

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

DECLARATION OF COMPLIANCE - SAR RF EXPOSURE EVALUATION (FCC)										
Test Lab Information	Name	CELLTECH	LABS II	NC.						
Test Lab information	Address	21-364 Loug	heed Ro	oad, K	elowna, E	3.C. V	1X 7R8 (Canada	a	
Test Lab Accreditation(s)	A2LA	ISO/IEC 170	25:2005	(A2LA	A Test La	ıb Cer	tificate N	o. 247	0.01)	
Applicant Information	Name	KENWOOD	USA CO	ORPO	RATION					
Applicant information	Address	3970 Johns (Creek C	ourt, S	uite 100,	, Suwa	anee, GA	30024	4 United States	
Application Type(s)	FCC	TCB Certifica	ation							
Standard(s) Applied	FCC	47 CFR §2.1	093							
	FCC	OET Bulletin	65, Sup	pleme	ent C		FCC	KDB	447498 D01v04	
Procedure(s) Applied	FCC	KDB 643646	D01v01				IEC	6220	9-1:2005	
	IEEE	1528-2003								
Device Classification(s)	FCC	Licensed No	n-Broad	cast T	ransmitte	er Held	d to Face	(TNF)	- FCC Part 90	
Device Identifier(s)	FCC ID:	ALH435000								
Device Model(s)		K-3402U-K (USA), TK2402-K (Latin America) Iodels are electrically and mechanically identical)								
Device Model(s) Tested	TK-3402U-K	3402U-K (0422 Identical Prototype)								
Test Sample Revision No.s	Hardware	ardware 1 Firmware 1.0								
Date of Sample Receipt	<u> </u>	Aug. 16, 2012 Date(s) of SAR Evaluations Aug. 20-30, Oct. 5-10, 2012								
Device Description	Portable FM	Portable FM UHF Push-To-Talk (PTT) Radio Transceiver								
Transmit Frequency Range	FCC	450.0 - 512.0) MHz							
Manuf. Rated Output Power	5 Watts (Con	ducted)					Specific		+ 0 Watts	
	Detachable S	Stub	450.0			Length = 75 mm			P/N: KRA-17M	1
	Detachable S	Stub	470.0	.0 - 512.0 MHz		Length = 75 mm		nm	P/N: KRA-17M2	2
	Detachable F	lelical LP	450.0 - 490.0 MHz		Length = 80 mm		nm	P/N: KRA-23M	3	
Antenna Type(s) Tested	Detachable F	lelical LP	470.0 - 512.0 MHz		Length = 80 mm		nm	P/N: KRA-23M2	4	
Antenna Type(s) Testeu	Detachable V	Vhip	450.0 - 490.0 MHz		Length = 149 mm		mm	P/N: KRA-27M	5	
	Detachable V	Vhip	470.0 - 512.0 MHz		Length = 139 mm		mm	P/N: KRA-27M2	6	
	Detachable S	Stub	450.0	450.0 - 490.0 MHz		Length = 55 mm		nm	P/N: KRA-42M	7
	Detachable S	Stub	470.0	- 512.	0 MHz	Leng	gth = 55 r	nm	P/N: KRA-42M2	8
Pattery Type(s) Tosted	Li-ion		7.4 V			2000) mAh		P/N: KNB-45L	а
Battery Type(s) Tested	Ni-MH		7.2 V			1500) mAh		P/N: KNB-9N	b
Body-worn Accessories Tested	Belt-Clip (cor	itains metal)							P/N: KBH-10	1
Audio Accessories Tested	See manufac	turer's access	sory listi	ng (Se						
Max. SAR Level(s) Evaluated	Face-held			1g			ty cycle		upational / Controlled	
max. Offic Edvoi(o) Evaluated	Body-worn	orn 5.50 W/kg 1g 50% PTT duty cycle Occupational / Controlled Exposure								
FCC Spatial Peak SAR Limit	Head/Body									
Celltech Labs Inc. declares under its sole of RF exposure requirements specified in FCC the measurement procedures specified in F 1:2005. All measurements were performed	47 CFR §2.1093 CC OET Bulletin	3 for the Occup 65, Supplemer	ational / 0 nt C (Editi	Control	led Exposition (1), IEEE	ure en Standa	vironment ard 1528-2	. The c	levice was tested in acco	ordance with

Test Report Approved By	Mh S. M.	Mike Meaker	Engineering Technologist	Celltech Labs Inc.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and

belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

The results and statements contained in this report pertain only to the device(s) evaluated.

Applicant:	Kenw	ood USA Corporation	FCC ID:	CID: ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 1 of 144	

Test Report Issue Date
Oct. 22, 2012

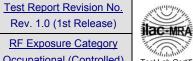
<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (1st Release)

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS	4
4.0 FCC POWER THRESHOLDS FOR PTT DEVICES (F < 0.5 GHZ)	5
5.0 NO. OF TEST CHANNELS (N _c)	5
6.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	6
7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING	7
8.0 FLUID DIELECTRIC PARAMETERS	8
9.0 SAR MEASUREMENT SUMMARY	15
10.0 SAR SCALING (TUNE-UP TOLERANCE)	20
11.0 SAR TEST REDUCTION PROCEDURES APPLIED (FCC KDB 643646)	21
12.0 DETAILS OF SAR EVALUATION	22
13.0 SAR EVALUATION PROCEDURES	22
14.0 SYSTEM PERFORMANCE CHECK	23
15.0 SIMULATED EQUIVALENT TISSUES	
16.0 SAR LIMITS	24
17.0 ROBOT SYSTEM SPECIFICATIONS	25
18.0 PROBE SPECIFICATION (ET3DV6)	26
19.0 BARSKI PLANAR PHANTOM	26
20.0 DEVICE HOLDER	26
21.0 TEST EQUIPMENT LIST	27
22.0 MEASUREMENT UNCERTAINTIES	28
23.0 REFERENCES	29
APPENDIX A - SAR MEASUREMENT PLOTS	30
APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS	86
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	99
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	107
APPENDIX E - DIPOLE CALIBRATION	142
APPENDIX F - PROBE CALIBRATION	143
APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY	144

Applicant:	Kenw	ood USA Corporation	FCC ID: ALH435000 Fred		Freq.:	450.0 - 512.0 MHz	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 2 of 144	



Test Report Issue Date Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

Description of Test(s)

RF Exposure Category Specific Absorption Rate Occupational (Controlled)

REVISION HISTORY							
REVISION NO. DESCRIPTION IMPLEMENTED BY RELEASE DATE							
1.0	Initial Release	Mike Meaker	Oct. 22, 2012				

TEST REPORT SIGN-OFF					
DEVICE TESTED BY REPORT PREPARED BY QA REVIEW BY REPORT APPROVED BY					
Mike Meaker	Cheri Frangiadakis	Mike Meaker	Mike Meaker		

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH43	ALH435000 Fred		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 3 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

1.0 INTRODUCTION

This measurement report demonstrates that the Kenwood USA Corporation Models: TK-3402U-K and TK-3402-K Portable UHF PTT Radio Transceivers comply with the SAR (Specific Absorption Rate) RF exposure requirements FCC 47 CFR §2.1093 (see reference [1]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [2]), IEEE Standard 1528-2003 (see reference [3]) and IEC Standard 62209-1:2005 (see reference [4]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (joystick), and remote control is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

	MEASURED RF CONDUCTED OUTPUT POWER LEVELS							
Radio Model	Test Frequency	Mode	dBm	Watts	Method			
	450.0 MHz	CW	37.0	5.0	Average Conducted			
	461.7 MHz	CW	37.0	5.0	Average Conducted			
	463.3 MHz	CW	37.0	5.0	Average Conducted			
	470.0 MHz	CW	37.0	5.0	Average Conducted			
	473.3 MHz	CW	37.0	5.0	Average Conducted			
TK-3402U-K	476.7 MHz	CW	37.0	5.0	Average Conducted			
	484.0 MHz	CW	37.0	5.0	Average Conducted			
	485.0 MHz	CW	37.0	5.0	Average Conducted			
	490.0 MHz	CW	37.0	5.0	Average Conducted			
	498.0 MHz	CW	36.9	4.9	Average Conducted			
	512.0 MHz	CW	36.9	4.9	Average Conducted			

Notes

- 1. The test channels were selected in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [5]).
- 2. The RF conducted output power levels of the DUT were measured by Celltech prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector of the radio in accordance with FCC 47 CFR §2.1046 (see reference [11]).

Applicant:	Kenw	ood USA Corporation	FCC ID:	CC ID: ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 4 of 144

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

4.0 FCC POWER THRESHOLDS FOR PTT DEVICES ($f \le 0.5 \text{ GHz}$)

FCC SAR Evaluation P	ower Thresholds for PTT De	evices, <i>f</i> <u><</u> 0.5 GHz*	Manufacturer's Rated RF Output Power		
Exposure Conditions	P mW (General Population)	P mW (Occupational)	100% PTT Duty Cycle	50% PTT Duty Cycle	
Held to face, d ≥ 2.5 cm	250	1250			
Body-worn, <i>d</i> ≥ 1.5 cm	worn, <i>d</i> ≥ 1.5 cm 200 1000		5 Watts	2.5 Watts	
Body-worn, <i>d</i> ≥ 1.0 cm	150	750			
compared with these three 2. The closest distance between determine the power three	ween the user and the device o	r its antenna is used to	The conducted output exceeds the FCC thresh requirement.		

5.0 NO. OF TEST CHANNELS (Nc)

Ant	enna Part No.	Antenna Freq. Range	Test Freq. Range	N _c	Test Frequencies
1	KRA-17M	450.0 -485.0 MHz	450.0 - 485.0 MHz	4	450.0, 461.7, 473.3, 485.0 MHz
2	KRA-17M2	470.0 - 512.0 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz
3	KRA-23M	440.0 - 490.0 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz
4	KRA-23M2	470.0 - 520.0 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz
5	KRA-27M	440.0 - 490.0 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz
6	KRA-27M2	470.0 - 520.0 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz
7	KRA-42M	440.0 - 490.0 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz
8	KRA-42M2	470.0 - 520.0 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz

Note: The number of test channels (*Nc*) were calculated in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [5]).

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH435000 Freq.:		1435000 Freq.: 45		KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 5 of 144

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

6.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within \pm 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within \pm 100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, \pm 25 MHz < 300 MHz and \pm 50 MHz \geq 300 MHz, require additional steps (per FCC KDB 450824 D01v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [7]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	<u>+50</u> MHz <u>></u> 300 MHz
	450.0 MHz	0.0 MHz	< 50 MHz ¹
	461.7 MHz	11.7 MHz	< 50 MHz ¹
	463.3 MHz	13.3 MHz	< 50 MHz ¹
	470.0 MHz	20.0 MHz	< 50 MHz ¹
	473.3 MHz	23.3 MHz	< 50 MHz ¹
450 MHz	476.7 MHz	26.7 MHz	< 50 MHz ¹
	484.0 MHz	34.0 MHz	< 50 MHz ¹
	485.0 MHz	35.0 MHz	< 50 MHz ¹
	490.0 MHz	40.0 MHz	< 50 MHz ¹
	498.0 MHz	48.0 MHz	< 50 MHz ¹
	512.0 MHz	62.0 MHz	> 50 MHz ²

^{1.} The probe calibration and measurement frequency interval is < 50 MHz; therefore the additional steps were not required.

^{2.} The probe calibration and measurement frequency interval is > 50 MHz; therefore the following additional steps were implemented (per FCC KDB 450824 D01 v01r01): The measured 1-g SAR may be compensated with respect to +5% tolerances in ε_r and -5% tolerances in σ_r computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness. SAR sensitivity data is per SPEAG DASY4 Manual (see reference [12]).

Probe	Calibrati	on Frequ	ency = 45	0 MHz		Target Parameters: Body 56.7 ϵ_{r} / 0.94 σ						
Test Freq.	Date	Tissue	σ	Sensitivity	ε _r	Sensitivity	% Change	Compensated SAR Level W/k				
512 MHz	Aug 29	Body	2.55%	0.43	-3.70%	-0.46	2.80%	N/A ¹	1g	50% ptt d/f		
512 MHz	Aug 30	Body	4.68%	0.43	-2.82%	-0.46	3.31%	N/A ¹	1g	50% ptt d/f		
512 MHz	Aug 30	Body	4.68%	0.43	-2.82%	-0.46	3.31%	N/A ¹	1g	50% ptt d/f		
	Par	ameter				ϵ	σ	ρ				
	f=	$=450{ m MH}$	z, d=15 r	nm					_			
	($\epsilon_r = 43.5$,	$\sigma = 0.87 \text{S}_{/}$	'm)								
SAR Peak						- 0.56	+ 0.67	-	_			
SAR~1g						- 0.46	+ 0.43	0.09				
N. (5 ()			SAR 10	g		- 0.37	+ 0.22	0.17				

Note: Per the SAR system manufacturer SPEAG, the above sensitivity data (Head) from the DASY4 manual (see reference [12]) can be applied to Body tissue parameters provided the approximation is for <5% deviation of liquid parameters.

1. % change is positive, therefore SAR value is already overestimated and compensation is not applicable.

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD	
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	bs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 6 of 144

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING

Accessory ID #	ACCESSORY CA	ATEGORY: ANTENNA						
for Test Report	Part Number	Description		SAR Evaluation				
1	KRA-17M	Detachable Stub (450-485 MHz)		Yes				
2	KRA-17M2	Detachable Stub (470-512 MHz)		Yes				
3	KRA-23M	Detachable Helical LP (450-490 MHz)		Yes				
4	KRA-23M2	Detachable Helical LP (470-512 MHz)		Yes				
5	KRA-27M	Detachable Whip (450-490 MHz)		Yes				
6	KRA-27M2	Detachable Whip (470-512 MHz)		Yes				
7	KRA-42M	Detachable Stub (450-490 MHz)		Yes				
8	KRA-42M2	Detachable Stub (470-512 MHz)		Yes				
Accessory ID #	ACCESSORY CA	ATEGORY: BATTERY	GORY: BATTERY					
for Test Report	Part Number	Description	SAR Evaluation					
а	KNB-45L	Li-ion (7.4V, 2000mAh)		Yes				
b	KNB-29N	Ni-MH (7.2V, 1500mAh)		Yes				
С	KNB-53N	Ni-MH (7.2V, 1400mAh)		No ¹				
Accessory ID #	ACCESSORY CA	ATEGORY: BODY-WORN	GORY: BODY-WORN					
for Test Report	Part Number	Description	Description					
1	KBH-10	Belt-clip (contains metal)	Belt-clip (contains metal)					
Accessory ID #	ACCESSORY CA	ATEGORY: AUDIO						
for Test Report	Part Number	Description	Audio Accessory Grouping	SAR Evaluation				
G1a	KMC-21	Compact Speaker-Mic	0	Yes				
G1b	KMC-45	Heavy Duty Speaker-Mic	Group 1 (Speaker-mic)	No ²				
G1c	KMC-48GPS	GPS Speaker-Mic	(Opeanor IIIIo)	No ²				
G2b	KHS-7	Single Muff Headset		No ²				
G2c	KHS-7A	Single Muff Headset w/ PTT	Group 2 (Lightweight	No ²				
G2d	KHS-21	Lightweight Headset	(Lightweight Headset)	Yes				
G2e	KHS-22	Behind-the-Head Headset w/ PTT	,	No ²				
G3a	KHS-10-BH	Heavy-duty Headset - Behind the head	Group 3 (Heavy-	Yes				
G3b	KHS-10-OH	Heavy-duty Headset - Over the head	duty Headset)	No ²				
G4a	KHS-23	2-Wire Ear-Bud w/ mic/PTT		Yes				
G4b	KHS-25	D-Ring Ear Headset	Group 4	No ²				
G4c	KHS-26	Earbud In-line Headset (Earpiece)		No ²				
G4d	KHS-27	D-Ring In-line PTT Headset		No ²				
G5a	KHS-8BE/BL	2-Wire Palm Mic w/ Earphone	Group 5	No ²				
Ouu		·	(Palm-Mic)					

Manufacturer's disclosed accessory listing information provided by Kenwood USA Corporation

Notes

- 1. KNB-53N battery pack is identical in construction to KNB-29N.
- 2. Audio accessories not evaluated for SAR in accordance with the procedures and provisions of FCC KDB 643646 D01v01r01 Page 10 Section 1).

Applicant:	Kenw	vood USA Corporation FCC		C ID: ALH435000 I		Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 7 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

8.0 FLUID DIELECTRIC PARAMETERS

	FLU	JID DIEL	ECTRIC	PARAME	ETERS		
Date: 08/	20/2012	Free	quency: 450	MHz	Tissue: Body		
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	
0.350	58.47	0.87	56.7	0.94	3.12%	-7.45%	
0.360	57.31	0.87	56.7	0.94	1.08%	-7.45%	
0.370	57.54	0.89	56.7	0.94	1.48%	-5.32%	
0.380	57.41	0.86	56.7	0.94	1.25%	-8.51%	
0.390	57.23	0.88	56.7	0.94	0.93%	-6.38%	
0.400	57.14	0.88	56.7	0.94	0.78%	-6.38%	
0.410	56.27	0.91	56.7	0.94	-0.76%	-3.19%	
0.420	56.78	0.91	56.7	0.94	0.14%	-3.19%	
0.430	56.46	0.92	56.7	0.94	-0.42%	-2.13%	
0.440	56.39	0.93	56.7	0.94	-0.55%	-1.06%	
0.450	56.1	0.93	56.7	0.94	-1.06%	-1.06%	
0.460	56.36	0.94	56.7	0.94	-0.60%	0.00%	
0.4617*	56.3	0.942	56.7	0.94	-0.71%	0.21%	
0.463.3*	56.2	0.943	56.7	0.94	-0.88%	0.32%	
0.470	55.83	0.95	56.7	0.94	-1.53%	1.06%	
0.480	56.89	0.96	56.7	0.94	0.34%	2.13%	
0.490	55.64	0.97	56.7	0.94	-1.87%	3.19%	
0.500	55.19	0.98	56.7	0.94	-2.66%	4.26%	
0.510	55.61	0.97	56.7	0.94	-1.92%	3.19%	
0.520	55.77	0.99	56.7	0.94	-1.64%	5.32%	
0.530	55.72	1.01	56.7	0.94	-1.73%	7.45%	
0.540	55.03	1.02	56.7	0.94	-2.95%	8.51%	
0.550	55.35	1.03	56.7	0.94	-2.38%	9.57%	

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 20	450 Body	24.0°C	22.8°C	≥ 15 cm	101.1 kPa	31%	1000

Applicant:	Kenw	nwood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	Portable UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pr	ior written permis	sion of Celltech Labs Inc.	Page 8 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS		
Date: 08/	21/2012	Free	quency: 450	MHz	Tissue: Body		
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	
0.350	57.7	0.84	56.7	0.94	1.76%	-10.64%	
0.360	56.84	0.84	56.7	0.94	0.25%	-10.64%	
0.370	57.29	0.86	56.7	0.94	1.04%	-8.51%	
0.380	57.1	0.87	56.7	0.94	0.71%	-7.45%	
0.390	56.98	0.89	56.7	0.94	0.49%	-5.32%	
0.400	56.68	0.88	56.7	0.94	-0.04%	-6.38%	
0.410	56.52	0.9	56.7	0.94	-0.32%	-4.26%	
0.420	57.24	0.91	56.7	0.94	0.95%	-3.19%	
0.430	56.48	0.92	56.7	0.94	-0.39%	-2.13%	
0.440	56.63	0.92	56.7	0.94	-0.12%	-2.13%	
0.450	56.53	0.93	56.7	0.94	-0.30%	-1.06%	
0.460	56.03	0.94	56.7	0.94	-1.18%	0.00%	
0.470	55.9	0.93	56.7	0.94	-1.41%	-1.06%	
0.480	55.82	0.94	56.7	0.94	-1.55%	0.00%	
0.484*	55.6	0.948	56.7	0.94	-1.94%	0.85%	
0.490	55.37	0.96	56.7	0.94	-2.35%	2.13%	
0.500	55.46	0.96	56.7	0.94	-2.19%	2.13%	
0.510	55.57	0.97	56.7	0.94	-1.99%	3.19%	
0.520	55.33	0.99	56.7	0.94	-2.42%	5.32%	
0.530	54.61	1	56.7	0.94	-3.69%	6.38%	
0.540	55.3	1	56.7	0.94	-2.47%	6.38%	
0.550	55.28	1.02	56.7	0.94	-2.50%	8.51%	

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 21	450 Body	24.0°C	22.5°C	≥ 15 cm	101.1 kPa	31%	1000

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD	
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ıbs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 9 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 08/2	22/2012	Free	quency: 450	MHz	Tissu	ie: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	45.34	0.76	43.5	0.87	4.23%	-12.64%
0.360	45.64	0.77	43.5	0.87	4.92%	-11.49%
0.370	45.43	0.76	43.5	0.87	4.44%	-12.64%
0.380	45.6	0.78	43.5	0.87	4.83%	-10.34%
0.390	44.47	0.8	43.5	0.87	2.23%	-8.05%
0.400	44.59	0.8	43.5	0.87	2.51%	-8.05%
0.410	44.44	0.8	43.5	0.87	2.16%	-8.05%
0.420	44.35	0.81	43.5	0.87	1.95%	-6.90%
0.430	44.34	0.81	43.5	0.87	1.93%	-6.90%
0.440	44.36	0.84	43.5	0.87	1.98%	-3.45%
0.450	43.62	0.83	43.5	0.87	0.28%	-4.60%
0.460	43.61	0.85	43.5	0.87	0.25%	-2.30%
0.4617*	43.5	0.85	43.5	0.87	0.00%	-2.30%
0.4633*	43.5	0.85	43.5	0.87	0.00%	-2.30%
0.470	43.21	0.85	43.5	0.87	-0.67%	-2.30%
0.480	42.74	0.86	43.5	0.87	-1.75%	-1.15%
0.484*	42.8	0.86	43.5	0.87	-1.61%	-1.15%
0.485*	42.9	0.86	43.5	0.87	-1.38%	-1.15%
0.490	42.99	0.86	43.5	0.87	-1.17%	-1.15%
0.500	42.55	0.89	43.5	0.87	-2.18%	2.30%
0.510	42.41	0.88	43.5	0.87	-2.51%	1.15%
0.520	42.34	0.89	43.5	0.87	-2.67%	2.30%
0.530	42.16	0.91	43.5	0.87	-3.08%	4.60%
0.540	42.1	0.91	43.5	0.87	-3.22%	4.60%
0.550	42.15	0.92	43.5	0.87	-3.10%	5.75%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 22	450 Head	24.0°C	23.3°C	≥ 15 cm	101.1 kPa	32%	1000

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						Page 10 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 08/28	&29/2012	Free	quency: 450 l	MHz	Tissu	ie: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	57.73	0.84	56.7	0.94	1.82%	-10.64%
0.360	57.39	0.83	56.7	0.94	1.22%	-11.70%
0.370	56.75	0.84	56.7	0.94	0.09%	-10.64%
0.380	56.98	0.86	56.7	0.94	0.49%	-8.51%
0.390	56.79	0.85	56.7	0.94	0.16%	-9.57%
0.400	56.44	0.87	56.7	0.94	-0.46%	-7.45%
0.410	56.32	0.88	56.7	0.94	-0.67%	-6.38%
0.420	56.32	0.9	56.7	0.94	-0.67%	-4.26%
0.430	56.28	0.91	56.7	0.94	-0.74%	-3.19%
0.440	56.05	0.91	56.7	0.94	-1.15%	-3.19%
0.450	55.87	0.93	56.7	0.94	-1.46%	-1.06%
0.460	54.74	0.93	56.7	0.94	-3.46%	-1.06%
0.470	55.43	0.93	56.7	0.94	-2.24%	-1.06%
0.4733*	55.3	0.933	56.7	0.94	-2.47%	-0.74%
0.4767*	55.2	0.937	56.7	0.94	-2.65%	-0.32%
0.480	55.1	0.94	56.7	0.94	-2.82%	0.00%
0.485*	54.6	0.94	56.7	0.94	-3.70%	0.00%
0.490	54.08	0.94	56.7	0.94	-4.62%	0.00%
0.498*	54.5	0.948	56.7	0.94	-3.88%	0.85%
0.500	54.56	0.95	56.7	0.94	-3.77%	1.06%
0.510	54.54	0.96	56.7	0.94	-3.81%	2.13%
0.512*	54.6	0.964	56.7	0.94	-3.70%	2.55%
0.520	54.87	0.98	56.7	0.94	-3.23%	4.26%
0.530	54.88	0.99	56.7	0.94	-3.21%	5.32%
0.540	53.94	1	56.7	0.94	-4.87%	6.38%
0.550	54.32	1	56.7	0.94	-4.20%	6.38%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 28	450 Body	23.0°C	23.2°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 29	450 Body	23.0°C	23.6°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Ir						Page 11 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 08/	30/2012	Free	quency: 450	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	57.97	0.85	56.7	0.94	2.24%	-9.57%
0.360	57.87	0.87	56.7	0.94	2.06%	-7.45%
0.370	57.11	0.9	56.7	0.94	0.72%	-4.26%
0.380	57.4	0.89	56.7	0.94	1.23%	-5.32%
0.390	57.18	0.89	56.7	0.94	0.85%	-5.32%
0.400	56.21	0.9	56.7	0.94	-0.86%	-4.26%
0.410	57.07	0.9	56.7	0.94	0.65%	-4.26%
0.420	56.58	0.91	56.7	0.94	-0.21%	-3.19%
0.430	56.9	0.91	56.7	0.94	0.35%	-3.19%
0.440	56.17	0.92	56.7	0.94	-0.93%	-2.13%
0.450	55.81	0.93	56.7	0.94	-1.57%	-1.06%
0.460	56.48	0.95	56.7	0.94	-0.39%	1.06%
0.4617*	56.5	0.95	56.7	0.94	-0.35%	1.06%
0.463.3*	56.5	0.95	56.7	0.94	-0.35%	1.06%
0.470	56.48	0.95	56.7	0.94	-0.39%	1.06%
0.480	55.94	0.97	56.7	0.94	-1.34%	3.19%
0.484*	55.7	0.97	56.7	0.94	-1.76%	3.19%
0.490	55.46	0.97	56.7	0.94	-2.19%	3.19%
0.498*	55.2	0.97	56.7	0.94	-2.65%	3.19%
0.500	55.65	0.97	56.7	0.94	-1.85%	3.19%
0.510	55.09	0.98	56.7	0.94	-2.84%	4.26%
0.512*	55.1	0.984	56.7	0.94	-2.82%	4.68%
0.520	55.07	1	56.7	0.94	-2.87%	6.38%
0.530	55.09	1	56.7	0.94	-2.84%	6.38%
0.540	55.29	1.03	56.7	0.94	-2.49%	9.57%
0.550	55.07	1.02	56.7	0.94	-2.87%	8.51%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Aug 30	450 Body	23.0°C	23.8°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior writter					sion of Celltech Labs Inc.	Page 12 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 10/04	1&05/2012	Free	quency: 450	MHz	Tissu	ıe: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	47.06	0.75	43.5	0.87	8.18%	-13.79%
0.360	47.31	0.76	43.5	0.87	8.76%	-12.64%
0.370	46.29	0.77	43.5	0.87	6.41%	-11.49%
0.380	46.45	0.79	43.5	0.87	6.78%	-9.20%
0.390	46.28	0.79	43.5	0.87	6.39%	-9.20%
0.400	45.49	0.81	43.5	0.87	4.57%	-6.90%
0.410	45.41	0.83	43.5	0.87	4.39%	-4.60%
0.420	45.74	0.85	43.5	0.87	5.15%	-2.30%
0.430	45.57	0.85	43.5	0.87	4.76%	-2.30%
0.440	45.18	0.85	43.5	0.87	3.86%	-2.30%
0.450	45.47	0.86	43.5	0.87	4.53%	-1.15%
0.460	44.8	0.87	43.5	0.87	2.99%	0.00%
0.4633*	44.8	0.867	43.5	0.87	2.99%	-0.34%
0.470	44.79	0.86	43.5	0.87	2.97%	-1.15%
0.484*	44.49	0.89	43.5	0.87	2.28%	2.30%
0.484	44.5	0.89	43.5	0.87	2.30%	2.30%
0.490	44.56	0.89	43.5	0.87	2.44%	2.30%
0.500	44.34	0.88	43.5	0.87	1.93%	1.15%
0.510	44.23	0.9	43.5	0.87	1.68%	3.45%
0.520	43.95	0.92	43.5	0.87	1.03%	5.75%
0.530	43.87	0.92	43.5	0.87	0.85%	5.75%
0.540	43.56	0.93	43.5	0.87	0.14%	6.90%
0.550	43.42	0.93	43.5	0.87	-0.18%	6.90%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Oct 4	450 Head	23.0°C	21.4°C	≥ 15 cm	101.1 kPa	30%	1000
Oct 5	450 Head	23.0°C	21.4°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	Kenw	wood USA Corporation FCC ID:		ID: ALH435		ALH435000 Freq.:		KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech La						Page 13 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 10/09	&10/2012	Free	quency: 450	MHz	Tissu	ie: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	58.64	0.81	57.7	0.93	1.63%	-12.90%
0.360	57.64	0.83	57.7	0.93	-0.10%	-10.75%
0.370	58.32	0.84	57.7	0.93	1.07%	-9.68%
0.380	57.4	0.83	57.7	0.93	-0.52%	-10.75%
0.390	57.28	0.84	57.7	0.93	-0.73%	-9.68%
0.400	56.72	0.84	57.7	0.93	-1.70%	-9.68%
0.410	56.58	0.87	57.7	0.93	-1.94%	-6.45%
0.420	57.12	0.87	57.7	0.93	-1.01%	-6.45%
0.430	56.47	0.89	57.7	0.93	-2.13%	-4.30%
0.440	56.23	0.89	57.7	0.93	-2.55%	-4.30%
0.450	56.91	0.91	57.7	0.93	-1.37%	-2.15%
0.460	55.82	0.92	57.7	0.93	-3.26%	-1.08%
0.461.7*	55.8	0.92	56.7	0.94	-1.59%	-2.13%
0.4633*	55.8	0.92	57.7	0.93	-3.29%	-1.08%
0.470	55.67	0.92	57.7	0.93	-3.52%	-1.08%
0.4767*	55.9	0.927	56.7	0.94	-1.41%	-1.38%
0.480	55.94	0.93	57.7	0.93	-3.05%	0.00%
0.484*	55.8	0.93	57.7	0.93	-3.29%	0.00%
0.490	55.61	0.93	57.7	0.93	-3.62%	0.00%
0.500	54.75	0.95	57.7	0.93	-5.11%	2.15%
0.510	55.24	0.94	57.7	0.93	-4.26%	1.08%
0.520	54.65	0.96	57.7	0.93	-5.29%	3.23%
0.530	54.78	0.97	57.7	0.93	-5.06%	4.30%
0.540	54.72	0.98	57.7	0.93	-5.16%	5.38%
0.550	54.96	0.99	57.7	0.93	-4.75%	6.45%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Oct 9	450 Body	22.0°C	21.7°C	≥ 15 cm	101.1 kPa	30%	1000
Oct 10	450 Body	22.0°C	21.6°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	Kenw	rood USA Corporation	ALH435000 Freq.:			450.0 - 512.0 MHz	KENWOOD	
DUT Type:	Port	Portable UHF PTT Radio Transceiver			TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	bs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 14 of 144

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

9.0 SAR MEASUREMENT SUMMARY

	Tabl	e 1					FACE-HEL	D SAR EV	ALUATION	RESULTS			
С	Test Dat Oct	e: Aug. 2: 5., 2012	2 &		1	2	3	4	5	6	7	8	
	Antenna	Test	Cond.			SAR W/ Default Ba					V/kg 1g ery (b)		
R	Tested	Freq. (MHz)	Pwr (W)	100%	6 ptt d/f	50% ptt d/f	Drift (dB)	50%+droop	100% ptt d/f	50% ptt d/f	Drift dB	50%+droop	
1		450.0	5.0			N/A	4			N	/A	•	
2	ANT. 1	461.7	5.0	F1	7.39	3.70	-0.445	4.09	F10 7.49	3.75	-0.735	4.44	
3	KRA-17M	473.3	5.0			N/A					/A		
4		485.0	5.0	F2	5.90	2.95	-0.656	3.43			/A		
5		470.0	5.0			N/A		1			/A		
6	ANT. 2	484.0	5.0	F3	6.75	3.38	-0.519	3.80			/A		
7	KRA-17M2	498.0	4.9			N/A					/A		
8		512.0	4.9			N/A					/A		
9 10	ANT	450.0 463.3	5.0 5.0	F4	6.69	N/A 3.35	-0.619	3.86			/A		
	ANT. 3 KRA-23M			F4	0.09	L		3.80	N/A N/A				
11 12	KKA-25W	476.7 490.0	5.0 5.0			N/A							
13		470.0	5.0		N/A N/A N/A N/A								
14	ANT. 4	484.0	5.0	F5	5.80	2.90	-0.738	3.44	N/A N/A				
15	KRA-23M2	498.0	4.9	13	3.00	N/A		0.44	N/A				
16		512.0	4.9		N/A N/A								
17		450.0	5.0	N/A N/A									
18	ANT. 5	463.3	5.0	F6 6.41 3.21 -0.458 3.56 N/A									
19	KRA-27M	476.7	5.0	. •	0		000	0.00			//A		
20		490.0	5.0							N/A			
21		470.0	5.0			N/A	4		N/A				
22	ANT. 6	484.0	5.0	F7	6.98	3.49	-0.586	3.99		N	/A		
23	KRA-27M2	498.0	4.9			N/A	4			N	/A		
24		512.0	4.9			N/A	4			N	/A		
25		450.0	5.0			N/A	4			N	/A		
26	ANT. 7	463.3	5.0	F8	5.96	2.98	-0.414	3.28		N	/A		
27	KRA-42M	476.7	5.0			N/A					/A		
28		490.0	5.0			N/A					/A		
29		470.0	5.0			N/A		1			/A		
30	ANT. 8	484.0	5.0	F9	4.68	2.34	-0.496	2.62			/A		
31	KRA-42M2	498.0	4.9			N/A					/A		
32		512.0	4.9			N/A					/A		
			LIMITS				HEAD		PATIAL PEAK	RI	F EXPOSURE C		
		FCC 47	CFR 2.10	93		8	3.0 W/kg	1	g averaging		Occupation	onal	
Note							1						
	Mode = CW (inuous V	Nave)		Ph	antom = Barski	Planar Phantom				
	ont of DUT Dis						Antenna Dis	stance to Plana	r Phantom (see	Appendix D)			
	2.5		·		1	2	3	4	5	6	7	8	
					.2 cm	3.2 cm	3.2 cm	3.2 cm	3.2 cm	3.2 cm	3.2 cm	3.2 cm	
C =	Column; R = R	ow		F1-F	x (F = Fa	ce) denotes the	corresponding	Face SAR Plot#	t as shown in Ap	pendix A			

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	Models: TK-3402U-K			TK-3402-K	KENWOOD	
2012 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 15 of 144

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 D01v01 (see reference [6])

- 1. For face-held configuration, the highest capacity battery was selected as the default battery (battery "a").
- 2. The SAR evaluations commenced at the highest output power channel per antenna and frequency range.
- 3. When the head SAR of an antenna tested on the highest output power channel using the default battery is \leq 3.5 W/kg (50% PTT duty factor), testing of all other required channels is not necessary.
- 4. When the SAR of an antenna tested on the highest output power channel using the default battery is > 3.5 W/kg but ≤ 4.0 W/kg, testing of immediately adjacent channels is not necessary, but testing of all other channels may still be required.
- 4. When the SAR for all antennas tested using the default battery is \leq 4.0 W/kg, test additional batteries using the antenna and channel configuration that resulted in the highest SAR.
- 5. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	Models: TK-3402U-K			TK-3402-K	KENWOOD	
2012 Celltech La	bs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 16 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

	Tabl	e 2				E	BODY-WOI	RN SAR EV	ALUA	TION	RESULTS	3	
С	Test Date: A 30, Oct	Aug. 20, 2 9 & 10 20	21, 29, 12		1	2	3	4		5	6	7	8
						SAR W/	kg 1g				SAR	W/kg 1g	
		Test				Default Ba	ttery (a)				Batt	ery (b)	
	Antenna	Frea.	Cond			Default Body-v	vorn Acc. (1)				Default Bod	y-worn Acc. (1)	
R	Tested	(MHz	. Pwr (W)			Default Audio					Default Au	dio Acc. (G5a)	
)	(**)				(200,						
					% ptt d/f	50% ptt d/f	Drift (dB)	50%+droop	100%	ptt d/f	50% ptt d/f	Drift dB	50%+droop
1		450.0	5.0	B1	7.32	3.66	-0.008	3.67				N/A	T
2	ANT. 1	461.7	5.0	B2	11.0	5.50	-0.553	6.25	B27	11.0	5.50	-0.751	6.54
3	KRA-17M	473.3	5.0	B3	9.59	4.80	-0.609	5.52				N/A	
4		485.0	5.0	B4	7.38	3.69	-0.701	4.34				N/A	
5		470.0	5.0	B5	10.0	5.00	-0.513	5.63	DOC 1	40 :		N/A	1 00-
6	ANT. 2 KRA-17M2	484.0	5.0	B6	10.3	5.15	-0.501	5.78	B28	10.4	5.20	-1.08	6.67
7	MNA-17IVIZ	498.0	4.9	B7	8.42	4.21	-0.560	4.79					
8		512.0 450.0	4.9 5.0	B8 B9									
10	ANT. 3	463.3	5.0	B10	9.82	4.08	-0.124	5.73	B29	10.5	5.25	-0.952	6.54
11	KRA-23M	476.7	5.0	B10	7.76						0.54		
12	14.01 20	490.0	5.0	ווט	N/A N/A								
13		470.0	5.0	B12	9.68	4.84	-0.557	5.50					6.43
14	ANT. 4	484.0	5.0	B13	8.73	4.37	-0.600	5.01	D30	9.00		N/A	0.43
15	KRA-23M2	498.0	4.9	B14	6.84	3.42	-0.810	4.12	N/A				
16		512.0	4.9	דוט	0.04	0.42 N/A		7.12	N/A				
17		450.0	5.0	B15	7.64	3.82	-0.330	4.12				N/A	
18	ANT. 5	463.3	5.0	B16	9.22	4.61	-0.507	5.18	B31	9.44	4.72	-0.641	5.47
19	KRA-27M	476.7	5.0	B17	8.52	4.26	-0.618	4.91				N/A	
20		490.0	5.0	B18	7.44	3.72	-0.507	4.18				N/A	
21		470.0	5.0	B19	9.40	4.70	-0.524	5.30				N/A	
22	ANT. 6	484.0	5.0	B20	9.58	4.79	-0.582	5.48				N/A	
23	KRA-27M2	498.0	4.9	B21	10.2	5.10	-0.381	5.57				N/A	
24		512.0	4.9	B22	10.3	5.15	-0.506	5.79	B32	10.5	5.25	-0.674	6.13
25		450.0	5.0	B23	4.43	2.22	-0.234	2.34				N/A	
26	ANT. 7	463.3	5.0	B24	8.31	4.16	-0.296	4.45	B33	7.77	3.89	-0.486	4.35
27	KRA-42M	476.7	5.0	B25	7.33	3.67	-0.498	4.11				N/A	
28		490.0	5.0			N/A						N/A	
29		470.0	5.0			N/A						N/A	
30	ANT. 8	484.0	5.0	B26	6.38	3.19	-0.389	3.49				N/A	
31	KRA-42M2	498.0	4.9			N/A						N/A	
32		512.0	4.9	N/A N/A									
			SAR LIM		<u> </u>		8.0 V			TIAL PE		RF EXPOSURE (Occupati	
Note	es						5.5 (- 3	. 9 (эээрин	
	Mode = CW (I	Inmodula	ated Cont	inuoue	Wave)		Dh	antom = Barski	Planar Pl	hantom			
DU	JT Spacing to	Planar P	hantom	iiiuuus	vvavo)			stance to Plana			Appendix D)		
	per Battery (se Battery (a)		ery (b)		1	2	3	4		5	6	7	8
	1.2 cm		2 cm	-	3.1 cm	3.1 cm	3.1 cm	3.1 cm	3	1 cm	3.1 cm	3.1 cm	3.1 cm
C =	Column; R = R	l	_ 0111	_	L							3.1 0111	0.1 0111
0 -	C = Column; R = Row B1-Bx (B = Body) denotes the corresponding Body SAR Plot # as shown in Appendix A												

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	Portable UHF PTT Radio Transceiver			TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 17 of 144

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 D01v01 (see reference [6])

- 1. For body-worn configuration, the thinnest standard battery was selected as the default battery (battery "a"). (Both batteries are the same thickeness)
- 2. The SAR evaluations commenced at the highest output power channel per antenna and frequency range.
- 3. When the SAR of an antenna tested on the highest output power channel using the default battery is \leq 3.5 W/kg (50% PTT duty factor), testing of all other required channels is not necessary.
- 4. When the SAR of an antenna tested on the highest output power channel using the default battery is > 3.5 W/kg but ≤ 4.0 W/kg, testing of immediately adjacent channels is not necessary, but testing of all other channels may still be required.
- 5. When the body SAR of an antenna tested on the highest output power channel with the default battery, default body-worn accessory and default audio accessory is > 4.0 W/kg and ≤ 6.0 W/kg, body SAR should be measured for that antenna on the required immediately adjacent channels. For the remaining channels that cannot be excluded, which still require consideration, the 3.5 W/kg exclusion and 4.0 W/kg exclusion may be applied recursively with respect to the highest output power channel among the remaining channels; measure the SAR of the remaining channels that cannot be excluded.
- 6. When the highest SAR of an antenna tested with the thinnest (default) battery is > 4.0 W/kg and ≤ 6.0 W/kg, test additional batteries with the default body-worn and audio accessory on the channel that resulted in the highest SAR for that antenna.
- 7. Audio accessory (G5a) was selected as the default audio accessory based on preliminary evaluations with the most conservative SAR.
- 8. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	Portable UHF PTT Radio Transceiver			TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pr	ior written permis	sion of Celltech Labs Inc.	Page 18 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

Т	ABLE 3	AD	DITIONAL	AUD	O AC	C'S SAR E	EVALU	IATION RES	ULTS
С	Test Date(s): Oct	9 & 10, 2012						1	2
								1g SAR (W	/kg)
	Antenna	Audio	Audio	Те	st	Conducted		Battery (I	o)
R	Tested	Accessory	Accessory	Frequ	-	Power		Body-worn A	cc. (1)
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Grouping	ID	(MF	iz)	(W)	Plot	100% ptt d/f	50% ptt d/f
							#	SAR Drift dB	50%+droop
1		G1	G1a	461	7	5.0	A1	10.2	5.10
2		40	. /	5.0	AI	-0.613	5.87		
3		G2	G2d	461	7	5.0	A2	9.92	4.96
4	ANT. 8 KRA-42M2	G2	GZū	46	. /	5.0	AZ	-0.396	5.43
5		G3	G3a	461	7	5.0	A3	10.7	5.35
6		GS	GSa	40	.7	5.0	AS	-0.755	6.37
7		G4	G4a	461	7	5.0	A4	10.6	5.30
8		G4	G4a	40	. /	5.0	A4	-0.646	6.15
	SAR	LIMITS		E	BODY	SPATIAL	PEAK	RF EXPOSUR	E CATEGORY
	FCC 47	CFR 2.1093		8.	0 W/kg	1g aver	age	Occup	ational
Notes									
Test Mo	de = CW (Unmodul	ated Continuous	s Wave)		DUT D	istance to Ph	antom	Antenna Distar	nce to Phantom
Phanton	n = Barski Planar Pl	nantom							
C = Colu	umn; R = Row			1.2 cm			3.1	cm	
Audio ad	ccessories do not co	ntain any built-	in radiating eler	ment					

Applicant:	Kenw	ood USA Corporation	FCC ID:	D: ALH435000 Freq.:			450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD	
2012 Celltech La	bs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 19 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

10.0 SAR SCALING (TUNE-UP TOLERANCE)

SC	ALING C	F SAR LEV	ELS TO MA	NUFACTUR	RER'S TUNE-	UP TOLE	RANC	E SPECIFICA	ATION
Test Config.	Test Freq. (MHz)	Antenna Accessory ID #	Battery Accessory ID #	Body-worn Accessory ID #	Conducted Power Before Test	SAR Le ⁻ (50% P1		Scaling up to Manuf. Upper Tol.	Scaled SAR (50% PTT d/f) 1g (W/kg)
	()				Watts	W/kg	Plot #	Power Spec.	19 (11,119)
Body-worn	498.0	6	а	1	4.9	5.10	B21	+0.1 dB	5.22
Body-worn	512.0	6	b	1	4.9	5.25	B33	+0.1 dB	5.37
		SAR LIMITS	3		HEAD / BODY	SPATIAL PEAK		RF EXPOSUE	RE CATEGORY
		FCC 47 CFR 2.	1093		8.0 W/kg	1 gram average Occupa			pational

Applicant:	Kenw	Kenwood USA Corporation FCC ID:			5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	Portable UHF PTT Radio Transceiver			odels: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 20 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

11.0 SAR TEST REDUCTION PROCEDURES APPLIED (FCC KDB 643646)

- a. Face-held Configuration Default Battery Selection per FCC KDB 643646, Page 2, Section 1) A): "When multiple standard batteries are supplied with a radio, the battery with the highest capacity is considered the default battery for making head SAR measurements."
- b. Body-worn Configuration Default Battery and Body-worn Accessory Selection per FCC KDB 643646, Page 5, Section 1) A): "Start by testing a PTT radio with the thinnest battery and a standard (default) body-worn accessory that are both supplied with the radio and, if applicable, a default audio accessory......."
- c. Body-worn Configuration Default Audio Accessory Selection According to the manufacturer, the radio is not supplied to the end user with a standard default audio accessory (as referenced in FCC KDB 643646, Page 4, Section "Body SAR Test Considerations for Body-worn Accessories"); therefore the procedures described in note (f) below were applied in order to establish the default audio accessory.
- d. Body-worn Configuration Selection of Remaining Default Audio Accessories by Category the Remaining Default Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10: "For audio accessories with similar construction and operating requirements, test only the audio accessory within the group that is expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions for the combination. If it is unclear which audio accessory within a group of similar accessories is expected to result in the highest SAR, good engineering judgment and preliminary testing should be applied to select the accessory that is expected to result in the highest SAR." Please refer to note (i) below for the procedure implemented to establish the Default Audio Accessory by Category (Grouping). The Remaining Default Audio Accessories by Category were evaluated on the highest SAR channel and antenna combination from the Default Audio Accessory
- e. Body-worn Configuration Selection of Additional Audio Accessories by Category the Additional Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10.
- f. According to the manufacturer, all the optional audio accessories can be used with any accessory combination (antenna, battery & body-worn accessory). Therefore, in order to determine the default audio accessory (in accordance with FCC KDB 643646, Page 4, footnote 8), preliminary SAR evaluations (area scans with belt-clip and thinnest battery) were performed by Celltech with all of the optional audio accessories connected to the radio consecutively in order to select the audio accessory expected to result in the highest SAR level for the final compliance evaluations.

Applicant:	Kenw	Kenwood USA Corporation FCC ID:			5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	Portable UHF PTT Radio Transceiver			els: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	bs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 21 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

12.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels evaluated for SAR were selected in accordance with the procedures described in FCC KDB 447498 Section 6) c) (see reference [5]).
- 2. The DUT was evaluated for SAR in accordance with the procedures described in FCC KDB 643646 D01v01 (see reference [6]).
- 3. Each SAR evaluation was performed with a fully charged battery.
- 4. The SAR droop of the DUT was measured by the DASY4 system for the duration of the SAR evaluations. The measured SAR droop was added to the measured SAR levels to report scaled SAR levels as shown in the SAR test data tables. A SAR-versus-Time power droop evaluation was performed (see Appendix A).
- 5. The fluid temperature was measured prior to and after the SAR evaluations. The fluid temperature remained within +/-2°C during the SAR evaluations.
- 6. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 7. The DUT was tested at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.

13.0 SAR EVALUATION PROCEDURES

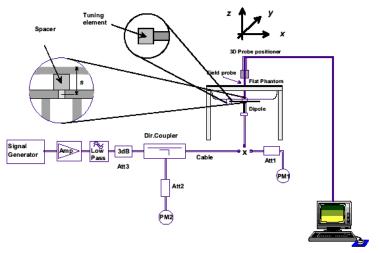
- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 30 mm x 30 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Kenw	Kenwood USA Corporation FCC ID:			5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	Portable UHF PTT Radio Transceiver			s: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ech Labs Inc. This document is not to be reproduced in wi				ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 22 of 144

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)


RF Exposure Category
Occupational (Controlled)

14.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, system checks were performed with a planar phantom and SPEAG 450 MHz dipole (see Appendix B) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [3]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 398 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the SAR system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

				5	YSTEM	PERF	ORM	ANCE C	HECK	EVAL	UATIO	NS				
Test	Equiv. Tissue		SAR 1g (W/kg)		Dielec	tric Cons ε _r	stant		nductivit (mho/m)	•	ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Freq. (MHz)	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
Aug 20	Body 450	1.81 ±10%	1.92	+6.1%	56.7 ±5%	56.1	-1.1%	0.94 ±5%	0.93	-1.1%	1000	24.0	22.8	≥ 15	31	101.1
Aug 22	Head 450	1.87 ±10%	1.83	-2.1%	43.5 ±5%	43.6	+0.2%	0.87 ±5%	0.83	+4.6%	1000	24.0	23.3	≥ 15	32	101.1
Aug 28	Body 450	1.81 ±10%	1.85	+2.2%	56.7 ±5%	55.9	-1.4%	0.94 ±5%	0.93	-1.1%	1000	23.0	23.2	≥ 15	35	101.1
Aug 30	Body 450	1.81 ±10%	1.84	+1.7%	56.7 ±5%	55.8	-1.6%	0.94 ±5%	0.93	-1.1%	1000	23.0	23.8	≥ 15	30	101.1
Oct 4	Head 450	1.87 ±10%	1.90	+1.6%	43.5 ±5%	45.5	+4.6%	0.87 ±5%	0.86	-1.1%	1000	23.0	21.4	≥ 15	30	101.1
Oct 9	Body 450	1.81 ±10%	1.77	-2.2%	56.7 ±5%	56.9	+0.4%	0.94 ±5%	0.91	-3.2%	1000	22.0	21.7	≥ 15	30	101.1
	1.	The targ	et SAR	values a	re the me	asured v	values fr	om the SA	AR syste	em manı	ufacturer	s dipole o	calibratio	า (see Ap	pendix E).
	2.							lues from t								
	3.							d after the ance chec			mance c	heck eva	luations.	The flu	iid tempe	rature
Notes	4.							e mixture Appendix		easured	d prior to	the syst	em perfo	ormance	check us	sing a
	5.	Workshop SAR Syst when hea - daily ver	o Present tem Verifi ad and bo rification o	ation Apr cation dy tissue of each li	il 5-7, 2011 dielectric p	(Kwok 0 paramete ally not no	Chan Pres rs are rece ecessary	ch SAR eva sentation Fi quired to tes when liquid nanged	ile 04-06- st a devic	2011-FC e, separa	C 4 RF E ate SAR s	xposure G	uidance 0	40611- K	C):	∍r TCBC

System Performance Check Measurement Setup (IEEE Standard 1528-2003)

SPEAG 450 MHz Validation Dipole Setup

Applicant:	Kenw	Kenwood USA Corporation FCC ID:			5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	Models:	Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 23 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

15.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [8] and [9]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [3]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

	SIMULATED TISSUE MIXTURES			
INGREDIENT	450 MHz HEAD	450 MHz BODY		
Water	38.56 %	52.00 %		
Sugar	56.32 %	45.65 %		
Salt	3.95 %	1.75 %		
HEC	0.98 %	0.50 %		
Bactericide	0.19 %	0.10 %		

16.0 SAR LIMITS

SAR RF EXP	OSURE LIMITS	
FCC 47 CFR 2.1093	Occupational	
Spatial Average (averaged over the whole body)	0.08 W/kg	0.4 W/kg
Spatial Peak (averaged over any 1 g of tissue)	1.6 W/kg	8.0 W/kg
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	Kenw	Kenwood USA Corporation FCC		C ID: ALH435000		Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	Portable UHF PTT Radio Transceiver			Models: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of C					sion of Celltech Labs Inc.	Page 24 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (1st Release)

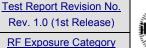
RF Exposure Category
Occupational (Controlled)

17.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
<u>Data Converter</u>	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
Software	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1590
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	± 0.2 dB (30 MHz to 3 GHz)
Phantom	
Туре	Barski Planar Phantom
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 70 liters

Applicant:	Kenw	Kenwood USA Corporation FCC ID:			5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	Portable UHF PTT Radio Transceiver			odels: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 25 of 144	

Test Report Issue Date
Oct. 22, 2012


Test Report Serial No. 081612ALH-T1190-S90V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Test Lab Certificate No. 2470.01

18.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core;

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In head simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy \pm 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)

Directivity: \pm 0.2 dB in head tissue (rotation around probe axis)

 $\pm\,0.4$ dB in head tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB

Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm; Tip length: 16 mm;

Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone

ET3DV6 E-Field Probe

19.0 BARSKI PLANAR PHANTOM

The Barski Planar Phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table. The planar phantom was used for the DUT SAR evaluations and the system performance check evaluations. See Appendix G for dimensions and specifications of the Barski Planar Phantom.

Barski Planar Phantom

20.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. For evaluations of larger devices a Plexiglas platform is attached to the device holder.

Device Holder

Applicant:	Kenw	ood USA Corporation	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD	
DUT Type:	Port	able UHF PTT Radio Tra	Models:	TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ıbs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 26 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

21.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	AGGET NO.	OLIVIAL NO.	CALIBRATED	INTERVAL
х	Schmid & Partner DASY4 System	-	-	-	-
х	-DASY4 Measurement Server	00158	1078	CNR	CNR
х	-Robot	00046	599396-01	CNR	CNR
х	-DAE4	00019	353	19-Apr-12	Biennial
х	-ET3DV6 E-Field Probe	00017	1590	24-Apr-12	Annual
х	-D450V3 Validation Dipole	00221	1068	27-Apr-12	Triennial
х	-Barski Planar Phantom	00155	03-01	CNR	CNR
х	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
х	Gigatronics 8652A Power Meter	00007	1835272	03-May-12	Biennial
х	Gigatronics 80701A Power Sensor	00014	1833542	03-May-12	Biennial
х	Gigatronics 80334A Power Sensor	-	1837001	03-May-12	Biennial
х	HP 8753ET Network Analyzer	00134	US39170292	26-Apr-12	Biennial
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	02-May-12	Biennial
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required				

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Transceiver		Models:	TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	abs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 27 of 144	

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

22.0 MEASUREMENT UNCERTAINTIES

	UNCERTAINTY BUDGET FOR DEVICE EVALUATION												
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}				
Measurement System													
Probe Calibration (450 MHz)	E.2.1	6.70	Normal	1	1	1	6.70	6.70	8				
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	∞				
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	8				
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	∞				
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞				
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞				
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	∞				
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞				
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	∞				
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞				
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞				
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞				
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	8				
Test Sample Related													
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12				
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8				
SAR Drift Measurement	6.6.2	0	Rectangular	1.732050808	1	1	0.0	0.0	8				
Phantom and Tissue Parameters													
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	∞				
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	× ×				
Liquid Conductivity (measured)	E.3.3	4.68	Normal	1	0.64	0.43	3.0	2.0	8				
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	∞				
Liquid Permittivity (measured)	E.3.3	3.88	Normal	1	0.6	0.49	2.3	1.9	8				
Combined Standard Uncertainty			RSS				11.31	10.87					
Expanded Uncertainty (95% Confidence	ce Interval)		k=2				22.61	21.75					
Meas	urement Und	certainty Table	e in accordance	e with IEEE Sta	andard	1528-20	003						

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH435000		Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models:	TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	bs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 28 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

23.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices"; Rule Part 47 CFR §2.1093.
- [2] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [3] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [4] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures."
- [5] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01 v04: November 2009.
- [6] Federal Communications Commission, Office of Engineering and Technology "SAR Test Reduction Considerations for Occupational PTT Radios", KDB 643646 D01v01: December 2010.
- [7] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz"; KDB 450824 D01 v01r01: January 2007.
- [8] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.
- [9] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [10] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- [11] Federal Communications Commission "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.
- [12] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 22 Application Note, SAR Sensitivities: Sept. 2005.

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Transceiver		Models:	els: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	bs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 29 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models:	TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	eproduced in w	hole or in part w	vithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 86 of 144

Test Report Issue Date
Oct. 22, 2012

System Performance Check - 450 MHz Body

Test Report Serial No. 081612ALH-T1190-S90V

Description of Test(s)

RF Exposure Category

Precific Absorption Pate

Occupational (Controlled)

Test Report Revision No.

Oct. 22, 2012 Specific Absorption Rate Occupational (Controlled)

Date Tested: 08/20/2012

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1068; Calibrated: 04/27/2012

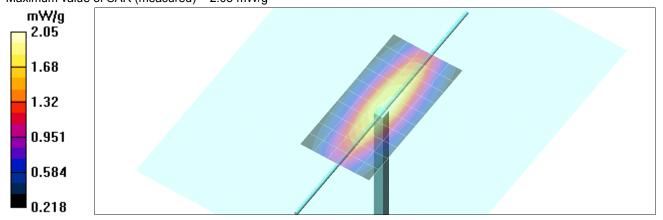
Program Notes: Ambient Temp: 24C; Fluid Temp: 22.8C; Barometric Pressure: 101.1 kPa; Humidity: 31%

Communication System: CW

Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; $\sigma = 0.93$ mho/m; $\epsilon_r = 56.1$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.93, 7.93, 7.93); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.95 mW/g

Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

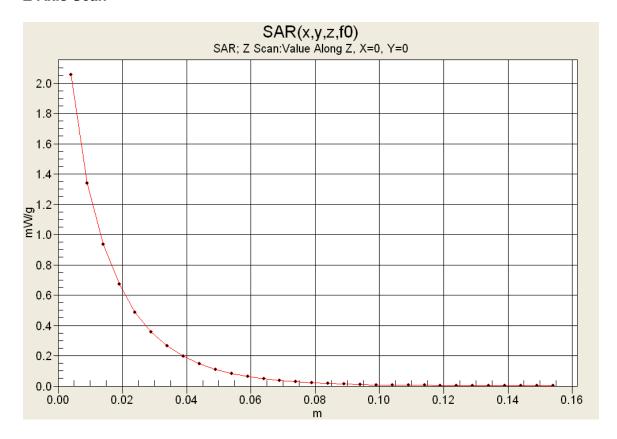
Reference Value = 47.0 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 3.11 W/kg

SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.27 mW/g Maximum value of SAR (measured) = 2.05 mW/g

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models:	TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	bs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 87 of 144	

Test Report Issue Date
Oct. 22, 2012


Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models:	Models: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	or written permis	sion of Celltech Labs Inc.	Page 88 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

System Performance Check - 450 MHz Head

Date Tested: 08/22/2012

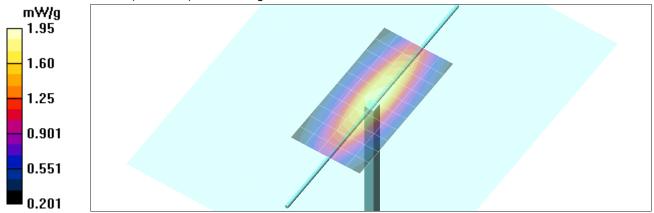
DUT: Dipole 450 MHz; Type: D450V3; Serial: 1068; Calibrated: 04/27/2012

Program Notes: Ambient Temp: 24.0C; Fluid Temp: 23.3C; Barometric Pressure: 101.1 kPa; Humidity: 32%

Communication System: CW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; $\sigma = 0.83 \text{ mho/m}$; $\varepsilon_r = 43.6$; $\rho = 1000 \text{ kg/m}^3$

- Probe: ET3DV6 SN1590; ConvF(7.54, 7.54, 7.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Head d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.83 mW/g

Head d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.0 V/m; Power Drift = -0.044 dB

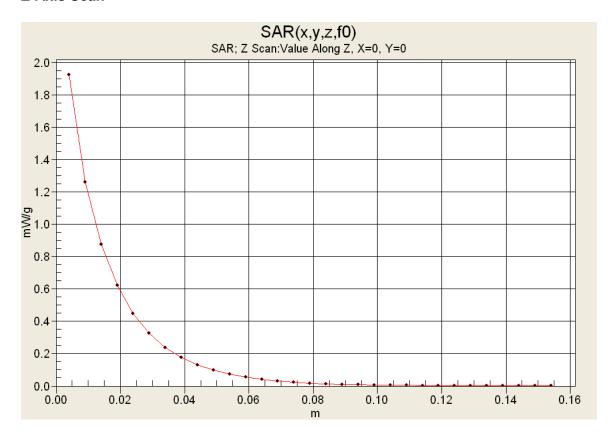
Peak SAR (extrapolated) = 2.90 W/kg

SAR(1 g) = 1.83 mW/g; SAR(10 g) = 1.21 mW/g Maximum value of SAR (measured) = 1.95 mW/g

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models:	TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	bs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 89 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V


<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models:	odels: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 90 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

System Performance Check - 450 MHz Body

Date Tested: 08/28/2012

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1068; Calibrated: 04/27/2012

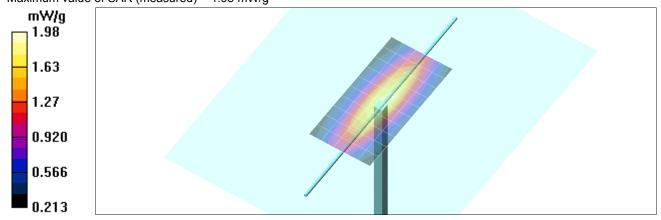
Program Notes: Ambient Temp: 23C; Fluid Temp: 23.2C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.93 mho/m; ε_r = 55.9; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.93, 7.93, 7.93); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.88 mW/g

Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

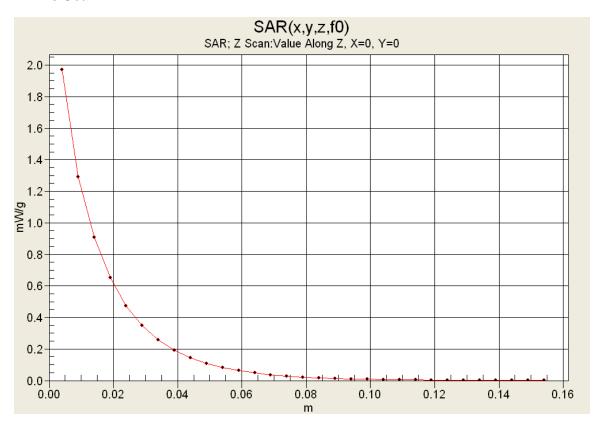
Reference Value = 46.1 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 2.98 W/kg

SAR(1 g) = 1.85 mW/g; SAR(10 g) = 1.23 mW/g Maximum value of SAR (measured) = 1.98 mW/g

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Transceiver		Models:	els: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	abs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 91 of 144	

Test Report Issue Date
Oct. 22, 2012


<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	Kenw	vood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Transceiver		Models:	odels: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 92 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

System Performance Check - 450 MHz Body

Date Tested: 08/30/2012

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1068; Calibrated: 04/27/2012

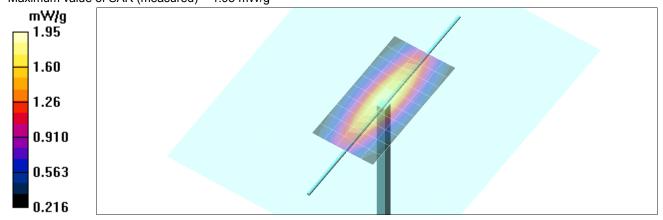
Program Notes: Ambient Temp: 23C; Fluid Temp: 23.8C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; $\sigma = 0.93$ mho/m; $\epsilon_r = 55.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.93, 7.93, 7.93); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.78 mW/g

Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 46.3 V/m; Power Drift = 0.023 dB

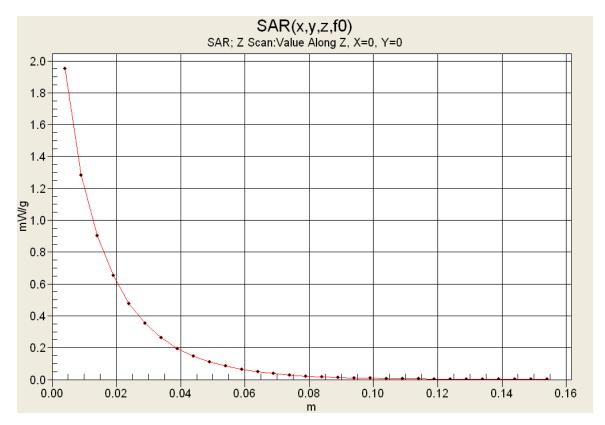
Peak SAR (extrapolated) = 2.92 W/kg

SAR(1 g) = 1.84 mW/g; SAR(10 g) = 1.22 mW/g Maximum value of SAR (measured) = 1.95 mW/g

Applicant:	Kenw	nwood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models:	: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	abs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 93 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V


Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	bs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 94 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

System Performance Check - 450 MHz Head

Date Tested: 10/04/2012

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1068; Calibrated: 04/27/2012

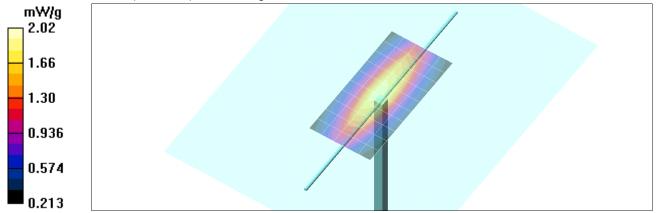
Program Notes: Ambient Temp: 23.0C; Fluid Temp: 21.4C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; $\sigma = 0.86$ mho/m; $\epsilon_r = 45.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.54, 7.54, 7.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Head d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.91 mW/g

Head d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

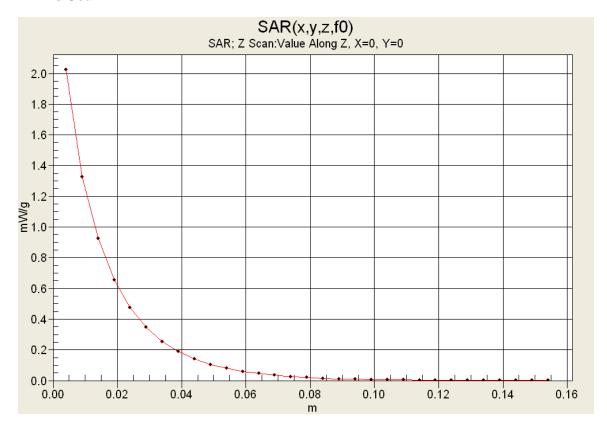
Reference Value = 49.1 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 3.01 W/kg

SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.25 mW/g Maximum value of SAR (measured) = 2.02 mW/g

Applicant:	Kenw	nwood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models:	TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ibs Inc.	nc. This document is not to be reproduced in whole or in part without the prior written permissi				sion of Celltech Labs Inc.	Page 95 of 144	

Test Report Issue Date
Oct. 22, 2012


Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	bs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 96 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

Description of Test(s)

Specific Absorption Rate

Oc

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

System Performance Check - 450 MHz Body

Date Tested: 10/09/2012

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1068; Calibrated: 04/27/2012

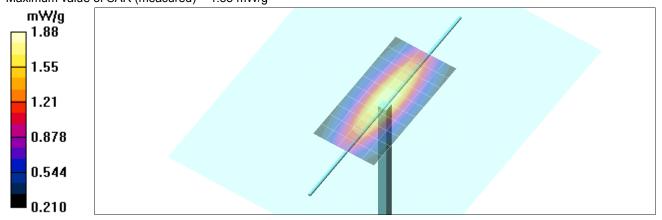
Program Notes: Ambient Temp: 22C; Fluid Temp: 21.7C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ε_r = 56.9; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.93, 7.93, 7.93); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.73 mW/g

Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.8 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 2.82 W/kg

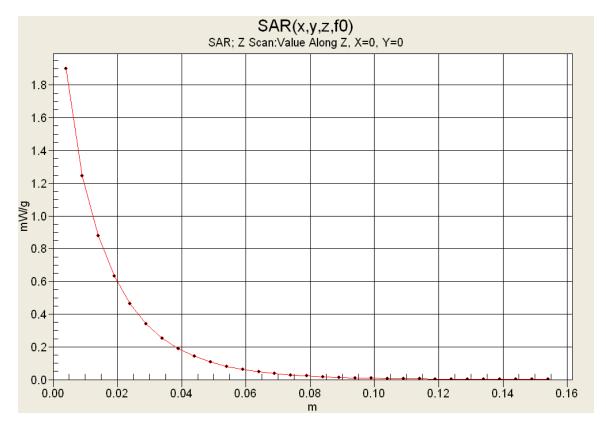
SAR(1 g) = 1.77 mW/g; SAR(10 g) = 1.18 mW/g Maximum value of SAR (measured) = 1.88 mW/g

Applicant:	Kenw	nwood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models:	dels: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the pri				ior written permis	sion of Celltech Labs Inc.	Page 97 of 144

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

Description of Test(s)
Specific Absorption Rate


Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Test Lab Certif

Z-Axis Scan

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 98 of 144

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	ortable UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 99 of 144

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
20/Aug/2012
Freq Frequency(GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

FCC_eB	FCC_sE	3 Test_e	Test_s
57.70	0.93	58.47	0.87
57.60	0.93	57.31	0.87
57.50	0.93	57.54	0.89
57.40	0.93	57.41	0.86
57.30	0.93	57.23	0.88
57.20	0.93	57.14	0.88
57.10	0.93	56.27	0.91
57.00	0.94	56.78	0.91
56.90	0.94	56.46	0.92
56.80	0.94	56.39	0.93
56.70	0.94	56.10	0.93
56.66	0.94	56.36	0.94
56.62	0.94	55.83	0.95
56.58	0.94	56.89	0.96
56.54	0.94	55.64	0.97
56.51	0.94	55.19	0.98
56.47	0.94	55.61	0.97
56.43	0.95	55.77	0.99
56.39	0.95	55.72	1.01
56.35	0.95	55.03	1.02
56.31	0.95	55.35	1.03
	57.70 57.60 57.50 57.40 57.30 57.20 57.10 57.00 56.90 56.80 56.70 56.62 56.58 56.54 56.51 56.47 56.43 56.39 56.35	57.70 0.93 57.60 0.93 57.50 0.93 57.40 0.93 57.30 0.93 57.20 0.93 57.10 0.93 57.00 0.94 56.90 0.94 56.80 0.94 56.60 0.94 56.62 0.94 56.58 0.94 56.54 0.94 56.51 0.94 56.47 0.94 56.39 0.95 56.35 0.95	57.70 0.93 58.47 57.60 0.93 57.31 57.50 0.93 57.54 57.40 0.93 57.41 57.30 0.93 57.14 57.10 0.93 56.27 57.00 0.94 56.78 56.90 0.94 56.46 56.80 0.94 56.10 56.60 0.94 56.39 56.61 0.94 56.80 56.80 0.94 56.36 56.61 55.83 56.56 56.51 0.94 55.64 56.51 0.94 55.61 56.47 0.94 55.61 56.43 0.95 55.77 56.39 0.95 55.03

Applicant:	Kenw	wood USA Corporation FCC ID:		ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD	
DUT Type:	Port	rtable UHF PTT Radio Transceiver		Models:	Models: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 100 of 144	

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc
Test Result for UIM Dielectric Parameter
21/Aug/2012
Freq Frequency(GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM

Test_s Sigma of UIM

******	******	******	******
FCC_eB	FCC_sE	3 Test_e	Test_s
57.70	0.93	57.70	0.84
57.60	0.93	56.84	0.84
57.50	0.93	57.29	0.86
57.40	0.93	57.10	0.87
57.30	0.93	56.98	0.89
57.20	0.93	56.68	0.88
57.10	0.93	56.52	0.90
57.00	0.94	57.24	0.91
56.90	0.94	56.48	0.92
56.80	0.94	56.63	0.92
56.70	0.94	56.53	0.93
56.66	0.94	56.03	0.94
56.62	0.94	55.90	0.93
56.58	0.94	55.82	0.94
56.54	0.94	55.37	0.96
56.51	0.94	55.46	0.96
56.47	0.94	55.57	0.97
56.43	0.95	55.33	0.99
56.39	0.95	54.61	1.00
56.35	0.95	55.30	1.00
56.31	0.95	55.28	1.02
	FCC_eB 57.70 57.60 57.50 57.40 57.30 57.20 57.10 57.00 56.90 56.80 56.70 56.66 56.62 56.58 56.54 56.51 56.47 56.43 56.39 56.35	FCC_eB FCC_sE 57.70 0.93 57.60 0.93 57.50 0.93 57.40 0.93 57.30 0.93 57.20 0.93 57.10 0.93 57.00 0.94 56.90 0.94 56.80 0.94 56.70 0.94 56.60 0.94 56.62 0.94 56.58 0.94 56.54 0.94 56.54 0.94 56.51 0.94 56.47 0.94 56.43 0.95 56.39 0.95 56.35 0.95	57.60 0.93 56.84 57.50 0.93 57.29 57.40 0.93 57.10 57.30 0.93 56.98 57.20 0.93 56.68 57.10 0.93 56.52 57.00 0.94 57.24 56.90 0.94 56.48 56.80 0.94 56.63 56.70 0.94 56.53 56.62 0.94 55.90 56.58 0.94 55.82 56.54 0.94 55.37 56.47 0.94 55.57 56.43 0.95 55.33 56.39 0.95 54.61 56.35 0.95 55.30

Applicant:	Kenw	vood USA Corporation FCC ID:		ALH43	ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	table UHF PTT Radio Transceiver		Models: TK-3402U-K		TK-3402-K	KENWOOD	
2012 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 101 of 144

Aug 20-30,Oct 4-10, 2012

Test Report Issue Date

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

st(s)

Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Report Issue Date
Oct. 22, 2012
Description of Test(s)
Specific Absorption Rate

450 MHz Head

Celltech Labs Inc Test Result for UIM Dielectric Parameter 22/Aug/2012 Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM

Test_s Sigma of UIM

*******	******	******	******	******
Freq	FCC_el-	IFCC_sl	HTest_e	Test_s
0.3500	44.70	0.87	45.34	0.76
0.3600	44.58	0.87	45.64	0.77
0.3700	44.46	0.87	45.43	0.76
0.3800	44.34	0.87	45.60	0.78
0.3900	44.22	0.87	44.47	0.80
0.4000	44.10	0.87	44.59	0.80
0.4100	43.98	0.87	44.44	0.80
0.4200	43.86	0.87	44.35	0.81
0.4300	43.74	0.87	44.34	0.81
0.4400	43.62	0.87	44.36	0.84
0.4500	43.50	0.87	43.62	0.83
0.4600	43.45	0.87	43.61	0.85
0.4700	43.40	0.87	43.21	0.85
0.4800	43.34	0.87	42.74	0.86
0.4900	43.29	0.87	42.99	0.86
0.5000	43.24	0.87	42.55	0.89
0.5100	43.19	0.87	42.41	0.88
0.5200	43.14	0.88	42.34	0.89
0.5300	43.08	0.88	42.16	0.91
0.5400	43.03	0.88	42.10	0.91
0.5500	42.98	0.88	42.15	0.92

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 102 of 144	

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc
Test Result for UIM Dielectric Parameter
28&29/Aug/2012
Frequency(GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

******	******	******	*******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.3500	57.70	0.93	57.73	0.84
0.3600	57.60	0.93	57.39	0.83
0.3700	57.50	0.93	56.75	0.84
0.3800	57.40	0.93	56.98	0.86
0.3900	57.30	0.93	56.79	0.85
0.4000	57.20	0.93	56.44	0.87
0.4100	57.10	0.93	56.32	0.88
0.4200	57.00	0.94	56.32	0.90
0.4300	56.90	0.94	56.28	0.91
0.4400	56.80	0.94	56.05	0.91
0.4500	56.70	0.94	55.87	0.93
0.4600	56.66	0.94	54.74	0.93
0.4700	56.62	0.94	55.43	0.93
0.4800	56.58	0.94	55.10	0.94
0.4900	56.54	0.94	54.08	0.94
0.5000	56.51	0.94	54.56	0.95
0.5100	56.47	0.94	54.54	0.96
0.5200	56.43	0.95	54.87	0.98
0.5300	56.39	0.95	54.88	0.99
0.5400	56.35	0.95	53.94	1.00
0.5500	56.31	0.95	54.32	1.00

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 103 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc
Test Result for UIM Dielectric Parameter
30/Aug/2012
Frequency(GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

******	******	******	******	******
Freq	FCC_eB	FCC_sE	B Test_e	Test_s
0.3500	57.70	0.93	57.97	0.85
0.3600	57.60	0.93	57.87	0.87
0.3700	57.50	0.93	57.11	0.90
0.3800	57.40	0.93	57.40	0.89
0.3900	57.30	0.93	57.18	0.89
0.4000	57.20	0.93	56.21	0.90
0.4100	57.10	0.93	57.07	0.90
0.4200	57.00	0.94	56.58	0.91
0.4300	56.90	0.94	56.90	0.91
0.4400	56.80	0.94	56.17	0.92
0.4500	56.70	0.94	55.81	0.93
0.4600	56.66	0.94	56.48	0.95
0.4700	56.62	0.94	56.48	0.95
0.4800	56.58	0.94	55.94	0.97
0.4900	56.54	0.94	55.46	0.97
0.5000	56.51	0.94	55.65	0.97
0.5100	56.47	0.94	55.09	0.98
0.5200	56.43	0.95	55.07	1.00
0.5300	56.39	0.95	55.09	1.00
0.5400	56.35	0.95	55.29	1.03
0.5500	56.31	0.95	55.07	1.02

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	bs Inc. This document is not to be reproduced in w			hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 104 of 144

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Head

Celltech Labs Inc Test Result for UIM Dielectric Parameter 04&05/Oct/2012

Frequency(GHz)
FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

*****	******	********	*******	******	*****
Freq		FCC_eH	IFCC_sl	-l Test_e	Test_s
0.3	500	44.70	0.87	47.06	0.75
0.36	300	44.58	0.87	47.31	0.76
0.37	700	44.46	0.87	46.29	0.77
0.38	300	44.34	0.87	46.45	0.79
0.39	900	44.22	0.87	46.28	0.79
0.40	000	44.10	0.87	45.49	0.81
0.4	100	43.98	0.87	45.41	0.83
0.42	200	43.86	0.87	45.74	0.85
0.43	300	43.74	0.87	45.57	0.85
0.44	400	43.62	0.87	45.18	0.85
0.4	500	43.50	0.87	45.47	0.86
0.46	300	43.45	0.87	44.80	0.87
0.47	700	43.40	0.87	44.79	0.86
0.48	300	43.34	0.87	44.49	0.89
0.49	900	43.29	0.87	44.56	0.89
0.50	000	43.24	0.87	44.34	0.88
0.5	100	43.19	0.87	44.23	0.90
0.52	200	43.14	0.88	43.95	0.92
0.53	300	43.08	0.88	43.87	0.92
0.54	400	43.03	0.88	43.56	0.93
0.5	500	42.98	0.88	43.42	0.93

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 105 of 144	

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc
Test Result for UIM Dielectric Parameter
09&10/Oct/2012
Frequency(GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

*********	******	*******	******
FCC_eB	FCC_sE	3 Test_e	Test_s
57.70	0.93	58.64	0.81
57.60	0.93	57.64	0.83
57.50	0.93	58.32	0.84
57.40	0.93	57.40	0.83
57.30	0.93	57.28	0.84
57.20	0.93	56.72	0.84
57.10	0.93	56.58	0.87
57.00	0.94	57.12	0.87
56.90	0.94	56.47	0.89
56.80	0.94	56.23	0.89
56.70	0.94	56.91	0.91
56.66	0.94	55.82	0.92
56.62	0.94	55.67	0.92
56.58	0.94	55.94	0.93
56.54	0.94	55.61	0.93
56.51	0.94	54.75	0.95
56.47	0.94	55.24	0.94
56.43	0.95	54.65	0.96
56.39	0.95	54.78	0.97
56.35	0.95	54.72	0.98
56.31	0.95	54.96	0.99
	FCC_eB 57.70 57.60 57.50 57.40 57.30 57.20 57.10 57.00 56.90 56.80 56.70 56.66 56.62 56.58 56.54 56.51 56.47 56.43 56.39 56.35	FCC_eB FCC_sE 57.70 0.93 57.60 0.93 57.50 0.93 57.40 0.93 57.20 0.93 57.20 0.93 57.10 0.93 57.00 0.94 56.90 0.94 56.66 0.94 56.62 0.94 56.54 0.94 56.51 0.94 56.51 0.94 56.47 0.94 56.43 0.95 56.39 0.95 56.35 0.95	57.60 0.93 57.64 57.50 0.93 58.32 57.40 0.93 57.40 57.30 0.93 57.28 57.20 0.93 56.72 57.10 0.93 56.58 57.00 0.94 57.12 56.90 0.94 56.47 56.80 0.94 56.23 56.70 0.94 55.82 56.62 0.94 55.67 56.58 0.94 55.67 56.54 0.94 55.61 56.51 0.94 55.24 56.47 0.94 55.24 56.43 0.95 54.78 56.35 0.95 54.72

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	ibs Inc.	This document is not to be r	hole or in part w	ithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 106 of 144	

Test Report Issue Date
Oct. 22, 2012

<u>Test Report Serial No.</u> 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX E - DIPOLE CALIBRATION

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH43	5000	Freq.:	450.0 - 512.0 MHz	KENWOOD
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	abs Inc. This document is not to be reproduced in w			hole or in part w	vithout the pri	ior written permis	sion of Celltech Labs Inc.	Page 142 of 144

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Accreditation No.: SCS 108

Certificate No: D450V3-1068 Apr12

CALIBRATION CERTIFICATE

Object

D450V3 - SN: 1068

Calibration procedure(s)

QA CAL-15.v6

Calibration procedure for dipole validation kits below 700 MHz

Calibration date:

April 27, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ET3DV6	SN: 1507	30-Dec-11 (No. ET3-1507_Dec11)	Dec-12
DAE4	SN: 654	03-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 11-
			1
			22
Approved by:	Katja Pokovic	Technical Manager	160/10_
			and my

Issued: April 27, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D450V3-1068_Apr12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1068_Apr12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.1	
Extrapolation	Advanced Extrapolation		
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm	
Distance Dipole Center - TSL	15 mm	with Spacer	
Zoom Scan Resolution	dx, dy , $dz = 5 mm$		
Frequency	450 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.1 ± 6 %	0.87 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	398 mW input power	1.87 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.71 mW /g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	-
SAR measured	398 mW input power	1.25 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.15 mW /g ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	398 mW input power	1.81 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.52 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.21 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	3.02 mW / g ± 17.6 % (k=2)

Certificate No: D450V3-1068_Apr12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.7 Ω - 4.7 jΩ		
Return Loss	- 21.6 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	54.6 Ω - 8.1 jΩ		
Return Loss	- 21.0 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.755 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG .
Manufactured on	July 16, 2009

Certificate No: D450V3-1068_Apr12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 27.04.2012

Test Laboratory: SPEAG

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1068

Communication System: CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.87 \text{ mho/m}$; $\varepsilon_r = 44.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ET3DV6 - SN1507; ConvF(6.59, 6.59, 6.59); Calibrated: 30.12.2011;

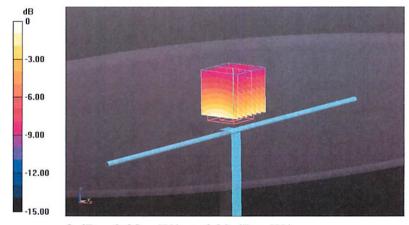
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 18.04.2012

Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

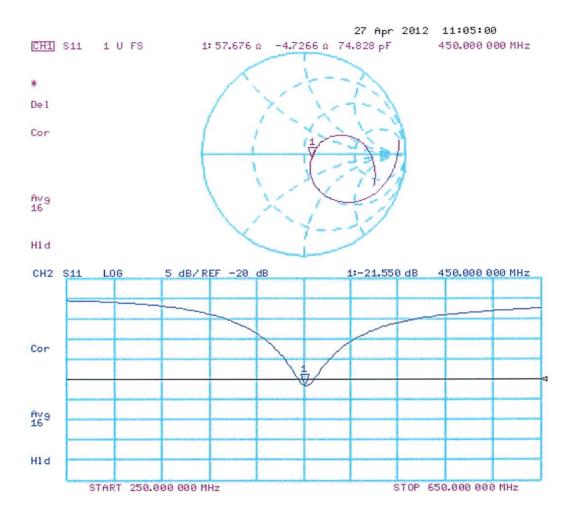
Dipole Calibration for Head Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.745 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.835 mW/g

SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.25 mW/g


Maximum value of SAR (measured) = 2.00 mW/g

0 dB = 2.00 mW/g = 6.02 dB mW/g

Certificate No: D450V3-1068_Apr12

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 27.04.2012

Test Laboratory: SPEAG

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1068

Communication System: CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.94 \text{ mho/m}$; $\varepsilon_r = 54.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ET3DV6 - SN1507; ConvF(7.05, 7.05, 7.05); Calibrated: 30.12.2011;

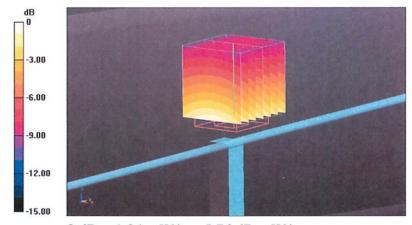
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 18.04.2012

Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

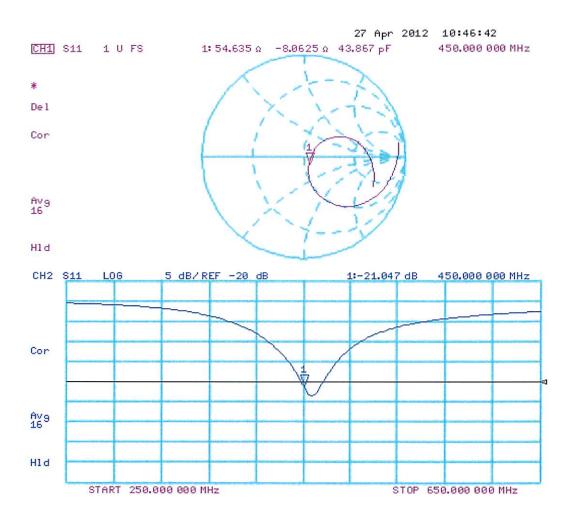
DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Body Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 46.572 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.834 mW/g


SAR(1 g) = 1.81 mW/g; SAR(10 g) = 1.21 mW/g

Maximum value of SAR (measured) = 1.94 mW/g

0 dB = 1.94 mW/g = 5.76 dB mW/g

Impedance Measurement Plot for Body TSL

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX F - PROBE CALIBRATION

Applicant:	Kenwood USA Corporation		ood USA Corporation FCC ID: ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD		
DUT Type:	Port	able UHF PTT Radio Tra	nsceiver	Models:	TK-3	3402U-K	TK-3402-K	KENWOOD
2012 Celltech La	ech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 143 of 144			

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Accreditation No.: SCS 108

Certificate No: ET3-1590_Apr12

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1590

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

April 24, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: April 26, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1590

Manufactured:

March 19, 2001 April 24, 2012

Calibrated:

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.79	1.92	1.60	± 10.1 %
DCP (mV) ^B	94.8	98.4	88.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	X	0.00	0.00	1.00	143.4	±4.6 %
			Υ	0.00	0.00	1.00	150.1	
			Z	0.00	0.00	1.00	179.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁸ Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.54	7.54	7.54	0.20	2.16	± 13.4 %
750	41.9	0.89	7.11	7.11	7.11	0.29	3.00	± 12.0 %
835	41.5	0.90	6.77	6.77	6.77	0.27	3.00	± 12.0 %
900	41.5	0.97	6.67	6.67	6.67	0.29	3.00	± 12.0 %

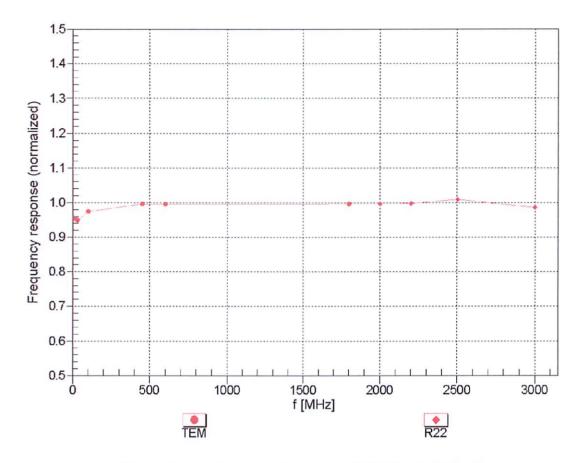
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

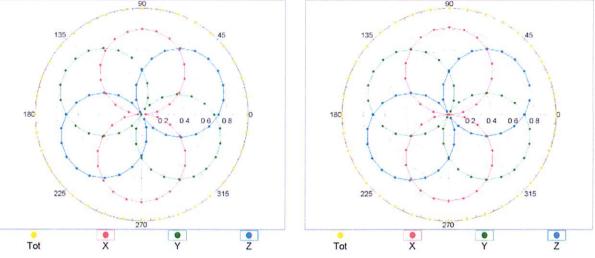
Calibration Parameter Determined in Body Tissue Simulating Media

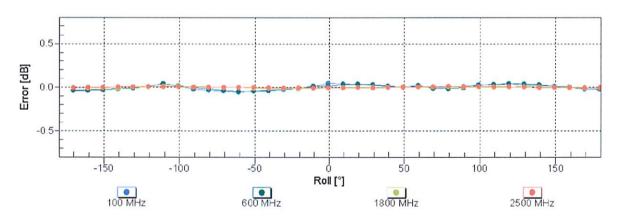

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.93	7.93	7.93	0.12	2.07	± 13.4 %
750	55.5	0.96	6.71	6.71	6.71	0.22	3.00	± 12.0 %
835	55.2	0.97	6.54	6.54	6.54	0.27	3.00	± 12.0 %
900	55.0	1.05	6.51	6.51	6.51	0.29	2.92	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

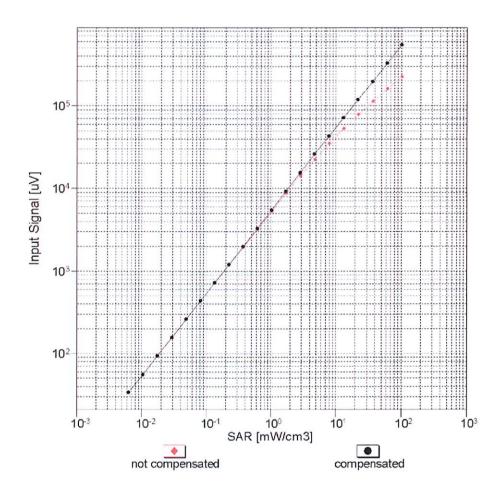
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

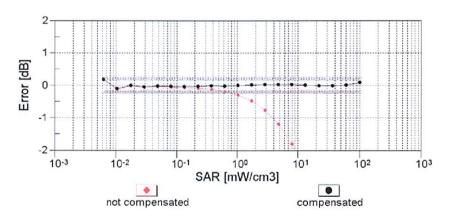

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



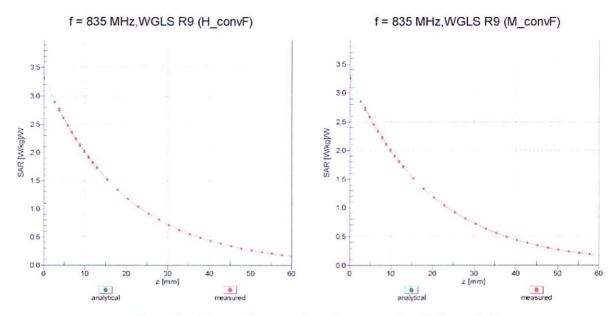
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

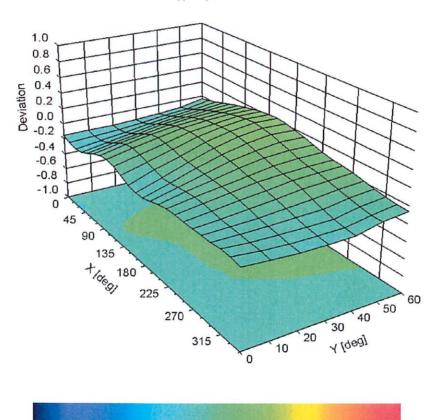
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , ϑ), f = 900 MHz

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-170.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1590_Apr12 Page 11 of 11

Test Report Issue Date
Oct. 22, 2012

Test Report Serial No. 081612ALH-T1190-S90V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Kenw	enwood USA Corporation FCC		Kenwood USA Corporation FCC ID: ALH435000 Freq.:		450.0 - 512.0 MHz	KENWOOD	
DUT Type:	Port	table UHF PTT Radio Transceiver		Models:	ls: TK-3402U-K		TK-3402-K	KENWOOD
2012 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 144 of 144		

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334

E-mail: <u>barskiind@shaw.ca</u>
Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item: Flat Planar Phantom Unit # 03-01

Date: June 16, 2003

Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

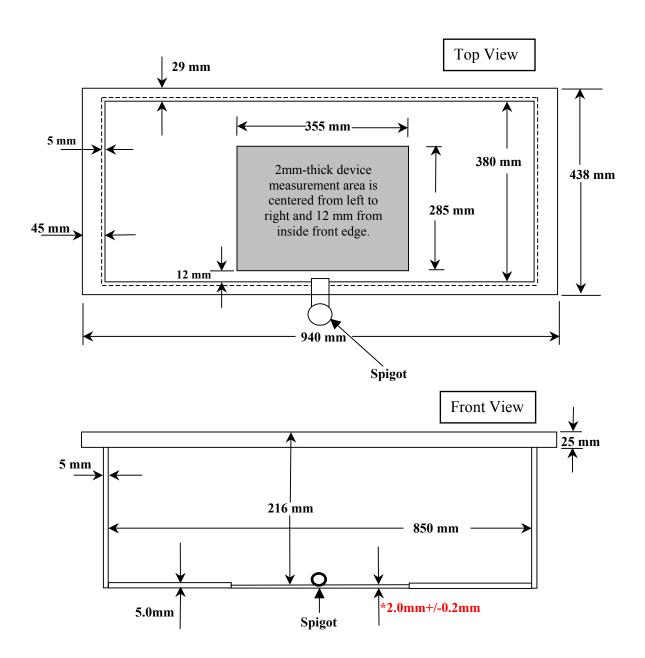
Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

Note: Measurements that aren't repeated for the opposite sides are the same as the side measured.

This drawing is not to scale.