

Test Report Issue Date
Aug. 23, 2013

The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

DECLARATION OF	COMPL	IANCE	- SAR R	F EXF	POSU	IRE E	VAL	_UA	FION (I	FCC/IC)					
Test Lab Information	Name	CELLTE	CH LABS IN	IC.											
Test Lab Information	Address	21-364 L	ougheed Ro	ad, Kelo	wna, B.	C. V1X	7R8 C	anada							
Test Lab Accreditation(s)	A2LA	ISO/IEC	17025:2005	(A2LA T	est Lab	Certific	ate No	. 2470	0.01)						
Applicant Information	Name	KENWO	OD USA CO	RPORA	TION										
Applicant information	Address	3970 Joh	ins Creek Co	ourt, Suit	e 100, S	Suwane	e, GA	30024	United St	ates					
Application Type(s)	FCC	TCB Cer	tification			IC	;	CB Certification							
Standard(s) Applied	FCC	47 CFR §	§2.1093			IC	;	Health Canada Safety Code 6							
Procedure(s) Applied	FCC	KDB 447	498 D01v05	r01		FC	C	KDB 6	643646 D)1v01r01					
1 rocedure(3) Applied	IC	RSS-102				IE	_		9-2:2010						
Device Classification(s)	FCC	Licensed	Non-Broado	ast Tran	smitter	Held to	Face	(TNF)	- FCC Pa	rt 90					
Device Glassification(s)	IC	Land Mo	bile Radio Tr	ansmitte	er/Recei	ver (27.	41-96	0 MHz) - RSS-1 ⁻	19					
Device Identifier(s)	FCC ID:		ALH468800			IC	;	282D	-468800						
Device Model(s)			d); TK-5410[[,] identical an				of butte	ons on	keypad)						
Device Model(s) Tested	TK-5410D-k	D-K2 (s/n: B3790005); TK-5410D-K3 (s/n: B3790077)													
Test Sample Revision No.s	Hardware	4.0				Firn	nware	D1	.00						
Date of Sample Receipt	Aug. 14, 20	13	Date(s)	of SAR	Evalua	ntions	Aug	. 20-22	2, Oct. 4-1	0, 2012					
Device Description	Portable FM	UHF Push	n-To-Talk (P	ΓΤ) Radi	o Trans	ceiver									
Transmit Frequency Range	FCC	769-775 MHz 799-805 MHz			806-824 MHz			Ηz	851-869 MHz						
Transmit requency itange	IC	768-776 MHz 798-806 MHz			6 MHz				Ηz	851-869 MHz					
Manuf. Rated Output Power	3.0 W (Cond					rance Specification			+/- 0.5 W	'					
Antenna Type(s) Tested			cessory listin	<u> </u>											
Battery Type(s) Tested															
Body-worn Accessories Tested	See manufa	cturer's ac	cessory listir	ig (Section	on 5.0)					See manufacturer's accessory listing (Section 5.0) See manufacturer's accessory listing (Section 5.0)					
		e manufacturer's accessory listing (Section 5.0)													
Audio Accessories Tested				• •	on 5.0)										
Audio Accessories Tested	Face-held	(FCC)	0.817 W	/kg	on 5.0)										
	Face-held Face-hel	(FCC) d (IC)	0.817 W 0.969 W	/kg /kg			PTŢ c	luty	Occu	pational / Controlled					
Audio Accessories Tested Max. SAR Level(s) Evaluated	Face-held Face-hel Body-worr	d (IC) f (FCC)	0.817 W 0.969 W 2.24 W/	/kg /kg /kg	on 5.0) 1g		PTT c	luty	Occup	pational / Controlled Exposure					
	Face-held Face-hel	d (IC) f (FCC)	0.817 W 0.969 W	/kg /kg /kg		(cycle			Exposure					
	Face-held Face-hel Body-worr	d (IC) n (FCC) rn (IC)	0.817 W 0.969 W 2.24 W/	l/kg l/kg l/kg l/kg		50%									
Max. SAR Level(s) Evaluated	Face-held Face-held Body-worr Body-wor Head/E sole responsequirements sole device was 22 Issue 4 a	(FCC) d (IC) n (FCC) n (IC) sody sibility that pecified in a tested in and IEC Ir	0.817 W 0.969 W 2.24 W/ 3.00 W/ 8.0 W// this wireless FCC 47 CFF accordance	//kg //kg //kg //kg kg s portable R §2.109 with the	1g 1g le devid 3 and F measu	50% se has dealth Curement	PTT of cycle demonstrated proces	luty estrated a Safet	Occup d complia y Code 6 specified	Exposure pational / Controlled Exposure nce with the Specific for the Occupational / in FCC KDB 447498					
Max. SAR Level(s) Evaluated FCC Spatial Peak SAR Limit Celltech Labs Inc. declares under its Absorption Rate (SAR) RF exposure re Controlled Exposure environment. Th D01v05r01, Industry Canada RSS-10	Face-held Face-held Body-worr Body-worr Body-worr Body-worr Body-worr Head/E sole response equirements see device was 22 Issue 4 a ufacturer reconsesurements we	d (IC) d (IC) n (FCC) rn (IC) sody sibility that pecified in a tested in and IEC Irmmendatio	0.817 W 0.969 W 2.24 W/ 3.00 W/ 8.0 W// this wireless FCC 47 CFF accordance accordance aternational ns. ned by me or	likg likg likg likg likg likg likg likg	1g le devicion de measure de 62200 de ade uno	50% se has dealth Character to the control of the c	PTT c cycle demor anada proce 0. Al	luty astrated a Safet dures Il mea	Occup d complia y Code 6 specified surement	Exposure pational / Controlled Exposure nce with the Specific for the Occupational / in FCC KDB 447498 s were performed in rrect to the best of my					
Max. SAR Level(s) Evaluated FCC Spatial Peak SAR Limit Celltech Labs Inc. declares under its Absorption Rate (SAR) RF exposure re Controlled Exposure environment. Th D01v05r01, Industry Canada RSS-10 accordance with the SAR system manulatest to the accuracy of data. All meaknowledge and belief. I assume full research	Face-held Face-held Body-worr Body-worr Body-worr Body-worr Head/E sole response equirements sole device was 22 Issue 4 aufacturer reconstructions assurements was ponsibility for	(FCC) d (IC) n (FCC) rn (IC) Body sibility that pecified in a tested in and IEC Irmmendatio ere perform r the comp	0.817 W 0.969 W 2.24 W/ 3.00 W/ 8.0 W// this wireless FCC 47 CFF accordance aternational ns. ned by me or leteness of t	//kg //kg //kg //kg //kg //kg //kg //kg	1g le deviding and Fermeasurement and fermeasuremen	50% te has deleath Curement 9-2:2010 der my spents an	PTT ocycle demorranda proce 0. All superv	duty estrated a Safet dures el mea ision a ch for	Occupid compliary Code 6 specified surementand are countries the qualif	Exposure pational / Controlled Exposure nce with the Specific for the Occupational / in FCC KDB 447498 s were performed in rrect to the best of my					

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	Portable 700/800 PTT Radio Transceiver			TK-54	10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 1 of 66		

Mike Meaker

Engineering Technologist

Celltech Labs Inc.

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

	TABLE OF CONTENTS	
	1.0 INTRODUCTION	4
	2.0 SAR MEASUREMENT SYSTEM	4
	3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS	5
	4.0 NO. OF TEST CHANNELS (N _C)	5
	5.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING	6
	6.0 FLUID DIELECTRIC PARAMETERS	7
	7.0 SAR MEASUREMENT SUMMARY	9
	8.0 SAR SCALING	14
	9.0 DETAILS OF SAR EVALUATION	15
	10.0 SAR EVALUATION PROCEDURES	15
	11.0 SYSTEM VERIFICATION	16
	12.0 SIMULATED EQUIVALENT TISSUES	17
	13.0 SAR LIMITS	17
	14.0 ROBOT SYSTEM SPECIFICATIONS	18
	15.0 PROBE SPECIFICATION (ET3DV6)	19
	16.0 PHANTOM	19
	17.0 DEVICE HOLDER	19
	18.0 TEST EQUIPMENT LIST	20
	19.0 MEASUREMENT UNCERTAINTIES (IC)	21
	20.0 REFERENCES	22
	APPENDIX A - SAR MEASUREMENT PLOTS	23
	APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS	43
	APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	48
	APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	51
	APPENDIX E - DIPOLE CALIBRATION	64
	APPENDIX F - PROBE CALIBRATION	65
١	APPENDIX G - PHANTOM CERTIFICATE OF CONFORMITY	66

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH468	ALH468800 IC ID:		282D-468800	KENWOOD	
DUT Type:	Porta	rtable 700/800 PTT Radio Transceiver		Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD	
2013 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 2 of 66		

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.1

	REVISION HISTORY								
REVISION NO.	DESCRIPTION	IMPLEMENTED BY	RELEASE DATE						
1.0	Initial Release	Mike Meaker	Aug. 23, 2013						
1.1	-Added revision to test standards listed on pg. 1	Mike Meaker	Aug. 30, 2013						

TEST REPORT SIGN-OFF							
DEVICE TESTED BY	REPORT PREPARED BY	QA REVIEW BY	REPORT APPROVED BY				
Mike Meaker	Mike Meaker	Glen Westwell	Mike Meaker				

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	Portable 700/800 PTT Radio Transceiver		Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	Itech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 3 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

1.0 INTRODUCTION

This measurement report demonstrates that the Kenwood USA Corporation Models: TK-5410D-K2 and TK-5410D-K3 Portable 700/800 PTT Radio Transceivers comply with the SAR (Specific Absorption Rate) RF exposure requirements FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC KDB 865664 (see reference [3]), IC RSS-102 Issue 4 (see reference [4]), IEEE Standard 1528-2003 (see reference [5]) and IEC Standard 62209-2:2010 (see reference [6]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (joystick), and remote control is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

DASY4 SAR Measurement System with Side Planar Phantom

DASY4 Measurement System with Barski Planar Phantom

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	Portable 700/800 PTT Radio Transceiver		Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	ttech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 4 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

	ME	ASURED RF COND	UCTED OUT	PUT POWE	R LEVELS	
Radio	Mode	Frequency Range	Test Freq.	Watts	dBm	Method
		768-776 MHz	769	2.7	34.3	
		700-770 WITZ	775	2.7	34.3	
TK-5410D-K3		798-806 MHz	799	2.7	34.3	
	CW	790-000 MHZ	805	2.7	34.3	Average
	CVV	806-824 MHz	806	2.9	34.6	Conducted
			824	3.0	34.7	
		851-869 MHz	851	851 3.0 34.7		
		031-009 WI 12	869	3.0	34.7	
		768-776 MHz	769	2.8	34.5	
			775	2.8	34.5	
		798-806 MHz	799	2.8	34.5	
TK-5410D-K2	CW	790-000 MHZ	805	2.8	34.5	Average
11X-54 10D-K2	CVV	806-824 MHz	806	3.0	34.7	Conducted
		000-02 4 IVITIZ	824	3.1	34.9	
		851-869 MHz	851	3.1	34.9	
		00 1-009 WII IZ	869	3.1	34.9	

Notes

4.0 NO. OF TEST CHANNELS (N_c)

Ant	tenna Part No.	Antenna Freq. Range	Test Freq. Range	N _c	Test Frequencies (MHz)
1	KRA-32	768 - 869 MHz	768 - 869 MHz	8	769, 775, 799, 805, 806, 824, 851, 869

Note: The number of test channels (*Nc*) were calculated in accordance with the procedures specified in FCC KDB 447498 (see reference [8]).

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ortable 700/800 PTT Radio Transceiver		Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 5 of 66	

^{1.} The test channels were selected in accordance with the procedures specified in FCC KDB 447498 (see reference [8]).

^{2.} The RF conducted output power levels of the DUT were measured by Celltech Labs prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector of the radio in accordance with requirements of FCC 47 CFR §2.1046 (see reference [13]) and IC RSS-Gen (see reference [14]).

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

5.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING

Accessory ID #	ACCESSORY CAT	EGORY: ANTENNA						
for Test Report	Part Number	Description		SAR Evaluation				
1	KRA-32	Detachable Whip (700/800 MHz)		Yes				
Accessory ID #	ACCESSORY CAT	EGORY: BATTERY						
for Test Report	Part Number	Description		SAR Evaluation				
а	KNB-54N	NiMH (7.2V, 2500mAh)		Yes				
b	KNB-43L	Lithium Polymer (7.4V, 3300mAh)	Yes					
Accessory ID #	ACCESSORY CAT	EGORY: BODY-WORN						
for Test Report	Part Number	Description	SAR Evaluation					
1	KBH-11	Belt-clip (contains metal)	Yes					
2	KLH-133K2	Leather Case		Yes				
Accessory ID #	ACCESSORY CATEGORY: AUDIO							
for Test Report	Part Number	Description	Audio Accessory Grouping	SAR Evaluation				
G1a	KMC-51	Speaker-Mic	Group 1	Yes				
G1b	KMC-41	Noise Cancelling Speaker-Mic	(Speaker-mic)	No ¹				
G2	KEP-1	Heavy Duty Earphone	Group 2 (Earphone)	No ¹				
G3a	KHS-11BL	2-Wire Palm Mic w/ Earphone	Group 5	No ¹				
G3b	KHS-12BL	3-Wire Lapel Microphone w/ Earpiece	(Palm-Mic)	No ¹				
Accessory ID #	ACCESSORY CAT	EGORY: OTHER						
for Test Report	Part Number	Description		SAR Evaluation				
n/a	KCT-51	6pin Hirose Adapter		No ²				

Manufacturer's disclosed accessory listing information provided by Kenwood USA Corporation

Notes:

2. The Hirose adapter is not tested for SAR because it is a passive connector only and will not affect SAR on its own.

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio	Transceiver	Models:	TK-54	768-869 MHz	KENWOOD	
2013 Celltech La	ibs Inc.	This document is not to be r	eproduced in who	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 6 of 66

^{1.} Audio accessories not evaluated for SAR in accordance with the procedures and provisions of FCC KDB 643646 D01v01r01 Page 10 Section 1).

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

6.0 FLUID DIELECTRIC PARAMETERS

	FLUID DIELECTRIC PARAMETERS													
Date: 08/15	5-16/2013	Free	quency: 835 l	MHz	Tissu	ie: Head								
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity								
0.735	41.98	0.79	41.5	0.9	1.16%	-12.22%								
0.745	41.74	8.0	41.5	0.9	0.58%	-11.11%								
0.755	41.71	0.81	41.5	0.9	0.51%	-10.00%								
0.765	41.65	0.82	41.5	0.9	0.36%	-8.89%								
0.775	41.57	0.83	41.5	0.9	0.17%	-7.78%								
0.785	41.56	0.84	41.5	0.9	0.14%	-6.67%								
0.795	41.1	0.87	41.5	0.9	-0.96%	-3.33%								
0.805	41.11	0.86	41.5	0.9	-0.94%	-4.44%								
0.815	40.82	0.89	41.5	0.9	-1.64%	-1.11%								
0.824*	41	0.89	41.5	0.9	-1.20%	-1.11%								
0.825	41	0.89	41.5	0.9	-1.20%	-1.11%								
0.835	40.77	0.89	41.5	0.9	-1.76%	-1.11%								
0.845	40.69	0.91	41.5	0.9	-1.95%	1.11%								
0.855	40.7	0.91	41.5	0.9	-1.93%	1.11%								
0.865	40.66	0.92	41.5	0.9	-2.02%	2.22%								
0.869*	40.5	0.92	41.5	0.9	-2.41%	2.22%								
0.875	40.22	0.92	41.5	0.9	-3.08%	2.22%								
0.885	40.3	0.94	41.5	0.9	-2.89%	4.44%								
0.895	40.11	0.94	41.5	0.9	-3.35%	4.44%								
0.905	40.08	0.97	41.5	0.9	-3.42%	7.78%								
0.915	39.92	0.96	41.5	0.9	-3.81%	6.67%								
0.925	40.06	1	41.5	0.9	-3.47%	11.11%								
0.935	39.59	0.99	41.5	0.9	-4.60%	10.00%								

*interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Aug 15	835 Head	23.0°C	22.2°C	≥ 15 cm	101.1 kPa	34%	1000
Aug 16	835 Head	23.0°C	22.2°C	≥ 15 cm	101.1 kPa	34%	1000

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	ransceiver	Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	bs Inc.	This document is not to be r	eproduced in who	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 7 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 08/19	-20/2013	Free	quency: 835 l	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	55.23	0.89	55.2	0.97	0.05%	-8.25%
0.745	55.24	0.91	55.2	0.97	0.07%	-6.19%
0.755	55.01	0.9	55.2	0.97	-0.34%	-7.22%
0.765	55.1	0.92	55.2	0.97	-0.18%	-5.15%
0.775	54.77	0.93	55.2	0.97	-0.78%	-4.12%
0.785	54.71	0.94	55.2	0.97	-0.89%	-3.09%
0.795	54.8	0.94	55.2	0.97	-0.72%	-3.09%
0.805	54.64	0.95	55.2	0.97	-1.01%	-2.06%
0.815	54.61	0.97	55.2	0.97	-1.07%	0.00%
0.824*	54.7	0.97	55.2	0.97	-0.91%	0.00%
0.825	54.74	0.97	55.2	0.97	-0.83%	0.00%
0.835	54.64	0.97	55.2	0.97	-1.01%	0.00%
0.845	54	0.98	55.2	0.97	-2.17%	1.03%
0.855	54.16	1.01	55.2	0.97	-1.88%	4.12%
0.865	54.16	1.02	55.2	0.97	-1.88%	5.15%
0.869*	54	1.02	55.2	0.97	-2.17%	5.15%
0.875	53.86	1.02	55.2	0.97	-2.43%	5.15%
0.885	53.89	1.04	55.2	0.97	-2.37%	7.22%
0.895	53.91	1.05	55.2	0.97	-2.34%	8.25%
0.905	53.63	1.05	55.2	0.97	-2.84%	8.25%
0.915	53.71	1.06	55.2	0.97	-2.70%	9.28%
0.925	53.38	1.07	55.2	0.97	-3.30%	10.31%
0.935	53.64	1.09	55.2	0.97	-2.83%	12.37%

*interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 19	835 Body	23.0°C	23.4°C	≥ 15 cm	101.5 kPa	33%	1000
Aug 20	835 Body	23.0°C	23.4°C	≥ 15 cm	101.5 kPa	33%	1000

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	ransceiver	Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	ibs Inc.	This document is not to be r	eproduced in who	ole or in part with	hout the pri	or written permis	sion of Celltech Labs Inc.	Page 8 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

7.0 SAR MEASUREMENT SUMMARY

	Tal	ole 1						FACE-	HEL	D SAR EV	ALUA	ATION I	RESU	LTS			
	De	vice Und	er Test	TK-54	10D-K3												
		Test	Dates	Aug. 1	6, 2013												
		С			1		2	3		4		5		6	7	8	
							SAR W	/kg 1g						SAR W	/kg 1g		
		Test	Cond.				Batte	ry a					В	attery b	(default)		
R	Antenna	Freq. (MHz)	Pwr (W)	100%	ptt d/f	50%	ptt d/f	Drift (dB)	50%+drift	100	% ptt d/f	50%	ptt d/f	Drift dB	50%+drift	
1		769	2.7				n/a	a						n/	a		
2		775	2.7				n/a	a			F1	1.21	0.6	605	-0.945	0.752	
3		799	2.7				n/a	Э						n/	a		
4	1	805	2.7				n/a	a			F2	0.981	0.4	.491 -1.02		0.620	
5] '	806	2.9	n/a										n/	a		
6		824	3.0	F5	1.39	0	.695	-0.30)2	0.745	F3	1.37	0.6	685	-0.159	0.711	
7		851	3.0				n/a	a							/a		
8		869	3.0				n/a	a			F4	0.951	0.4	476	-1.15	0.620	
		SAR	LIMITS					HEAD		SI	PATIAL	PEAK		RF	EXPOSURE CA	ATEGORY	
	C 47 CFR 2.1	1093 F	lealth Ca	nada Sa	fety Code	6		8.0 W/kg		1	g aver	aging		0	ccupational / C	ontrolled	
Note		41 11			., .				D	0:1 51	- Di						
rest	Mode = CW	DUT Dista				a Ann	endiy D)	\	Phant	tom = Side Plar			to Plan:	ar Phant	om (see Apper	ndix D)	
	T TOTAL OF	DOT DISTA		2.5 cm	antoni (se	o App	Jenaix D			Onortest An	iterina	Distance	5.0 cm		om (see Apper	idix D)	
C =	C = Column; R = Row F1-Fx (F = Face) denotes the corresponding Face SAR Plot # as shown in Appendix A																
1. W	/hen test re	duction ap	plies, th							ith N/A (Not A							
	/hen the SA other require					nest o	utput po	wer char	nnel us	sing the defau	ılt battı	ery is <u><</u> 3	.5 W/k	g (50%	PTT duty facto	or), testing of	
	B. When the SAR for all antennas tested using the default battery is ≤ 4.0 W/kg, test additional batteries using the antenna and channel configuration that resulted in the highest SAR.																

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models: TK-5410D-K2/K3			768-869 MHz	KENWOOD
2013 Celltech La	ıbs Inc.	This document is not to be r	eproduced in who	ole or in part wit	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 9 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1

	Tak	ole 2					FACE-	HELI	D SAR EVA	ALUATION F	RESULTS				
	De	vice Unde	er Test	TK-541	10D-K2										
		Test	Dates	Aug. 16	6, 2013										
		С		•	1	2	3		4	5	6	7	8		
						SAR W/	kg 1g			SAR W/kg 1g					
		Test	Cond.			Batter	уа				Battery I	(default)			
R	Antenna	Freq. (MHz)	Pwr (W)	100%	ptt d/f	50% ptt d/f	Drift (dB)	50%+drift	100% ptt d/f	d/f 50% ptt d/f Drift dB 50%+de				
1		769	2.8			n/a					r	ı/a			
2		775	2.8			n/a	l				r	ı/a			
3		799	2.8			n/a	ı		n/a						
4	1	805	2.8	n/a							r	ı/a			
5	ı	806	3.0			n/a				n/a					
6		824	3.1	F6	1.45	0.725	-0.40	00	0.795	n/a					
7		851	3.1			n/a					r	ı/a			
8		869	3.1			n/a					r	ı/a			
		SAR	LIMITS				HEAD		SP	ATIAL PEAK	R	F EXPOSURE C	ATEGORY		
FCC	47 CFR 2.1	1093 F	lealth Ca	ınada Saf	ety Code	6 8	.0 W/kg		10	g averaging	(Occupational / C	ontrolled		
Note	-														
Test Mode = CW (Unmodulated Continuous Wave) Phantom = Side Planar Phantom Front of DUT Distance to Planar Phantom (see Appendix D) Shortest Antenna Distance															
	Front of	DUT Dista			antom (se	e Appendix D)			Shortest Ant	tenna Distance t		tom (see Apper	ndix D)		
			2	2.5 cm							5.0 cm				
	Column; R =						respondi	ng Face	e SAR Plot # as	shown in Appen	ıdix A				
1. Th	e worst case	configurat	ion was r	repeated	with the K	2 model vaiant.									

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models:	TK-54	768-869 MHz	KENWOOD	
2013 Celltech La	bs Inc.	This document is not to be r	eproduced in who	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 10 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

	Tal	ole 3				1	BODY-V	WOR	N SAR EV	ALU	ATION	RESU	JLTS			
	De	vice Und	er Test	TK-54	10D-K3											
	Body-\	vorn Acc	essory	1												
	Α	udio Acc	essory	G1a												
		Test	Dates	Aug. 2	20, 2013											
		С			1	2	3		4		5	(6	7	8	
						SAR W/	kg 1g			SAR W/kg 1g						
		Test	Cond.			Batte	ry a					В	attery b	(default)		
R	Antenna	Freq. (MHz)	Pwr (W)	100%	6 ptt d/f	Drift (d	IB)	50%+drift	100% ptt d/f 50% ptt d/f			Drift dB	50%+drift			
1		769	2.7			n/a	3						n/	a		
2		775	2.7			n/a	a			B1	3.37	1.69 -0.761			2.01	
3		799	2.7			n/a	a	n/a				а				
4	1	805	2.7			n/a	a			B2 2.40 1.20			20	-0.658	1.40	
5		806	2.9			n/a	1						n/	а		
6		824	3.0	B5	3.43	1.72	-0.22	2	1.81	В3	3.38	1.69		-0.204	1.77	
7		851	3.0			n/a	a				Ī	,	n/	а		
8		869	3.0			n/a				B4	2.43	1.	22	-1.23	1.61	
			LIMITS				HEAD				PEAK			EXPOSURE C		
Note	2 47 CFR 2.1	1093 F	lealth Ca	ınada Sa	fety Code	6 8	3.0 W/kg		1	g avera	aging		0	ccupational / C	ontrolled	
	Mode = CW	(Unmodula	ited Conf	inuous V	Vave)			Phanto	om = Side Plan	ar Pha	ntom					
		<u>` </u>				e Appendix D)						to Plana	ar Phant	om (see Apper	ndix D)	
			2	2.0 cm								2.8 cm				
	C = Column; R = Row F1-Fx (F = Face) denotes the corresponding Face SAR Plot # as shown in Appendix A															
	 When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable). When the SAR of an antenna tested on the highest output power channel using the default battery is ≤ 3.5 W/kg (50% PTT duty factor), testing of 															
	hen the SA ther require					nest output po	wer chan	nel us	ing the defau	It batte	ery is <u><</u> 3	.5 W/k(g (50%	PTT duty facto	or), testing of	
	3. When the SAR for all antennas tested using the default battery is ≤ 4.0 W/kg, test additional batteries using the antenna and channel configuration that resulted in the highest SAR.															

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	3 Celltech Labs Inc. This document is not to be reproduced in				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 11 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

	Tal	ole 4					BODY-W	VORI	N SAR EV	ALU	ATION	RESU	JLTS		
	De	vice Und	er Test	TK-54	110D-K3										
	Body-v	vorn Acc	essory	2											
	Α	udio Acc	essory	G1a											
		Tes	t Dates	Aug. 2	20, 2013										
		С			1	2	3		4		5 6 7 8				8
						SAR W							SAR W		
R	Antenna	Test Frea.	Cond. Pwr			Batte	ry a			Battery b (default)					
K	Antenna	(MHz)	(W)	100% ptt d/f 50% ptt d/f Drift (d			Drift (dB	3)	50%+drift	100% ptt d/f		50%	ptt d/f	Drift dB	50%+drift
1		769	2.7		n/a								n/	а	
2 775 2.7 B10 3.47 1.74 -1.28 2.3										В6	3.42	1.	71	-0.886	2.10
3		799	2.7			n/a	a			n/a					
4	1	805	2.7			n/a	a			B7 2.37 1.19			19	-0.791	1.42
5	'	806	2.9			n/a	a						n/	а	
6		824	3.0			n/a	a			B8 3.42 1.71			-0.290	1.83	
7		851	3.0			n/a	a				ı	ı	n/	а	_
8		869	3.0			n/a				В9	2.32	1.	16	-1.24	1.54
			LIMITS		4		HEAD				PEAK			EXPOSURE C	
Note	C 47 CFR 2.1	1093 F	Health Ca	inada S	afety Code	6 8	3.0 W/kg		10	g aver	aging		O	ccupational / C	ontrolled
	Mode = CW	(Unmodula	ated Conf	inuous	Wave)		F	Phanto	m = Side Plan	ar Pha	ntom				
	Front of	DUT Dista	nce to P	anar Ph	nantom (se	e Appendix D)			Shortest Ant	tenna	Distance t	to Plana	ar Phant	om (see Apper	ndix D)
			2	2.0 cm								2.8 cm			
	C = Column; R = Row F1-Fx (F = Face) denotes the corresponding Face SAR Plot # as shown in Appendix A														
			•			configurations			•			- \A//	(FOO'	DTT (()	. A. 1 C
	2. When the SAR of an antenna tested on the highest output power channel using the default battery is ≤ 3.5 W/kg (50% PTT duty factor), testing of all other required channels is not necessary.														
	3. When the SAR for all antennas tested using the default battery is ≤ 4.0 W/kg, test additional batteries using the antenna and channel configuration that resulted in the highest SAR.														

	Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
Ī	DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
	2013 Celltech La	3 Celltech Labs Inc. This document is not to be reproduced in v				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 12 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

	Tal	ole 5					BODY-W	ORN SAR EV	ALUATION	RESULTS				
	De	vice Und	er Test	TK-54	410D-K2									
	Body-\	worn Acc	essory	2										
	Α	udio Acc	essory	G1a										
		Test	Dates	Aug.	20, 2013									
		С			1	2	3	4	5 6 7 8					
						SAR W/	SAR W/kg 1g			SAR W	//kg 1g			
		Test	Cond.	ļ		Batte	ry a		Battery b (default)					
R	Antenna	Freq. (MHz)	Pwr (W)	1009	100% ptt d/f 50% ptt d/f Drift (dB) 50%+drift 100% ptt d/f 50% p						Drift dB	50%+drift		
1		769	2.8			n/a	3			n/	'a			
2		775	2.8	B11	2.98	1.49	-1.30	2.01	n/a					
3		799	2.8			n/a	a			n/	'a			
4	1	805	2.8			n/a	n/a				'a			
5		806	3.0			n/a	a		n/a					
6		824	3.1							n/	'a			
7		851	3.1			n/a	3			n/	'a			
8		869	3.1			n/a	a			n/	'a			
			LIMITS				HEAD		ATIAL PEAK		EXPOSURE C			
FC(C 47 CFR 2.1	1093 F	lealth Ca	nada S	afety Code	6 6	3.0 W/kg		g averaging	0	ccupational / (Controlled		
	Mode = CW	(Unmodula	ated Con	tinuous	Wave)		Pr	hantom = Side Plan	ar Phantom					
		<u> </u>				ee Appendix D)		Shortest Antenna Distance to Planar Phantom (see Appendix D)						
			2	2.0 cm		,		2.8 cm						
C = (Column; R =	Row		F1-Fx	(F = Face)	denotes the co	rresponding I	Face SAR Plot # as	shown in Apper	ndix A				
1. Th	ne worst case	e configurat	tion was	repeate	d with the h	(2 model vaiant.								

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	ibs Inc.	This document is not to be r	eproduced in who	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 13 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

8.0 SAR SCALING

SCALING	OF MA	XIMUM S	AR LEVE	S TO MAN	JFACTU	RER'S 1	TUNE-UP	TOLER	RANCE SPEC	CIFICATION
Test Config.	Test Freq. (MHz)	Antenna	Battery	Body-worn Accessory ID #	Cond. Power	Drift	SAR Le (50% P		Scaling up to Manuf. Upper Tol.	Scaled SAR (50% PTT d/f) 1g (W/kg)
	(111112)				Watts	dB	W/kg	Plot #	Power Spec.	19 (11/119)
FCC (scaled	without dr	ift)								
Face-Held	824	1	а	n/a	3.0	-0.302	0.695	F5	+0.7 dB	0.817
Face-Held	824	1	а	n/a	3.1	-0.400	0.725	F6	+0.5 dB	0.813
Body-worn	775	1	а	2	2.7	-1.28	1.74	B10	+1.1 dB	2.24
IC (scaled with	th drift)									
Face-Held	775	1	b	n/a	2.7	-0.945	0.616*	F1	+1.1 dB	0.969
Face-Held	824	1	а	n/a	3.1	-0.400	0.725	F6	+0.5 dB	0.892
Body-Worn	775	1	а	2	2.7	-1.28	1.74	B10	+1.1 dB	3.00

Notes:

- 1. Only the highest SAR values for face and body per frequency band are scaled.
- 2. The resulting value is the reported SAR.
- 3. The scaled SAR levels are below the FCC/IC Occupational SAR Limit of 8.0 W/kg.
- 4. IC requires that the reported SAR also be scaled for the measured drift, therefore the above table calculates the SAR separately for IC.
- 5. *F6 had a fluid deviation of greater than 5%, therefore the measured SAR was corrected according to the procedures of IEC 62209-2:2010 as shown below.

	SCALING OF SAR LEVELS FOR FLUID DEVIATION CORRECTION (IC Only)														
Test Config.	Date	Test Freq. (GHz)	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	Measured SAR Level 50% d/f (W/kg)	Corrected SAR Level 50% d/f (W/kg)					
Face	8/16	0.775	41.57	0.83	41.5	0.9	0.17%	-7.78%	0.605	0.616					

Correction Factor:

SAR Plot#	B10
Frequency (GHz)	0.775
Се	-0.2186
Сσ	0.7585
ΔΕ	-7.78%
Δσ	0.17%
ΔSAR	1.83%

	Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
	DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
:	2013 Celltech La	ibs Inc.	This document is not to be r	eproduced in who	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 14 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

9.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels evaluated for SAR were selected in accordance with the procedures described in FCC KDB 447498 (see reference [8]).
- 2. Each SAR evaluation was performed with a fully charged battery. Due to radio heat-up the battery was replaced and the radio allowed to cool between the area and zoom scan evaluations.
- The SAR drift of the DUT was measured by the DASY4 system for the duration of the SAR evaluations. The
 measured SAR drift was added to the measured SAR levels to report scaled SAR levels as shown in the SAR test
 data tables.
- 4. A SAR-versus-Time power drift evaluation was performed (see Appendix A).
- 5. The fluid temperature was measured prior to and after the SAR evaluations. The fluid temperature remained within +/- 2°C during the SAR evaluations.
- 6. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 7. The DUT was tested at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 8. The DUT was evaluated for SAR in accordance with the procedures described in FCC KDB 643646 D01v01 (see reference [9]).
 - a. Battery b was selected as the default battery because it has the highest capacity. Both batteries are of equal thickness.
 - b. Audio accessory G1a was selected as the default audio accessory.
 - c. Additional audio accessories do not require testing because the highest SAR is <3.5 W/kg.
 - d. The K2 model variant was tested in the worst case face and body-worn configurations from the K3 model testing.

10.0 SAR EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 30 mm x 30 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	ibs Inc.	This document is not to be r	eproduced in who	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 15 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

11.0 SYSTEM VERIFICATION

Prior to the SAR evaluations, system checks were performed with a planar phantom and SPEAG 835 MHz dipole (see Appendix B) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]) and IEC Standard 62209-2:2010 (see reference [6]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the SAR system manufacturer's dipole calibration target SAR value (see Appendix E).

	dipol	e calibrati	on targe	t SAR va	alue (see /	Appendi	x E).									
				Ş	SYSTEM	PERF	ORM	ANCE C	HECK	EVAL	.UATIO	NS				
Test	Equiv. Tissue		SAR 1g (W/kg)		Dielec	tric Cons ε _r	stant		nductivit (mho/m)		ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Freq. (MHz)	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
Aug 15	Head 835	2.36 ±10%	2.38	+0.8%	41.5 ±5%	40.8	-1.7%	0.90 ±5%	0.89	-1.1%	1000	23.0	22.2	≥ 15	34	101.1
Aug 19	Body 835	2.47 ±10%	2.39	-3.2%	55.2 ±5%	54.6	-1.1%	0.97 ±5%	0.97	0.0%	1000	23.0	23.4	≥ 15	33	101.5
	The target SAR values are the measured values from the SAR system manufacturer's dipole calibration (see Appendix E).															
	2. The target dielectric parameters are the nominal values from the SAR system manufacturer's dipole calibration (see Appendix E).															
Notes	Notes The fluid temperature was measured prior to and after the system performance check evaluations. The fluid temperature remained within +/-2°C during the system performance check evaluations.												rature			
	4.									easured	d prior to	the syst	em perfo	ormance	check us	sing a
	The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C). Tuning element Spacer Signal Generator Att 3 Att 1 Att 2 Att 1 Att 2															

System Performance Check Measurement Setup (IEEE Standard 1528-2003)

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	8800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	abs Inc.	This document is not to be r	eproduced in who	ole or in part wit	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 16 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

12.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [10] and [11]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [5]) and IEC Standard 62209-1:2005 (see reference [7]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

		SIMULATED TI	SSUE MIXTURES		
	Water		40.71 %		53.79 %
	Sugar	835 MHz Head Tissue Mixture	56.63 %		45.13 %
INGREDIENT	Salt		1.48 %	835 MHz Body Tissue Mixture	0.98 %
	HEC		0.99 %		
	Bactericide		0.19 %		0.10 %

13.0 SAR LIMITS

	SAR RF EXPOSURE LIMITS										
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)								
-	atial Average over the whole body)	0.08 W/kg	0.4 W/kg								
	spatial Peak over any 1 g of tissue)	1.6 W/kg	8.0 W/kg								
	spatial Peak t/ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg								

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	Kenw	enwood USA Corporation FCC ID:		ALH468800 IC ID:		282D-468800	KENWOOD	
DUT Type:	Porta	table 700/800 PTT Radio Transceiver		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	tech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 17 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

14.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 80
Software	Postprocessing Software: SEMCAD, V1.8 Build 186
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1590
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Phantom 1	
Туре	SAM V4.0C
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 25 liters
Phantom 2	
Туре	Side Planar Phantom
Shell Material	Plexiglass
Bottom Thickness	2.0 mm ± 0.1 mm
Inner Dimensions	72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H)
Phantom 3	
Туре	Barski Planar Phantom
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 70 liters

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	3800 IC ID:		282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	ransceiver	Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	elltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 18 of 66	

Aug. 23, 2013

 Aug 16-20, 2013
 081413ALH-1249S

 Test Report Issue Date
 Description of Test(s)

Test Report Serial No. 081413ALH-1249S

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.1

Test Lab Certificate No. 2470.01

15.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core;

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In head simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity: \pm 0.2 dB in head tissue (rotation around probe axis)

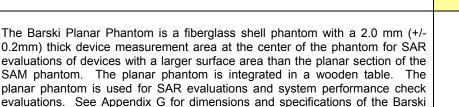
 \pm 0.4 dB in head tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: $\pm 0.2 dB$

Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm

> Distance from probe tip to dipole centers: 2.7 mm General dosimetry up to 3 GHz; Compliance tests of mobile phone


ET3DV6 E-Field Probe

16.0 PHANTOM

Application:

planar phantom.

The Side Planar Phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

The SAM Twin Phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections. See Appendix H for specifications of the SAM Twin Phantom V4.0C.

Plexiglas Side Planar Phantom

Barski Planar Phantom

SAM Twin Phantom V4.0C

17.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	ALH468800		282D-468800	KENWOOD
DUT Type:	Porta	able 700/800 PTT Radio Transceive		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	abs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 19 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

18.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	AGGET NO.	OLIVIAL NO.	CALIBRATED	INTERVAL
х	Schmid & Partner DASY4 System	-	-	-	-
х	-DASY4 Measurement Server	00158	1078	CNR	CNR
х	-Robot	00046	599396-01	CNR	CNR
х	-DAE4	00019	353	19-Apr-12	Biennial
х	-ET3DV6 E-Field Probe	00017	1590	24-Apr-13	Annual
х	-D835V2 Validation Dipole	00217	4d075	20-Apr-12	Triennial
х	Side Planar Phantom	00156	161	CNR	CNR
	Barski Planar Phantom	00155	03-01	CNR	CNR
	SPEAG SAM Twin Phantom V4.0C	00154	1033	CNR	CNR
х	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
х	Gigatronics 8652A Power Meter	00007	1835272	03-May-12	Biennial
х	Gigatronics 80701A Power Sensor	00014	1833542	03-May-12	Biennial
х	Gigatronics 80334A Power Sensor	-	1837001	03-May-12	Biennial
х	HP 8753ET Network Analyzer	00134	US39170292	26-Apr-12	Biennial
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	02-May-12	Biennial
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required				_

Applicant:	Kenw	enwood USA Corporation FCC ID:		ALH468800 IC ID:		282D-468800	KENWOOD	
DUT Type:	Porta	table 700/800 PTT Radio Transceive		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	tech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 20 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

19.0 MEASUREMENT UNCERTAINTIES (IC)

UNCERT	AINTY BU	IDGET FOR	DEVICE EV	ALUATION (IEC 6	2209-2	2:2010)		
Source of Uncertainty	IEC 62209-2 Section	Tolerance / Uncertainty ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Standard Uncertainty ±% (1g)	Standard Uncertainty ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (835 MHz)	7.2.2.1	6.0	Normal	1	1	1	6.0	6.0	×
Isotropy	7.2.2.2	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
Boundary Effect	7.2.2.6	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Linearity	7.2.2.3	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
Detection Limits	7.2.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Readout Electronics	7.2.2.7	0.3	Normal	1	1	1	0.3	0.3	∞
Response Time	7.2.2.8	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞
Integration Time	7.2.2.9	2.6	Rectangular	1.732050808	1	1	1.5	1.5	oc
RF Ambient Conditions	7.2.4.5	3	Rectangular	1.732050808	1	1	1.7	1.7	oc
Probe Positioner Mechanical Restrictions	7.2.3.1	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell	7.2.3.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Post-processing	7.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	7.2.3.4.3	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	7.2.3.4.2	3.6	Normal	1	1	1	3.6	3.6	8
Drift of Output Power (meas. SAR drift)	7.2.2.10	0	Rectangular	1.732050808	1	1	0.0	0.0	×
Phantom and Tissue Parameters									
Phantom Uncertainty	7.2.3.2	4	Rectangular	1.732050808	1	1	2.3	2.3	×
SAR Correction Algorithm for deviations in permittivity and conductivity	7.2.4.3	1.9	Normal	1	1	0.81	1.9	1.54	∞
Liquid Conductivity (measured)	7.2.4.3	7.78	Normal	1	0.78	0.71	6.1	5.5	∞
Liquid Permittivity (measured)	7.2.4.3	2.41	Normal	1	0.23	0.26	0.6	0.6	∞
Liquid Permittivity - temp. uncertainty	7.2.4.4	1	Rectangular	1.732050808	0.78	0.71	0.5	0.4	∞
Liquid Conductivity - temp. uncertainty	7.2.4.4	0.25	Rectangular	1.732050808	0.23	0.26	0.0	0.0	∞
Combined Standard Uncertainty	7.3.1		RSS				11.30	10.97	
Expanded Uncertainty (95% Confidence Interval)	7.3.2		k=2				22.61	21.94	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Applicant:	Kenw	nwood USA Corporation FCC ID:		ALH468800 IC ID:		282D-468800	KENWOOD	
DUT Type:	Porta	table 700/800 PTT Radio Transceiver		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 21 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

20.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission, Office of Engineering and Technology "SAR Measurement Requirements for 100 MHz to 6 GHz"; KDB 865664 D01v01r01: May 2013.
- [4] Industry Canada "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 4: March 2010.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] International Standard IEC 62209-2 Edition 1.0 2010-03 "Human exposure to radio frequency fields from hand-held & body-mounted wireless communication devices Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)".
- [7] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures."
- [8] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v05r01: May 2013.
- [9] Federal Communications Commission, Office of Engineering and Technology "SAR Test Reduction Considerations for Occupational PTT Radios", KDB 643646 D01v01r01: April 2011.
- [10] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.
- [11] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [12] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- [13] Federal Communications Commission "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.
- [14] Industry Canada "General Requirements and Information for the Certification of Radiocommunication Equipment", Radio Standards Specification RSS-Gen Issue 3: December 2010.

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

APPENDIX A - SAR MEASUREMENT PLOTS

Applicant:	Kenw	nwood USA Corporation FCC		ALH468800 IC		IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	able 700/800 PTT Radio Transceiver		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	113 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 23 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

F1

Date/Time: 16/08/2013 10:21:25 AM

Face - Aug16

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 22.2C; Barometric Pressure: 101.1 kPa; Humidity: 34%

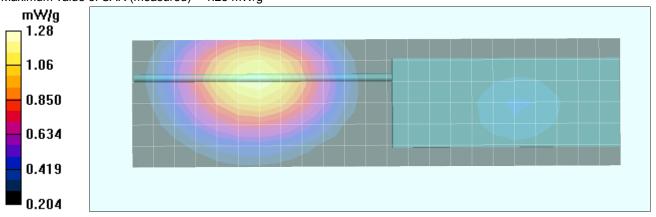
Procedure Notes:

Communication System: 700/800 Frequency: 775 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used: f = 775 MHz; σ = 0.83 mho/m; ϵ_r = 41.6; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.84, 6.84, 6.84); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

775 - Li-poly/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.20 mW/g

775 - Li-poly/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.8 V/m; Power Drift = -0.945 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.918 mW/g Maximum value of SAR (measured) = 1.28 mW/g

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	ALH468800		282D-468800	KENWOOD
DUT Type:	Porta	table 700/800 PTT Radio Transceive		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	3 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 24 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

F2

Date/Time: 16/08/2013 11:06:09 AM

Face - Aug16

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

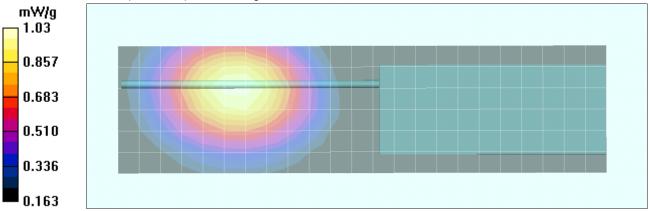
Program Notes: Ambient Temp: 23C; Fluid Temp: 22.2C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Procedure Notes:

Communication System: 700/800 Frequency: 805 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used: f = 805 MHz; $\sigma = 0.86$ mho/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.84, 6.84, 6.84); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


805 - Li-poly/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.00 mW/g

805 - Li-poly/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.80 V/m; Power Drift = -1.02 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.981 mW/g; SAR(10 g) = 0.734 mW/g Maximum value of SAR (measured) = 1.03 mW/g

	Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
	DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models: TK-541		10D-K2/K3	768-869 MHz	KENWOOD
2	2013 Celltech La	ibs Inc.	This document is not to be r	eproduced in who	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 25 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

F3

Date/Time: 16/08/2013 11:47:14 AM

Face - Aug16

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 22.2C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Procedure Notes:

Communication System: 700/800 Frequency: 824 MHz; Duty Cycle: 1:1

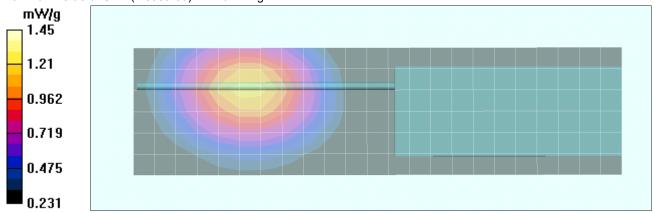
Medium: HSL835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.84, 6.84, 6.84); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

824 - Li-poly/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.18 mW/g

824 - Li-poly/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.05 V/m; Power Drift = -0.159 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 1.37 mW/g; SAR(10 g) = 1.02 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.45 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Portable 700/800 PTT Radio Transceiver		ransceiver	Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in wh				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 26 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

F4

Date/Time: 16/08/2013 12:40:13 PM

Face - Aug16

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 22.2C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Procedure Notes:

Communication System: 700/800 Frequency: 869 MHz; Duty Cycle: 1:1

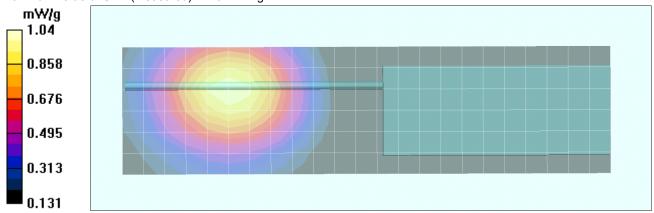
Medium: HSL835 Medium parameters used (interpolated): f = 869 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.84, 6.84, 6.84); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

869 - Li-poly/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.993 mW/g

869 - Li-poly/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 6.83 V/m; Power Drift = -1.15 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.951 mW/g; SAR(10 g) = 0.695 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.04 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Portable 700/800 PTT Radio Transceive		Transceiver	Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in wh				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 27 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

F5

Date/Time: 16/08/2013 1:17:48 PM

Face - Aug16

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 22.2C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Procedure Notes:

Communication System: 700/800 Frequency: 824 MHz; Duty Cycle: 1:1

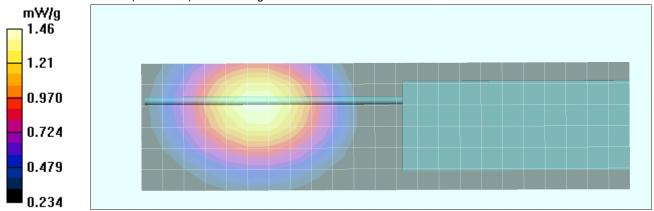
Medium: HSL835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.84, 6.84, 6.84); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

824 - NiMH/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.41 mW/g

824 - NiMH/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.55 V/m; Power Drift = -0.302 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 1.39 mW/g; SAR(10 g) = 1.03 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.46 mW/g

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	Portable 700/800 PTT Radio Transceive		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	013 Celltech Labs Inc. This document is not to be reproduced in wh				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 28 of 66

Aug. 23, 2013

Test Report Issue Date

Test Report Serial No. 081413ALH-1249S

Description of Test(s)

Specific Absorption Rate

Oc

Rev. 1.1

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

F₆

Date/Time: 16/08/2013 1:48:41 PM

Face - Aug16

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 22.2C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Procedure Notes:

Communication System: 700/800 Frequency: 824 MHz; Duty Cycle: 1:1

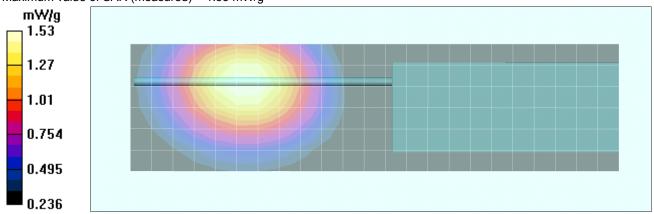
Medium: HSL835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.84, 6.84, 6.84); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

K2 - 824 - NiMH/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.54 mW/g

K2 - 824 - NiMH/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.11 V/m; Power Drift = -0.400 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 1.45 mW/g; SAR(10 g) = 1.08 mW/g

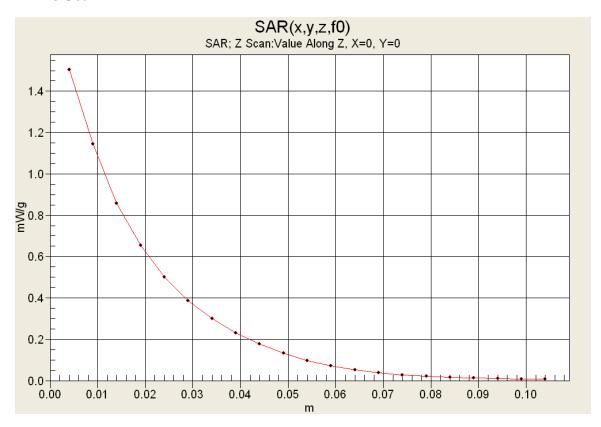
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.53 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	Portable 700/800 PTT Radio Transceiver		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	13 Celltech Labs Inc. This document is not to be reproduced in whether the company of the compan				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 29 of 66

Aug. 23, 2013

Test Report Issue Date


Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	Kenwood USA Corporation		FCC ID:	ALH468	800	IC ID: 282D-468800		KENWOOD
DUT Type:	Porta	ortable 700/800 PTT Radio Transce		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	ibs Inc.	This document is not to be r	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 30 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

B1

Date/Time: 20/08/2013 8:57:34 AM

Body - Aug20

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

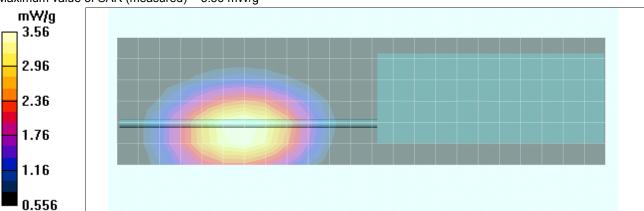
Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

Communication System: 700/800 Frequency: 775 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 775 MHz; σ = 0.93 mho/m; ε_r = 54.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


775 - Li-poly - Belt-clip - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.59 mW/g

775 - Li-poly - Belt-clip - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.4 V/m; Power Drift = -0.761 dB

Peak SAR (extrapolated) = 4.29 W/kg

SAR(1 g) = 3.37 mW/g; SAR(10 g) = 2.47 mW/g Maximum value of SAR (measured) = 3.56 mW/g

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ortable 700/800 PTT Radio Transce		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech	_abs Inc.	This document is not to be r	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 31 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

B2

Date/Time: 20/08/2013 9:30:50 AM

Body - Aug20

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

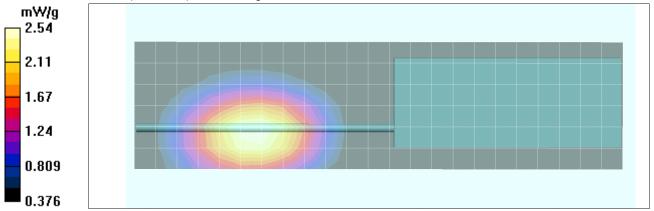
Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

Communication System: 700/800 Frequency: 805 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 805 MHz; σ = 0.95 mho/m; ε_r = 54.6; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


805 - Li-poly - Belt-clip - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.57 mW/g

805 - Li-poly - Belt-clip - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.8 V/m; Power Drift = -0.658 dB

Peak SAR (extrapolated) = 3.07 W/kg

SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.75 mW/g Maximum value of SAR (measured) = 2.54 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Portable 700/800 PTT Radio Transceiver		Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD	
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in what is not to be reproduced				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 32 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

B3

Date/Time: 20/08/2013 10:09:21 AM

Body - Aug20

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

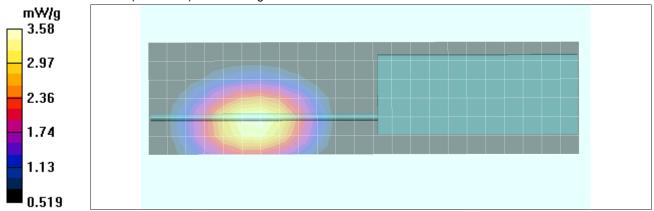
Communication System: 700/800 Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

824 - Li-poly - Belt-clip - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.55 mW/g


824 - Li-poly - Belt-clip - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.0 V/m; Power Drift = -0.204 dB

Peak SAR (extrapolated) = 4.34 W/kg

SAR(1 g) = 3.38 mW/g; SAR(10 g) = 2.45 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.58 mW/g

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	Portable 700/800 PTT Radio Transceiver		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	13 Celltech Labs Inc. This document is not to be reproduced in whether the company of the compan				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 33 of 66

Test Report Issue Date Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

Description of Test(s) Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category Occupational (Controlled)

B4

Date/Time: 20/08/2013 10:43:59 AM

Body - Aug20

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

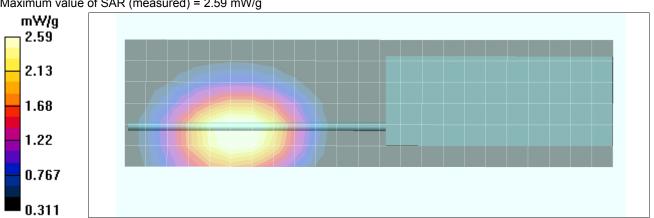
Communication System: 700/800 Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; $\sigma = 1.02$ mho/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries: Type: Fiberglass Planar: Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

869 - Li-poly - Belt-clip - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.76 mW/g


869 - Li-poly - Belt-clip - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = -1.23 dB Peak SAR (extrapolated) = 3.15 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.75 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.59 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Portable 700/800 PTT Radio Transceiver		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD	
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in wh				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 34 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

B5

Date/Time: 20/08/2013 11:29:34 AM

Body - Aug20

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

Communication System: 700/800 Frequency: 824 MHz; Duty Cycle: 1:1

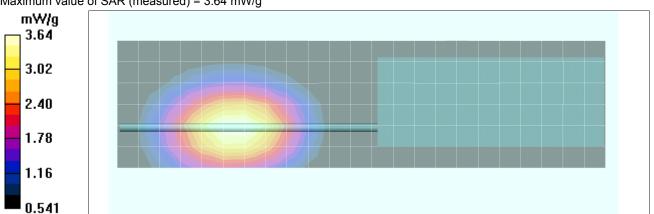
Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

824 - NiMH - Belt-clip - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.71 mW/g

824 - NiMH - Belt-clip - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.6 V/m; Power Drift = -0.222 dB

Peak SAR (extrapolated) = 4.40 W/kg

SAR(1 g) = 3.43 mW/g; SAR(10 g) = 2.5 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.64 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Portable 700/800 PTT Radio Transceiver		Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD	
2013 Celltech Labs Inc. This document is not to be reproduced in wh				ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 35 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

B6

Date/Time: 20/08/2013 12:05:09 PM

Body - Aug20

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

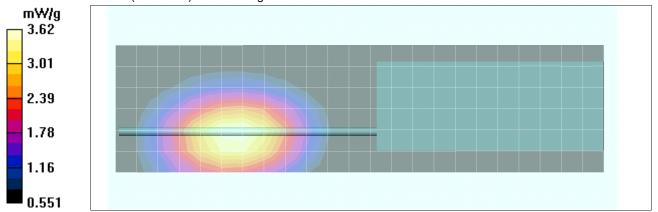
Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

Communication System: 700/800 Frequency: 775 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 775 MHz; σ = 0.93 mho/m; ε_r = 54.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


775 - Li-poly - Leather Case - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.60 mW/g

775 - Li-poly - Leather Case - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.9 V/m; Power Drift = -0.886 dB

Peak SAR (extrapolated) = 4.33 W/kg

SAR(1 g) = 3.42 mW/g; SAR(10 g) = 2.53 mW/g

Maximum value of SAR (measured) = 3.62 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Portable 700/800 PTT Radio Transceiver		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD	
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in wh				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 36 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

B7

Date/Time: 20/08/2013 12:40:46 PM

Body - Aug20

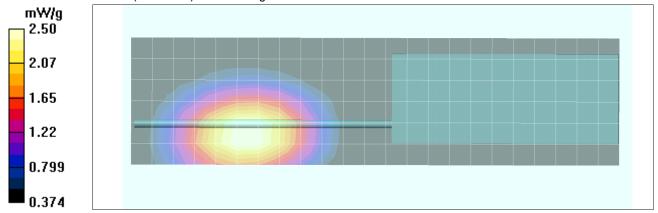
DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

Communication System: 700/800 Frequency: 805 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 805 MHz; σ = 0.95 mho/m; ε_r = 54.6; ρ = 1000 kg/m³


- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

805 - Li-poly - Leather Case - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.46 mW/g

805 - Li-poly - Leather Case - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.2 V/m; Power Drift = -0.791 dB

Peak SAR (extrapolated) = 3.00 W/kg

SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.74 mW/g Maximum value of SAR (measured) = 2.50 mW/g

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	Portable 700/800 PTT Radio Trans		Models:	s: TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 37 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

B8

Date/Time: 20/08/2013 1:12:13 PM

Body - Aug20

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

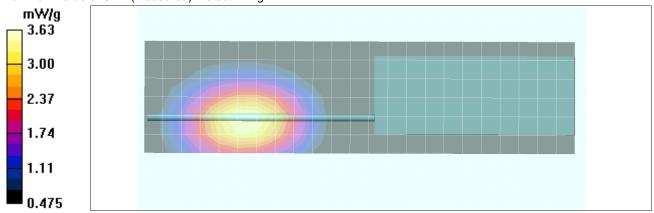
Communication System: 700/800 Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

824 - Li-poly - Leather Case - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.53 mW/g


824 - Li-poly - Leather Case - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.84 V/m; Power Drift = -0.290 dB

Peak SAR (extrapolated) = 4.39 W/kg

SAR(1 g) = 3.42 mW/g; SAR(10 g) = 2.49 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.63 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models: TK-54		10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	ibs Inc.	This document is not to be r	eproduced in who	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 38 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

B9

Date/Time: 20/08/2013 1:53:30 PM

Body - Aug20

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

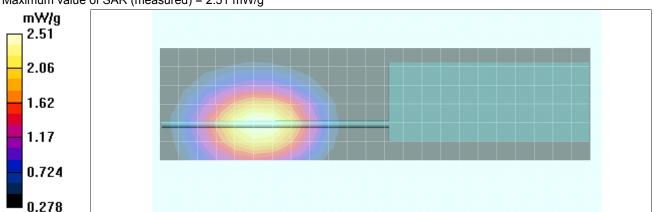
Communication System: 700/800 Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; $\sigma = 1.02$ mho/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

869 - Li-poly - Leather Case - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.61 mW/g


869 - Li-poly - Leather Case - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.7 V/m; Power Drift = -1.24 dB

Peak SAR (extrapolated) = 3.05 W/kg

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.68 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.51 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	rtable 700/800 PTT Radio Transceive		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	bs Inc.	This document is not to be r	eproduced in who	ole or in part wit	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 39 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

B10

Date/Time: 20/08/2013 2:28:47 PM

Body - Aug20

DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

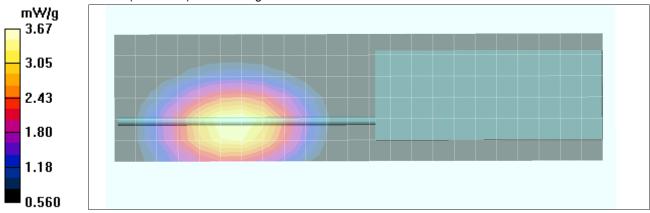
Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

Communication System: 700/800 Frequency: 775 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 775 MHz; σ = 0.93 mho/m; ε_r = 54.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


775 - NiMH - Leather Case - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.54 mW/g

775 - NiMH - Leather Case - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

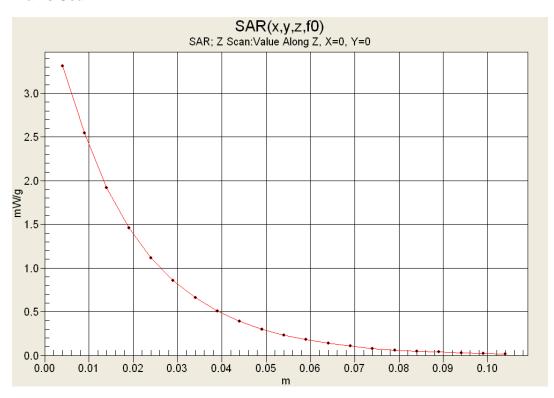
Reference Value = 18.2 V/m; Power Drift = -1.28 dB

Peak SAR (extrapolated) = 4.41 W/kg

SAR(1 g) = 3.47 mW/g; SAR(10 g) = 2.56 mW/g Maximum value of SAR (measured) = 3.67 mW/g

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	Portable 700/800 PTT Radio Transc		Models:	els: TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 40 of 66	

Test Report Issue Date
Aug. 23, 2013


Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

Z-axis Scan

SAR vs. Time

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	ALH468800		282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models: TK-54		10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	ch Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 41 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

B11

Date/Time: 20/08/2013 3:01:07 PM

Body - Aug20

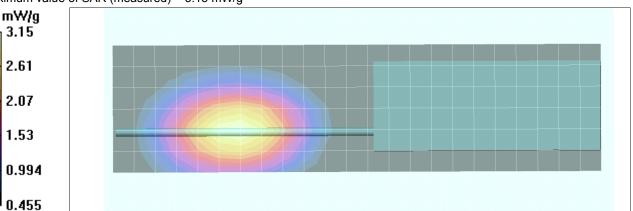
DUT: Kenwood TK-5410D-K2/3; Type: 700/800 PTT Radio; Serial: Not Specified

Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

Communication System: 700/800 Frequency: 775 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 775 MHz; σ = 0.93 mho/m; ϵ_r = 54.8; ρ = 1000 kg/m³


- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

K2 - 775 - NiMH - Leather Case - KMC-51/Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.09 mW/g

K2 - 775 - NiMH - Leather Case - KMC-51/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.3 V/m; Power Drift = -1.30 dB

Peak SAR (extrapolated) = 3.76 W/kg

SAR(1 g) = 2.98 mW/g; SAR(10 g) = 2.2 mW/g Maximum value of SAR (measured) = 3.15 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models: TK-541		10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	ıbs Inc.	This document is not to be r	eproduced in who	ole or in part with	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 42 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	rtable 700/800 PTT Radio Transcei		Models:	TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 43 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

System Performance Check - 835 MHz Head

Date/Time: 15/08/2013 2:25:36 PM

SPC - 835 Head - Aug15

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2012

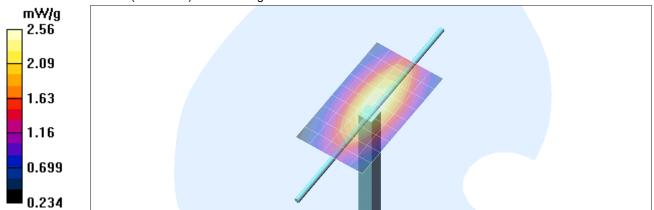
Program Notes: Ambient Temp: 23C; Fluid Temp: 22.2C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Procedure Notes:

Communication System: CW Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used: f = 835 MHz; σ = 0.89 mho/m; ϵ_r = 40.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.84, 6.84, 6.84); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: SAM 4.0; Type: Fiberglass; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Head d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.52 mW/g

Head d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

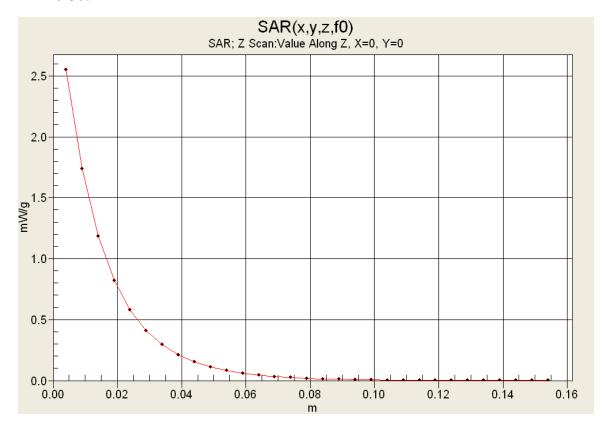
Reference Value = 54.9 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 3.44 W/kg

SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.56 mW/g Maximum value of SAR (measured) = 2.56 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models: TK-54		10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						sion of Celltech Labs Inc.	Page 44 of 66

Test Report Issue Date
Aug. 23, 2013


Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models: TK-54		10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 45 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.1

RF Exposure Category
Occupational (Controlled)

System Performance Check - 835 MHz Body

Date/Time: 19/08/2013 3:22:15 PM

SPC - 835 Body - Aug19

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2012

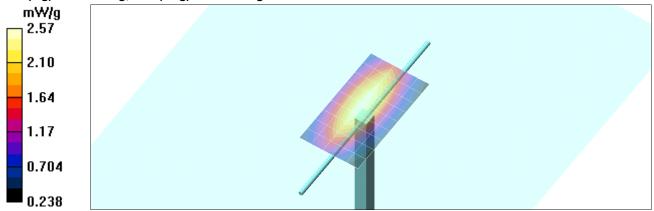
Program Notes: Ambient Temp: 23C; Fluid Temp: 23.4C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Procedure Notes:

Communication System: CW Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; σ = 0.97 mho/m; ϵ_r = 54.6; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.57 mW/g

Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.3 V/m; Power Drift = 0.010 dB

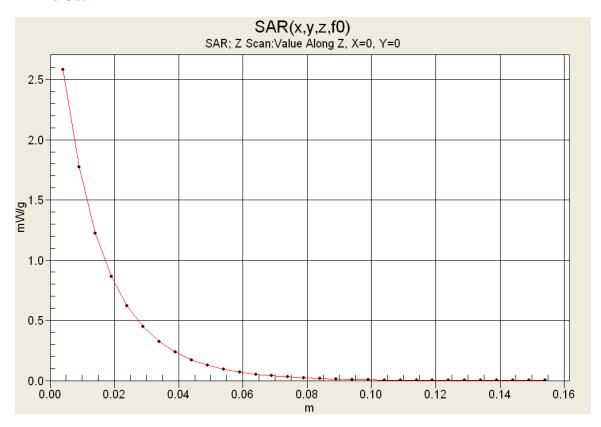
Peak SAR (extrapolated) = 3.43 W/kg

SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.58 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	ALH468800		282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models: TK-54		10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech La	h Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						sion of Celltech Labs Inc.	Page 46 of 66

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S


Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	ble 700/800 PTT Radio 1	Transceiver	Models: TK-541		10D-K2/K3	768-869 MHz	KENWOOD
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 47 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	Porta	table 700/800 PTT Radio Transceiv		Models:	s: TK-5410D-K2/K3		768-869 MHz	KENWOOD
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 48 of 66	

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.1

835 MHz Head

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 15/Aug/2013

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

**********	******	******	******	******
Freq	FCC_eF	IFCC_sh	HTest_e	Test_s
0.7350	42.02	0.89	41.98	0.79
0.7450	41.97	0.89	41.74	0.80
0.7550	41.92	0.89	41.71	0.81
0.7650	41.86	0.89	41.65	0.82
0.7750	41.81	0.90	41.57	0.83
0.7850	41.76	0.90	41.56	0.84
0.7950	41.71	0.90	41.10	0.87
0.8050	41.66	0.90	41.11	0.86
0.8150	41.60	0.90	40.82	0.89
0.8250	41.55	0.90	41.00	0.89
0.8350	41.50	0.90	40.77	0.89
0.8450	41.50	0.91	40.69	0.91
0.8550	41.50	0.92	40.70	0.91
0.8650	41.50	0.93	40.66	0.92
0.8750	41.50	0.94	40.22	0.92
0.8850	41.50	0.95	40.30	0.94
0.8950	41.50	0.96	40.11	0.94
0.9050	41.50	0.97	40.08	0.97
0.9150	41.50	0.98	39.92	0.96
0.9250	41.48	0.98	40.06	1.00
0.9350	41.46	0.99	39.59	0.99

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH468	800	IC ID:	282D-468800	KENWOOD
DUT Type:	oe: Portable 700/800 PTT Radio Transceiver		Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD	
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 49 of 66			

Test Report Issue Date
Aug. 23, 2013

Test Report Serial No. 081413ALH-1249S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
19/Aug/2013
Freq Frequency(GHz)
FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM

Test_s Sigma of UIM

******	******	*******	********	******
Freq	_	FCC_sE	_	Test_s
0.7350	55.59	0.96	55.23	0.89
0.7450	55.55	0.96	55.24	0.91
0.7550	55.51	0.96	55.01	0.90
0.7650	55.47	0.96	55.10	0.92
0.7750	55.43	0.97	54.77	0.93
0.7850	55.39	0.97	54.71	0.94
0.7950	55.36	0.97	54.80	0.94
0.8050	55.32	0.97	54.64	0.95
0.8150	55.28	0.97	54.61	0.97
0.8250	55.24	0.97	54.74	0.97
0.8350	55.20	0.97	54.64	0.97
0.8450	55.17	0.98	54.00	0.98
0.8550	55.14	0.99	54.16	1.01
0.8650	55.11	1.01	54.16	1.02
0.8750	55.08	1.02	53.86	1.02
0.8850	55.05	1.03	53.89	1.04
0.8950	55.02	1.04	53.91	1.05
0.9050	55.00	1.05	53.63	1.05
0.9150	55.00	1.06	53.71	1.06
0.9250	54.98	1.06	53.38	1.07
0.9350	54.96	1.07	53.64	1.09

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH468	LH468800 IC ID:		282D-468800	KENWOOD	
DUT Type:	Portable 700/800 PTT Radio Transceiver		Models:	TK-54	10D-K2/K3	768-869 MHz	KENWOOD		
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 50 of 66				