
#### 21 of 36.

# TRANSIENT FREQUENCY BEHAVIOR



Asset Description

s/n


| Asset Description                                                                  | 5/11                                   |
|------------------------------------------------------------------------------------|----------------------------------------|
| (1) ATTENUATOR (Removed after 1st<br>x 100112 Philco 30 dB                         | step)<br>989                           |
| (2) ATTENUATOR                                                                     | 989<br>989<br>7802<br>7802A<br>145-387 |
| (3) COMBINER $\times$ 100154 4 $\times$ 25 $\Omega$ COMBINER                       | 154                                    |
| (4) CRYSTAL DETECTOR<br>x i00159 HP 8470B                                          | 1822A10054                             |
| (5) RF SIGNAL GENERATOR<br>i00018 HP 8656A<br>i00031 HP 8656A<br>x i00067 HP 8920A | 2228A03472<br>2402A06180<br>3345U01242 |
| (6) MODULATION ANALYZER<br>x 100020 HP 8901A                                       | 2105A01087                             |
| (7) SCOPE<br>x 100030 HP 54502A                                                    | 2927A00209                             |

22 of 36.

NAME OF TEST: Transient Frequency Behavior

g98a0025: 1998-Oct-14 Wed 08:45:00

STATE: 0:General



Original made (1.55)e
On Negative Size of Trade
Triager Level
Chart (1.50)en de poise recent (N)
Heldut (20,000 et

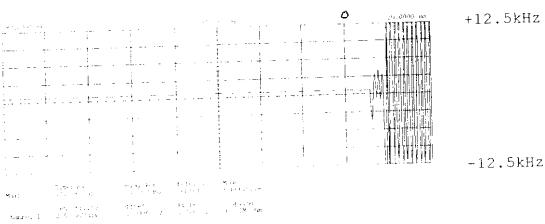
POWER:

MODULATION: DESCRIPTION: n/a

Ref Gen=12.5 kHz Deviation

CARRIER ON TIME

SUPERVISED BY:


M. Thur P. Eug Morton Flom, P. Eng.

23 of 36.

NAME OF TEST: Transient Frequency Behavior

g98a0026: 1998-Oct-14 Wed 09:00:00

STATE: 0:General



Trigger base of base
On Prestrice Dage of base
Trigger Davel
Chan2 - 4:30.000 aW startes to per GNO
Holdoff = 40.000 aK

POWER: MODULATION: DESCRIPTION: n/a Ref Gen=12.5 kHz Deviation CARRIER OFF TIME

SUPERVISED BY:

Morton Flom, P. Eng.

M. Duck P. Eur

PAGE NO. 24 of 36.

NAME OF TEST: Audio Low Pass Filter (Voice Input)

SPECIFICATION: 47 CFR 2.1047(a)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.15

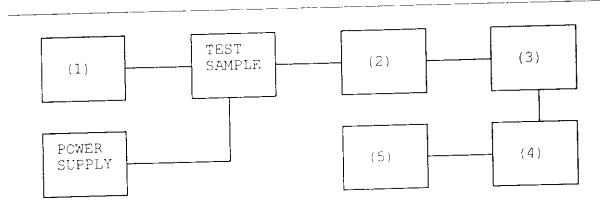
TEST EQUIPMENT: As per attached page

# MEASUREMENT PROCEDURE

- The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
- 2. The audio output was connected at the output to the modulated stage.
- 3. MEASUREMENT RESULTS: ATTACHED

25 of 36.

# TRANSMITTER TEST SET-UP


TEST A. MODULATION CAPABILITY/DISTORTION

TEST B. AUDIO FREQUENCY RESPONSE

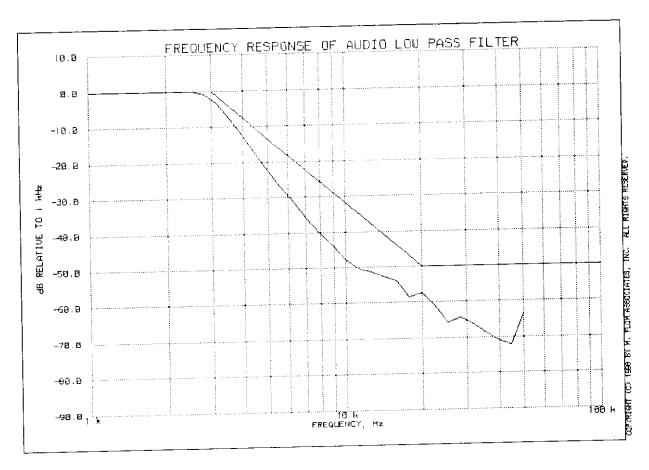
TEST C. HUM AND NOISE LEVEL

TEST D. RESPONSE OF LOW PASS FILTER

TEST E. MODULATION LIMITING



s/n


| / 1 N | т <b>т</b> N'F   Т' | MPEDA   | NCE    | STABILIZATION . | NETWORK    |
|-------|---------------------|---------|--------|-----------------|------------|
| ( T ) | <u> </u>            | 11 10 1 | C. 4 D |                 | 1105A04683 |
|       | i00010              | HP Z    | U4D    |                 |            |
| -     | i00017              | HP 8    | 903A   |                 | 2216A01753 |
|       |                     |         |        |                 | US36002064 |
| Х     | i00118              | HP 3    | 3120.  | A               | 0530005301 |

| <br>100122<br>100123 | AL ATTENUATOR<br>NARDA 766-10<br>NARDA 766-10 | 7802<br>7802A |
|----------------------|-----------------------------------------------|---------------|
| <br>i00113           | SIERRA 661A-3D<br>BIRD 8329 (30 dB)           | 1059<br>10066 |

| (3)          | MODULATION  | 1 ANALYZER | 2105A01087        |
|--------------|-------------|------------|-------------------|
| _ <u>X</u> _ | i00020 HP 8 | 901A       | 2 1 0 071 1 0 2 0 |

| 3 00058 BP 17418 | 2215A09356<br>1935-B011343 |
|------------------|----------------------------|
|------------------|----------------------------|

PAGE 26 of 36.
FREQUENCY RESPONSE OF AUDIO LOW PASS FILTER KENWOOD, TKR-820(N)
13 OCT 1998, 12:09

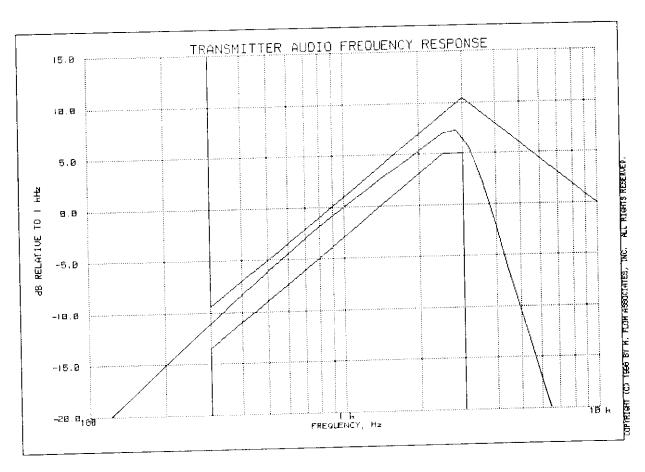


PEAK AUDIO FREQUENCY, Hz: 2500

PAGE NO. 27 of 36.

NAME OF TEST: Audio Frequency Response

SPECIFICATION: 47 CFR 2.1647(a)


GUIDE: ANS1/TIA/EIA-603-1992, Paragraph 2.2.6

TEST EQUIPMENT: As per previous page

# MEASUREMENT PROCEDURE

- The EUT and test equipment were set up as shown on the following page.
- 2. The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- 3. The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- 4. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to 50 kHz.
- 5. The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
- 6. MEASUREMENT RESULTS: ATTACHED

PAGE 28 of 36.
TRANSMITTER AUDIO FREQUENCY RESPONSE KENWOOD, TKR-820(N)
13 OCT 1998, 12:13



PEAK AUDIO FREQUENCY, Hz: 2820

TABLE VALUES:

| FREQUENCY, | LEVEL,<br>dB   | FREQUENCY,<br>Hz | _              | FREQUENCY, LE | VEL,<br>dB |
|------------|----------------|------------------|----------------|---------------|------------|
|            | -11.1<br>-22.3 |                  | -22.3<br>-22.3 |               |            |

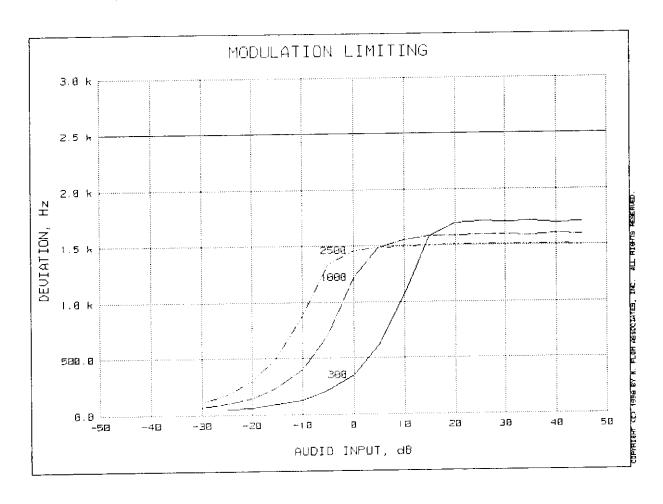
29 of 36.

NAME OF TEST: Modulation Limiting

SPECIFICATION:

47 CFR 2.1047(b)

GUIDE:


ANSI/TIA/EIA-603-1992, Paragraph 2.2.3

TEST EQUIPMENT: As per previous page

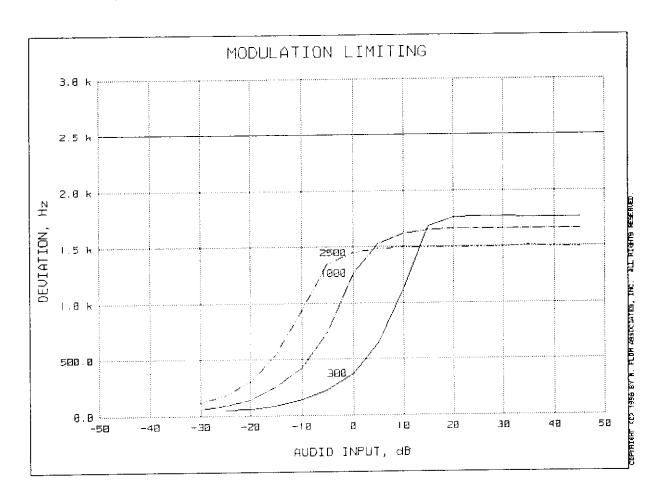
MEASUREMENT PROCEDURE

- The signal generator was connected to the input of the EUT as 1. for "Frequency Response of the Modulating Circuit."
- The modulation response was measured for each of three 2. frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- The input level was varied from 30% modulation ( $\pm 1.5~\mathrm{kHz}$ 3. deviation) to at least 20 dB higher than the saturation point.
- Measurements were performed for both negative and positive 4. modulation and the respective results were recorded.
- 5. MEASUREMENT RESULTS: ATTACHED

PAGE 30 of 36.
MODULATION LIMITING
KENWOOD, TKR-820(N)
1998-0CT-13, 16:26



REFERENCE DEVIATION, kHz = 1.25


REFERENCE MODULATION, Hz = 1000

PEAKS = POSITIVE

AUDIO AMPLITUDE, mV = 23.94

FCC ID: ALHTKR-820N-4

PAGE 31 of 36.
MODULATION LIMITING
KENWOOD, TKR-820(N)
1998-0CT-13, 16:26



REFERENCE DEVIATION, kHz = 1.25

REFERENCE MODULATION, Hz = 1000

PEAKS = NEGATIVE

AUDIO AMPLITUDE, mV = 25.65

PAGE NO. 32 of 36.

NAME OF TEST: Frequency Stability (Temperature Variation)

SPECIFICATION: 47 CFR 2.1055(a)(1)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST CONDITIONS: As Indicated

TEST EQUIPMENT: As per previous page

#### MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up as shown on the following page.
- 2. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- 4. The temperature tests were performed for the worst case.
- 5. MEASUREMENT RESULTS: ATTACHED

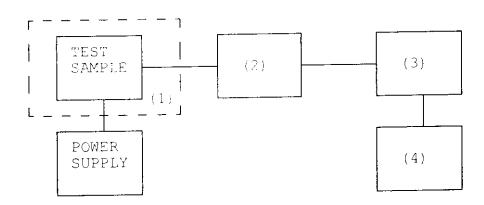
33 of 36.

### TRANSMITTER TEST SET-UP

TEST A. OPERATIONAL STABILITY

TEST B. CARRIER FREQUENCY STABILITY

TEST C. OPERATIONAL PERFORMANCE STABILITY


TEST D. HUMIDITY

TEST E. VIBRATION

TEST F. ENVIRONMENTAL TEMPERATURE

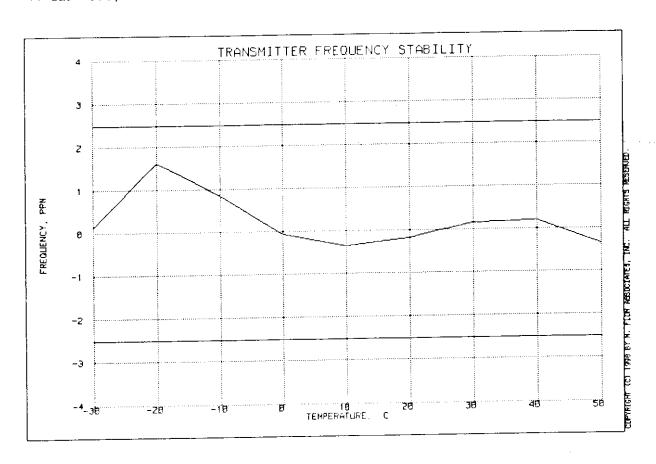
TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION

TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION



Asset Description

s/n


| (1) | TEMPE  | RATURE, HUMIDITY, VIBRATION |              |
|-----|--------|-----------------------------|--------------|
| Х   | i00027 | fermy femb. chamber         | 9083-765-234 |
|     |        | Weber Humidity Chamber      |              |
|     | i00    | L.A.B. RVH 18-100           |              |
|     |        |                             |              |

| (2) | COAXI  | AL ATTENUATOR     |       |
|-----|--------|-------------------|-------|
| , , | i00122 | NARDA 766-10      | 7802  |
|     | i00123 | NARDA 766-10      | 7802A |
|     | i00113 | SIERRA 661A-3D    | 1059  |
|     | i00069 | BIRD 8329 (30 dB) | 10066 |

| R.F.       |                     |            |
|------------|---------------------|------------|
| i00014     | HP 435A POWER METER | 1733A05839 |
|            | HP 436A POWER METER | 2709A26776 |
| <br>i00020 | HP 8901A POWER MODE | 2105A01087 |

| (4) | FREOU  | ENC | Y COUNTER |            |
|-----|--------|-----|-----------|------------|
| , , | i00042 |     |           | 1628A00959 |
| X   | i00019 | ΗР  | 5334B     | 2704A00347 |
| X   | i00020 | HР  | 8901A     | 2105A01087 |

PAGE 34 of 36.
TRANSMITTER FREQUENCY STABILITY
KENWOOD, TKR-820(N)
11 SEP 1998, 15:34



FREQUENCY OF CARRIER, MHz = 415.025

LIMIT, ppm

= 2.5

LIMIT, Hz

= 1038

35 of 36.

NAME OF TEST:

Frequency Stability (Voltage Variation)

SPECIFICATION:

47 CFR 2.1055(b)(1)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST EQUIPMENT: As per previous page

# MEASUREMENT PROCEDURE

- The EUT was placed in a temperature chamber at  $25\pm5^{\circ}\text{C}$  and connected as for "Frequency Stability - Temperature Variation" 1. test.
- The power supply voltage to the EUT was varied from 85% to 115%2. of the nominal value measured at the input to the EUT.
- The variation in frequency was measured for the worst case. 3.

RESULTS:

Frequency Stability (Voltage Variation)

STATE:

= 2.5LIMIT, ppm = 1038 LIMIT, Hz BATTERY END POINT (Voltage) = 120

SUPERVISED BY:

Morton Flom, P. Eng.

M. Ther P. Eng

PAGE NO. 36 of 36.

NAME OF TEST: Necessary Bandwidth and Emission Bandwidth

SPECIFICATION: 47 CFR 2.202(g)

MODULATION = 11K0F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz = 3
MAXIMUM DEVIATION (D), kHz = 2.5
CONSTANT FACTOR (K) = 1

CONSTANT FACTOR (K)

NECESSARY BANDWIDTH  $(B_0)$ , kHz =  $(2 \times M) + (2 \times D \times K)$ 

= 11.0

SUPERVISED BY:

Morton Flom, P. Eng.

M. Duck P. Eng

#### TESTIMONIAL AND STATEMENT OF CERTIFICATION

#### THIS IS TO CERTIFY THAT:

- THAT the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. THAT the technical data supplied with the application was taken under my direction and supervision.
- 3. THAT the data was obtained on representative units, randomly selected.
- 4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

CERTIFYING ENGINEER:

Morton Flom, P. Eng.

#### STATEMENT OF QUALIFICATIONS

#### EDUCATION:

- B. ENG. in ENGINEERING PHYSICS, 1949, McGill University, Montreal, Canada.
- Post Graduate Studies, McGill University & Sir George Williams University, Montreal.

#### PROFESSIONAL AFFILIATIONS:

- 1. ARIZONA SOCIETY OF PROFESSIONAL ENGINEERS (NSPE), #026 031 821.
- 2. ORDER OF ENGINEERS (QUEBEC) 1949. #4534.
- 3. ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOPHYSICISTS & GEOLOGISTS OF ALBERTA #5916.
- 4. REGISTERED ENGINEERING CONSULTANT GOVERNMENT OF CANADA, DEPARTMENT OF COMMUNICATIONS. Radio Equipment Approvals.
- 5. IEEE, Lifetime Member No. 0417204 (member since 1947).

#### EXPERIENCE:

- Research/Development/Senior Project Engineer, R.C.A. LIMITED (4 years).
- Owner/Chief Engineer of Electronics.
   Design/Manufacturing & Cable TV Companies (10 years).
- CONSULTING ENGINEER (over 25 years).

MONTON FLOM P. Eng.