	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Celltech	Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lab	Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	

DECLARATION OF		IAN	ICE - S	AR F	RF E	XPOS	URE EVA	LUA	TION (FCC/IC)	
Test Lob Information	Name	CE	LLTECH I	LABS	INC.					
Test Lab Information	Address	21-	364 Lougi	need R	oad, K	elowna, E	3.C. V1X 7R8 (Canad	а	
Test Lab Accreditation(s)	A2LA	ISC)/IEC 1702	25:200	5 (A2L/	A Test La	b Certificate N	o. 247	0.01)	
	Name	KE	NWOOD	USA C	ORPO	RATION				
Applicant Information	Address	397	'0 Johns (Creek (Court, S	Suite 100	, Suwanee, GA	3002	4 United States	
Application Type(s)	FCC	TC	B Certifica	tion			IC	CB (Certification	
Standard(s) Applied	FCC	47	CFR §2.10	093			IC	Heal	th Canada Safety Code	e 6
	FCC	OE	T Bulletin	65, Su	ppleme	ent C	FCC	KDB	447498 D01v04	
Procedure(s) Applied	FCC	KD	B 643646	D01v0	1		IC	RSS	-102 Issue 4	
	IEEE	152	28-2003				IEC	6220	9-1:2005, 62209-2:201	0
Device Classification(s)	FCC	Lice	ensed Nor	n-Broad	dcast T	ransmitte	er Held to Face	(TNF)) - FCC Part 90	
Device Classification(s)	IC	Lar	nd Mobile	Radio ⁻	Transm	itter/Rec	eiver (27.41-96	60 MH	z) - RSS-119 Issue 11	
Device Identifier(s)	FCC ID:	ALI	435002				IC	2820	0-435002	
Device Model(s)	TK-3400-K (4 (Models are						ll)			
Device Model(s) Tested	TK-3400-K2	(042	0 Identical	Protot	ype)					
Test Sample Revision No.s	Hardware	1					Firmwar	-		
Date of Sample Receipt	Aug. 16, 201					AR Eval		g. 20-2	2, Oct. 4-10, 2012	
Device Description	Portable FM UHF Push-To-Talk (PTT) Radio Transceiver									
Transmit Frequency Range	FCC IC	450.0 - 512.0 MHz 450.0 - 470.0 MHz								
Manuf. Rated Output Power	2 Watts (Cor	nduc	ted)		Man	uf. Toler	ance Specific	ation	+ 0 Watts	
	Detachable Stub			450.0) - 485.	- 485.0 MHz Length = 75		nm	P/N: KRA-17M	1
	Detachable Stub			470.0) - 512.	0 MHz Length = 75 m		nm	P/N: KRA-17M2	2
	Detachable	Helic	al LP	450.0	450.0 - 490.0 MHz		Length = 80 mm		P/N: KRA-23M	3
Antenna Type(s) Tested	Detachable	Helic	al LP	470.0 - 512.0 MHz		Length = 80 mm		P/N: KRA-23M2	4	
Antenna Type(s) Testeu	Detachable	Whip		450.0 - 490.0 MHz		Length = 149 mm		P/N: KRA-27M	5	
	Detachable	Whip	I.	470.0 - 512.0 MHz L		Length = 139 mm		P/N: KRA-27M2	6	
	Detachable	Stub		450.0 - 490.0 MHz L		Length = 55 mm		P/N: KRA-42M	7	
	Detachable	Stub				Length = 55 r	nm	P/N: KRA-42M2	8	
Battery Type(s) Tested	Li-ion			7.4 V			2000 mAh		P/N: KNB-45L	а
Dattery Type(s) Tested	Ni-MH			7.2 V			1500 mAh		P/N: KNB-29N	b
Body-worn Accessories Tested	Belt-Clip (co	ntain	s metal)						P/N: KBH-10	1
Audio Accessories Tested	See manufa	cture	r's access	ory list	ting (Se	ection 7.0)			
Max. SAR Level(s) Evaluated	Face-held Body-worr		2.26 W 3.41 W		1g 1g		TT duty cycle TT duty cycle		upational / Controlled I upational / Controlled I	•
FCC Spatial Peak SAR Limit	Head/Bod		8.0 W		1g		TT duty cycle		upational / Controlled I	
Celltech Labs Inc. declares under its sole re RF exposure requirements specified in FCC device was tested in accordance with the m Issue 4, IEEE Standard 1528-2003 and IE manufacturer recommendations.	C 47 CFR §2.10 leasurement pro)93 ar ocedu	nd Health C res specifie	Canada ed in FC	device h Safety (CC OET	Code 6 for Bulletin 6	r the Occupation 5, Supplement C	al / Co C(Editio	ntrolled Exposure environ on 01-01), Industry Canad	iment. The la RSS-102
I attest to the accuracy of data. All measure belief. I assume full responsibility for the cor										vledge and
This test report shall not be reproduced part	ially, or in full, w	/ithou	t the prior w	vritten a	pproval	of Celltec	h Labs Inc.			
The results and statements contained in this report partain only to the device/a) avaluated										

The results and statements contained in this report pertain only to the device(s) evaluated.

 Test Report Approved By
 Image: March and Mike Meaker
 Engineering Technologist
 Celltech Labs Inc.

	Applicant:	icant: Kenwood USA Corporation FCC ID:		ALH43	ALH435002 IC ID:		282D-435002	KENWOOD	
	DUT Type: Portable UHF PTT Radio Transceiver		Models:	s: TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD		
2	2012 Celltech Labs Inc. This document is not to be reproduced in w				hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 1 of 108

TABLE OF CONTENTS

1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS	4
4.0 FCC POWER THRESHOLDS FOR PTT DEVICES (F < 0.5 GHZ)	5
5.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	5
6.0 NO. OF TEST CHANNELS (<i>N_c</i>)	5
7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING	6
8.0 FLUID DIELECTRIC PARAMETERS	7
9.0 SAR MEASUREMENT SUMMARY	12
10.0 SAR SCALING (TUNE-UP TOLERANCE)	17
11.0 SAR TEST REDUCTION PROCEDURES APPLIED (FCC KDB 643646)	18
12.0 DETAILS OF SAR EVALUATION	19
13.0 SAR EVALUATION PROCEDURES	
14.0 SYSTEM PERFORMANCE CHECK	20
15.0 SIMULATED EQUIVALENT TISSUES	21
16.0 SAR LIMITS	21
17.0 ROBOT SYSTEM SPECIFICATIONS	22
18.0 PROBE SPECIFICATION (ET3DV6)	23
19.0 BARSKI PLANAR PHANTOM	23
20.0 DEVICE HOLDER	23
21.0 TEST EQUIPMENT LIST	24
22.0 MEASUREMENT UNCERTAINTIES	25
23.0 REFERENCES	27
APPENDIX A - SAR MEASUREMENT PLOTS	28
APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS	57
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	6
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	72
APPENDIX E - DIPOLE CALIBRATION	106
APPENDIX F - PROBE CALIBRATION	107
APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY	108

Applicant:	Kenwood USA Corporation FCC ID: Portable UHF PTT Radio Transceiver		FCC ID:	ALH43	5002	IC ID:	282D-435002	KENWOOD	
DUT Type:			Models:	ls: TK-3400-K/K2		450.0 - 512.0 MHz	KENWOOD		
2012 Celltech Labs Inc. This document is not to be reproduced in w				hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 2 of 108	

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

REVISION HISTORY							
REVISION NO.	DESCRIPTION	IMPLEMENTED BY	RELEASE DATE				
1.0	Initial Release	Mike Meaker	Oct. 22, 2012				
1.1	Fixed Device Classification - Now RSS-119 Issue 11	Mike Meaker	Nov. 30, 2012				

TEST REPORT SIGN-OFF							
DEVICE TESTED BY	REPORT PREPARED BY	QA REVIEW BY	REPORT APPROVED BY				
Mike Meaker	Cheri Frangiadakis	Mike Meaker	Mike Meaker				

Applicant:			FCC ID:	ALH435002 IC ID Models: TK-340-K/K2		IC ID:	282D-435002	KENWOOD	
DUT Type:			insceiver			400-K/K2	450.0 - 512.0 MHz	KENWOOD	
2012 Celltech Labs Inc. This document is not to be reproduced in w				hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 3 of 108	

Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	
Aug 20-22,Oct 4-10, 2012	081612ALH-T1192-S90V	Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	

1.0 INTRODUCTION

This measurement report demonstrates that the Kenwood USA Corporation Models: TK-3400-K and TK-3400-K2 Portable UHF PTT Radio Transceivers comply with the SAR (Specific Absorption Rate) RF exposure requirements FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [3]), IC RSS-102 Issue 4 (see reference [4]), IEEE Standard 1528-2003 (see reference [5]) and IEC Standard 62209-1:2005 (see reference [6]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (joystick), and remote control is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

	MEASURED F			T POWER	LEVELS			
Radio Mod	el Test Frequency	Мос	le dBm	V	Vatts	M	ethod	
	450.0 MHz	CV	/ 33.0		2.0	Average	e Conducted	
	461.7 MHz	CW	/ 33.0		2.0	Average	e Conducted	
	463.3 MHz	CW	/ 33.0		2.0	Average	e Conducted	
	470.0 MHz	CW	/ 33.0		2.0	Average	e Conducted	
TK-3400-K2	473.3 MHz	CW	/ 33.0		2.0	Average	e Conducted	
	2 476.7 MHz	CW	/ 33.0		2.0	Average	e Conducted	
	484.0 MHz	CW	/ 33.0		2.0	Average	e Conducted	
	485.0 MHz	CW	/ 33.0		2.0 Ave		e Conducted	
	490.0 MHz	CW	/ 33.0		2.0	Average Conducted		
	498.0 MHz	CW	/ 33.0		2.0	Average Conducted		
	512.0 MHz	CM	/ 33.0		2.0 Averag		e Conducted	
Notes								
1. The test ch (see reference	annels were selected in a [8]).	accordance	with the procedures	s specified in	FCC KDB	447498 \$	Section 6) c)	
2. The RF conducted output power levels of the DUT were measured by Celltech prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector of the radio in accordance with FCC 47 CFR §2.1046 (see reference [14]) and IC RSS-Gen (see reference [15]).								
Applicant: K	enwood USA Corporation	FCC ID:	ALH435002	IC ID:	282D-43	5002		

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

Applicant: Kenwood USA Corporation FCC ID:		ALH43	ALH435002 IC ID:		282D-435002	KENWOOD		
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models:	TK-3400-K/K2		00-K/K2 450.0 - 512.0 MHz	
2012 Celltech Labs Inc. This document is not to be reproduced in w				hole or in part w	vithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 4 of 108

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

4.0 FCC POWER THRESHOLDS FOR PTT DEVICES ($f \le 0.5$ GHz)

FCC SAR Evaluation P	ower Thresholds for PTT De	Manufacturer's Rate	d RF Output Power	
Exposure Conditions	P mW (General Population)	P mW (Occupational)	100% PTT Duty Cycle	50% PTT Duty Cycle
Held to face, d > 2.5 cm	250			
Body-worn, <i>d</i> <u>></u> 1.5 cm	200	1000	2 Watts	1 Watts
Body-worn, <i>d</i> <u>></u> 1.0 cm	150	750		
compared with these three2. The closest distance betw determine the power three	veen the user and the device o	1. The conducted output exceeds the FCC thresh requirement.		

5.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within \pm 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within \pm 100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, \pm 25 MHz < 300 MHz and \pm 50 MHz \geq 300 MHz, require additional steps (per FCC KDB 450824 D01v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [10]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	<u>+</u> 50 MHz (<u>></u> 300 MHz)				
	461.7 MHz	11.7 MHz	< 50 MHz ¹				
450 MHz	463.3 MHz	13.3 MHz	< 50 MHz ¹				
	484.0 MHz	34.0 MHz	< 50 MHz ¹				
1. The probe calibration and measurement frequency interval is < 50 MHz; therefore the additional steps were not required.							

6.0 NO. OF TEST CHANNELS (*N_c*)

Ant	tenna Part No.	Antenna Freq. Range	Test Freq. Range	N _c	Test Frequencies			
1	KRA-17M	450.0 -485.0 MHz	450.0 - 485.0 MHz	4	450.0, 461.7, 473.3, 485.0 MHz			
2	KRA-17M2	470.0 - 512.0 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz			
3	KRA-23M	440.0 - 490.0 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz			
4	KRA-23M2	470.0 - 520.0 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz			
5	KRA-27M	440.0 - 490.0 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz			
6	KRA-27M2	470.0 - 520.0 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz			
7	KRA-42M	440.0 - 490.0 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz			
8	KRA-42M2	470.0 - 520.0 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz			
	Note: The number of test channels (<i>Nc</i>) were calculated in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [8]).							

Applicant:	Kenw	Kenwood USA Corporation FCC		ALH435002 IC ID:		02 IC ID: 282D-435002		KENWOOD
DUT Type:	Port	Portable UHF PTT Radio Transceiver		Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 5 of 108	

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> Occupational (Controlled)	Test Lab Certificate No. 2470.01

7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING

Accessory ID #	ACCESSORY CA	ATEGORY: ANTENNA					
for Test Report	Part Number	Description		SAR Evaluation			
1	KRA-17M	Detachable Stub (450-485 MHz)	Detachable Stub (450-485 MHz)				
2	KRA-17M2	Detachable Stub (470-512 MHz)	Detachable Stub (470-512 MHz)				
3	KRA-23M	Detachable Helical LP (450-490 MHz)		Yes			
4	KRA-23M2	Detachable Helical LP (470-512 MHz)		Yes			
5	KRA-27M	Detachable Whip (450-490 MHz)		Yes			
6	KRA-27M2	Detachable Whip (470-512 MHz)		Yes			
7	KRA-42M	Detachable Stub (450-490 MHz)		Yes			
8	KRA-42M2	Detachable Stub (470-512 MHz)		Yes			
Accessory ID #	ACCESSORY CA	TEGORY: BATTERY					
for Test Report	Part Number	Description		SAR Evaluation			
а	KNB-45L	Li-ion (7.4V, 2000mAh)		Yes			
b	KNB-29N	Ni-MH (7.2V, 1500mAh)		Yes			
С	KNB-53N	Ni-MH (7.2V, 1400mAh)	s i si				
Accessory ID #	ACCESSORY CA	ATEGORY: BODY-WORN					
for Test Report	Part Number	Description	SAR Evaluation				
1	KBH-10	Belt-clip (contains metal)	Belt-clip (contains metal)				
Accessory ID #	ACCESSORY CA	ATEGORY: AUDIO		-			
for Test Report	Part Number	Description	Audio Accessory Grouping	SAR Evaluation			
G1a	KMC-21	Compact Speaker-Mic	0	Yes			
G1b	KMC-45	Heavy Duty Speaker-Mic	Group 1 (Speaker-mic)	No ²			
G1c	KMC-48GPS	GPS Speaker-Mic		No ²			
G2b	KHS-7	Single Muff Headset		No ²			
G2c	KHS-7A	Single Muff Headset w/ PTT	Group 2 (Lightweight	No ²			
G2d	KHS-21	Lightweight Headset	Headset)	Yes			
G2e	KHS-22	Behind-the-Head Headset w/ PTT		No ²			
G3a	KHS-10-BH	Heavy-duty Headset - Behind the head	Group 3 (Heavy-	No ²			
G3b	KHS-10-OH	Heavy-duty Headset - Over the head	duty Headset)	Yes			
G4a	KHS-23	2-Wire Ear-Bud w/ mic/PTT		No ²			
G4b	KHS-25	D-Ring Ear Headset	Group 4	Yes			
G4c	KHS-26	Earbud In-line Headset	(Earpiece)	No ²			
G4d	KHS-27	D-Ring In-line PTT Headset		No ²			
G5a	KHS-8BE/BL	2-Wire Palm Mic w/ Earphone	Group 5 (Palm-Mic)	No ²			
	KHS-9BE/BL	3-Wire Lapel Microphone w/ Earpiece	Yes				

Manufacturer's disclosed accessory listing information provided by Kenwood USA Corporation

Notes:

1. KNB-53N battery pack is identical in construction to KNB-29N.

2. Audio accessories not evaluated for SAR in accordance with the procedures and provisions of FCC KDB 643646 D01v01r01 Page 10 Section 1).

Applicant:	Kenw	wood USA Corporation FCC ID:		ood USA Corporation FCC ID: ALH435002 IC ID:		IC ID:	282D-435002	KENWOOD
DUT Type:	Port	table UHF PTT Radio Tra	TT Radio Transceiver		TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech L	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 6 of 108	

8.0 FLUID DIELECTRIC PARAMETERS

	FLU	JID DIEL	ECTRIC	PARAM	ETERS	
Date: 08/2	20/2012	Frequency: 450 MHz Tissu			ie: Body	
Freq	Test_e	Test_s	Target_e Target_s		Deviation Permittivity	Deviation Conductivity
0.350	58.47	0.87	56.7	0.94	3.12%	-7.45%
0.360	57.31	0.87	56.7	0.94	1.08%	-7.45%
0.370	57.54	0.89	56.7	0.94	1.48%	-5.32%
0.380	57.41	0.86	56.7	0.94	1.25%	-8.51%
0.390	57.23	0.88	56.7	0.94	0.93%	-6.38%
0.400	57.14	0.88	56.7	0.94	0.78%	-6.38%
0.410	56.27	0.91	56.7	0.94	-0.76%	-3.19%
0.420	56.78	0.91	56.7	0.94	0.14%	-3.19%
0.430	56.46	0.92	56.7	0.94	-0.42%	-2.13%
0.440	56.39	0.93	56.7	0.94	-0.55%	-1.06%
0.450	56.1	0.93	56.7	0.94	-1.06%	-1.06%
0.460	56.36	0.94	56.7	0.94	-0.60%	0.00%
0.4617*	56.3	0.942	56.7	0.94	-0.71%	0.21%
0.463.3*	56.2	0.943	56.7	0.94	-0.88%	0.32%
0.470	55.83	0.95	56.7	0.94	-1.53%	1.06%
0.480	56.89	0.96	56.7	0.94	0.34%	2.13%
0.490	55.64	0.97	56.7	0.94	-1.87%	3.19%
0.500	55.19	0.98	56.7	0.94	-2.66%	4.26%
0.510	55.61	0.97	56.7	0.94	-1.92%	3.19%
0.520	55.77	0.99	56.7	0.94	-1.64%	5.32%
0.530	55.72	1.01	56.7	0.94	-1.73%	7.45%
0.540	55.03	1.02	56.7	0.94	-2.95%	8.51%
0.550	55.35	1.03	56.7	0.94	-2.38%	9.57%

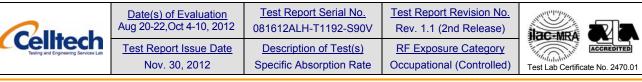
Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 20	450 Body	24.0°C	22.8°C	≥ 15 cm	101.1 kPa	31%	1000

Applicant:	Kenw	wood USA Corporation FCC ID:		ID: ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	Portable UHF PTT Radio Transceiver		Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 7 of 108	

	FLUID DIELECTRIC PARAMETERS									
Date: 08/2	21/2012	Frequency: 450 MHz			Tissue: Body					
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity				
0.350	57.7	0.84	56.7	0.94	1.76%	-10.64%				
0.360	56.84	0.84	56.7	0.94	0.25%	-10.64%				
0.370	57.29	0.86	56.7	0.94	1.04%	-8.51%				
0.380	57.1	0.87	56.7	0.94	0.71%	-7.45%				
0.390	56.98	0.89	56.7	0.94	0.49%	-5.32%				
0.400	56.68	0.88	56.7	0.94	-0.04%	-6.38%				
0.410	56.52	0.9	56.7	0.94	-0.32%	-4.26%				
0.420	57.24	0.91	56.7	0.94	0.95%	-3.19%				
0.430	56.48	0.92	56.7	0.94	-0.39%	-2.13%				
0.440	56.63	0.92	56.7	0.94	-0.12%	-2.13%				
0.450	56.53	0.93	56.7	0.94	-0.30%	-1.06%				
0.460	56.03	0.94	56.7	0.94	-1.18%	0.00%				
0.470	55.9	0.93	56.7	0.94	-1.41%	-1.06%				
0.480	55.82	0.94	56.7	0.94	-1.55%	0.00%				
0.484*	55.6	0.948	56.7	0.94	-1.94%	0.85%				
0.490	55.37	0.96	56.7	0.94	-2.35%	2.13%				
0.500	55.46	0.96	56.7	0.94	-2.19%	2.13%				
0.510	55.57	0.97	56.7	0.94	-1.99%	3.19%				
0.520	55.33	0.99	56.7	0.94	-2.42%	5.32%				
0.530	54.61	1	56.7	0.94	-3.69%	6.38%				
0.540	55.3	1	56.7	0.94	-2.47%	6.38%				
0.550	55.28	1.02	56.7	0.94	-2.50%	8.51%				

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 21	450 Body	24.0°C	22.5°C	≥ 15 cm	101.1 kPa	31%	1000

Applicant:	Kenw	nwood USA Corporation FCC		CC ID: ALH435002 IC ID:		IC ID:	282D-435002	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models: TK-3400-K/K2		450.0 - 512.0 MHz	KENWOOD	
2012 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 8 of 108



	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 08/2	22/2012	Free	quency: 450	MHz	Tissu	ie: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	45.34	0.76	43.5	0.87	4.23%	-12.64%
0.360	45.64	0.77	43.5	0.87	4.92%	-11.49%
0.370	45.43	0.76	43.5	0.87	4.44%	-12.64%
0.380	45.6	0.78	43.5	0.87	4.83%	-10.34%
0.390	44.47	0.8	43.5	0.87	2.23%	-8.05%
0.400	44.59	0.8	43.5	0.87	2.51%	-8.05%
0.410	44.44	0.8	43.5	0.87	2.16%	-8.05%
0.420	44.35	0.81	43.5	0.87	1.95%	-6.90%
0.430	44.34	0.81	43.5	0.87	1.93%	-6.90%
0.440	44.36	0.84	43.5	0.87	1.98%	-3.45%
0.450	43.62	0.83	43.5	0.87	0.28%	-4.60%
0.460	43.61	0.85	43.5	0.87	0.25%	-2.30%
0.4617*	43.5	0.85	43.5	0.87	0.00%	-2.30%
0.4633*	43.5	0.85	43.5	0.87	0.00%	-2.30%
0.470	43.21	0.85	43.5	0.87	-0.67%	-2.30%
0.480	42.74	0.86	43.5	0.87	-1.75%	-1.15%
0.484*	42.8	0.86	43.5	0.87	-1.61%	-1.15%
0.490	42.99	0.86	43.5	0.87	-1.17%	-1.15%
0.500	42.55	0.89	43.5	0.87	-2.18%	2.30%
0.510	42.41	0.88	43.5	0.87	-2.51%	1.15%
0.520	42.34	0.89	43.5	0.87	-2.67%	2.30%
0.530	42.16	0.91	43.5	0.87	-3.08%	4.60%
0.540	42.1	0.91	43.5	0.87	-3.22%	4.60%
0.550	42.15	0.92	43.5	0.87	-3.10%	5.75%

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 22	450 Head	24.0°C	23.3°C	\geq 15 cm	101.1 kPa	32%	1000

Applicant:	Kenw	wood USA Corporation FCC ID		ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	table UHF PTT Radio Transceiver		Models: TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 9 of 108

	FL		ECTRIC	PARAME	ETERS	
Date: 10/04	&05/2012	Free	quency: 450	MHz	Tissu	ie: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	47.06	0.75	43.5	0.87	8.18%	-13.79%
0.360	47.31	0.76	43.5	0.87	8.76%	-12.64%
0.370	46.29	0.77	43.5	0.87	6.41%	-11.49%
0.380	46.45	0.79	43.5	0.87	6.78%	-9.20%
0.390	46.28	0.79	43.5	0.87	6.39%	-9.20%
0.400	45.49	0.81	43.5	0.87	4.57%	-6.90%
0.410	45.41	0.83	43.5	0.87	4.39%	-4.60%
0.420	45.74	0.85	43.5	0.87	5.15%	-2.30%
0.430	45.57	0.85	43.5	0.87	4.76%	-2.30%
0.440	45.18	0.85	43.5	0.87	3.86%	-2.30%
0.450	45.47	0.86	43.5	0.87	4.53%	-1.15%
0.460	44.8	0.87	43.5	0.87	2.99%	0.00%
0.4633*	44.8	0.867	43.5	0.87	2.99%	-0.34%
0.470	44.79	0.86	43.5	0.87	2.97%	-1.15%
0.484*	44.49	0.89	43.5	0.87	2.28%	2.30%
0.484	44.5	0.89	43.5	0.87	2.30%	2.30%
0.490	44.56	0.89	43.5	0.87	2.44%	2.30%
0.500	44.34	0.88	43.5	0.87	1.93%	1.15%
0.510	44.23	0.9	43.5	0.87	1.68%	3.45%
0.520	43.95	0.92	43.5	0.87	1.03%	5.75%
0.530	43.87	0.92	43.5	0.87	0.85%	5.75%
0.540	43.56	0.93	43.5	0.87	0.14%	6.90%
0.550	43.42	0.93	43.5	0.87	-0.18%	6.90%

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Oct 4	450 Head	23.0°C	21.4°C	≥ 15 cm	101.1 kPa	30%	1000
Oct 5	450 Head	23.0°C	21.4°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	table UHF PTT Radio Transceiver		Models: TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 10 of 108

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 10/09	&10/2012	Free	quency: 450 l	MHz	Tissu	ie: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	58.64	0.81	57.7	0.93	1.63%	-12.90%
0.360	57.64	0.83	57.7	0.93	-0.10%	-10.75%
0.370	58.32	0.84	57.7	0.93	1.07%	-9.68%
0.380	57.4	0.83	57.7	0.93	-0.52%	-10.75%
0.390	57.28	0.84	57.7	0.93	-0.73%	-9.68%
0.400	56.72	0.84	57.7	0.93	-1.70%	-9.68%
0.410	56.58	0.87	57.7	0.93	-1.94%	-6.45%
0.420	57.12	0.87	57.7	0.93	-1.01%	-6.45%
0.430	56.47	0.89	57.7	0.93	-2.13%	-4.30%
0.440	56.23	0.89	57.7	0.93	-2.55%	-4.30%
0.450	56.91	0.91	57.7	0.93	-1.37%	-2.15%
0.460	55.82	0.92	57.7	0.93	-3.26%	-1.08%
0.4633*	55.8	0.92	57.7	0.93	-3.29%	-1.08%
0.470	55.67	0.92	57.7	0.93	-3.52%	-1.08%
0.480	55.94	0.93	57.7	0.93	-3.05%	0.00%
0.484*	55.8	0.93	57.7	0.93	-3.29%	0.00%
0.490	55.61	0.93	57.7	0.93	-3.62%	0.00%
0.500	54.75	0.95	57.7	0.93	-5.11%	2.15%
0.510	55.24	0.94	57.7	0.93	-4.26%	1.08%
0.520	54.65	0.96	57.7	0.93	-5.29%	3.23%
0.530	54.78	0.97	57.7	0.93	-5.06%	4.30%
0.540	54.72	0.98	57.7	0.93	-5.16%	5.38%
0.550	54.96	0.99	57.7	0.93	-4.75%	6.45%

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Oct 9	450 Body	22.0°C	21.7°C	≥ 15 cm	101.1 kPa	30%	1000
Oct 10	450 Body	22.0°C	21.6°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	table UHF PTT Radio Transceiver		Models:	Models: TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD
2012 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 11 of 108

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

9.0 SAR MEASUREMENT SUMMARY

	Tabl	e 1				FACE-HEL	.D SAR EV	ALUATION	RESULTS			
С		te: Aug. 2 5, 2012	22,	1	2	3	4	5	6	7	8	
R	Antenna	Test Freq.	Cond. Pwr		SAR W					<mark>Wkg1g</mark> ry (b)		
ĸ	Tested	(MHz)	(W)	100% ptt d/f	50% ptt d/f	Drift (dB)	50%+droop	100% ptt d/f	50% ptt d/f	Drift dB	50%+droop	
1		450.0	2.0		N//		1			/A	•	
2	ANT. 1	461.7	2.0	F1 2.79	1.40	-0.322	1.50			/A		
3	KRA-17M	473.3	2.0		N//					/A		
4		485.0	2.0		N//					/A		
5		470.0	2.0	50 0.50	N//		1.00			/A		
6	ANT. 2 KRA-17M2	484.0	2.0	F2 3.52	1.76	-0.541	1.99			/A		
7 8		498.0 512.0	2.0 2.0		N/A N/A N/A							
о 9		450.0	2.0							/A /A		
9 10	450.0 2.0 N/A ANT. 3 463.3 2.0 F3 2.98 1.49 -0.363 1.62							/A /A				
11	KRA-23M	476.7	2.0	10 2.00	N//		1.02			/A		
12		490.0	2.0		N//					/A		
13		470.0	2.0		N//			N/A				
14	ANT. 4 484.0 2.0			F4 2.67	1.34	-0.456	1.48			/A		
15	KRA-23M2	498.0	2.0		N//					/A		
16		512.0	2.0		N//					/A		
17		450.0	2.0		N//					/A		
18	ANT. 5	463.3	2.0	F5 1.06	0.530	-0.204	0.555			/A		
19	KRA-27M	476.7	2.0				1		N	/A		
20		490.0	2.0						N	/A		
21		470.0	2.0	N/A					N	/A		
22	ANT. 6	484.0	2.0	F6 3.18	1.59	-0.217	1.67		N	/A		
23	KRA-27M2	498.0	2.0		N//	4		N/A				
24		512.0	2.0		N//	٩		N/A				
25		450.0	2.0		N//	4			N	/A		
26	ANT. 7	463.3	2.0	F7 3.74	1.87	-0.170	1.95			/A		
27	KRA-42M	476.7	2.0		N//					/A		
28		490.0	2.0		N//					/A		
29		470.0	2.0		N//	۹	•			/A	-	
30	ANT. 8	484.0	2.0	F8 4.51	2.26	-0.219	2.37	F9 4.23	2.12	-0.527	2.39	
31	KRA-42M2	498.0	2.0		N//					/A		
32		512.0	2.0		N//	4			N	/A		
			LIMITS			HEAD	SP	PATIAL PEAK		EXPOSURE C		
FCC	C 47 CFR 2.10	93 H	lealth Ca	nada Safety Cod	€6 8	3.0 W/kg	1	g averaging	C	ccupational /	Controlled	
Note	s					<u> </u>						
	Mode = CW (L			nuous Wave)		Ph	antom = Barski F	Planar Phantom				
	ont of DUT Dis Phantom (see				S	hortest Antenr	a Distance to P	Planar Phantom (see Appendix D)				
	2 5	cm		1	2	3	4	5	6	7	8	
	-	-		3.2 cm	3.2 cm	3.2 cm	3.2 cm	3.2 cm	3.2 cm	3.2 cm	3.2 cm	
C = Column; R = Row F1-Fx (F = Face) denotes the corresponding Face SAR Plot # as shown in Appendix A												

Applicant:	Kenw	Kenwood USA Corporation		ALH43	5002	IC ID:	282D-435002	KENWOOD
DUT Type:	Port	Portable UHF PTT Radio Transceive		Models:	TK-3400-K/K2		TK-3400-K/K2 450.0 - 512.0 MHz	
2012 Celltech Labs Inc.		This document is not to be r	eproduced in w	hole or in part w	vithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 12 of 108

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	ACCREDITED
	Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

Test Procedures applied in accordance with FCC KDB 643646 D01v01 (see reference [9])

1. For face-held configuration, the highest capacity battery was selected as the default battery (battery "a").

2. The SAR evaluations commenced at the highest output power channel per antenna and frequency range.

3. When the SAR of an antenna tested on the highest output power channel using the default battery is \leq 3.5 W/kg (50% PTT duty factor), testing of all other required channels is not necessary.

4. When the SAR for all antennas tested using the default battery is \leq 4.0 W/kg, test additional batteries using the antenna and channel configuration that resulted in the highest SAR.

5. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Applicant:	Kenw	Kenwood USA Corporation FO		ALH435002		IC ID: 282D-435002		KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	Models:	TK-3400-K/K2		450.0 - 512.0 MHz	KENWOOD	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduc			hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 13 of 108

1	2.		
	Cel	te	ch
	Testing and I	Engineering	Services Lab

Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	
Aug 20-22,Oct 4-10, 2012	081612ALH-T1192-S90V	Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

	Tabl	e 2			1	BODY-WOR	RN SAR EV	ALUATION	RESULTS				
C	Test Date Oct. 9	: Aug. 20, & 10 2012		1	2	3	4	5	6	7	8		
					SAR W	/kg 1g			SAR	W/kg 1g			
		Test			Default Ba	attery (a)			Battery (b)				
	Antenna	Test Freg.	Cond		Default Body-	vorn Acc. (1)		Default Body-worn Acc. (1)					
R	Tested	(MHz	. Pwr (W)		Default Audio				Default Audio Acc. (G2d)				
)	(**)			(Ì						
				100% ptt d/f	50% ptt d/f	Drift (dB)	50%+droop	100% ptt d/f	50% ptt d/f	Drift dB	50%+droop		
1		450.0	2.0	54 4 4 4	N//		2 1 1			N/A			
2	ANT. 1 KRA-17M	461.7	2.0	B1 4.61	2.31	-0.192	2.41			N/A			
3		473.3	2.0		N//					N/A			
4		485.0	2.0		N//					N/A			
5 6		470.0 484.0	2.0 2.0	B2 5.35	N// 2.68	-0.547	2.02			N/A N/A			
0 7	ANT. 2 KRA-17M2	404.0	2.0	BZ 5.35			3.03			N/A N/A			
8		498.0 512.0	2.0		N/A N/A					N/A N/A			
9		450.0	2.0		N//					N/A			
10	ANT. 3	463.3	2.0	B3 5.22						N/A			
11	KRA-23M	476.7	2.0	0.22	53 5.22 2.61 -0.336 2.83 N/A					N/A			
12		490.0	2.0		N/A N/A				N/A				
13		470.0	2.0		N//			N/A					
14	ANT. 4	484.0	2.0	B4 3.62	1.81	-0.684	2.12			N/A			
15	KRA-23M2	498.0	2.0		N//					N/A			
16		512.0	2.0		N//	4			١	N/A			
17		450.0	2.0	N/A					١	N/A			
18	ANT. 5	463.3	2.0	B5 3.95	1.98	-0.312	2.12		١	N/A			
19	KRA-27M	476.7	2.0	·					١	N/A			
20		490.0	2.0					N/A					
21		470.0	2.0		N//	4		N/A					
22	ANT. 6	484.0	2.0	B6 5.00	2.50	-0.295	2.68		١	N/A			
23	KRA-27M2	498.0	2.0		N//					N/A			
24		512.0	2.0		N//					N/A			
25		450.0	2.0		N//		r			N/A			
26	ANT. 7	463.3	2.0	B7 5.88	2.94	-0.066	2.99			N/A			
27	KRA-42M	476.7	2.0		N//					N/A			
28		490.0	2.0		N//					N/A			
29		470.0	2.0		N//		0.50			N/A	0.54		
30	ANT. 8 KRA-42M2	484.0	2.0	B8 6.63	3.32	-0.274	3.53	B9 6.18	3.09	-0.586	3.54		
31 32		498.0	2.0 2.0		N//					N/A N/A			
32		512.0		ITO	N//			ODATIAL OF			ATEOODY		
	F00 47 055		SAR LIM		efette Occile O	BOI		SPATIAL PE		RF EXPOSURE C			
	FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg						/кд	1g averagi	ng	Occupational /	ontrolled		
Note													
-	Mode = CW (I			inuous Wave)		Ph	antom = Barski	Planar Phantom					
	JT Spacing to per Battery (se				Shortest Antenna Distance to P				Planar Phantom (see Appendix D)				
В	attery (a)	Batt	ery (b)	1	2	3	4	5	6	7	8		
	1.2 cm		2 cm	3.1 cm	3.1 cm	3.1 cm	3.1 cm	3.1 cm	3.1 cm	3.1 cm	3.1 cm		
C =	Column; R = R	low		B1-Bx (B = B	ody) denotes the	e corresponding	Body SAR Plot	# as shown in A	ppendix A				

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH435002 IC ID:			282D-435002	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	Models:	TK-3400-K/K2		TK-3400-K/K2 450.0 - 512.0 MHz		
2012 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 14 of 108

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Test Procedures applied in accordance with FCC KDB 643646 D01v01 (see reference [9])

1. For body-worn configuration, the thinnest standard battery was selected as the default battery (battery "a"). (Both batteries are the same thickeness)

2. The SAR evaluations commenced at the highest output power channel per antenna and frequency range.

3. When the SAR of an antenna tested on the highest output power channel using the default battery is \leq 3.5 W/kg (50% PTT duty factor), testing of all other required channels is not necessary.

4. When the SAR for all antennas tested using the default battery is \leq 4.0 W/kg, test additional batteries using the antenna and channel configuration that resulted in the highest SAR.

5. Audio accessory (G2d) was selected as the default audio accessory based on preliminary evaluations with the most conservative SAR.

6. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Applicant:	Kenw	Cenwood USA Corporation FCC ID:		ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Tra	Models:	TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech La	012 Celltech Labs Inc. This document is not to be reproduced in v				ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 15 of 108

College	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Celltech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lab	Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	

т	ABLE 3	AD	DITIONAL	AUD		C'S SAR E	EVALU	JATION RES	ULTS
С	Test Date(s): Oct	9 & 10, 2012						1	2
								1g SAR (W	/kg)
	Antonno	Audio	Audio	Те	st	Conducted	Battery (a)		
R	Antenna Tested	Accessory	Accessory	Frequ	-	Power (W)		Body-worn A	cc. (1)
	Testeu	Grouping	ID	(MF			Plot	100% ptt d/f	50% ptt d/f
							#	SAR Drift dB	50%+droop
1		G1	G1a	484	10	2.0	A1	6.66	3.33
2		GI	Gia	404	1.0	2.0		-0.212	3.50
3		G3	G3b	484	1.0	2.0	A2	6.66	3.33
4	ANT. 8			404	1.0	2.0	712	-0.240	3.52
5	KRA-42M2	G4	G4b	484	10	2.0	A3	6.46	3.23
6		64	040	404.0		2.0	AJ	-0.385	3.53
7		G5 G5b		484	1.0	2.0	A4	6.81	3.41
8		65	930	404	1.0	2.0	A4	-0.292	3.64
	SAF			E	BODY	SPATIAL	PEAK	RF EXPOSUR	E CATEGORY
FCC 4	7 CFR 2.1093	Health Canada	Safety Code 6	<mark>8</mark> .	0 W/kg	1g aver	age	Occupationa	al / Controlled
Notes									
Test Mo	de = CW (Unmodul	ated Continuou	s Wave)		DUT I	Distance to Ph	antom	Antenna Dista	nce to Phantom
Phanton	n = Barski Planar Pl	hantom							
C = Colu	umn; R = Row					1.2 cm		3.1	cm
Audio ad	ccessories do not co	ontain any built-	in radiating elen	nent					

Applicant:	Kenw	Kenwood USA Corporation		ALH43	ALH435002		282D-435002	KENWOOD
DUT Type:	Port	ortable UHF PTT Radio Transcei		Models:	TK-3400-K/K2		TK-3400-K/K2 450.0 - 512.0 MHz	
2012 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 16 of 108

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

10.0 SAR SCALING (TUNE-UP TOLERANCE)

SAR scaling is not applicable based on the manufacturer's rated power and tolerance specification is 2 Watts + 0 dB.

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH43	ALH435002		282D-435002	KENWOOD	
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models:	TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior					ior written permis	sion of Celltech Labs Inc.	Page 17 of 108	

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
CERTECN	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testing and Engineering Services Lab	Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	

11.0 SAR TEST REDUCTION PROCEDURES APPLIED (FCC KDB 643646)

a. Face-held Configuration - Default Battery Selection per FCC KDB 643646, Page 2, Section 1) A): "When multiple standard batteries are supplied with a radio, the battery with the highest capacity is considered the default battery for making head SAR measurements."

b. Body-worn Configuration - Default Battery and Body-worn Accessory Selection per FCC KDB 643646, Page 5, Section 1) A): "Start by testing a PTT radio with the thinnest battery and a standard (default) body-worn accessory that are both supplied with the radio and, if applicable, a default audio accessory......."

c. Body-worn Configuration - Default Audio Accessory Selection - According to the manufacturer, the radio is not supplied to the end user with a standard default audio accessory (as referenced in FCC KDB 643646, Page 4, Section "Body SAR Test Considerations for Body-worn Accessories"); therefore the procedures described in note (f) below were applied in order to establish the default audio accessory.

d. Body-worn Configuration - Selection of Remaining Default Audio Accessories by Category - the Remaining Default Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10: *"For audio accessories with similar construction and operating requirements, test only the audio accessory within the group that is expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions for the combination. If it is unclear which audio accessory within a group of similar accessories is expected to result in the highest SAR, good engineering judgment and preliminary testing should be applied to select the accessory that is expected to result in the highest SAR." Please refer to note (i) below for the procedure implemented to establish the Default Audio Accessory by Category (Grouping). The Remaining Default Audio Accessories by Category were evaluated on the highest SAR channel and antenna combination from the Default Audio Accessory*

e. Body-worn Configuration - Selection of Additional Audio Accessories by Category - the Additional Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10.

f. According to the manufacturer, all the optional audio accessories can be used with any accessory combination (antenna, battery & body-worn accessory). Therefore, in order to determine the default audio accessory (in accordance with FCC KDB 643646, Page 4, footnote 8), preliminary SAR evaluations (area scans with belt-clip and thinnest battery) were performed by Celltech with all of the optional audio accessories connected to the radio consecutively in order to select the audio accessory expected to result in the highest SAR level for the final compliance evaluations.

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH435002		IC ID:	282D-435002	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models:	TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 18 of 108				

Nov. 30, 2012

12.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels evaluated for SAR were selected in accordance with the procedures described in FCC KDB 447498 Section 6) c) (see reference [8]).
- 2. The DUT was evaluated for SAR in accordance with the procedures described in FCC KDB 643646 D01v01 (see reference [9]).
- 3. Each SAR evaluation was performed with a fully charged battery.
- 4. The SAR droop of the DUT was measured by the DASY4 system for the duration of the SAR evaluations. The measured SAR droop was added to the measured SAR levels to report scaled SAR levels as shown in the SAR test data tables. A SAR-versus-Time power droop evaluation was performed (see Appendix A).
- 5. The fluid temperature was measured prior to and after the SAR evaluations. The fluid temperature remained within +/-2°C during the SAR evaluations.
- 6. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 7. The DUT was tested at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.

13.0 SAR EVALUATION PROCEDURES

a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.

(ii) For body-worn and face-held devices a planar phantom was used.

b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 A to and 10g spatial peak SAB was determined as follows:

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 30 mm x 30 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH43	5002	IC ID:	282D-435002	KENWOOD	
DUT Type:	Port	Portable UHF PTT Radio Transceiver		Models:	TK-3400-K/K2		TK-3400-K/K2 450.0 - 512.0 MHz		
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in v				ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 19 of 108	

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
	Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

14.0 SYSTEM PERFORMANCE CHECK

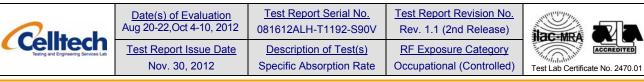
Prior to the SAR evaluations, system checks were performed with a planar phantom and SPEAG 450 MHz dipole (see Appendix B) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]) and IEC Standard 62209-1:2005 (see reference [6]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 398 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the SAR system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

				5	SYSTEM	I PERF	ORM/	ANCE C	HECK	EVAL	UATIO	NS				
Test	Equiv. Tissue	SAR 1g (W/kg)			Dielec	tric Cons _{Er}	stant		nductivit (mho/m)		ρ.	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Freq. (MHz)	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
Aug 20	Body 450	1.81 ±10%	1.92	+6.1%	56.7 ±5%	56.1	-1.1%	0.94 ±5%	0.93	-1.1%	1000	24.0	22.8	≥ 15	31	101.1
Aug 22	Head 450	1.87 ±10%	1.83	-2.1%	43.5 ±5%	43.6	+0.2%	0.87 ±5%	0.83	+4.6%	1000	24.0	23.3	≥ 15	32	101.1
Oct 4	Head 450	1.87 ±10%	1.90	+1.6%	43.5 ±5%	45.5	+4.6%	0.87 ±5%	0.86	-1.1%	1000	23.0	21.4	≥ 15	30	101.1
Oct 9	Body 450	1.81 ±10%	1.77	-2.2%	56.7 ±5%	56.9	+0.4%	0.94 ±5%	0.91	-3.2%	1000	22.0	21.7	≥ 15	30	101.1
	1.	The targ	et SAR	values a	re the me	asured v	/alues fr	rom the SA	AR syste	em manı	ufacturer	s dipole o	calibratio	n (see Aj	opendix E).
	2.	The targ	et dielec	tric para	meters are	e the nor	minal va	lues from t	the SAR	system	manufac	turer's dip	oole calib	ration (se	e Append	lix E).
	3.							d after the ance chec			mance c	heck eva	luations.	The flu	id tempe	rature
Notes	4.	Dielectri	c Probe	Kit and	a Network	Analyze	ated tissue mixture were measured prior to the system performance check using a yzer (see Appendix C). Trimed for each SAR evaluation test date based on compliance with the following provision per TCBC									
	5.	Workshop SAR Syst when hea - daily ver	o Present tem Verifi ad and bo rification o	ation Apr <u>cation</u> dy tissue of each lie	il 5-7, 2011 dielectric p quid is usua	(Kwok C parameter ally not ne	chan Pres rs are rec ecessary	sentation Fi quired to tes when liquio	ile 04-06- st a devic	2011-FC e, separa	C 4 RF E	xposure G ystem veri	Guidance C fications a	40611- K	C):	er TCBC
	 - daily verification of each liquid is usually not necessary when liquid parameter tolerances are maintained in a controlled environment - typically every few days is sufficient or when liquid is changed 															

System Performance Check Measurement Setup (IEEE Standard 1528-2003)							SPEAG 450 MI	SPEAG 450 MHz Validation Dipole Setup			
Applicant: Kenwood USA Corporation FCC ID: ALH435002 IC ID: 282D-4350								KENWOOD			
DUT Type:	DUT Type: Portable UHF PTT Radio Transceiver			Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD			
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of							sion of Celltech Labs Inc.	Page 20 of 108			

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

15.0 SIMULATED EQUIVALENT TISSUES


The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [11] and [12]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [5]) and IEC Standard 62209-1:2005 (see reference [6]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

	SIMULATED TISSUE MIXTURES			
INGREDIENT	450 MHz HEAD	450 MHz BODY		
Water	38.56 %	52.00 %		
Sugar	56.32 %	45.65 %		
Salt	3.95 %	1.75 %		
HEC	0.98 %	0.50 %		
Bactericide	0.19 %	0.10 %		

16.0 SAR LIMITS

	SAR RF EXPOSURE LIMITS									
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)							
•	atial Average over the whole body)	0.08 W/kg	0.4 W/kg							
Spatial Peak (averaged over any 1 g of tissue)1.6 W/kg8.0 W/kg										
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) 4.0 W/kg 20.0 W/kg										
The Spatial Average va	alue of the SAR averaged over the	whole body.								
•	e of the SAR averaged over any 1 g ppropriate averaging time.	ram of tissue (defined as a tissu	e volume in the shape of							
-	e of the SAR averaged over any 10 e appropriate averaging time.	grams of tissue (defined as a tis	ssue volume in the shape							
Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.										
	nts are defined as locations wher ential exposure and can exercise co		of individuals who have							

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	ortable UHF PTT Radio Transceiver Models: TK-340				400-K/K2	450.0 - 512.0 MHz	KENWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 21 of 108		

17.0 ROBOT SYSTEM SPECIFICATIONS

Specifications						
Positioner	Stäubli Unimation Corp. Robot Model: RX60L					
Repeatability	0.02 mm					
No. of axis	6					
Data Acquisition Electronic (DAE) System					
Cell Controller						
Processor	AMD Athlon XP 2400+					
Clock Speed	2.0 GHz					
Operating System	Windows XP Professional					
Data Converter						
Features	Signal Amplifier, multiplexer, A/D converter, and control logic					
Software	Measurement Software: DASY4, V4.7 Build 44					
Ooliwale	Postprocessing Software: SEMCAD, V1.8 Build 171					
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock					
DASY4 Measurement Server						
Function	Real-time data evaluation for field measurements and surface detection					
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM					
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface					
E-Field Probe						
Model	ET3DV6					
Serial No.	1590					
Construction	Triangular core fiber optic detection system					
Frequency	10 MHz to 6 GHz					
Linearity	±0.2 dB (30 MHz to 3 GHz)					
Phantom						
Туре	Barski Planar Phantom					
Shell Material	Fiberglass					
Thickness	2.0 ±0.1 mm					
Volume	Approx. 70 liters					

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Transceiver Models: TK-3400-K/K2 450.0 - 512.0 MHz						KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 22 of 108			

Testing and Engineering Services Lab	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> Occupational (Controlled)	Test Lab Certificate No. 2470.01

18.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core; Built-in shielding against static charges	
Calibration:	PEEK enclosure material (resistant to organic solvents, glycol) In air from 10 MHz to 2.5 GHz In head simulating tissue at frequencies of 900 MHz	
Frequency:	and 1.8 GHz (accuracy \pm 8%) 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)	
Directivity:	\pm 0.2 dB in head tissue (rotation around probe axis) \pm 0.4 dB in head tissue (rotation normal to probe axis)	
Dynamic Range: Surface Detect: Dimensions:	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm	
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	ET3DV6 E-Field Pro

19.0 BARSKI PLANAR PHANTOM

The Barski Planar Phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table. The planar phantom was used for the DUT SAR evaluations and the system performance check evaluations. See Appendix G for dimensions and specifications of the Barski Planar Phantom.

20.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. For evaluations of larger devices a Plexiglas platform is attached to the device holder.

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models:	ТК-3400-К/К2 450.0 - 512.0 МНz			KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 23 of 108		

21.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION	
USED	DESCRIPTION	AUDET NO.	OLNIAL NO.	CALIBRATED	INTERVAL	
х	Schmid & Partner DASY4 System	-	-	-	-	
х	-DASY4 Measurement Server	00158	1078	CNR	CNR	
х	-Robot	00046	599396-01	CNR	CNR	
х	-DAE4	00019	353	19-Apr-12	Biennial	
х	-ET3DV6 E-Field Probe	00017	1590	24-Apr-12	Annual	
х	-D450V3 Validation Dipole	00221	1068	27-Apr-12	Triennial	
х	-Barski Planar Phantom	00155	03-01	CNR	CNR	
х	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR	
х	Gigatronics 8652A Power Meter	00007	1835272	03-May-12	Biennial	
х	Gigatronics 80701A Power Sensor	00014	1833542	03-May-12	Biennial	
х	Gigatronics 80334A Power Sensor	-	1837001	03-May-12	Biennial	
х	HP 8753ET Network Analyzer	00134	US39170292	26-Apr-12	Biennial	
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	02-May-12	Biennial	
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR	
Abbr.	CNR = Calibration Not Required					

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KENWOOD
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 24 of 108	

and Engineering Services Lab	lite de	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
	Iltech and Engineering Services Lab		· · · · · · · · · · · · · · · · · · ·		Test Lab Certificate No. 2470.01

22.0 MEASUREMENT UNCERTAINTIES

Cel

Uncertainty Component 1528 Section Value ±% Distribution Divisor 1g 10g Value ±% Value ±% (10g) (10g) Value ±% (10g) (10g) Value ±% (10g)	UNCERTA		OGET FOR D	EVICE EVA	LUATION (F	CC - II	EEE1	528-2003)		
Probe Calibration (450 MHz) E.2.1 6.70 Normal 1 1 1 6.70 6.70 Axial Isotropy E.2.2 4.7 Rectangular 1.732050808 0.7 0.7 1.9 1.9 Hemispherical Isotropy E.2.2 9.6 Rectangular 1.732050808 0.7 0.7 3.9 3.9 Boundary Effect E.2.3 1 Rectangular 1.732050808 1 1 0.6 0.6 Linearity E.2.4 4.7 Rectangular 1.732050808 1 1 0.6 0.6 Readout Electronics E.2.6 0.3 Normal 1 1 1 0.3 0.3 Response Time E.2.7 0.8 Rectangular 1.732050808 1 1 1.5 1.5 Integration Time E.2.8 2.6 Rectangular 1.732050808 1 1 1.7 1.7 Probe Positioner Mechanical E.6.2 0.4 Rectangular 1.732050808 1	Uncertainty Component	1528	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Divisor			Value ±%	Value ±%	V _i or V _{eff}
Axial Isotropy E.2.2 4.7 Rectangular 1.732050808 0.7 0.7 1.9 1.9 Hemispherical Isotropy E.2.2 9.6 Rectangular 1.732050808 0.7 0.7 3.9 3.9 Boundary Effect E.2.3 1 Rectangular 1.732050808 1 1 0.6 0.6 Linearity E.2.4 4.7 Rectangular 1.732050808 1 1 2.7 2.7 System Detection Limits E.2.6 0.3 Normal 1 1 0.6 0.6 Readout Electronics E.2.6 0.3 Normal 1 1 0.5 0.5 Integration Time E.2.8 2.6 Rectangular 1.732050808 1 1 1.5 1.5 RF Ambient Conditions E.6.1 3 Rectangular 1.732050808 1 1 1.7 1.7 Probe Positioner Mechanical E.6.2 0.4 Rectangular 1.732050808 1 1 0.2	Measurement System									
Hemispherical Isotropy E.2.2 9.6 Rectangular 1.732050808 0.7 0.7 3.9 3.9 Boundary Effect E.2.3 1 Rectangular 1.732050808 1 1 0.6 0.6 Linearity E.2.4 4.7 Rectangular 1.732050808 1 1 2.7 2.7 System Detection Limits E.2.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Readout Electronics E.2.6 0.3 Normal 1 1 1 0.3 0.3 Response Time E.2.7 0.8 Rectangular 1.732050808 1 1 1.5 1.5 RF Ambient Conditions E.6.1 3 Rectangular 1.732050808 1 1 1.7 1.7 Probe Positioner Mechanical 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning wrt Phantom Shell E.6.3 2.9 Rectangular 1.732050808 1	Probe Calibration (450 MHz)	E.2.1	6.70	Normal	1	1	1	6.70	6.70	œ
Boundary Effect E.2.3 1 Rectangular 1.732050808 1 1 0.6 0.6 Linearity E.2.4 4.7 Rectangular 1.732050808 1 1 2.7 2.7 System Detection Limits E.2.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Readout Electronics E.2.6 0.3 Normal 1 1 1 0.3 0.3 Response Time E.2.7 0.8 Rectangular 1.732050808 1 1 0.5 0.5 Integration Time E.2.8 2.6 Rectangular 1.732050808 1 1 1.7 1.7 Probe Positioner Mechanical 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning Wrt Phantom Shell E.6.2 0.4 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related 1 1	Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	œ
Linearity E.2.4 4.7 Rectangular 1.732050808 1 1 2.7 2.7 System Detection Limits E.2.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Readout Electronics E.2.6 0.3 Normal 1 1 0.3 0.3 Response Time E.2.7 0.8 Rectangular 1.732050808 1 1 0.5 0.5 Integration Time E.2.8 2.6 Rectangular 1.732050808 1 1 1.5 1.5 RF Ambient Conditions E.6.1 3 Rectangular 1.732050808 1 1 1.7 1.7 Probe Positioner Mechanical Tolerance E.6.2 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning wrt Phantom Shell E.6.3 2.9 Rectangular 1.732050808 1 1 1.7 1.7 Test Sample Related E.5 1 Rectangular 1.732050808 </td <td>Hemispherical Isotropy</td> <td>E.2.2</td> <td>9.6</td> <td>Rectangular</td> <td>1.732050808</td> <td>0.7</td> <td>0.7</td> <td>3.9</td> <td>3.9</td> <td>00</td>	Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	00
System Detection Limits E.2.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Readout Electronics E.2.6 0.3 Normal 1 1 1 0.3 0.3 Response Time E.2.7 0.8 Rectangular 1.732050808 1 1 0.5 0.5 Integration Time E.2.8 2.6 Rectangular 1.732050808 1 1 1.5 1.5 RF Ambient Conditions E.6.1 3 Rectangular 1.732050808 1 1 1.7 1.7 Probe Positioner Mechanical Tolerance E.6.2 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning wrt Phantom Shell E.6.3 2.9 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 SAR Drift Measurement 6.6.2 0 Rectangular 1	Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	×
Readout Electronics E.2.6 0.3 Normal 1 1 1 0.3 0.3 Response Time E.2.7 0.8 Rectangular 1.732050808 1 1 0.5 0.5 Integration Time E.2.8 2.6 Rectangular 1.732050808 1 1 1.5 1.5 RF Ambient Conditions E.6.1 3 Rectangular 1.732050808 1 1 1.7 1.7 Probe Positioner Mechanical Tolerance E.6.2 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning wrt Phantom Shell E.6.3 2.9 Rectangular 1.732050808 1 1 1.7 1.7 Extrapolation, interpolation & integration algorithms for max. SAR evaluation E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related Image: Sample Positioning E.4.2 2.9 Normal 1 1 1 3.6 3.6 SAR Driff Measurement	Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	œ
Response Time E.2.7 0.8 Rectangular 1.732050808 1 1 0.5 0.5 Integration Time E.2.8 2.6 Rectangular 1.732050808 1 1 1.5 1.5 RF Ambient Conditions E.6.1 3 Rectangular 1.732050808 1 1 1.7 1.7 Probe Positioner Mechanical Tolerance E.6.2 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning wrt Phantom Shell E.6.3 2.9 Rectangular 1.732050808 1 1 0.6 0.6 Extrapolation, interpolation & integration algorithms for max. SAR evaluation E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related 0.6 0.6 Device Holder Uncertainty E.4.1 3.6 Normal 1 1 1 3.6 3.6	System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	œ
Integration Time E.2.8 2.6 Rectangular 1.732050808 1 1 1.5 1.5 RF Ambient Conditions E.6.1 3 Rectangular 1.732050808 1 1 1.7 1.7 Probe Positioner Mechanical Tolerance E.6.2 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning wrt Phantom Shell E.6.3 2.9 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning wrt Phantom Shell E.6.3 2.9 Rectangular 1.732050808 1 1 0.6 0.6 Extrapolation, interpolation & integration algorithms for max. SAR evaluation E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related E.5 1 Rectangular 1.732050808 1 1 1 2.9 2.9 Device Holder Uncertainty E.4.1 3.6 Normal 1 1 1 0.0 0.0 Phantom and	Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	œ
RF Ambient Conditions E.6.1 3 Rectangular 1.732050808 1 1 1.7 1.7 Probe Positioner Mechanical Tolerance E.6.2 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioner Mechanical Tolerance E.6.2 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning wrt Phantom Shell E.6.3 2.9 Rectangular 1.732050808 1 1 1.7 1.7 Extrapolation, interpolation & integration algorithms for max. SAR evaluation E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Positioning E.4.2 2.9 Normal 1 1 1 2.9 2.9 Device Holder Uncertainty E.4.1 3.6 Normal 1 1 0.0 0.0 Phantom and Tissue Parameters Imation I	Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	œ
Probe Positioner Mechanical Tolerance E.6.2 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning wrt Phantom Shell E.6.3 2.9 Rectangular 1.732050808 1 1 1.7 1.7 Extrapolation, interpolation & integration algorithms for max. SAR evaluation E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Positioning E.4.2 2.9 Normal 1 1 1 2.9 2.9 Device Holder Uncertainty E.4.1 3.6 Normal 1 1 1 3.6 3.6 SAR Drift Measurement 6.6.2 0 Rectangular 1.732050808 1 1 0.0 0.0 Phantom Uncertainty E.3.1 4 Rectangular 1.732050808 1 1 2.3 2.3 Liquid Conductivity (target) E.3.3	Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	œ
Tolerance E.6.2 0.4 Rectangular 1.732050808 1 1 0.2 0.2 Probe Positioning wrt Phantom Shell E.6.3 2.9 Rectangular 1.732050808 1 1 1.7 1.7 1.7 Extrapolation, interpolation & integration algorithms for max. SAR evaluation E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Positioning E.4.2 2.9 Normal 1 1 1 2.9 2.9 Device Holder Uncertainty E.4.1 3.6 Normal 1 1 1 0.0 0.0 Phantom and Tissue Parameters 6.6.2 0 Rectangular 1.732050808 1 1 0.0 0.0 Phantom Uncertainty E.3.1 4 Rectangular 1.732050808 1 1 2.3 2.3 Liquid Conductivity (measured) E.3.2 <td></td> <td>E.6.1</td> <td>3</td> <td>Rectangular</td> <td>1.732050808</td> <td>1</td> <td>1</td> <td>1.7</td> <td>1.7</td> <td>œ</td>		E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	œ
Extrapolation, interpolation & integration algorithms for max. SAR evaluation E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related E.4.2 2.9 Normal 1 1 1 2.9 2.9 Device Holder Uncertainty E.4.1 3.6 Normal 1 1 1 3.6 3.6 SAR Drift Measurement 6.6.2 0 Rectangular 1.732050808 1 1 0.0 0.0 Phantom and Tissue Parameters E.3.1 4 Rectangular 1.732050808 1 1 2.3 2.3 Liquid Conductivity (target) E.3.2 5 Rectangular 1.732050808 0.64 0.43 1.8 1.2 Liquid Conductivity (measured) E.3.3 2.3 Normal 1 0.64 0.43 1.5 1.0 Liquid Permittivity (measured) E.3.2 <th< td=""><td></td><td>E.6.2</td><td>0.4</td><td>Rectangular</td><td>1.732050808</td><td>1</td><td>1</td><td>0.2</td><td>0.2</td><td>×</td></th<>		E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	×
integration algorithms for max. SAR evaluation E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 Test Sample Related Image: Constraint of the state of		E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	×
Test Sample Positioning E.4.2 2.9 Normal 1 1 1 2.9 2.9 Device Holder Uncertainty E.4.1 3.6 Normal 1 1 1 3.6 3.6 SAR Drift Measurement 6.6.2 0 Rectangular 1.732050808 1 1 0.0 0.0 Phantom and Tissue Parameters <td>integration algorithms for max. SAR</td> <td>E.5</td> <td>1</td> <td>Rectangular</td> <td>1.732050808</td> <td>1</td> <td>1</td> <td>0.6</td> <td>0.6</td> <td>×</td>	integration algorithms for max. SAR	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	×
Device Holder Uncertainty E.4.1 3.6 Normal 1 1 1 3.6 3.6 SAR Drift Measurement 6.6.2 0 Rectangular 1.732050808 1 1 0.0 0.0 Phantom and Tissue Parameters E.3.1 4 Rectangular 1.732050808 1 1 2.3 2.3 Liquid Conductivity (target) E.3.2 5 Rectangular 1.732050808 0.64 0.43 1.8 1.2 Liquid Conductivity (measured) E.3.3 2.3 Normal 1 0.64 0.43 1.5 1.0 Liquid Permittivity (target) E.3.2 5 Rectangular 1.732050808 0.64 0.43 1.5 1.0 Liquid Conductivity (measured) E.3.3 2.3 Normal 1 0.64 0.43 1.5 1.0 Liquid Permittivity (target) E.3.2 5 Rectangular 1.732050808 0.6 0.49 1.7 1.4 Liquid Permittivity (measured) E.3.3 3.29 <td>Test Sample Related</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Test Sample Related									
SAR Drift Measurement 6.6.2 0 Rectangular 1.732050808 1 1 0.0 0.0 Phantom and Tissue Parameters E.3.1 4 Rectangular 1.732050808 1 1 2.3 2.3 Phantom Uncertainty E.3.1 4 Rectangular 1.732050808 1 1 2.3 2.3 Liquid Conductivity (target) E.3.2 5 Rectangular 1.732050808 0.64 0.43 1.8 1.2 Liquid Conductivity (measured) E.3.3 2.3 Normal 1 0.64 0.43 1.5 1.0 Liquid Permittivity (target) E.3.2 5 Rectangular 1.732050808 0.6 0.49 1.7 1.4 Liquid Permittivity (target) E.3.3 3.29 Normal 1 0.6 0.49 2.0 1.6	Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Phantom and Tissue Parameters E.3.1 4 Rectangular 1.732050808 1 1 2.3 2.3 Phantom Uncertainty E.3.1 4 Rectangular 1.732050808 1 1 2.3 2.3 Liquid Conductivity (target) E.3.2 5 Rectangular 1.732050808 0.64 0.43 1.8 1.2 Liquid Conductivity (measured) E.3.3 2.3 Normal 1 0.64 0.43 1.5 1.0 Liquid Permittivity (target) E.3.2 5 Rectangular 1.732050808 0.6 0.49 1.7 1.4 Liquid Permittivity (target) E.3.3 3.29 Normal 1 0.6 0.49 2.0 1.6	Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
Phantom Uncertainty E.3.1 4 Rectangular 1.732050808 1 1 2.3 2.3 Liquid Conductivity (target) E.3.2 5 Rectangular 1.732050808 0.64 0.43 1.8 1.2 Liquid Conductivity (measured) E.3.3 2.3 Normal 1 0.64 0.43 1.8 1.2 Liquid Permittivity (target) E.3.2 5 Rectangular 1.732050808 0.64 0.43 1.5 1.0 Liquid Permittivity (target) E.3.2 5 Rectangular 1.732050808 0.6 0.49 1.7 1.4 Liquid Permittivity (measured) E.3.3 3.29 Normal 1 0.6 0.49 2.0 1.6	SAR Drift Measurement	6.6.2	0	Rectangular	1.732050808	1	1	0.0	0.0	00
Liquid Conductivity (target) E.3.2 5 Rectangular 1.732050808 0.64 0.43 1.8 1.2 Liquid Conductivity (measured) E.3.3 2.3 Normal 1 0.64 0.43 1.5 1.0 Liquid Permittivity (target) E.3.2 5 Rectangular 1.732050808 0.6 0.43 1.5 1.0 Liquid Permittivity (target) E.3.2 5 Rectangular 1.732050808 0.6 0.49 1.7 1.4 Liquid Permittivity (measured) E.3.3 3.29 Normal 1 0.6 0.49 2.0 1.6	Phantom and Tissue Parameters	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
Liquid Conductivity (measured) E.3.3 2.3 Normal 1 0.64 0.43 1.5 1.0 Liquid Permittivity (target) E.3.2 5 Rectangular 1.732050808 0.6 0.49 1.7 1.4 Liquid Permittivity (measured) E.3.3 3.29 Normal 1 0.6 0.49 2.0 1.6	Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	×
Liquid Permittivity (target) E.3.2 5 Rectangular 1.732050808 0.6 0.49 1.7 1.4 Liquid Permittivity (measured) E.3.3 3.29 Normal 1 0.6 0.49 2.0 1.6	Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	00
Liquid Permittivity (measured) E.3.3 3.29 Normal 1 0.6 0.49 2.0 1.6	Liquid Conductivity (measured)	E.3.3	2.3	Normal	1	0.64	0.43	1.5	1.0	8
Liquid Permittivity (measured) E.3.3 3.29 Normal 1 0.6 0.49 2.0 1.6	Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	œ
	Liquid Permittivity (measured)	E.3.3	3.29	Normal	1	0.6	0.49	2.0	1.6	×
				RSS				10.93	10.68	
Expanded Uncertainty (95% Confidence Interval) k=2 21.86 21.37	Expanded Uncertainty (95% Confider	k=2				21.86	21.37			
Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003	Mea	surement U	ncertainty Tabl	e in accordanc	e with IEEE Sta	indard [•]	1528-20	03		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Applicant:	Kenw	ood USA Corporation	ALH435002 IC ID:		282D-435002	KENWOOD		
DUT Type:	Port	ble UHF PTT Radio Transceiver Models: TK-3400-K/K2 450.0 - 512.0 MHz						KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 25 of 108		

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab			RF Exposure Category Occupational (Controlled)	ACCREDITED Test Lab Certificate No. 2470.01

UNCERTA	NTY BUD	GET FOR D	EVICE EVAI		- IEC	62209	9-2:2010)		
Source of Uncertainty	IEC 62209-2 Section	Tolerance / Uncertainty ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Standard Uncertainty ±% (1g)	Standard Uncertainty ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (450 MHz)	7.2.2.1	6.7	Normal	1	1	1	6.7	6.7	8
Isotropy	7.2.2.2	4.7	Rectangular	1.732050808	1	1	2.7	2.7	×
Boundary Effect	7.2.2.6	1	Rectangular	1.732050808	1	1	0.6	0.6	×
Linearity	7.2.2.3	4.7	Rectangular	1.732050808	1	1	2.7	2.7	×
Detection Limits	7.2.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	×
Readout Electronics	7.2.2.7	0.3	Normal	1	1	1	0.3	0.3	×
Response Time	7.2.2.8	0.8	Rectangular	1.732050808	1	1	0.5	0.5	×
Integration Time	7.2.2.9	2.6	Rectangular	1.732050808	1	1	1.5	1.5	×
RF Ambient Conditions	7.2.4.5	3	Rectangular	1.732050808	1	1	1.7	1.7	×
Probe Positioner Mechanical Restrictions	7.2.3.1	0.4	Rectangular	1.732050808	1	1	0.2	0.2	×
Probe Positioning wrt Phantom Shell	7.2.3.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	×
Post-processing	7.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	×
Test Sample Related									
Test Sample Positioning	7.2.3.4.3	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	7.2.3.4.2	3.6	Normal	1	1	1	3.6	3.6	8
Drift of Output Power (meas. SAR drift)	7.2.2.10	0	Rectangular	1.732050808	1	1	0.0	0.0	8
Phantom and Tissue Parameters		·			·				
Phantom Uncertainty	7.2.3.2	4	Rectangular	1.732050808	1	1	2.3	2.3	8
SAR Correction Algorithm for deviations in permittivity and conductivity	7.2.4.3	1.2	Normal	1	1	0.81	1.2	0.97	8
Liquid Conductivity (measured)	7.2.4.3	2.3	Normal	1	0.78	0.71	1.8	1.6	x
Liquid Permittivity (measured)	7.2.4.3	3.29	Normal	1	0.23	0.26	0.8	0.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Liquid Permittivity - temp. uncertainty	7.2.4.4	0.27	Rectangular	1.732050808	0.78	0.71	0.1	0.1	8
Liquid Conductivity - temp. uncertainty	7.2.4.4	0.84	Rectangular	1.732050808	0.23	0.26	0.1	0.1	œ
Combined Standard Uncertainty	7.3.1	-	RSS		-	-	10.05	10.01	
Expanded Uncertainty (95% Confidence Interval)	7.3.2		k=2				20.10	20.01	
Measuremer	nt Uncertain	ty Table in acc	ordance with Ir	nternational Sta	ndard I	EC 622	09-2:2010		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Applicant:	Kenw	vood USA Corporation	FCC ID: ALH435002 IC ID:		282D-435002 KENWOO		
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models: TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 26 of 108	

Nov. 30, 2012

23.0 REFERENCES

[1] Federal Communications Commission - "Radiofrequency radiation exposure evaluation: portable devices"; Rule Part 47 CFR §2.1093.

[2] Health Canada - "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.

[3] Federal Communications Commission - "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Industry Canada - "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 4: March 2010.

[5] IEEE Standard 1528-2003 - "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.

[6] IEC International Standard 62209-1:2005 - "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices - Human models, instrumentation, and procedures."

[7] International Standard IEC 62209-2 Edition 1.0 2010-03 - "Human exposure to radio frequency fields from hand-held & body-mounted wireless communication devices - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)".

[8] Federal Communications Commission, Office of Engineering and Technology - "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01 v04: November 2009.

[9] Federal Communications Commission, Office of Engineering and Technology - "SAR Test Reduction Considerations for Occupational PTT Radios", KDB 643646 D01v01: December 2010.

[10] Federal Communications Commission, Office of Engineering and Technology - "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz"; KDB 450824 D01 v01r01: January 2007.

[11] Schmid & Partner Engineering AG - DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.

[12] Schmid & Partner Engineering AG - DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.

[13] ISO/IEC 17025 - "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."

[14] Federal Communications Commission - "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.

[15] Industry Canada - "General Requirements and Information for the Certification of Radiocommunication Equipment", Radio Standards Specification RSS-Gen Issue 3: December 2010.

Applicant:	Kenw	ood USA Corporation	FCC ID:	FCC ID: ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	ceiver Models: TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 27 of 108		

Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 57 of 108			

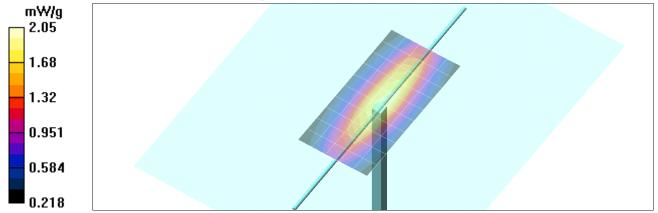
Celltech Tetra art Engineering Services La	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)		
	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	ACCREDITED Test Lab Certificate No. 2470.01	

System Performance Check - 450 MHz Body

Date Tested: 08/20/2012

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1068; Calibrated: 04/27/2012

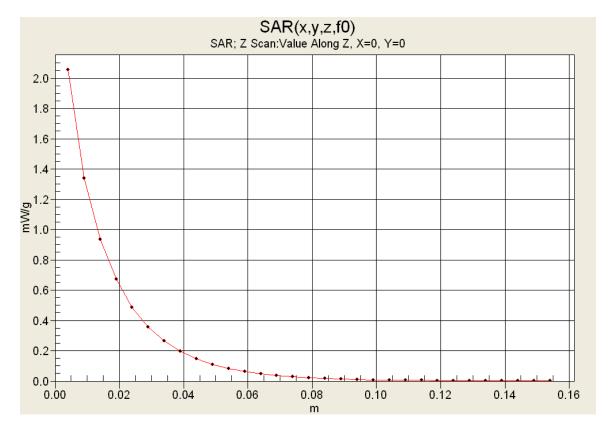
Program Notes: Ambient Temp: 24C; Fluid Temp: 22.8C; Barometric Pressure: 101.1 kPa; Humidity: 31%


Communication System: CW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.93 mho/m; ϵ_r = 56.1; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.93, 7.93, 7.93); Calibrated: 24/04/2012

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.95 mW/g


Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 47.0 V/m; Power Drift = 0.028 dB Peak SAR (extrapolated) = 3.11 W/kg SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.27 mW/g Maximum value of SAR (measured) = 2.05 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID: ALH435002 IC ID:		IC ID:	282D-435002	
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	sceiver Models: TK-3400-K/K2		450.0 - 512.0 MHz	KENWOOD
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 58 of 108

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
	Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

Z-Axis Scan

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH43	5002	IC ID:	282D-435002	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models: TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 59 of 108		

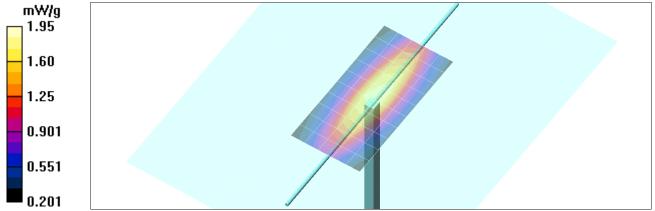
Celltech Tetra art Engineering Services La	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)		
	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	ACCREDITED Test Lab Certificate No. 2470.01	

System Performance Check - 450 MHz Head

Date Tested: 08/22/2012

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1068; Calibrated: 04/27/2012

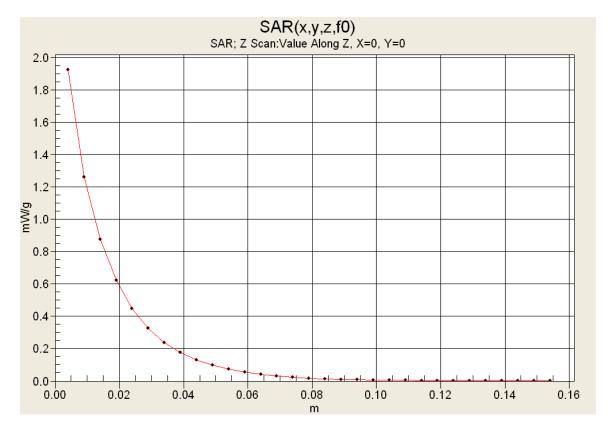
Program Notes: Ambient Temp: 24.0C; Fluid Temp: 23.3C; Barometric Pressure: 101.1 kPa; Humidity: 32%


Communication System: CW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.83 mho/m; ϵ_r = 43.6; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.54, 7.54, 7.54); Calibrated: 24/04/2012

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Head d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.83 mW/g


Head d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 49.0 V/m; Power Drift = -0.044 dB Peak SAR (extrapolated) = 2.90 W/kg SAR(1 g) = 1.83 mW/g; SAR(10 g) = 1.21 mW/g Maximum value of SAR (measured) = 1.95 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	FCC ID: ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models: TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 60 of 108		

Celltech	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
	Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

Z-Axis Scan

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models:	TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 61 of 108			

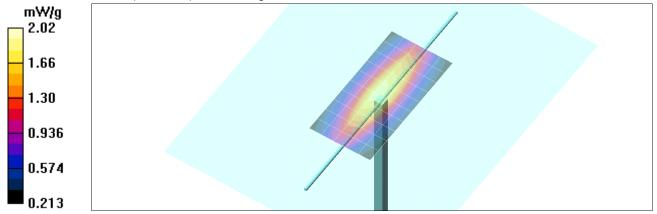
Celltech Fring and Engineering Services Lab	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)		
	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> Occupational (Controlled)	Test Lab Certificate No. 2470.01	

System Performance Check - 450 MHz Head

Date Tested: 10/04/2012

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1068; Calibrated: 04/27/2012

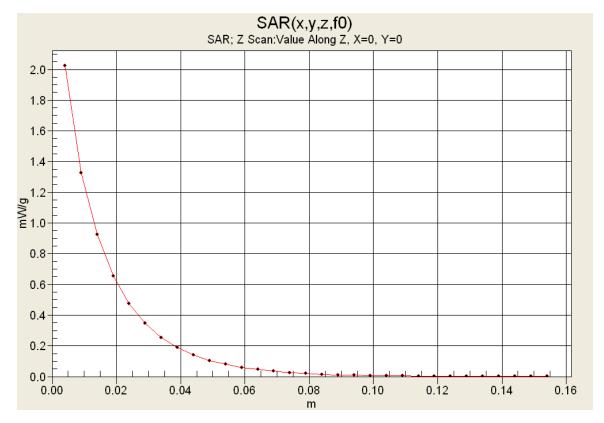
Program Notes: Ambient Temp: 23.0C; Fluid Temp: 21.4C; Barometric Pressure: 101.1 kPa; Humidity: 30%


Communication System: CW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.86 mho/m; ϵ_r = 45.5; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.54, 7.54, 7.54); Calibrated: 24/04/2012

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Head d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.91 mW/g


Head d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 49.1 V/m; Power Drift = -0.006 dB Peak SAR (extrapolated) = 3.01 W/kg SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.25 mW/g Maximum value of SAR (measured) = 2.02 mW/g

Applicant:	Kenw	wood USA Corporation FCC ID		nwood USA Corporation FCC ID: ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	rtable UHF PTT Radio Transceiver		Models:	Nodels: TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 62 of 108	

College	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)		
Celltech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01	
Testing and Engineering Services Lab	Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)		

Z-Axis Scan

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	H435002 IC ID:		282D-435002	KENWOOD
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 63 of 108		

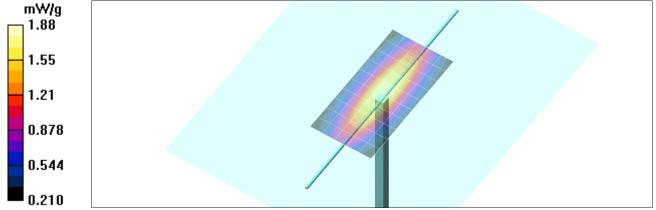
Celltech Freing and Engineering Services Lab	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)		
	Test Report Issue Date Nov. 30, 2012	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> Occupational (Controlled)	Test Lab Certificate No. 2470.01	

System Performance Check - 450 MHz Body

Date Tested: 10/09/2012

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1068; Calibrated: 04/27/2012

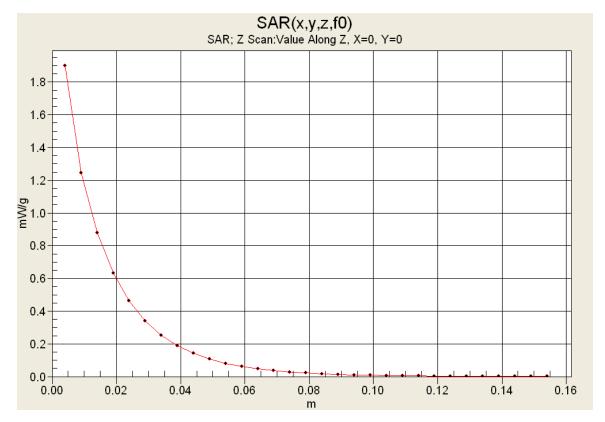
Program Notes: Ambient Temp: 22C; Fluid Temp: 21.7C; Barometric Pressure: 101.1 kPa; Humidity: 30%


Communication System: CW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ϵ_r = 56.9; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.93, 7.93, 7.93); Calibrated: 24/04/2012

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.73 mW/g


Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 45.8 V/m; Power Drift = 0.045 dB Peak SAR (extrapolated) = 2.82 W/kg SAR(1 g) = 1.77 mW/g; SAR(10 g) = 1.18 mW/g Maximum value of SAR (measured) = 1.88 mW/g

Applicant:	Kenw	nwood USA Corporation FCC ID:		ALH43	ALH435002 IC ID:		282D-435002	KENWOOD	
DUT Type:	Port	Portable UHF PTT Radio Transceiver		Models:	TK-3400-K/K2		450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 64 of 108			

Callback	Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)		
Celltech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01	
Testing and Engineering Services Lab	Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)		

Z-Axis Scan

Applicant:	Kenw	wood USA Corporation FCC ID:		nwood USA Corporation FCC ID: ALH435002 IC ID:		282D-435002		
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models:	lels: TK-3400-K/K2		450.0 - 512.0 MHz	KENWOOD
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 65 of 108		

Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH43	5002	IC ID:	282D-435002	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	ansceiver	Models:	TK-3	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech L					sion of Celltech Labs Inc.	Page 66 of 108		

450 MHz Body

***** ******

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 20/Aug/2012 Frequency(GHz) FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM							
******				******			
Freq	FCC_eB	FCC_sl	3 Test_e	Test_s			
0.3500	57.70	0.93	58.47	0.87			
0.3600	57.60	0.93	57.31	0.87			
0.3700	57.50	0.93	57.54	0.89			
0.3800	57.40	0.93	57.41	0.86			
0.3900	57.30	0.93	57.23	0.88			
0.4000	57.20	0.93	57.14	0.88			
0.4100	57.10	0.93	56.27	0.91			
0.4200	57.00	0.94	56.78	0.91			
0.4300	56.90	0.94	56.46	0.92			
0.4400	56.80	0.94	56.39	0.93			
0.4500	56.70	0.94	56.10	0.93			
0.4600	56.66	0.94	56.36	0.94			
0.4700	56.62	0.94	55.83	0.95			
0.4800	56.58	0.94	56.89	0.96			
0.4900	56.54	0.94	55.64	0.97			
0.5000	56.51	0.94	55.19	0.98			
0.5100	56.47	0.94	55.61	0.97			
0.5200	56.43	0.95	55.77	0.99			
0.5300	56.39	0.95	55.72	1.01			
0.5400	56.35	0.95	55.03	1.02			
0.5500	56.31	0.95	55.35	1.03			

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH43	5002	IC ID:	282D-435002	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 67 of 108		

450 MHz Body

Celltech Labs Inc Test Result for UIM Dielectric Parameter 21/Aug/2012 Frequency(GHz) FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM								
	Test_s Sig	ma of U	IM					
Freq 0.3500 0.3600 0.3700 0.3800 0.3900 0.4000 0.4100 0.4200 0.4300 0.4300 0.4400 0.4500 0.4600 0.4700 0.4800	************	*******	3 Test_e 57.70 56.84 57.29 57.10 56.98 56.68 56.52 57.24 56.48 56.63 56.53 56.03 56.03 55.90 55.82	Test_s 0.84 0.84 0.86 0.87 0.89 0.88 0.90 0.91 0.92 0.92 0.92 0.93 0.94 0.93 0.94				
0.4900 0.5000 0.5100 0.5200 0.5300 0.5400 0.5500	56.54 56.51 56.47 56.43 56.39 56.35 56.31	0.94 0.94 0.94 0.95 0.95 0.95 0.95	55.37 55.46 55.57 55.33 54.61 55.30 55.28	0.96 0.96 0.97 0.99 1.00 1.00 1.02				

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH435002 IC		IC ID:	282D-435002	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech					sion of Celltech Labs Inc.	Page 68 of 108		

450 MHz Head

Celltech Labs Inc Test Result for UIM Dielectric Parameter 22/Aug/2012 Frequency(GHz) FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***** ***** FCC_eHFCC_sHTest_e Test_s Freq 0.3500 44.70 0.87 45.34 0.76 0.3600 44.58 0.87 45.64 0.77 0.3700 44.46 0.87 45.43 0.76 45.60 0.3800 44.34 0.87 0.78 0.3900 44.22 0.87 44.47 0.80 44.59 0.4000 44.10 0.87 0.80 44.44 0.4100 43.98 0.80 0.87 44.35 0.4200 43.86 0.87 0.81 0.4300 43.74 0.87 44.34 0.81

43.62

43.50

43.45

43.40

43.34

43.29

43.24

43.19

43.14

43.08

43.03

42.98

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.88

0.88

0.88

0.88

44.36

43.62

43.61

43.21

42.74

42.99

42.55

42.41

42.34

42.16

42.10

42.15

0.84

0.83

0.85

0.85

0.86

0.86

0.89

0.88

0.89

0.91

0.91

0.92

0.4400

0.4500

0.4600

0.4700

0.4800

0.4900

0.5000

0.5100

0.5200

0.5300

0.5400

0.5500

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH43	5002	IC ID:	282D-435002	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	ansceiver	Models:	TK-3	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 69 of 108			

450 MHz Head

***** ******

Celltech Labs Inc Test Result for UIM Dielectric Parameter 04&05/Oct/2012 Frequency(GHz) FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

FCC_eH	IFCC_sl	HTest_e	Test_s
44.70	0.87	47.06	0.75
44.58	0.87	47.31	0.76
44.46	0.87	46.29	0.77
44.34	0.87	46.45	0.79
44.22	0.87	46.28	0.79
44.10	0.87	45.49	0.81
43.98	0.87	45.41	0.83
43.86	0.87	45.74	0.85
43.74	0.87	45.57	0.85
43.62	0.87	45.18	0.85
43.50	0.87	45.47	0.86
43.45	0.87	44.80	0.87
43.40	0.87	44.79	0.86
43.34	0.87	44.49	0.89
43.29	0.87	44.56	0.89
43.24	0.87	44.34	0.88
43.19	0.87	44.23	0.90
43.14	0.88	43.95	0.92
43.08	0.88	43.87	0.92
43.03	0.88	43.56	0.93
42.98	0.88	43.42	0.93
	44.70 44.58 44.46 44.34 44.22 44.10 43.98 43.86 43.74 43.62 43.50 43.45 43.40 43.34 43.29 43.24 43.29 43.24 43.19 43.14 43.08 43.03	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH435002 I		ALH435002 IC ID: 282D-435002		KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 70 of 108			

450 MHz Body

Celltech Labs Inc Test Result for UIM Dielectric Parameter 09&10/Oct/2012 Frequency(GHz) FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Freq FCC_eB FCC_sB Test_e Test_s 0.3500 57.70 0.93 58.64 0.81 0.2600 57.60 0.02 57.64 0.83

0.3500	57.70	0.93	58.64	0.81
0.3600	57.60	0.93	57.64	0.83
0.3700	57.50	0.93	58.32	0.84
0.3800	57.40	0.93	57.40	0.83
0.3900	57.30	0.93	57.28	0.84
0.4000	57.20	0.93	56.72	0.84
0.4100	57.10	0.93	56.58	0.87
0.4200	57.00	0.94	57.12	0.87
0.4300	56.90	0.94	56.47	0.89
0.4400	56.80	0.94	56.23	0.89
0.4500	56.70	0.94	56.91	0.91
0.4600	56.66	0.94	55.82	0.92
0.4700	56.62	0.94	55.67	0.92
0.4800	56.58	0.94	55.94	0.93
0.4900	56.54	0.94	55.61	0.93
0.5000	56.51	0.94	54.75	0.95
0.5100	56.47	0.94	55.24	0.94
0.5200	56.43	0.95	54.65	0.96
0.5300	56.39	0.95	54.78	0.97
0.5400	56.35	0.95	54.72	0.98
0.5500	56.31	0.95	54.96	0.99

Applicant:	Kenw	ood USA Corporation	FCC ID:	C ID: ALH435002		IC ID:	282D-435002	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	insceiver	Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 71 of 108			

Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

APPENDIX E - DIPOLE CALIBRATION

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH43	5002	IC ID:	282D-435002	KENWOOD
DUT Type:	ype: Portable UHF PTT Radio Transceiver		Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KEINWOOD	
2012 Celltech Labs Inc. This document is not to be reproduced in w			hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 106 of 108	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Celltech

Certificate No: D450V3-1068_Apr12

CALIBRATION CERTIFICATE

	D (50) (0 0) 10		
Object	D450V3 - SN: 10	68	
Collibration propoduro(a)	QA CAL-15.v6		
Calibration procedure(s)		dure for disale validation kits by	
	Calibration proce	dure for dipole validation kits be	
0	A		
Calibration date:	April 27, 2012		
	NUMBER OF STREET, STREE	onal standards, which realize the physical u	
The measurements and the unce	rtainties with confidence p	robability are given on the following pages	and are part of the certificate.
All calibrations have been conduc	ted in the closed laborator	y facility: environment temperature (22 \pm 3)°C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ET3DV6	SN: 1507	30-Dec-11 (No. ET3-1507_Dec11)	Dec-12
DAE4	SN: 654	03-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 11 -
			1 de
		\subseteq	
Approved by:	Katja Pokovic	Technical Manager	10/110
			Job thy
			-
			Issued: April 27, 2012
This calibration certificate shall no	ot be reproduced except in	full without written approval of the laborate	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

- Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.1
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.1 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	398 mW input power	1.87 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.71 mW /g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.25 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.15 mW /g ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	398 mW input power	1.81 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.52 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.21 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	3.02 mW / g ± 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.7 Ω - 4.7 jΩ		
Return Loss	- 21.6 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	54.6 Ω - 8.1 jΩ		
Return Loss	- 21.0 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.755 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

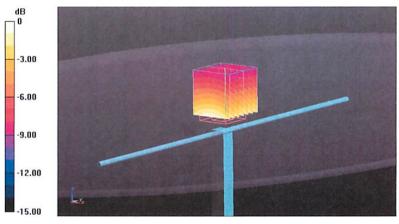
Manufactured by	SPEAG .
Manufactured on	July 16, 2009

DASY5 Validation Report for Head TSL

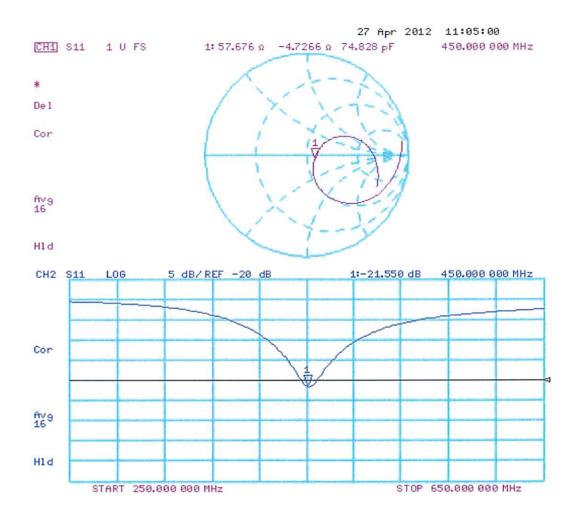
Date: 27.04.2012

Test Laboratory: SPEAG

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1068


Communication System: CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; σ = 0.87 mho/m; ϵ_r = 44.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ET3DV6 SN1507; ConvF(6.59, 6.59, 6.59); Calibrated: 30.12.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 18.04.2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Head Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 49.745 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.835 mW/g SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.25 mW/g Maximum value of SAR (measured) = 2.00 mW/g

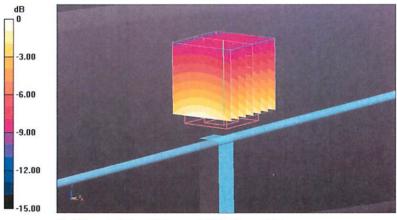
0 dB = 2.00 mW/g = 6.02 dB mW/g

DASY5 Validation Report for Body TSL

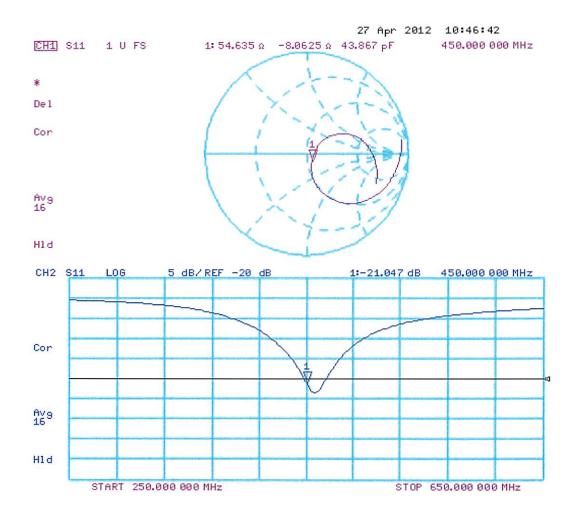
Date: 27.04.2012

Test Laboratory: SPEAG

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1068


Communication System: CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; σ = 0.94 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ET3DV6 SN1507; ConvF(7.05, 7.05, 7.05); Calibrated: 30.12.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 18.04.2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Body Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.572 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.834 mW/g SAR(1 g) = 1.81 mW/g; SAR(10 g) = 1.21 mW/g Maximum value of SAR (measured) = 1.94 mW/g

0 dB = 1.94 mW/g = 5.76 dB mW/g

Date(s) of Evaluation Aug 20-22,Oct 4-10, 2012	Test Report Serial No. 081612ALH-T1192-S90V	Test Report Revision No. Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
Nov. 30, 2012	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

APPENDIX F - PROBE CALIBRATION

Applicant:	Kenw	wood USA Corporation FCC ID:		d USA Corporation FCC ID: ALH435002 IC ID:			282D-435002	KENWOOD
DUT Type:	ype: Portable UHF PTT Radio Transceiver		Models:	TK-3400-K/K2		TK-3400-K/K2 450.0 - 512.0 MHz		
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 107 of 108		

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ET3-1590_Apr12

Accreditation No.: SCS 108

S

С

S

Client Celltech

CALIBRATION C	ERTIFICATE	
Object	ET3DV6 - SN:1590	
Calibration procedure(s)	QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes	
Calibration date:	April 24, 2012	
	ts the traceability to national standards, which realize the physical units of measurements a ninties with confidence probability are given on the following pages and are part of the cert	
All calibrations have been conducte	d in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%	
Calibration Equipment used (M&TE	critical for calibration)	

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	-lr
Approved by:	Katja Pokovic	Technical Manager	00 110
Approved by:		0	the log
			Issued: April 26, 2012
This calibration certificate shall no	t be reproduced except in full without v	written approval of the laboratory.	

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Servizio svizzero di taratura
- Swiss Calibration Service

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal . characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1590

Manufactured: Calibrated: March 19, 2001 April 24, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.79	1.92	1.60	± 10.1 %
DCP (mV) ^B	94.8	98.4	88.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	X	0.00	0.00	1.00	143.4	±4.6 %
			Y	0.00	0.00	1.00	150.1	
			Z	0.00	0.00	1.00	179.4	

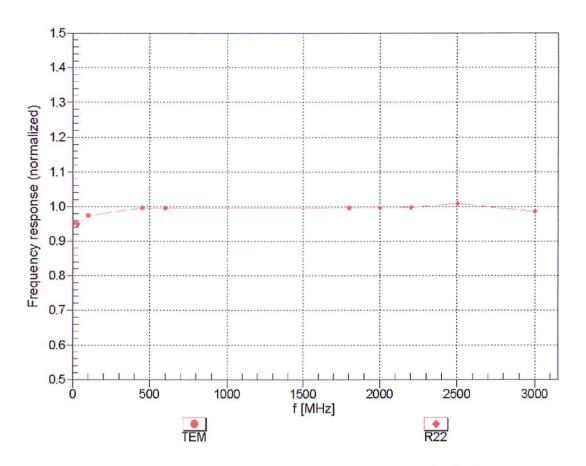
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

- ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
- ^B Numerical linearization parameter: uncertainty not required.
- ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.54	7.54	7.54	0.20	2.16	± 13.4 %
750	41.9	0.89	7.11	7.11	7.11	0.29	3.00	± 12.0 %
835	41.5	0.90	6.77	6.77	6.77	0.27	3.00	± 12.0 %
900	41.5	0.97	6.67	6.67	6.67	0.29	3.00	± 12.0 %

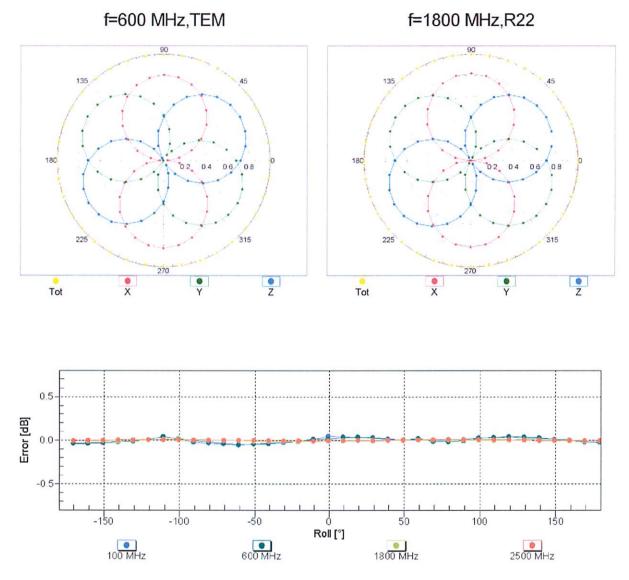
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

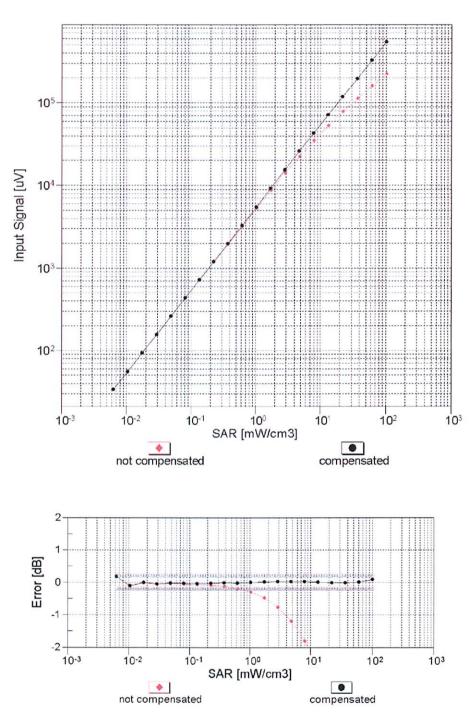

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.93	7.93	7.93	0.12	2.07	± 13.4 %
750	55.5	0.96	6.71	6.71	6.71	0.22	3.00	± 12.0 %
835	55.2	0.97	6.54	6.54	6.54	0.27	3.00	± 12.0 %
900	55.0	1.05	6.51	6.51	6.51	0.29	2.92	± 12.0 %

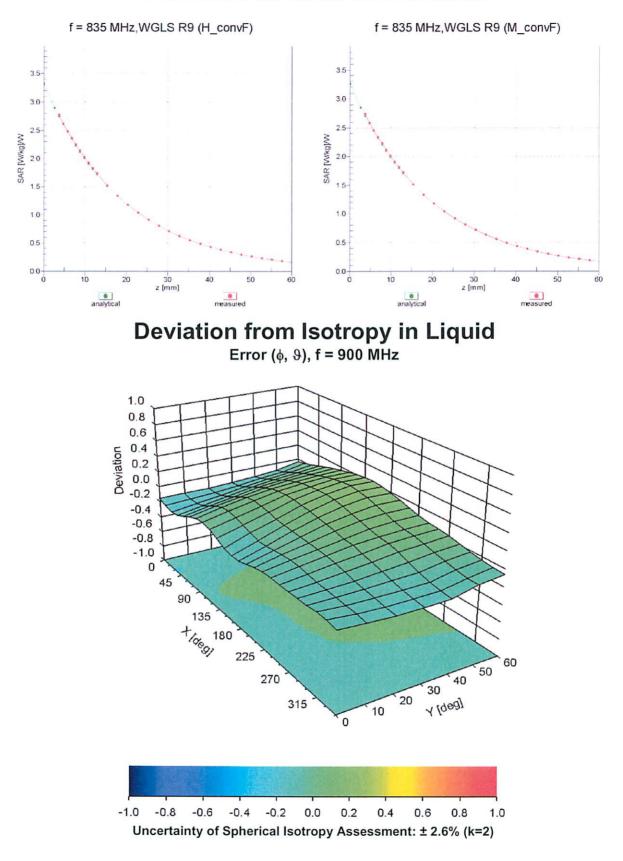
Calibration Parameter Determined in Body Tissue Simulating Media


^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-170.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH43	5002	IC ID:	282D-435002	
DUT Type:	Port	Portable UHF PTT Radio Transceiver		Models:	TK-34	400-K/K2	450.0 - 512.0 MHz	KENWOOD
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 108 of 108			

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334 E-mail: <u>barskiind@shaw.ca</u> Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item : Flat Planar Phantom Unit # 03-01 Date: June 16, 2003 Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details	
Shape	Compliance to geometry according to drawing	Supplied CAD drawing	
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area	
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05	

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

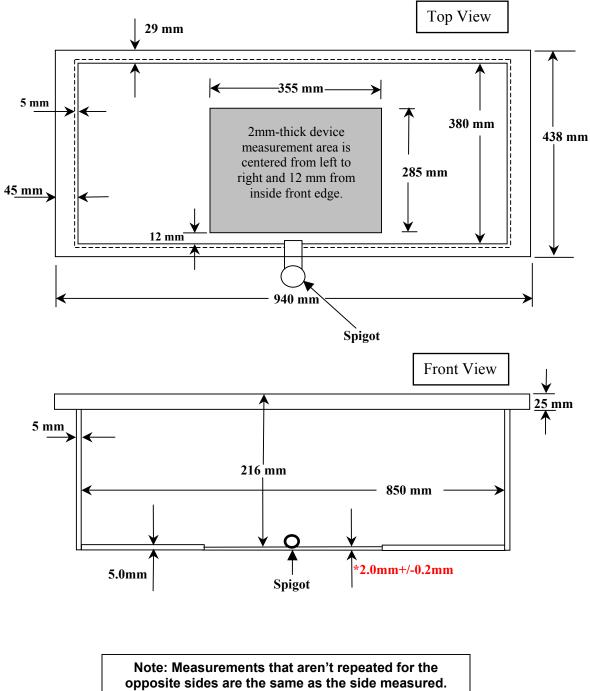
Signature

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

