

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

March 30 - April 7, 2011

Dates of Evaluation (K/K2)

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.3 (4th Release)

DECLARATION C	F COMPL	IANCE -	SAR	RF	EXPO	SURE	EVAL	UATIC	ON (FCC)	
		CELLTECH							,	
Test Lab Information		21-364 Loug			elowna.	B.C. V1X	7R8 Can	ada		
Test Lab Accreditation(s)		ISO/IEC 170								
		KENWOOD						,,,		
Applicant Information		3970 Johns					ee. GA 30	024 Unite	ed States	
O(- d - d/s) A - dl - d		47 CFR §2.		•		,	•			
Standard(s) Applied				Test R	eduction	Consider	ations for	Occupation	onal PTT Radios	D01v01
December 1 and 1 A collect		OET Bulletin				47498 D			uiry Tracking No	
Procedure(s) Applied		1528-2003				IE		209-1:20		
Device Classification(s)	FCC	Licensed No	n-Broa	dcast 1	ransmitt	er Held to	Face (Th	NF) - FCC	C Part 90	
Device Identifier(s)	FCC ID:	ALH431000					`	<u> </u>		
Original Model(s) Tested	NX-320-K3 (L	CD, 4 CTRL	keys &	DTMF	keys)					
Additional Model(s) Tested	NX-320-K (No	LCD/Keys)	NX-32	20-K2 (L	CD, 4 CTI	RL keys)	Per FCC	KDB Inc	uiry Tracking No	o. 235657
Test Sample Serial No.	0320K124 (K)	0320K	218 (K2	2) N	o. 10 (K3	3)	all (3) tes	st sample	es are identical p	rototypes
Hardware / Firmware Revision No.s		Revision 1.0				Firmw		evision 1		
Date of Sample Receipt	December 15								NX-320-K2)	
Date(s) of SAR Evaluations	January 4, 6,							', 2011 (N	NX-320-K, NX-32	20-K2)
Device Description		Portable FM UHF-H Push-To-Talk (PTT) Radio Transceiver								
Transmit Frequency Range		450.0 - 512.	0 MHz							
Manuf. Rated Output Power	5 Watts (Cond						ecification			
	Detachable Stub					•		KRA-23M	Α	
Antenna Type(s) Tested	Detachable Stub							KRA-23M2	В	
	Detachable Whip				Length			KRA-27M	С	
	Detachable W	hip			Length	- J		KRA-27M2	D	
	Lithium-lon						P/N: I	KNB-57L	а	
Battery Type(s) Tested	Lithium-lon						P/N: I	KNB-55L	b	
Dattery Type(3) Tested	Nickel-Metal I	Hydride	7.2 V		1400 mAh P/I		P/N: I	KNB-56N	С	
	Alkaline Case		9 V		6 x AA		P/N: I	P/N: KBP-5		
Body-worn Accessories Tested	Belt-Clip (conf	ains metal)						P/N: I	KBH-12	1
Body-world Accessories Tested	Swivel Belt-Lo	op (contains	metal))				P/N: I	KBH-13DS	2
	Category 1: He	adset	Categ	ory 2: E	arpiece	Categ	ory 3: Palr	n-Mic	Category 4: Sp	eaker-Mic
	P/N: KHS-10-BI	H (Default)	P/N: K	HS-27 (Default)	KHS-9	BL (Defaul	t)	KMC-48GPS (D	efault)
	P/N: KHS-10-0	4	P/N: K	HS-23		KHS-8	BBL .		KMC-21	
Audio Accessories Tested	P/N: KHS-21		P/N: K	HS-25		-			KMC-45	
	P/N: KHS-22		P/N: K	HS-26		-			-	
	P/N: KHS-7		P/N: K	EP-2		-			-	
	P/N: KHS-7A		-			-			-	
		3.75 W/	kg	1g	Radio I	Model: N	X-320-K		50% PTT duty	
	Face-held	3.96 W/	kg	1g Radio Model: NX-320-l		X-320-K2	20-K2 (including compens			
Max. SAR Level(s) Evaluated		3.98 W/	kg	1g			for SAR droop)		
wax. SAR Level(5) Evaluated		7.07 W/	kg	1g	Radio I	adio Model: NX-320-K		50% PTT duty factor		
	Body-worn	7.14 W/	kg	1g Radio Model: NX-320-K2 (including con		pensation				
	7.55 W/I		kg	1g	f 04D			for SAR droop)	
FCC Spatial Peak SAR Limit	Head/Body	8.0 W/k	9	1g	50% P	TT duty fa	actor O	ccupation	nal / Controlled E	xposure

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 for the Occupational / Controlled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), IEEE Standard 1528-2003 and IEC International Standard 62209-1:2005. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By	Gun Dund	Sean Johnston	Lab Manager	Celltech Labs Inc.

Applicant:	Kenw	Kenwood USA Corporation FCC ID:		ALH431000	ALH431000 DUT Models:		KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	F-H PTT Radio Transceiver Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 1 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Test Report Serial No. 121510ALH-T1070-S90U Test Report Revision No. Rev. 1.3 (4th Release)

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Description of Test(s) Specific Absorption Rate

RF Exposure Category Occupational (Controlled)

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS 4.0 FCC POWER THRESHOLDS FOR PTT DEVICES (F < 0.5 GHZ) 5.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	5
4.0 FCC POWER THRESHOLDS FOR PTT DEVICES (F < 0.5 GHZ)	b
6.0 NO. OF TEST CHANNELS (N _C)	0
6.0 NO. OF TEST CHANNELS (Nc)	
8.0 FLUID DIELECTRIC PARAMETERS	
FLUID DIELECTRIC PARAMETERS (CONT.)	
FLUID DIELECTRIC PARAMETERS (CONT.)	10
FLUID DIELECTRIC PARAMETERS (CONT.)	11
FLUID DIELECTRIC PARAMETERS (CONT.)	12
FLUID DIELECTRIC PARAMETERS (CONT.)	13
FLUID DIELECTRIC PARAMETERS (CONT.) FLUID DIELECTRIC PARAMETERS (CONT.)	14
FLUID DIELECTRIC PARAMETERS (CONT.)	15
FLUID DIELECTRIC PARAMETERS (CONT.)	16 17
FLUID DIELECTRIC PARAMETERS (CONT.)	17
FLUID DIELECTRIC PARAMETERS (CONT.)	19
FLUID DIELECTRIC PARAMETERS (CONT.)	20
FLUID DIELECTRIC PARAMETERS (CONT.)	21
9.0 TEST PROCEDURES FOR NX-320-K & NX-320-K2 MODELS (KDB INQ. #235657)	21
10.0 TEST PROCEDURES APPLIED FOR NX-320-K MODEL (FCC KDB 643646)	22
11.0 SAR MEASUREMENT SUMMARY	23
SAR MEASUREMENT SUMMARY (CONT.)	24
SAR MEASUREMENT SUMMARY (CONT.)	25
SAR MEASUREMENT SUMMARY (CONT.)	26
SAR MEASUREMENT SUMMARY (CONT.)	27
SAR MEASUREMENT SUMMARY (CONT.) SAR MEASUREMENT SUMMARY (CONT.)	28 29
SAN MEASUREMENT SUMMART (CONT.)	29
SAR MEASUREMENT SUMMART (CONT.)	31
SAR MEASUREMENT SUMMARY (CONT.) SAR MEASUREMENT SUMMARY (CONT.)	32
SAR MEASUREMENT SUMMARY (CONT.)	33
SAR MEASUREMENT SUMMARY (CONT.)	34
SAR MEASUREMENT SUMMARY (CONT.)	35
SAR MEASUREMENT SUMMARY (CONT.)	36
OAK MEAGOKEMENT COMMAKT (CONT.)	01
SAR MEASUREMENT SUMMARY (CONT.)	38
SAR MEASUREMENT SUMMARY (CONT.)	39
SAR MEASUREMENT SUMMARY (CONT.)	40 41
SAR MEASUREMENT SUMMARY (CONT.)	41
SAR SCALING (TUNE-UP TOLERANCE)	42
12.0 SAR SCALING (TUNE-UP TOLERANCE) SAR SCALING (TUNE-UP TOLERANCE) (CONT.) 13.0 DETAILS OF SAR EVALUATION	43
14.0 SAR EVALUATION PROCEDURES	44
15.0 SYSTEM PERFORMANCE CHECK	45
16.0 SIMULATED EQUIVALENT TISSUES	46
17.0 SAR LIMITS	46
18.0 ROBOT SYSTEM SPECIFICATIONS	47
19.0 PROBE SPECIFICATION (ET3DV6)	48
20.0 BARSKI PLANAR PHANTOM	48
21.0 DEVICE HOLDER	48
22.0 TEST EQUIPMENT LIST	49
23.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION	
24.0 MEASUREMENT UNCERTAINTIES	50
APPENDIX A - SAR MEASUREMENT PLOTS	51
APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS	246
25.0 REFERENCES APPENDIX A - SAR MEASUREMENT PLOTS APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	271
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	
APPENDIX E - DIPOLE CALIBRATION	359
APPENDIX F - PROBE CALIBRATION	360
APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY	361

Applicant:	Kenw	Kenwood USA Corporation FCC ID:		ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	rtable UHF-H PTT Radio Transceiver		Transmitter Frequency Range: 450.0 - 512.0 MHz			KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	Page 2 of 361			

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011 Test Report Serial No. 121510ALH-T1070-S90U Test Report Revision No.
Rev. 1.3 (4th Release)

Rev. 1.3 (4th Release)

RF Exposure Category

Test Report Issue Date
April 14, 2011

Dates of Evaluation (K/K2)
March 30 - April 7, 2011

<u>Description of Test(s)</u> <u>RF Exposure Category</u> Specific Absorption Rate Occupational (Controlled)

	REVISION HISTORY								
REVISION NO.	DESCRIPTION	IMPLEMENTED BY	RELEASE DATE						
1.0	Initial Release	Jon Hughes	February 10, 2011						
1.1	Revised footnotes in Section 8 Added Section 21	Jon Hughes	March 09, 2011						
	1. Added audio accessory note on pg 1								
1.2	2. Added Section 11 - "Rationale for Procedures Applied (FCC KDB 643646)"	Jon Hughes	March 24, 2011						
	3. Moved "Fluid Dielectric Parameters" to Section 8								
1.3	Added SAR evaluation data for Kenwood model variants NX-320-K and NX-320-K2 per FCC KDB Inquiry Tracking No. 235657	Jon Hughes	April 14, 2011						

TEST REPORT SIGN-OFF							
MODEL(S)	MODEL(S) DEVICE TESTED BY REPORT PREPARED BY QA REVIEW BY REPORT APPROVED BY						
NX-320-K3	Scott Kulifaj	Scott Kulifaj	Jon Hughes	Sean Johnston			
NX-320-K/K2 Sean Johnston Sean Johnston Jon Hughes Sean Johnston							

Applicant:	Kenw	Kenwood USA Corporation FCC ID:		ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	oduced in whole or in part without the prior written permission of Celltech Labs Inc.				

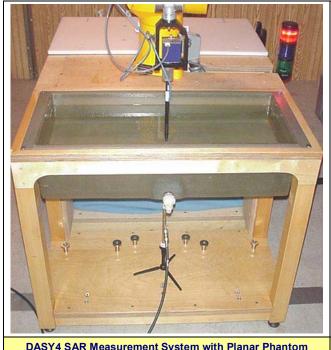
Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category Occupational (Controlled)



1.0 INTRODUCTION

This measurement report demonstrates that the Kenwood USA Corporation Models: NX-320-K, NX-320-K2, NX-320-K3 Portable FM UHF-H PTT Radio Transceiver complies with the SAR (Specific Absorption Rate) RF exposure requirements FCC 47 CFR §2.1093 (see reference [1]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [2]), IEEE Standard 1528-2003 (see reference [3]) and IEC Standard 62209-1:2005 (see reference [4]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (joystick), and remote control is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

DASY4 SAR Measurement System with Planar Phantom

DASY4 Measurement Server

Applicant:	Kenw	Kenwood USA Corporation FCC ID:		ALH431000	ALH431000 DUT Models:		KENWOOD
DUT Type:	Porta	rtable UHF-H PTT Radio Transceiver		Transmitter Frequency Range: 450.0 - 512.0 MHz			KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	Page 4 of 361			

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

	MEASURED RE	CONDUCTE	D OUTPUT PO	WER LEVELS	
Radio Model	Test Freq. (MHz)	Test Mode	Pwr (dBm)	Pwr (Watts)	Method
	450.0	CW	37.0	5.0	Average Conducted
	463.3	CW	36.9	4.9	Average Conducted
	470.0	CW	36.9	4.9	Average Conducted
NX-320-K3	476.7	CW	36.9	4.9	Average Conducted
NX-320-K3	484.0	CW	36.9	4.9	Average Conducted
	490.0	CW	36.9	4.9	Average Conducted
	498.0	CW	37.0	5.0	Average Conducted
	512.0	CW	37.1	5.1	Average Conducted
	450.0	CW	37.1	5.1	Average Conducted
	463.3	CW	37.0	5.0	Average Conducted
NX-320-K	484.0	CW	37.0	5.0	Average Conducted
	498.0	CW	37.1	5.1	Average Conducted
	512.0	CW	37.0	5.0	Average Conducted
	450.0	CW	37.0	5.0	Average Conducted
	463.3	CW	37.0	5.0	Average Conducted
NX-320-K2	484.0	CW	37.0	5.0	Average Conducted
	498.0	CW	37.0	5.0	Average Conducted
	512.0	CW	37.0	5.0	Average Conducted

Notes

- 1. The test channels for Radio Model NX-320-K3 were selected in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [5]).
- 2. The test channels for Radio Models NX-320-K and NX-320-K2 were selected in accordance with the procedures specified in FCC KDB Inquiry Tracking No. 235657.
- 3. The RF conducted output power levels of the DUT were measured by Celltech prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector of the radio in accordance with FCC 47 CFR §2.1046 (see reference [11]).

Applicant:	ant: Kenwood USA Corporation FCC ID: ALH431000 DUT Models:		ALH431000 DUT Models:		KENWOOD		
DUT Type:	Porta	ortable UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	Page 5 of 361		

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011 Test Report Serial No. 121510ALH-T1070-S90U Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category

Occupational (Controlled)

Test Lab Certificate No. 2470.01

est Report Issue Date
April 14, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011 <u>Description of Test(s)</u> Specific Absorption Rate

-

4.0 FCC POWER THRESHOLDS FOR PTT DEVICES (f < 0.5 GHz)

FCC SAR Evaluation P	ower Thresholds for PTT De	Manufacturer's Rate	d RF Output Power		
Exposure Conditions	P mW (General Population)	P mW (Occupational)	100% PTT Duty Cycle	50% PTT Duty Cycle	
Held to face, $d \ge 2.5$ cm	250				
Body-worn, <i>d</i> ≥ 1.5 cm 200 1000		1000	5 Watts	2.5 Watts	
Body-worn, d≥1.0 cm	Body-worn, <i>d</i> ≥ 1.0 cm 150 750				
compared with these three 2. The closest distance between determine the power three	ween the user and the device of	The conducted output exceeds the FCC thresh requirement.			

5.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within ± 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ± 100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, ± 25 MHz < 300 MHz and ± 50 MHz ≥ 300 MHz, require additional steps (per FCC KDB 450824 D01v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [7]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	±50 MHz (≥ 300 MHz)
	450.0 MHz	0 MHz	< 50 MHz ¹
	463.3 MHz	13.3 MHz	< 50 MHz ¹
	470.0 MHz	20 MHz	< 50 MHz ¹
450 MHz	476.7 MHz	26.7 MHz	< 50 MHz ¹
430 1411 12	484.0 MHz		< 50 MHz ¹
	490.0 MHz	40 MHz	< 50 MHz ¹
	498.0 MHz	48 MHz	< 50 MHz ¹
	512.0 MHz	62 MHz	> 50 MHz ²

^{1.} The probe calibration and measurement frequency interval is < 50 MHz; therefore the additional steps were not required.

^{2.} The probe calibration and measurement frequency interval is > 50 MHz; therefore the following additional steps were implemented (per FCC KDB 450824 D01v01r01 - see reference [7]): The measured 1-g SAR may be compensated with respect to +5% tolerances in ε_r and -5% tolerances in ε_r computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness. SAR sensitivity data is per SPEAG DASY4 Manual (see reference [12]).

Probe (Probe Calibration Frequency = 450 MHz				Target Parameters:			Head 43.5 ε _r / 0.87 σ Βο		Boo	Body = 56.7 $\varepsilon_{\rm r} / 0.94 \sigma$	
Test Freq.	Tissue	σ	Coeff.	Sens.	εr	Coeff.	Sens.	% Change	Compensated SAR at 512 MH			R at 512 MHz
512 MHz	Body	4.60%	0.43	1.98%	n/a	-0.46	n/a	1.98%	7.22 W	/kg	1g	50% ptt d/c
	Par	ameter					ϵ	σ	ρ		_	
			Iz, d=15									
	($\epsilon_r = 43.5$,	σ =0.87 S	/m)								
			SAR Pe	eak			- 0.56	+ 0.67	-			
			SAR 1g	3			- 0.46	+ 0.43	0.09			
			SAR 10	g			- 0.37	+ 0.22	0.17			

Note: Per the SAR system manufacturer SPEAG, the above sensitivity data (Head) from the DASY4 manual (see reference [12]) can be applied to Body tissue parameters provided the approximation is for <5% deviation of liquid parameters.

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	abs Inc.	This document is not to be r	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

121510ALH-T1070-S90U

Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Rev. 1.3 (4th Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

6.0 NO. OF TEST CHANNELS (Nc)

Ant	tenna Part No.	Antenna Freq. Range	Test Freq. Range	N _c	Test Frequencies
Α	KRA-23M	440.0 - 490.0 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz
В	KRA-23M2	470.0 - 520.0 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz
С	KRA-27M	440.0 - 490.0 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz
D	KRA-27M2	470.0 - 520.0 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz

Note: The number of test channels (*Nc*) were calculated in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [5]).

7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING

Part No.	Description		Acc. Type	
KRA-23M	Detachable Stub (440-490 MHz)			
KRA-23M2	Detachable Stub (470-520 MHz)		Antenna	
KRA-27M	Detachable Whip (440-490 MHz)		Antenna	
KRA-27M2	Detachable Whip (470-520 MHz)			
KNB-57L	Lithium-ion, 2000 mAh, 7.4 V			
KNB-55L	Lithium-ion, 1480 mAh, 7.4 V		Battery	
KNB-56N	Nickel-Metal Hydride, 1400 mAh, 7.2 V		Dattery	
KBP-5	Alkaline Battery Case, 6xAA, 9 V			
KBH-12	Belt-Clip (contains metal)	Body-worn		
KBH-13DS	Swivel Belt-Loop (contains metal)	Body Worm		
KHS-10-BH	Noise Reduction Headset (Behind the head)			
KHS-10-OH	Noise Reduction Headset (Over the head)			
KHS-21	Lightweight Headset – no VOX or PTT controls			
KHS-22	Behind-the-Head Headset w/ Boom Mic & PTT			
KHS-7	Single Muff Headset w/ Boom Mic			
KHS-7A	Single Muff Headset w/ Boom Mic & PTT			
KHS-23	2-Wire Ear-Bud w/ mic/PTT - Vox Ready			
KHS-25	Earhook w/ Mini Boom Mic	Earpiece	Audio	
KHS-26	Clip Mic w/ Earphone	(Audio Accessory Category 2)	, tadio	
KHS-27	D-Ring Ear Hanger w/ PTT & Mic			
KEP-2	Earphone Kit (for use w/ KMC-21 & KMC-45)			
KHS-8BE/BL	2-Wire Palm Mic w/ Earphone	Palm-Microphone Kit (Audio Accessory Category 3)		
KHS-9BE/BL	3-Wire Lapel Microphone w/ Earpiece	_		
KMC-21	Slim-Line Speaker-Microphone			
KMC-45	Heavy Duty Speaker-Microphone	Speaker-Microphone (Audio Accessory Category 4)		
KMC-48GPS	Speaker-Microphone with Integral GPS Unit			

Notes:

1. Manufacturer's disclosed accessory listing information was provided by Kenwood USA Corporation.

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	abs Inc.	This document is not to be r	his document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

8.0 FLUID DIELECTRIC PARAMETERS

	FL	UID DIEL	ECTRIC	PARAMI	ETERS	
Date: 01/	04/2011	Freq	uency: 450	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	60.17	0.85	56.7	0.94	6.12%	-9.57%
0.360	60.61	0.86	56.7	0.94	6.90%	-8.51%
0.370	60.23	0.85	56.7	0.94	6.23%	-9.57%
0.380	59.86	0.87	56.7	0.94	5.57%	-7.45%
0.390	59.86	0.87	56.7	0.94	5.57%	-7.45%
0.400	59.60	0.88	56.7	0.94	5.11%	-6.38%
0.410	59.25	0.88	56.7	0.94	4.50%	-6.38%
0.420	59.06	0.90	56.7	0.94	4.16%	-4.26%
0.430	59.51	0.91	56.7	0.94	4.96%	-3.19%
0.440	59.84	0.91	56.7	0.94	5.54%	-3.19%
0.450	58.76	0.93	56.7	0.94	3.63%	-1.06%
0.460	59.45	0.91	56.7	0.94	4.85%	-3.19%
0.4633*	59.10	0.92	56.7	0.94	4.23%	-2.13%
0.470	58.45	0.94	56.7	0.94	3.09%	0.00%
0.4767*	58.50	0.94	56.7	0.94	3.17%	0.00%
0.480	58.49	0.94	56.7	0.94	3.16%	0.00%
0.484*	58.40	0.95	56.7	0.94	3.00%	1.06%
0.490	58.38	0.96	56.7	0.94	2.96%	2.13%
0.498*	58.40	0.96	56.7	0.94	3.00%	2.13%
0.500	58.46	0.96	56.7	0.94	3.10%	2.13%
0.510	58.58	0.97	56.7	0.94	3.32%	3.19%
0.512*	58.50	0.972	56.7	0.94	3.17%	3.40%
0.520	57.95	0.98	56.7	0.94	2.20%	4.26%
0.530	57.96	0.98	56.7	0.94	2.22%	4.26%
0.540	57.90	0.99	56.7	0.94	2.12%	5.32%
0.550	57.48	1.00	56.7	0.94	1.38%	6.38%

^{*}interpolated using DASY4 software

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	abs Inc.	This document is not to be r	his document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 <u>Test Report Serial No.</u> 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 01	/06/2011	Freq	uency: 450	MHz	Tissu	e: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	48.20	0.81	43.5	0.87	10.80%	-6.90%
0.360	48.37	0.82	43.5	0.87	11.20%	-5.75%
0.370	47.65	0.82	43.5	0.87	9.54%	-5.75%
0.380	47.19	0.84	43.5	0.87	8.48%	-3.45%
0.390	47.20	0.84	43.5	0.87	8.51%	-3.45%
0.400	47.25	0.86	43.5	0.87	8.62%	-1.15%
0.410	46.40	0.86	43.5	0.87	6.67%	-1.15%
0.420	45.95	0.86	43.5	0.87	5.63%	-1.15%
0.430	45.60	0.87	43.5	0.87	4.83%	0.00%
0.440	45.47	0.87	43.5	0.87	4.53%	0.00%
0.450	45.61	0.88	43.5	0.87	4.85%	1.15%
0.460	45.56	0.88	43.5	0.87	4.74%	1.15%
0.470	45.31	0.88	43.5	0.87	4.16%	1.15%
0.480	44.72	0.89	43.5	0.87	2.80%	2.30%
0.490	44.84	0.90	43.5	0.87	3.08%	3.45%
0.500	44.86	0.90	43.5	0.87	3.13%	3.45%
0.510	44.68	0.91	43.5	0.87	2.71%	4.60%
0.512*	44.60	0.91	43.5	0.87	2.53%	4.60%
0.520	44.37	0.91	43.5	0.87	2.00%	4.60%
0.530	44.00	0.93	43.5	0.87	1.15%	6.90%
0.540	44.05	0.95	43.5	0.87	1.26%	9.20%
0.550	43.95	0.96	43.5	0.87	1.03%	10.34%

^{*}interpolated using DASY4 software

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	Page 9 of 361				

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

	FL	UID DIEL	ECTRIC	PARAM	ETERS	
Date: 01	/26/2011	Freq	uency: 450	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	59.28	0.81	56.7	0.94	4.55%	-13.83%
0.360	58.27	0.81	56.7	0.94	2.77%	-13.83%
0.370	57.79	0.83	56.7	0.94	1.92%	-11.70%
0.380	58.74	0.83	56.7	0.94	3.60%	-11.70%
0.390	57.80	0.85	56.7	0.94	1.94%	-9.57%
0.400	58.39	0.85	56.7	0.94	2.98%	-9.57%
0.410	57.87	0.86	56.7	0.94	2.06%	-8.51%
0.420	57.69	0.88	56.7	0.94	1.75%	-6.38%
0.430	57.68	0.87	56.7	0.94	1.73%	-7.45%
0.440	58.15	0.88	56.7	0.94	2.56%	-6.38%
0.450	57.69	0.91	56.7	0.94	1.75%	-3.19%
0.460	57.99	0.91	56.7	0.94	2.28%	-3.19%
0.4633*	57.60	0.913	56.7	0.94	1.59%	-2.87%
0.470	56.94	0.92	56.7	0.94	0.42%	-2.13%
0.4767*	56.90	0.927	56.7	0.94	0.35%	-1.38%
0.480	56.89	0.93	56.7	0.94	0.34%	-1.06%
0.484*	56.90	0.93	56.7	0.94	0.35%	-1.06%
0.490	56.86	0.93	56.7	0.94	0.28%	-1.06%
0.498*	57.10	0.946	56.7	0.94	0.71%	0.64%
0.500	57.20	0.95	56.7	0.94	0.88%	1.06%
0.510	57.36	0.96	56.7	0.94	1.16%	2.13%
0.512*	57.20	0.96	56.7	0.94	0.88%	2.13%
0.520	56.80	0.96	56.7	0.94	0.18%	2.13%
0.530	56.78	0.99	56.7	0.94	0.14%	5.32%
0.540	56.88	0.98	56.7	0.94	0.32%	4.26%
0.550	56.31	1.00	56.7	0.94	-0.69%	6.38%

^{*}interpolated using DASY4 software

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range: 450.0 - 512.0 MHz			KENWOOD	
2011 Celltech La	abs Inc.	This document is not to be r	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 01	/27/2011	Freq	uency: 450	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	58.93	0.83	56.7	0.94	3.93%	-11.70%
0.360	58.83	0.83	56.7	0.94	3.76%	-11.70%
0.370	58.61	0.84	56.7	0.94	3.37%	-10.64%
0.380	59.35	0.85	56.7	0.94	4.67%	-9.57%
0.390	58.68	0.87	56.7	0.94	3.49%	-7.45%
0.400	58.73	0.87	56.7	0.94	3.58%	-7.45%
0.410	58.48	0.88	56.7	0.94	3.14%	-6.38%
0.420	58.29	0.89	56.7	0.94	2.80%	-5.32%
0.430	58.31	0.90	56.7	0.94	2.84%	-4.26%
0.440	58.46	0.90	56.7	0.94	3.10%	-4.26%
0.450	58.19	0.91	56.7	0.94	2.63%	-3.19%
0.460	58.23	0.92	56.7	0.94	2.70%	-2.13%
0.4633*	58.00	0.923	56.7	0.94	2.29%	-1.81%
0.470	57.48	0.93	56.7	0.94	1.38%	-1.06%
0.4767*	57.20	0.93	56.7	0.94	0.88%	-1.06%
0.480	57.00	0.93	56.7	0.94	0.53%	-1.06%
0.484*	57.10	0.934	56.7	0.94	0.71%	-0.64%
0.490	57.22	0.94	56.7	0.94	0.92%	0.00%
0.498*	57.50	0.948	56.7	0.94	1.41%	0.85%
0.500	57.62	0.95	56.7	0.94	1.62%	1.06%
0.510	57.26	0.97	56.7	0.94	0.99%	3.19%
0.512*	57.10	0.968	56.7	0.94	0.71%	2.98%
0.520	56.70	0.96	56.7	0.94	0.00%	2.13%
0.530	57.11	0.98	56.7	0.94	0.72%	4.26%
0.540	57.01	0.98	56.7	0.94	0.55%	4.26%
0.550	56.68	1.00	56.7	0.94	-0.04%	6.38%

^{*}interpolated using DASY4 software

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 01	/28/2011	Freq	uency: 450	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	60.24	0.86	56.7	0.94	6.24%	-8.51%
0.360	60.20	0.86	56.7	0.94	6.17%	-8.51%
0.370	59.64	0.87	56.7	0.94	5.19%	-7.45%
0.380	59.70	0.87	56.7	0.94	5.29%	-7.45%
0.390	59.43	0.89	56.7	0.94	4.81%	-5.32%
0.400	59.78	0.89	56.7	0.94	5.43%	-5.32%
0.410	59.31	0.90	56.7	0.94	4.60%	-4.26%
0.420	58.71	0.91	56.7	0.94	3.54%	-3.19%
0.430	59.07	0.91	56.7	0.94	4.18%	-3.19%
0.440	58.74	0.92	56.7	0.94	3.60%	-2.13%
0.450	58.85	0.93	56.7	0.94	3.79%	-1.06%
0.460	58.99	0.93	56.7	0.94	4.04%	-1.06%
0.470	58.77	0.93	56.7	0.94	3.65%	-1.06%
0.480	58.64	0.95	56.7	0.94	3.42%	1.06%
0.484*	58.50	0.954	56.7	0.94	3.17%	1.49%
0.490	58.26	0.96	56.7	0.94	2.75%	2.13%
0.498*	58.10	0.968	56.7	0.94	2.47%	2.98%
0.500	58.02	0.97	56.7	0.94	2.33%	3.19%
0.510	57.87	0.98	56.7	0.94	2.06%	4.26%
0.512*	57.90	0.98	56.7	0.94	2.12%	4.26%
0.520	57.92	0.98	56.7	0.94	2.15%	4.26%
0.530	57.86	1.00	56.7	0.94	2.05%	6.38%
0.540	57.54	1.00	56.7	0.94	1.48%	6.38%
0.550	57.59	1.00	56.7	0.94	1.57%	6.38%

^{*}interpolated using DASY4 software

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 12 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

	FLI	JID DIEL	ECTRIC	PARAME	TERS	
Date: 01	/31/2011	Freq	uency: 450	MHz	Tissue	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	60.18	0.85	56.7	0.94	6.14%	-9.57%
0.360	60.19	0.85	56.7	0.94	6.16%	-9.57%
0.370	59.70	0.86	56.7	0.94	5.29%	-8.51%
0.380	60.14	0.87	56.7	0.94	6.07%	-7.45%
0.390	59.41	0.89	56.7	0.94	4.78%	-5.32%
0.400	59.38	0.88	56.7	0.94	4.73%	-6.38%
0.410	59.96	0.91	56.7	0.94	5.75%	-3.19%
0.420	59.49	0.92	56.7	0.94	4.92%	-2.13%
0.430	59.91	0.92	56.7	0.94	5.66%	-2.13%
0.440	59.17	0.93	56.7	0.94	4.36%	-1.06%
0.450	59.31	0.93	56.7	0.94	4.60%	-1.06%
0.460	58.91	0.94	56.7	0.94	3.90%	0.00%
0.470	58.58	0.95	56.7	0.94	3.32%	1.06%
0.480	59.45	0.96	56.7	0.94	4.85%	2.13%
0.484*	59.40	0.964	56.7	0.94	4.76%	2.55%
0.490	59.35	0.97	56.7	0.94	4.67%	3.19%
0.498*	59.50	0.978	56.7	0.94	4.94%	4.04%
0.500	59.50	0.98	56.7	0.94	4.94%	4.26%
0.510	58.00	0.98	56.7	0.94	2.29%	4.26%
0.512*	58.20	0.98	56.7	0.94	2.65%	4.26%
0.520	58.76	0.98	56.7	0.94	3.63%	4.26%
0.530	58.84	1.00	56.7	0.94	3.77%	6.38%
0.540	58.90	1.01	56.7	0.94	3.88%	7.45%
0.550	58.74	1.02	56.7	0.94	3.60%	8.51%

^{*}interpolated using DASY4 software

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 13 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 03/	30/2011	Freq	uency: 450	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	57.84	0.83	56.7	0.94	2.01%	-11.70%
0.360	59.29	0.84	56.7	0.94	4.57%	-10.64%
0.370	58.81	0.85	56.7	0.94	3.72%	-9.57%
0.380	58.4	0.85	56.7	0.94	3.00%	-9.57%
0.390	58.14	0.87	56.7	0.94	2.54%	-7.45%
0.400	57.62	0.86	56.7	0.94	1.62%	-8.51%
0.410	57.62	0.88	56.7	0.94	1.62%	-6.38%
0.420	58.29	0.89	56.7	0.94	2.80%	-5.32%
0.430	58.16	0.89	56.7	0.94	2.57%	-5.32%
0.440	57.8	0.9	56.7	0.94	1.94%	-4.26%
0.450	58.15	0.93	56.7	0.94	2.56%	-1.06%
0.460	57.57	0.92	56.7	0.94	1.53%	-2.13%
0.470	57.22	0.95	56.7	0.94	0.92%	1.06%
0.480	57.25	0.94	56.7	0.94	0.97%	0.00%
0.490	56.8	0.95	56.7	0.94	0.18%	1.06%
0.500	56.66	0.95	56.7	0.94	-0.07%	1.06%
0.510	57.05	0.97	56.7	0.94	0.62%	3.19%
0.520	56.52	0.97	56.7	0.94	-0.32%	3.19%
0.530	56.45	0.99	56.7	0.94	-0.44%	5.32%
0.540	56.87	1	56.7	0.94	0.30%	6.38%
0.550	56.54	1	56.7	0.94	-0.28%	6.38%

^{*}interpolated using DASY4 software

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	Page 14 of 361				

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 <u>Test Report Serial No.</u> 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS			
Date: 03/	31/2011	Freq	uency: 450	MHz	Tissu	Tissue: Body		
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity		
0.350	59.13	0.83	56.7	0.94	4.29%	-11.70%		
0.360	58.92	0.83	56.7	0.94	3.92%	-11.70%		
0.370	59.01	0.84	56.7	0.94	4.07%	-10.64%		
0.380	58.87	0.85	56.7	0.94	3.83%	-9.57%		
0.390	58.34	0.87	56.7	0.94	2.89%	-7.45%		
0.400	58.7	0.86	56.7	0.94	3.53%	-8.51%		
0.410	58.34	0.87	56.7	0.94	2.89%	-7.45%		
0.420	58.23	0.88	56.7	0.94	2.70%	-6.38%		
0.430	58.77	0.91	56.7	0.94	3.65%	-3.19%		
0.440	58.92	0.9	56.7	0.94	3.92%	-4.26%		
0.450	58.24	0.91	56.7	0.94	2.72%	-3.19%		
0.460	58.39	0.93	56.7	0.94	2.98%	-1.06%		
0.4633*	58.2	0.93	56.7	0.94	2.65%	-1.06%		
0.470	57.66	0.93	56.7	0.94	1.69%	-1.06%		
0.480	58.37	0.93	56.7	0.94	2.95%	-1.06%		
0.490	57.71	0.93	56.7	0.94	1.78%	-1.06%		
0.500	57.62	0.94	56.7	0.94	1.62%	0.00%		
0.510	57.74	0.95	56.7	0.94	1.83%	1.06%		
0.512*	57.6	0.954	56.7	0.94	1.59%	1.49%		
0.520	57.37	0.97	56.7	0.94	1.18%	3.19%		
0.530	57.85	0.98	56.7	0.94	2.03%	4.26%		
0.540	57.01	0.98	56.7	0.94	0.55%	4.26%		
0.550	56.77	1	56.7	0.94	0.12%	6.38%		

^{*}interpolated using DASY4 software

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 15 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 04/	01/2011	Freq	uency: 450	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	60.37	0.85	56.7	0.94	6.47%	-9.57%
0.360	60.38	0.86	56.7	0.94	6.49%	-8.51%
0.370	60.21	0.86	56.7	0.94	6.19%	-8.51%
0.380	60.31	0.88	56.7	0.94	6.37%	-6.38%
0.390	60.22	0.88	56.7	0.94	6.21%	-6.38%
0.400	60.04	0.89	56.7	0.94	5.89%	-5.32%
0.410	59.55	0.91	56.7	0.94	5.03%	-3.19%
0.420	59.73	0.9	56.7	0.94	5.34%	-4.26%
0.430	59.08	0.91	56.7	0.94	4.20%	-3.19%
0.440	59.54	0.92	56.7	0.94	5.01%	-2.13%
0.450	59.25	0.93	56.7	0.94	4.50%	-1.06%
0.460	59.01	0.94	56.7	0.94	4.07%	0.00%
0.4633*	58.9	0.94	56.7	0.94	3.88%	0.00%
0.470	58.62	0.94	56.7	0.94	3.39%	0.00%
0.480	58.83	0.95	56.7	0.94	3.76%	1.06%
0.484*	58.8	0.954	56.7	0.94	3.70%	1.49%
0.490	58.87	0.96	56.7	0.94	3.83%	2.13%
0.498*	58.3	0.952	56.7	0.94	2.82%	1.28%
0.500	58.23	0.95	56.7	0.94	2.70%	1.06%
0.510	58.36	0.98	56.7	0.94	2.93%	4.26%
0.512*	58.4	0.98	56.7	0.94	3.00%	4.26%
0.520	58.16	0.98	56.7	0.94	2.57%	4.26%
0.530	57.92	1	56.7	0.94	2.15%	6.38%
0.540	58.53	0.99	56.7	0.94	3.23%	5.32%
0.550	58.01	1.01	56.7	0.94	2.31%	7.45%

^{*}interpolated using DASY4 software

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 16 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 <u>Test Report Serial No.</u> 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 04/0	04/2011	Freq	uency: 450	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	59.58	0.83	56.7	0.94	5.08%	-11.70%
0.360	59.84	0.86	56.7	0.94	5.54%	-8.51%
0.370	59.51	0.83	56.7	0.94	4.96%	-11.70%
0.380	60	0.86	56.7	0.94	5.82%	-8.51%
0.390	59.39	0.87	56.7	0.94	4.74%	-7.45%
0.400	59.34	0.86	56.7	0.94	4.66%	-8.51%
0.410	58.68	0.87	56.7	0.94	3.49%	-7.45%
0.420	58.61	0.87	56.7	0.94	3.37%	-7.45%
0.430	58.64	0.9	56.7	0.94	3.42%	-4.26%
0.440	58.47	0.9	56.7	0.94	3.12%	-4.26%
0.450	58.73	0.91	56.7	0.94	3.58%	-3.19%
0.460	57.85	0.91	56.7	0.94	2.03%	-3.19%
0.4633*	58	0.917	56.7	0.94	2.29%	-2.45%
0.470	58.13	0.93	56.7	0.94	2.52%	-1.06%
0.480	58.21	0.92	56.7	0.94	2.66%	-2.13%
0.484*	57.9	0.928	56.7	0.94	2.12%	-1.28%
0.490	57.52	0.94	56.7	0.94	1.45%	0.00%
0.500	58.15	0.95	56.7	0.94	2.56%	1.06%
0.510	58.08	0.95	56.7	0.94	2.43%	1.06%
0.512*	58	0.952	56.7	0.94	2.29%	1.28%
0.520	57.47	0.96	56.7	0.94	1.36%	2.13%
0.530	57.54	0.97	56.7	0.94	1.48%	3.19%
0.540	56.85	0.99	56.7	0.94	0.26%	5.32%
0.550	57.31	1	56.7	0.94	1.08%	6.38%

^{*}interpolated using DASY4 software

Applicant:	Kenwood USA Corporation		FCC ID:	ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	KENWOOD			
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 17 of 361	

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 04/	05/2011	Freq	uency: 450	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	60.2	0.84	56.7	0.94	6.17%	-10.64%
0.360	59.29	0.83	56.7	0.94	4.57%	-11.70%
0.370	59.38	0.84	56.7	0.94	4.73%	-10.64%
0.380	59.79	0.85	56.7	0.94	5.45%	-9.57%
0.390	59.14	0.86	56.7	0.94	4.30%	-8.51%
0.400	58.79	0.86	56.7	0.94	3.69%	-8.51%
0.410	58.99	0.87	56.7	0.94	4.04%	-7.45%
0.420	59.14	0.88	56.7	0.94	4.30%	-6.38%
0.430	58.25	0.88	56.7	0.94	2.73%	-6.38%
0.440	58.12	0.9	56.7	0.94	2.50%	-4.26%
0.450	58.64 0.	0.91	56.7	0.94	3.42%	-3.19%
0.460	58.49	0.92	56.7	0.94	3.16%	-2.13%
0.4633*	58.4	0.92	56.7	0.94	3.00%	-2.13%
0.470	58.16	0.92	56.7	0.94	2.57%	-2.13%
0.480	58.16	0.93	56.7	0.94	2.57%	-1.06%
0.484*	58.1	0.938	56.7	0.94	2.47%	-0.21%
0.490	57.91	0.95	56.7	0.94	2.13%	1.06%
0.500	57.85	0.95	56.7	0.94	2.03%	1.06%
0.510	57.61	0.95	56.7	0.94	1.60%	1.06%
0.520	57.82	0.96	56.7	0.94	1.98%	2.13%
0.530	57.21	0.97	56.7	0.94	0.90%	3.19%
0.540	57.11	0.98	56.7	0.94	0.72%	4.26%
0.550	56.99	0.99	56.7	0.94	0.51%	5.32%

^{*}interpolated using DASY4 software

Applicant:	Kenwood USA Corporation		FCC ID:	ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	KENWOOD			
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 18 of 361	

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category

	FLI	JID DIEL	ECTRIC	PARAMI	ETERS	
Date: 04/	06/2011	Freq	uency: 450	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	59.96	0.84	56.7	0.94	5.75%	-10.64%
0.360	60.09	0.85	56.7	0.94	5.98%	-9.57%
0.370	60.15	0.86	56.7	0.94	6.08%	-8.51%
0.380	59.41	0.87	56.7	0.94	4.78%	-7.45%
0.390	59.31	0.86	56.7	0.94	4.60%	-8.51%
0.400	59.56	0.87	56.7	0.94	5.04%	-7.45%
0.410	58.73	0.88	56.7	0.94	3.58%	-6.38%
0.420	58.79	0.89	56.7	0.94	3.69%	-5.32%
0.430	58.83	0.89	56.7	0.94	3.76%	-5.32%
0.440	58.73	0.9	56.7	0.94	3.58%	-4.26%
0.450	58.4	0.91	56.7	0.94	3.00%	-3.19%
0.460	58.47	0.91	56.7	0.94	3.12%	-3.19%
0.470	58.1	0.94	56.7	0.94	2.47%	0.00%
0.480	58.3	0.95	56.7	0.94	2.82%	1.06%
0.484*	58.1	0.942	56.7	0.94	2.47%	0.21%
0.490	57.82	0.93	56.7	0.94	1.98%	-1.06%
0.498*	57.8	0.954	56.7	0.94	1.94%	1.49%
0.500	57.81	0.96	56.7	0.94	1.96%	2.13%
0.510	57.56	0.96	56.7	0.94	1.52%	2.13%
0.520	58.03	0.96	56.7	0.94	2.35%	2.13%
0.530	57.83	0.98	56.7	0.94	1.99%	4.26%
0.540	57.11	0.99	56.7	0.94	0.72%	5.32%
0.550	57.42	1	56.7	0.94	1.27%	6.38%

^{*}interpolated using DASY4 software

Applicant:	Kenwood USA Corporation		enwood USA Corporation FCC ID: ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	KENWOOD		
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 19 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 04/	07/2011	Freq	uency: 450	MHz	Tissu	e: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.350	47.81	0.75	43.5	0.87	9.91%	-13.79%
0.360	47.4	0.74	43.5	0.87	8.97%	-14.94%
0.370	47.49	0.77	43.5	0.87	9.17%	-11.49%
0.380	46.75	0.76	43.5	0.87	7.47%	-12.64%
0.390	46.77	0.79	43.5	0.87	7.52%	-9.20%
0.400	46.55	0.78	43.5	0.87	7.01%	-10.34%
0.410	45.46	0.79	43.5	0.87	4.51%	-9.20%
0.420	46.12	0.8	43.5	0.87	6.02%	-8.05%
0.430	45.7	0.82	43.5	0.87	5.06%	-5.75%
0.440	45.56	0.82	43.5	0.87	4.74%	-5.75%
0.450	45.01	0.84	43.5	0.87	3.47%	-3.45%
0.460	45.1	0.85	43.5	0.87	3.68%	-2.30%
0.470	44.37	0.85	43.5	0.87	2.00%	-2.30%
0.480	44.34	0.87	43.5	0.87	1.93%	0.00%
0.490	44.15	0.88	43.5	0.87	1.49%	1.15%
0.500	44.06	0.88	43.5	0.87	1.29%	1.15%
0.510	43.77	0.9	43.5	0.87	0.62%	3.45%
0.512*	43.8	0.9	43.5	0.87	0.69%	3.45%
0.520	43.77	0.9	43.5	0.87	0.62%	3.45%
0.530	43.87	0.9	43.5	0.87	0.85%	3.45%
0.540	43.6	0.93	43.5	0.87	0.23%	6.90%
0.550	43.65	0.94	43.5	0.87	0.34%	8.05%

^{*}interpolated using DASY4 software

Applicant:	Kenwood USA Corporation		FCC ID:	ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	KENWOOD			
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 20 of 361	

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category

FLUID DIELECTRIC PARAMETERS (CONT.)

Test Date	Fluid Type	Ambient Temp.	Fluid Temp.	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Jan 04	450 Body	23.0°C	22.4°C	≥ 15 cm	101.1 kPa	35%	1000
Jan 06	450 Head	23.5°C	22.5°C	≥ 15 cm	101.1 kPa	40%	1000
Jan 26	450 Body	23.3°C	22.7°C	≥ 15 cm	101.1 kPa	35%	1000
Jan 27	450 Body	23.1°C	22.4°C	≥ 15 cm	101.1 kPa	35%	1000
Jan 28	450 Body	24.0°C	23.1°C	≥ 15 cm	101.1 kPa	40%	1000
Jan 31	450 Body	24.1°C	23.2°C	≥ 15 cm	101.1 kPa	40%	1000
Mar 30	450 Body	22.0°C	20.1°C	≥ 15 cm	101.1 kPa	31%	1000
Mar 31	450 Body	22.0°C	20.1°C	≥ 15 cm	101.1 kPa	31%	1000
Apr 01	450 Body	21.0°C	20.5°C	≥ 15 cm	101.1 kPa	32%	1000
Apr 04	450 Body	22.0°C	20.1°C	≥ 15 cm	101.1 kPa	31%	1000
Apr 05	450 Body	20.0°C	20.2°C	≥ 15 cm	101.1 kPa	28%	1000
Apr 06	450 Body	20.0°C	20.2°C	≥ 15 cm	101.1 kPa	33%	1000
Apr 07	450 Head	22.0°C	21.4°C	≥ 15 cm	101.1 kPa	33%	1000

9.0 TEST PROCEDURES FOR NX-320-K & NX-320-K2 MODELS (KDB INQ. #235657)

With respect to the SAR results for the original model NX-320-K3 included in this KDB inquiry, please test the SAR for K2 and K models according to the following where reported and measured should mean the SAR results at 50% duty factor before further scaling or compensation*.

- 1. For face exposure, K2 and K models should be measured for each of the 4 antennas using the highest SAR configuration reported among the battery configurations for the K3 model; i.e., one SAR per antenna for each additional model.
- 2. For body-worn accessories with the default audio accessories (KHS-10-BH), K2 and K models should be measured for each of the 4 antennas and 2 body-worn accessories using the highest SAR configuration reported among the battery configurations for the K3 model; i.e., one SAR per antenna and body-worn accessory combination (8 tests for the 4 antennas and 2 body-worn accessories). For each of these 8 configurations, if the measured SAR for the K2 or K model is > 7.0 W/kg repeat all SAR measured for the K3 model that are > 6.0 W/kg using the K2 and K models. In addition, all SAR measured for the K3 model > 7.0 W/kg must be repeated for the K2 and K models.
- 3. According to the SAR results for the original test configurations submitted to this KDB inquiry, it appears belt-loop KBH-13-DS works with the default audio accessory only (KHS-10-BH). Please let us know if this is not the case and provide further explanation for us to determine applicable test configurations.
- 4. For the remaining default audio accessories identified for categories 2, 3 & 4, all SAR measured for each combination of antenna, battery, body-worn accessory and audio accessory with the K3 model with SAR >= 7.0 W/kg must be repeated for the K2 and K models for such combinations. When the highest SAR measured for a K3 model combination of antenna, battery, body-worn accessory and audio accessory is < 7.0 W/kg, measure SAR for the K2 and K model using the highest SAR reported for each K3 combination; i.e., at least one test per combination. However, if the highest reported SAR for a K3 combination is < 5.0 W/kg, no test is needed for that combination. For each K2 and K model combination, if the measured SAR is > 7.0 W/kg repeat all SAR measured for that combination when the reported K3 model SAR for is > 6.0
- 5. For the rest of the additional (non-default) audio accessories tested for the K3 model, apply the same procedures used for the remaining default audio accessories in #4 above. A combination should be determined according to audio accessory part numbers; not by audio category.
- * Note: SAR results at 50% duty factor before scaling-up for SAR droop compensation

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	KENWOOD		
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 21 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

10.0 TEST PROCEDURES APPLIED FOR NX-320-K MODEL (FCC KDB 643646)

- a. Face-held Configuration Default Battery Selection per FCC KDB 643646, Page 2, Section 1) A): "When multiple standard batteries are supplied with a radio, the battery with the highest capacity is considered the default battery for making head SAR measurements."
- b. Body-worn Configuration Default Battery Selection per FCC KDB 643646, Page 5, Section 1) A): "Start by testing a PTT radio with the thinnest battery and a standard (default) body-worn accessory that are both supplied with the radio and, if applicable, a default audio accessory......."
- c. Body-worn Configuration Default Body-worn Accessory Selection the belt-clip was selected as the default body-worn accessory based on the smaller separation distance it provides between the radio and the user in comparison to the belt-loop accessory. Per FCC KDB 643646, Page 5, Section 1) A): "When multiple default body-worn accessories are supplied with a radio, the standard body-worn accessory expected to result in the highest SAR based on its construction and exposure conditions is considered the default body-worn accessory for making body-worn measurements."
- d. Body-worn Configuration Additional Body-worn Accessory the belt-loop body-worn accessory was evaluated based on the "additional body-worn accessory" guidance provided in FCC KDB 643646, Page 7, Section 4). The belt-loop accessory can be utilized with all the audio accessory options. The test reduction provision of KDB 643646 Page 10, Section 1) A) was applied, with respect to the belt-loop SAR levels w/ default audio accessory KHS-10-BH are < 4.0 W/kg.
- e. Body-worn Configuration Default Audio Accessory Selection the Default Audio Accessory was selected based on the guidance provided in FCC KDB 643646, Page 4, Section "Body SAR Test Considerations for Body-worn Accessories", footnote 8: "The applicable audio accessory that is expected to result in the most conservative SAR must be used." Please refer to note (i) below for the assessment method utilized to establish the default audio accessory.
- f. Body-worn Configuration Selection of Remaining Default Audio Accessories by Category the Remaining Default Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10: "For audio accessories with similar construction and operating requirements, test only the audio accessory within the group that is expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions for the combination. If it is unclear which audio accessory within a group of similar accessories is expected to result in the highest SAR, good engineering judgment and preliminary testing should be applied to select the accessory that is expected to result in the highest SAR." See note (i) below. The Remaining Default Audio Accessories by Category were evaluated on the highest SAR channel (per antenna) from the KHS-10-BH headset evaluations based on the guidance provided in FCC KDB 643646, Page 10, Section 1) A) thru D).
- g. Body-worn Configuration Selection of Additional Audio Accessories by Category the Additional Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10, 1): "For the audio accessories that have not been tested in the body-worn accessories test sequences in the previous section, the highest SAR for an antenna, body-worn accessory and battery combination tested in the body-worn accessories sequences applicable to an audio accessory is used to determine SAR test requirements......."
- h. According to the manufacturer, the radio is not supplied to the end user with an audio accessory; therefore a "standard" default audio accessory (as referenced in FCC KDB 643646, Page 4, Section "Body SAR Test Considerations for Bodyworn Accessories") does not apply.
- i. According to the manufacturer, all the optional audio accessories can be used with any accessory combination (antenna, battery & body-worn accessory). Therefore, in order to determine the default audio accessory (in accordance with FCC KDB 643646, Page 4, footnote 8), preliminary SAR evaluations (area scans with belt-clip and thinnest battery) were performed by Celltech with all of the optional audio accessories connected to the radio consecutively in order to select the audio accessory expected to result in the highest SAR level for the final compliance evaluations. The headset audio accessory part no. KHS-10-BH yielded the highest SAR level from the preliminary evaluations and therefore was selected as the default audio accessory.

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 22 of 361	

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)


March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

11.0 SAR MEASUREMENT SUMMARY

						1 00111117									
					FA	CE-HELD	SAR E	VAL	JATION RE	SUL					
NX-3	320-K3 Test Da	ite(s): Jan	uary 06,	2011		NX-320-K Test	Date(s):	April 07	7, 2011		NX-32	0-K2 Test Date	e(s): April 0	7, 201	1
С					1	2	3		4		5	6	7		8
	Antenna /			SAR	W/kg 1g	SAR W/kg 1g	SAR W/	kg 1g	SAR W/kg 1g	SAR	W/kg 1g	SAR W/kg 1g	SAR W/I	kg 1g	SAR W/kg 1g
	Part No. / Test Freq.	Test	Cond.	Defau	ılt Battery	KNB-57L (a)	Batt	ery KN	B-55L (b)	В	attery KI	NB-56N (c)	Ва	ttery K	(BP-5 (d)
R	Range	Freq.	Pwr	100%	% ptt d/f	50% ptt d/f	100% p	tt d/f	50% ptt d/f	100%	% ptt d/f	50% ptt d/f	100% p	tt d/f	50% ptt d/f
	(MHz) /	(MHz)	(W)						-						
	Radio Model			Drif	ft (dB)	50%+droop	roop Drift dB 50%+droop			Drift dB 50%+droop			Drift	50%+droop	
1	Wiodei				5.28	2.64									
2	ANT. A	450.0	5.0	F1	0.071	-		N/A	A		N	/A		N/	Α
3	KRA-23M (450-490)	463.3	4.9		N/A	\		N/A	A		N	/A		N/	Ά
4	NX-320-K3	476.7	4.9		N/A	\		N/A	A		N	/A		N/	Α
5		490.0	4.9		N/A	١		N/A	A		N	/A		N/	Ά
6	ANT	470.0	4.9		N/A	١		N/A			N	/A		N/	A
7	ANT. B KRA-23M2	484.0	4.9		N/A			N/A	A		N	/A		N/	
8	(470-512)	498.0	5.0		N/A			N/A	A		N	/A	1	N/	A
9	NX-320-K3 512 0 51 F2 5.82 2.91						<u> </u>	N/A	A	į	N	/A		N/	Ά
10	1 579 290														
12						N/A N/A N/A			A						
13	KRA-27M	463.3	4.9		N/A		N/A N/A				/A	N/A			
14	(450-490) NX-320-K3	476.7	4.9		N/A			N/A		N/A			N/A		
15	14X-020-10	490.0	4.9		N/A	\		N/A	A	N/A				N/	Ά
16		470.0	4.9		N/A	\	N/A		N/A			N/	Ά		
17	ANT. D KRA-27M2	484.0	4.9		N/A	١	N/A		N/A		/A		N/	A	
18	(470-512)	498.0	5.0		N/A		1	N/A	1			/A		N/	
19	NX-320-K3	512.0	5.1	F4	7.33	3.67	F7 —	7.20	3.60	F6	6.57	3.29	- F/	5.81	2.91
20 21	ANTA				-0.357	3.98	-	-0.260	3.82		-0.475	3.67	-	1.21	3.84
21	ANT. A NX-320-K	450.0	5.1	F8	3.59 0.239	1.80		N/A	A		N	/A		N/	Ά
23	ANT. A				3.76	1.88			_						
24	NX-320-K2	450.0	5.0	F9	0.121	-	<u> </u> 	N/A	A	! [N	/A	N/A		
25	ANT. B	E10.0	F 0	F10	4.59	2.30		N/A	Λ.		NI NI	/A		N/	^
26	NX-320-K	512.0	5.0	ги	-0.045	2.32		IN//	A		IN	/A		IN/	A
27	ANT. B	512.0	5.0	F11	4.19	2.10		N/A	Δ		N	/A		N/	Α
28	NX-320-K2	0.2.0	0.0		0.088	-									
29	ANT. C NX-320-K	450.0	5.1	F12	3.71	1.86		N/A	A		N	/A		N/	Ά
30 31	ANT. C				0.133 3.85	1.93							-		
32	NX-320-K2	450.0	5.0	F13	0.165	1.53		N/A	A		N	/A		N/	A
33	ANT. D	F46.5	- -	D/ /	7.45	3.73			•						
34	NX-320-K	512.0	5.0	F14	-0.025	3.75	j	N/A	A	İ	N	/A	İ	N/	A
35	ANT. D	512.0	5.0	F15	7.62	3.81		N/A	Δ		NI.	/A		N/	Δ
36	NX-320-K2	J12.U	5.0	1113	-0.170	3.96		IN//			IN			11/	
	SAR L	IMITS				HEAD			SPATI	AL PE	AK	RI	EXPOSU	RE CA	TEGORY
	FCC 47 C	FR 2.109	3			8.0 W/kg			1 gram	avera	ge	(Occupation	al / Co	ntrolled
Note	s														
Test	Mode = CW (L	Jnmodula	ted Conti	nuous V	Vave)			Pha	antom = Barski	Planar	Phanton	1			
	DUT Spacir	ng to Plar	nar Phan	tom pe	r Battery (see Appendix	D)		Antenna Dis	tance	to Planar	Phantom per	Battery (s	ee App	endix D)
KI	NB-57L (a)	KNB-	55L (b)	K	(NB-56N (c) KBF	P-5 (d)	M	(NB-57L (a)	K	NB-55L (b) KNB	-56N (c)		KBP-5 (d)
	2.5 cm	2.5	5 cm		2.5 cm	2.5	5 cm		3.7 cm		3.7 cm	3.	7 cm		3.7 cm
C = 0	Column; R = R	ow		F1-	F15 (F = F	ace) denotes tl	he correst	ponding	J Face SAR Plo	t # as	shown in	Appendix A			

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	dio Transceiver Transmitter		quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 23 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Description of Test(s)

Specific Absorption Rate

Test Report Serial No.

121510ALH-T1070-S90U

Test Report Revision No.

Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

SAR MEASUREMENT SUMMARY (CONT.)

FACE-HELD SAR EVALUATION RESULTS (Continued)

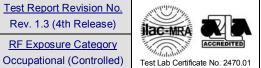
Test Procedures applied to K3 Model in accordance with FCC KDB 643646 D01v01 (see reference [6])

- 1. For face-held configuration, the highest capacity battery was selected as the default battery (battery "a").
- 2. The SAR evaluations commenced at the highest output power channel per antenna and frequency range.
- 3. When the head SAR of an antenna tested on the highest output power channel using the default battery is ≤ 4.0 W/kg (C2R1, C2R10, C2R12, C2R20), testing of the required immediately adjacent channel(s) is not necessary. When the head SAR of an antenna tested on the highest output power channel using the default battery is < 3.5 W/kg (50% PTT duty factor), testing of all other required channels is not necessary.
- 4. When the SAR for all antennas tested using the default battery is \leq 4.0 W/kg (C2R1, C2R10, C2R12, C2R20), test additional batteries using the antenna and channel configuration that resulted in the highest SAR (C2R20, C4R20, C6R20, C8R20).
- 5. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Test Procedures applied to K, K2 Model Variants (per FCC KDB Inquiry Tracking No. 235657)

- 1. For face exposure, K2 and K models should be measured for each of the 4 antennas using the highest SAR configuration reported among the battery configurations for the K3 model (C2R1, C2R9, C2R11, C2R19); i.e., one SAR per antenna for each additional model.
- 2. SAR measurement results for K, K2 model variants are shown in C2R21, C2R23, C2R25, C2R27, C2R29, C2R31, C2R33, C2R35.

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ansceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 24 of 361



Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

SAR MEASUREMENT SUMMARY (CONT.)

N)	<mark>X-320-K3</mark> -	BODY	-WORI	N SAR	EVAL	UATION F	RESU	LTS (w	ith Belt-Cli	p & [Default A	Audio Acc	. P/N	: KHS	-10-BH)
С	Test Date(s):	Jan. 4, 26	5, 2011		1	2		3	4		5	6		7	8
				SAR	W/kg 1g	SARW/kg1g	SAR	W/kg 1g	SAR W/kg 1g	SAR	W/kg 1g	SARW/kg1g	SAR	W/kg 1g	SAR W/kg 1g
	Antenna /			Ва	ttery KNE	3-57L (a)	Defau	ılt Battery	KNB-55L (b)	В	attery KNE	3-56N (c)	E	Battery K	BP-5 (d)
R	Part No. /	Test	Cond.	Ве	It-Clip KE	BH-12 (1)	В	elt-Clip K	BH-12 (1)	В	elt-Clip KE	3H-12 (1)	В	elt-Clip K	BH-12 (1)
K	Test Freq. Range	Freq. (MHz)	Pwr (W)	Audio	KHS-10-	BH (default)	Audi	o KHS-10	-BH (default)	Audi	o KHS-10-	BH (default)	Audio	KHS-10	-BH (default)
	(MHz)	,	, ,	100%	ptt d/f	50% ptt d/f	100%	6 ptt d/f	50% ptt d/f	1009	% ptt d/f	50% ptt d/f	100%	ptt d/f	50% ptt d/f
				Dri	ft dB	50%+droop	Dr	ift dB	50%+droop	Dr	ift dB	50%+droop	Drift dB		50%+droop
1		450.0	5 0				D.1	8.32	4.16		N1/A			.	
2		450.0	5.0	İ	N/A		B1	-0.124	4.28	İ	N/A			N/A	^
3		400.0	4.0	D.C	9.95	4.98	D2	9.24	4.62	D(8.93	4.47	D7	7.60	3.80
4	ANT. A	463.3	4.9	В5	-0.145	5.15	В2	-0.306	4.96	В6	-0.326	4.81	В7	-1.23	5.04
5	KRA-23M (450-490)	470.7	4.0		N1/A		D2	7.74	3.87		N1/A			N/A	
6	(1111)	476.7	4.9		N/A		В3	-0.681	4.53		N/A	ı		N/A	4
7		400.0	4.0		NI/A		D4	5.43	2.72		NI/A			NI/	^
8		490.0	4.9		N/A		В4	-0.303	2.91		N/A			N/A	4
9		470.0	4.9		N/A			N/A	Ä		N/A			N/A	4
10		484.0	4.9		N/A			N/A	A		N/A	ı		N/A	4
11	ANT. B KRA-23M2	498.0	5.0		NI/A		В9	6.60	3.30		NI/A			NI/	^
12	(470-512)	496.0	5.0		N/A		В9	-0.480	3.69		N/A			N/A	4
13	(,	F40.0	- A	D10	7.87	3.94	D0	8.94	4.47	D11	8.09	4.05	B12	6.85	3.43
14		512.0	5.1	B10	-0.475	4.39	В8	-0.091	4.56	B11	-0.311	4.35	B12	-1.13	4.45
15		450.0	5.0		N/A		B13	7.94	3.97		N/A			N//	^
16		450.0	5.0		IN/A		D13	-0.480	4.43	ĺ	IN/A			IN//	1
17		463.3	4.9		N/A		B14	9.73	4.87		NI/A			NI/	^
18	ANT. C KRA-27M	403.3	4.9		IN/A		D14	-0.228	5.13	N/A				N/A	
19	(450-490)	476.7	4.9	B17	9.10	4.55	B15	9.46	4.73	B18 9.52		4.76	B19	7.58	3.79
20		470.7	4.5	DIT	-0.228	4.80	D13	-0.428	5.22	Dio	-0.384	5.20	DI	-1.17	4.96
21		490.0	4.9		N/A		B16	7.85	3.93		N/A		N/A		Δ
22		400.0	4.0			1	Bio	-0.349	4.25		1 1//	1		14//	`
23		470.0	4.9	B27	10.7	5.35	B23	10.2	5.10	B31	11.6	5.80	B35	8.67	4.34
24		17 0.0	1.0	527	0.009	-	B23	-0.141	5.27	BJI	-0.306	6.22	D 33	-1.07	5.55
25	ANT	484.0	4.9	B26	12.1	6.05	B22	11.3	5.65	B30	11.6	5.80	B34	9.09	4.55
26	ANT. D KRA-27M2	.50			-0.272	6.45		-0.262	6.00	220	-0.475	6.47		-1.29	6.12
27	(470-512)	498.0	5.0	B25	11.9	5.95	B21	12.1	6.05	B29	12.0	6.00	B33	9.78	4.89
28			0.0		-0.292	6.36		-0.305	6.49		-0.414	6.60		-1.23	6.49
29		512.0	5.1	B24	12.9	6.45	B20	12.7	6.35	B28	12.5	6.25	B32	10.7	5.35
30					-0.169	6.71		-0.261	6.74		-0.541	7.08		-1.20	7.05
	SAR LI					BODY			SPATIA	L PEA	(JRE CAT	
	FCC 47 CF	R 2.1093			8.0 W/kg				1 gram	averag	е	Oc	cupatio	nal / Cor	itrolled
Notes				***											
-	udio accessory does not contain any built-in radiating element														
Test Mode = CW (Unmodulated Continuous Wave)								Phar	ntom = Barski P						,
DUT Spacing to Planar Phantom per Battery (see Appendix								Antenna Dista						,	
					P-5 (d)	K	NB-57L (a)		6-55L (b)	KNB-56N	` '		3P-5 (d)		
	1.6 cm	1.5	cm		1.7 cm		7 cm	oondina D	2.7 cm		.6 cm	2.8 cm	l	2	2.8 cm
0=0	column; R = Ro	vv		вт-вз:	ο (D = R 00	y) denotes the	corres	ponding B	ody SAR Plot#	as sno	wii iii Appe	HUIX A			

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ansceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 25 of 361

April 14, 2011

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

SAR MEASUREMENT SUMMARY (CONT.)

BODY-WORN SAR EVALUATION RESULTS (Continued) (with KBH-12 Belt-Clip & Default Audio Accessory KHS-10-BH Headset)

Test Procedures applied to K3 Model in accordance with FCC KDB 643646 D01v01 (see reference [6])

- 1. For body-worn configuration, the thinnest standard battery was selected as the default battery (battery "b").
- 2. The SAR evaluations commenced at the highest output power channel per antenna and frequency range.
- 3. When the body SAR of an antenna tested on the highest output power channel with the default battery, default body-worn accessory and default audio accessory is > 4.0 W/kg and < 6.0 W/kg (C4R2, C4R14, C4R16), body SAR should be measured for that antenna on the required immediately adjacent channels (C4R4, C4R12, C4R18). For the remaining channels that cannot be excluded, which still require consideration, the 3.5 W/kg exclusion and 4.0 W/kg exclusion may be applied recursively with respect to the highest output power channel among the remaining channels; measure the SAR of the remaining channels that cannot be excluded (C4R6, C4R8, C4R20, C4R22).
- 4. When the body SAR of an antenna tested on the highest output power channel with the default battery, default body-worn accessory and default audio accessory is > 6.0 W/kg (C4R30), test all required channels for that antenna (C4R24, C4R26, C4R28).
- 5. When the highest SAR of an antenna tested with the thinnest (default) battery is > 4.0 W/kg and < 6.0 W/kg (C4R4, C4R14, C4R20), test additional batteries with the default body-worn and audio accessory on the channel that resulted in the highest SAR for that antenna (C2R4, C6R4, C8R4, C2R14, C6R14, C8R14, C2R20, C6R20, C8R20).
- 6. When the SAR of an antenna tested with the default battery and/or additional batteries is > 6.0 W/kg (C4R26, C4R28, C4R30), test that battery and antenna combination with the default body-worn and audio accessory on the required immediately adjacent channels (C2R23, C2R26, C2R28, C2R30, C6R24, C6R26, C6R28, C6R30, C8R24, C8R26, C8R28, C8R30).
- 7. If the SAR measured in #6 above is > 7.0 W/kg (C6R30, C8R30), test that battery, antenna, body-worn and audio accessory combination on all required channels.
- 8. The Noise Reduction Headset (Behind-the-Head) P/N: KHS-10-BH (Audio Accessory Category 1) was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessories.
- When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ansceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 26 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

ilac-MRA Occupational (Controlled)

Test Lab Certificate No. 2470.01

SAR MEASUREMENT SUMMARY (CONT.)

_	-320-K/K2 -				R EVAL	LUATION	RESI			clip & Default ate(s): Mar. 31 - Ap		c. P/N: KH	S-10-BH)
C	U-K Test Date(S). IVIai. J	1 - Apr. 0	, 2011	1	2		3	4	5 sate(s): Mar. 31 - Ap	pr. 6, 2011	7	8
				SAD			SAD			-	SARW/kg1g		SAR W/kg 1g
	0	Test		-	W/kg 1g	SARWkg1g	1	W/kg 1g	SAR W/kg 1g	SAR W/kg 1g		SAR W/kg 1g	+
	Antenna / Part No. /	Freq.	Cond.		attery KNB		_		KNB-55L (b)	Battery KNE		Battery K	
R	Test Freq.	(MHz)	Pwr		elt-Clip KB	` ,		Belt-Clip KE	` ,	Belt-Clip KE	` ,	Belt-Clip K	` ,
	Range	& Radio	(W)		1	BH (default)	1		-BH (default)	Audio KHS-10-l	, ,	Audio KHS-10	· · ·
	(MHz)	Model			% ptt d/f	50% ptt d/f		% ptt d/f	50% ptt d/f	100% ptt d/f	50% ptt d/f	100% ptt d/f	50% ptt d/f
				Dri	ift dB	50%+droop	Dr	rift dB	50%+droop	Drift dB	50%+droop	Drift dB	50%+droop
1	l l	450.0	N/A	<u> </u>	N/A		<u> </u>	N/A	<u>\</u>	N/A		N/	Α
3		463.3	5.0	B36	11.2	5.60		N/A	4	N/A	۱	N/	/A
4	ANT. A	(K)	└		-0.349	6.07	↓				!	<u> </u>	
5	KRA-23M	463.3	5.0	B37	11.3	5.65		N/A	4	N/A	١	N/	/A
6	(450-490)	(K2)		D3,	-0.417	6.22							
7		476.7	N/A	<u> </u>	N/A		ļ	N/A		N/A		N/	Α
8		490.0	N/A		N/A			N/A		N/A		N/	
9		470.0	N/A		N/A	!		N/A	4	N/A	<u>. </u>	N/	/A
10		484.0	N/A		N/A	! !		N/A	٨	N/A	<u> </u>	N/	/ <u>A</u>
11	ANT. B	498.0	N/A		N/A	·		N/A	4	N/A	<u>-</u>	N/	/A
12	KRA-23M2	512.0	5.0		N/A		B38	6.91	3.46	N/A	<u> </u>	N/	/A
13	(470-512)	(K)	5.0	l	N/A		D50	0.070	-				A
14		512.0	5.0				B39	6.63	3.32	N/A		N/	/A
15		(K2)	5.0			<u>——</u>	DJ	0.016	-		·		A
16		450.0	N/A		N/A	- 		N/A		N/A	·	N/	/A
18		463.3	5.0		N/A		B40	10.4	5.20	N/A		N/	/A
19	ANT. C	(K)	3.0				DHO	-0.154	5.39		·		A
20	KRA-27M	463.3	5.0		N/A		B41	10.5	5.25	N/A		N/	/A
21	(450-490)	(K2)	5.0		- IN/A		D41	-0.179	5.47	19/73	·		Α
		476.7	N/A		N/A	- 		N/A	4	N/A	<u> </u>	N/	/A
22		490.0	N/A		N/A	·		N/A	4	N/A		N/	/A
23		470.0	N/A		N/A			N/A	4	N/A	·	N/	
24		484.0	N/A		N/A	- 		N/A	4	N/A	<u> </u>	N/	/A
25	ANT. D	498.0	N/A		N/A	·		N/A	4	N/A	·	N/	/A
26	KRA-27M2	512.0	5.0	B42	11.4	5.70		N/A	Λ	N/A		N/	/^
27	(470-512)	(K)	3.0	D72	-0.148	5.90	1			1377			A
28		512.0	5.0	B43	11.3	5.65		N//		N/A		N	/A
29		(K2)	5.0	D45	-0.052	5.72	1 _	N/A		19/75	·	197	Α
	SAR LIN	MITS	0.002		BODY			SPATIA	AL PEAK	RF F	EXPOSURE CAT	ΓEGORY	
	FCC 47 CFR 2.1093				8	8.0 W/kg			1 gram	average	Occ	cupational / Co	ntrolled
Notes	<u>.</u>												
	accessory does	s not conf	tain any t	ouilt-in ra	adiating ele	ement							
	Mode = CW (Un							Phar	ntom = Barski P	Planar Phantom	_		-
					-	ee Appendix	D)		Antenna Dista	ance to Planar Ph	nantom per Ba	attery (see App	endix D)
KN	IB-57L (a)	KNB-5			NB-56N (c)					KNB-55L (b)	KNB-56N		
	1.6 cm	1.5 (1.7 cm				2.7 cm	2.6 cm	2.8 cm	` ´ -	2.8 cm
	column; R = Rov			1				sponding F				<u>"</u>	
1	IB-57L (a) 1.6 cm	KNB-58	5L (b)	KN	NB-56N (c) 1.7 cm) KBF	BP-5 (d) KNB-57L (a)			KNB-55L (b) 2.6 cm	KNB-56N 2.8 cm	I (c) K	(BP-5

Applicant:	Kenw	vood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 27 of 361

April 14, 2011

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) RF Exposure Category Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.3 (4th Release)

SAR MEASUREMENT SUMMARY (CONT.)

Test Procedures applied to K, K2 Model Variants (per FCC KDB Inquiry Tracking No. 235657)

1. For body-worn accessories with the default audio accessories (KHS-10-BH), K2 and K models should be measured for each of the 4 antennas and 2 body-worn accessories using the highest SAR configuration reported among the battery configurations for the K3 model; i.e., one SAR per antenna and body-worn accessory combination (8 tests for the 4 antennas and 2 body-worn accessories). For each of these 8 configurations, if the measured SAR for the K2 or K model is > 7.0 W/kg repeat all SAR measured for the K3 model that are > 6.0 W/kg using the K2 and K models. In addition, all SAR measured for the K3 model > 7.0 W/kg must be repeated for the K2 and K models.

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 28 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

Occupational (Controlled)

SAR MEASUREMENT SUMMARY (CONT.)

С	Test Date(s): Jan. 4,	2011	1		2		3	4		5	6		7	8
				SAR W	//kg 1g	SARW/kg1g	SAR	W/kg 1g	SAR W/kg 1g	SAR	W/kg 1g	SAR W/kg 1g	SAR	N/kg 1g	SAR W/kg1g
	Antenna / Part No. /	Test Freg.		Batt	tery KNB	-57L (a)	Defau	It Battery	KNB-55L (b)	В	attery KNI	B-56N (c)	Е	Battery K	BP-5 (d)
R	Test	(MHz)	Cond. Pwr	Belt-L	.oop KBH	1-13DS (2)	Belt	Loop KE	3H-13DS (2)	Belf	-Loop KB	H-13DS (2)	Belt-	Loop KE	3H-13DS (2)
ĸ	Freq.	&	(W)	Audio I	KHS-10-E	BH (default)	Audi	o KHS-10	-BH (default)	Audi	o KHS-10-	BH (default)	Audio	KHS-10	-BH (default)
	Range (MHz)	Radio Model	, ,	100%	ptt d/f	50% ptt d/f	100%	6 ptt d/f	50% ptt d/f	100%	% ptt d/f	50% ptt d/f	100%	ptt d/f	50% ptt d/f
	()			Drift	t dB	50%+droop	Dri	ift dB	50%+droop	Dri	ift dB	50%+droop	Drif	ft dB	50%+droop
1		450.0	5.0		N/A		B44	1.91	0.955		N/A			N//	^
2	ANT. A	450.0	5.0		IN/A		D44	0.253	-	İ	IN/ <i>F</i>	`		IN//	4
3	KRA-23M	463.3	4.9		N/A			N/A	4		N/A	١		N/A	4
4	(450-490)	476.7	4.9		N/A			N/A	4		N/A	١		N/A	4
5		490.0	4.9		N/A			N/A	4		N/A	١		N/A	4
6		470.0	4.9	N/A			N/A	4	N/A				N/A	4	
7	ANT. B	484.0	4.9		N/A			N/A	4		N/A	١		N/A	4
8	KRA-23M2	498.0	5.0		N/A			N/A	4		N/A	\		N/A	4
9	(470-512)	512.0	5.1		N/A		B45	B45 2.78 1.39		N/A				N/A	Δ
10		012.0	0.1		14// (D 13	-0.161	1.44	IN/A			19/75		`
11		450.0	5.0		N/A		B46	2.44	1.22		N/A		N/A		Δ
12	ANT. C						Dio	-0.053	1.23			-			
13	KRA-27M	463.3	4.9		N/A			N/A		<u> </u>	N/A			N/A	
14	(450-490)	476.7	4.9		N/A			N/A			N/A			N/A	
15		490.0	4.9		N/A			N/A		<u> </u>	N/A			N/A	
16		470.0	4.9		N/A			N/A			N/A			N//	
17	ANT. D	484.0	4.9	N/A			N/A		<u> </u>	N/A			N//		
18	KRA-27M2 (470-512)	498.0	5.0		N/A	0.44		N/A	1		N/A			N//	
19 20	(110012)	512.0	5.1	B48	4.82 -0.152	2.41	B47	4.75 -0.238	2.38 2.51	B49	4.81 -0.444	2.41	B50	4.00 -1.16	2.00
	SAR	LIMITS			-0.132	BODY		-0.230		AL PEA			EXPOS	URE CAT	
		FR 2.109	3			8.0 W/kg				n avera				nal / Cor	

Audio accessory does not contain any built-in radiating element

Test Mode = CW (Unmodulated Continue	ous Wave)		Phantom = Barski	Planar Phantom		
DUT Spaci	ing to Planar Phantor	m per Battery (see A	ppendix D)	Antenna Dis	tance to Planar F	Phantom per Battery (see Appendix D)
KNB-57L (a)	KNB-55L (b)	KNB-56N (c)	KBP-5 (d)	KNB-57L (a)	KNB-55L (b)	KNB-56N (c)	KBP-5 (d)
4.7 cm	4.7 cm	4.7 cm	4.7 cm	5.7 cm	5.7 cm	5.7 cm	5.7 cm
C = Column: R = F	Sow	B46-B52 (B = Body)	denotes the correspo	onding Body SAR P	lot # as shown in /	Annendix A	

Test Procedures applied to K3 Model in accordance with FCC KDB 643646 D01v01 (see reference [6])

- 1. For body-worn configuration, the thinnest standard battery was selected as the default battery (battery "b").
- 2. The SAR evaluations commenced at the highest output power channel per antenna and frequency range.
- 3. When the body SAR of an antenna tested on the highest output power channel with the default battery is ≤ 3.5 W/kg (C4R1, C4R10, C4R10, C4R20), testing of all other required channels is not necessary for that antenna.
- 4. When the SAR for all antennas tested using the thinnest battery is ≤ 4.0 W/kg (C4R1, C4R10, C4R12, C4R20), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (C2R20, C6R20, C8R20).
- 5. The Noise Reduction Headset (Behind-the-Head) P/N: KHS-10-BH (Audio Accessory Category 1) was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessories
- 6. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 29 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

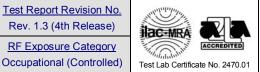
<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

SAR MEASUREMENT SUMMARY (CONT.)

22 33 4 55 56 77 7 3 3 9 0 0 0	Antenna / Part No. / Test Freq. Range (MHz)	Test Freq. (MHz) & Radio Model	Cond. Pwr	1 SAR W/kg 1g Battery KNB	2 SARWkg1g		3	4		5	6	7	8
22 33 14 55 66	Part No. / Test Freq. Range	Freq. (MHz) & Radio	Pwr		SAP\Mka1a	SAR W/kg 1g		4		•	•	•	0
22 33 14 55 66	Part No. / Test Freq. Range	Freq. (MHz) & Radio	Pwr	Battery KN	SHILL WING IS	SAR	W/kg 1g	SAR W/kg 1g	SAR	W/kg 1g	SAR W/kg 1g	SAR W/kg 1g	SAR W/kg
2 3 4 5 7 0 1 1 2 2 3 4 4 5 6	Test Freq. Range	(MHz) & Radio	Pwr		3-57L (a)	Defau	ılt Battery	KNB-55L (b)	В	attery KNI	B-56N (c)	Battery K	BP-5 (d)
2 3 4 5 7 0 1 1 2 2 3 4 4 5 6	Range	Radio		Belt-Loop KB	H-13DS (2)	Belt	t-Loop KE	3H-13DS (2)	Belt	-Loop KB	H-13DS (2)	Belt-Loop KI	BH-13DS (
2 2 3 4 5 5 6 6 6 5 5 6 5 6 6 5 6 6 5 6 6 6 6			(W)	Audio KHS-10-	BH (default)	Audi	o KHS-10	-BH (default)	Audi	o KHS-10-	BH (default)	Audio KHS-10-BH (defaul	
2 2 3 4 5 5 6 6 6 5 5 6 5 6 6 5 6 6 5 6 6 6 6	()		` '	100% ptt d/f	50% ptt d/f	100%	6 ptt d/f	50% ptt d/f	100%	6 ptt d/f	50% ptt d/f	100% ptt d/f	50% ptt
2 2 3 4 5 5 6 6 6 5 5 6 5 6 6 5 6 6 5 6 6 6 6			Ì	Drift dB	50%+droop	Dri	ift dB	50%+droop	Dri	ift dB	50%+droop	Drift dB	50%+dro
0) 11 22 33 44		450.0	5 1	NI/A		D51	1.84	0.920		NI/A		NI/	΄Λ
22 33 4 55 55 55		(K)	5.1	N/A		B51	0.176	-		N/A	`	N/	A
) 	ANT. A	450.0	F 0	NI/A		D52	2.11	1.06	N/A			NI/	ΙΔ
22 33 14 55 53	KRA-23M	(K2)	5.0	N/A		B52	0.157	-		IN/F	`	N/A	
22 33 44 55 53	(450-490)	463.3	N/A	N/A			N/A	Ä		N/A	١	N/A	
) 1 2 3 4 5		476.7	N/A	N/A			N/A	4		N/A	\	N/	A
0 1 2 3 4 5 6		490.0	N/A	N/A	ı		N/A	4		N/A	\	N/	A
0 1 2 3 4 5 6		470.0	N/A	N/A			N/A	4		N/A	١	N/	A
1 2 3 4 5 6		484.0	N/A	N/A			N/A	4		N/A	1	N/	A
2 3 4 5 6	ANT. B	498.0	N/A	N/A		N/A		4	N/		\	N/A	
3 4 5 6	KRA-23M2	512.0	F 0	NI/A	N/A B53		2.27	1.14	N/A		NI/	ΙΔ	
4 5 6	(470-512)	(K)	5.0	IN/A		Б33	-0.135	1.17		IN/F	`	N/	A
5 6		512.0	5.0	N/Δ		B54	2.10	1.05		NI/A		NI/	ΙΔ
6		(K2)	5.0	N/A		D34	-0.215	1.10		N/A	`	N/	A
_		450.0	5.1	N/A		B55	2.44	1.22	N/A			N/	·
7		(K)	5.1	IN/A	1	Вээ	0.034	-	N/A			IN/	^
	ANT. C	450.0	5.0	N/A		B56	2.52	1.26	N/A		N/	Δ	
8	KRA-27M	(K2)	0.0	107	IV/A		-0.081	1.28				10	, ,
9	(450-490)	463.3	N/A	N/A	ı		N/A		N/A			N/A	
0		476.7	N/A	N/A			N/A			N/A		N/	
1		490.0	N/A	N/A			N/A			N/A		N/	
2		470.0	N/A	N/A			N/A			N/A		N/	
3		484.0	N/A	N/A			N/A			N/A		N/	
4	ANT. D	498.0	N/A	N/A	1		N/A	4		N/A		N/	A
	KRA-27M2 (470-512)	512.0	5.0	N/A			N/A	4	B57	4.07	2.04	N/	Α
_	(470-012)	(K)								0.125	-		
7		512.0 (K2)	5.0	N/A			N/A	4	B58	4.13	2.07	N/	Α
8					2021					-0.162	2.14		
	SAR		BODY				AL PEA			EXPOSURE CA			
040-	FCC 47 C	FR 2.109	•		8.0 W/kg			1 gran	n avera	ye	UC	cupational / Co	ntrolled
otes		one net ca	ntain as:	/ built in radiatir =	olomont								
				y built-in radiating inuous Wave)	eiement		Dh	antom = Barski	Dlanar	Dhantom			
COL I	`			itom per Battery	(saa Annand	iv D\	PI				Phantom nor	Sattery (see App	endiv D)
KNE	B-57L (a)		55L (b)	KNB-56N		(BP-5) [(NB-57L (a)		-55L (b)	KNB-56N		BP-5 (d)
4	_ 0, _ (a)		7 cm	4.7 cm		4.7 cm	, ,	5.7 cm		7 cm	5.7 cm	` '	5.7 cm

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ansceiver	Transmitter Free	KENWOOD			
2011 Celltech La	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							



Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

SAR MEASUREMENT SUMMARY (CONT.)

Test Procedures applied to K, K2 Model Variants (per FCC KDB Inquiry Tracking No. 235657)

1. For body-worn accessories with the default audio accessories (KHS-10-BH), K2 and K models should be measured for each of the 4 antennas and 2 body-worn accessories using the highest SAR configuration reported among the battery configurations for the K3 model; i.e., one SAR per antenna and body-worn accessory combination (8 tests for the 4 antennas and 2 body-worn accessories). For each of these 8 configurations, if the measured SAR for the K2 or K model is > 7.0 W/kg repeat all SAR measured for the K3 model that are > 6.0 W/kg using the K2 and K models. In addition, all SAR measured for the K3 model > 7.0 W/kg must be repeated for the K2 and K models.

Applicant:	Kenw	Kenwood USA Corporation FCC ID: ALH431000 DUT Models:		D: ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	KENWOOD			
2011 Celltech La	celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Rev. 1.3 (4th Release)

Test Report Revision No.

Dates of Evaluation (K/K2) April 14, 2011 March 30 - April 7, 2011

RF Exposure Category Description of Test(s) Specific Absorption Rate Occupational (Controlled)

SAR MEASUREMENT SUMMARY (CONT.)

E	BODY-WORN SAR EVALUATION RESULTS (with Remaining Default Audio Acc's by Category)													
NX-3	20-K3 Test Date(s):	Jan. 27, 20	11	N	√X-320-K T	est Date	(s): Mar.	31 - Apr	. 6, 2011	NX-320-K	2 Test Date	e(s): Mar. 3	1 - Apr. 6, 2011	
С					1	2			3	4		5	6	
				1g SA	R (W/kg)	1g SAR	(W/kg)	1g SA	R (W/kg)	1g SAR (W/kg	g) 1g S <i>A</i>	AR (W/kg)	1g SAR (W/kg)	
				Li-io	on Battery	KNB-57	∟ (a)	Li-i	on Battery	KNB-57L (a)	Li-	Li-ion Battery KNB-57L (a)		
	Antenna / Part No. / Test Freq.	Test	Cond.	E	Belt-Clip K	BH-12 (1)	Belt-Clip KBH-12 (1)				Belt-Clip k	(BH-12 (1)	
R	Range / Radio Model Freq. (MHz)		Power	AU	AUDIO ACC. CATEGORY			AL	JDIO ACC. C	ATEGORY 3	Α	UDIO ACC.	CATEGORY 4	
			(W)	Earpiece		N: KHS-2	27	Palr	m-Mic Kit F	/N: KHS-9BL	Spea	aker-Mic P/	N: KMC-48GPS	
				100%	ptt d/f	50% p	ott d/f	1009	% ptt d/f	50% ptt d/f	100	% ptt d/f	50% ptt d/f	
				SAR	Drift dB	50%+0	droop	SAR	Drift dB	50%+droop	SAR	Drift dB	50%+droop	
1		450.0	5.0	A2	8.96	4.4	18		N/	A		N	/A	
2					0.027	-								
3	ANT. A KRA-23M	463.3	4.9	A1	10.8	5.4	-	A4	10.4	5.20	A5	9.75	4.88	
4	(450-490)			-0.698 6.3					-0.503 5.85			-0.526	5.50	
5	NX-320-K3	476.7	4.9	A3 6.99 3.5 -0.619 4.0					N/	A		N	/A	
6							03							
7		490.0	4.9	N/A					N/.			N/		
8	ANT. A	450.0	N/A		N/.			N/A			N/	/A		
9	KRA-23M	463.3	5.0	A6	11.0	5.5		A7	11.0	5.50		N/A		
10	(450-490)	476.7	N/A		-0.381 N/	6.0	JU		-0.412 6.05 N/A			N/A		
12	NX-320-K	490.0	N/A N/A		N/.				N/			N/		
13		450.0	N/A		N/2				N/.			N/		
14	ANT. A	430.0	IN/A		10.7	5.3	35		10.6	5.30		11/	Α	
15	KRA-23M	463.3	5.0	A8	-0.353	5.8		A9	-0.300	5.68		N	/A	
16	(450-490) NX-320-K2	476.7	N/A		N//		,,,		N/.			N/	/A	
17	14X-020-11Z	490.0	N/A		N/.				N/			N/		
	SAR LIN				BOI				SPATIAI		RF		E CATEGORY	
FCC 47 CFR 2.1093 8.0 W/kg									1g aver	aging			I / Controlled	
Notes	Notes													
Test	Mode = CW (Unmod	ulated Con	tinuous Wav	/e)			DI	UT Dist	ance to Ph	antom	Anten	na Distance	e to Phantom	
Phan	tom = Barski Planar	Phantom					4.0		al. af		0.7	Antonio	h to mb	
Audio	accessories do not	contain any	/ built-in rad	iating ele	ement		1.6 cm	Ва	ck of radio	to phantom	2.7 cm	Antenna	base to phantom	
C = C	olumn; R = Row		A1-A11 (A	A = Audio) denotes t	he corres	ponding	Audio A	Accessory S	AR Plot # as s	hown in Ap	pendix A		

Test Procedures applied to K3 Model in accordance with FCC KDB 643646 D01v01 (see reference [6])

- 1. Preliminary evaluations were performed in order to select the default audio accessory, per audio accessory category, expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions, based on similar construction and operating requirements (see Appendix D for photographs of the manufacturer's disclosed accessory options).
- 2. Based on the SAR previously measured in the body-worn test sequence with default audio accessory, if the SAR for the antenna, bodyworn accessory and battery combination(s) applicable to an audio accessory was/were > 4.0 W/kg and ≤ 6.0 W/kg, test that audio accessory using the highest body-worn SAR combination (antenna, battery and body-worn accessory) and channel configuration previously identified that is applicable to the audio accessory (C2R4, C4R4, C6R4).
- 3. When the SAR measured in #2 above is > 6.0 W/kg (C2R4), test that audio accessory on the required immediately adjacent channels (C2R1, C2R6); testing of the other required channels still needs consideration.
- 4. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	KENWOOD			
2011 Celltech La	11 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

April 14, 2011

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category

SAR MEASUREMENT SUMMARY (CONT.)

Test Procedures applied to K, K2 Model Variants (per FCC KDB Inquiry Tracking No. 235657)

1. For the remaining default audio accessories identified for categories 2, 3 & 4, all SAR measured for each combination of antenna, battery, body-worn accessory and audio accessory with the K3 model with SAR >= 7.0 W/kg must be repeated for the K2 and K models for such combinations. When the highest SAR measured for a K3 model combination of antenna, battery, body-worn accessory and audio accessory is < 7.0 W/kg (C2R3, C4R3), measure SAR for the K2 and K model using the highest SAR reported for each K3 combination; i.e., at least one test per combination (C2R9, C4R9, C2R14, C4R14). However, if the highest reported SAR for a K3 combination is < 5.0 W/kg (C6R3), no test is needed for that combination. For each K2 and K model combination, if the measured SAR is > 7.0 W/kg repeat all SAR measured for that combination when the reported K3 model SAR is > 6.0 W/kg.

Applicant:	Kenwood USA Corporation FCC ID: ALH431000 DUT Models:		ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD		
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Test Report Serial No.

121510ALH-T1070-S90U

Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category

Occupational (Controlled)

SAR MEASUREMENT SUMMARY (CONT.)

E	BODY-WORN	SAR E	VALUA	ATIO	N RESU	LTS (v	vith Re	emaiı	ning De	efault Aud	dio Acc	's by C	ategory)	
С	Test Date(s): Jan. 2	27, 2011			1	2			3	4		5	6	
				1g S <i>A</i>	AR (W/kg)	1g SAR	(W/kg)	1g SA	R (W/kg)	1g SAR (W/k	g) 1g S <i>A</i>	AR (W/kg)	1g SAR (W/kg)	
				Li-	ion Battery	/ KNB-55L	. (b)	Li-id	on Battery	KNB-55L (b)	Li-	Li-ion Battery KNB-55L (b		
	Antenna / Part	Test	Cond.	Belt-Clip KBH-12 (1)		Belt-Clip K	BH-12 (1)		Belt-Clip k	KBH-12 (1)	
R	No. / Test Freq. Range / Radio	Freq.	Power	Α	UDIO ACC.	CATEGOR	Y 2	AU	IDIO ACC. C	ATEGORY 3	Α	UDIO ACC.	CATEGORY 4	
	Model	(MHz)	(W)		Earpiece P/N: KHS-2			Palr	n-Mic Kit P	/N: KHS-9BL	Spea	aker-Mic P	N: KMC-48GPS	
				100	100% ptt d/f 50% բ			100%	% ptt d/f	50% ptt d/1	f 100°	% ptt d/f	50% ptt d/f	
				SAR Drift dB 50%+d			lroop	SAR Drift dB 50%+droop			SAR	SAR Drift dB 50%+droop		
1		470.0	4.9		N	/A			N/A	4		N	/A	
2	ANT. B KRA-23M2	484.0	4.9		N	/A		N/A				N	/A	
3	(470-512 MHz)	498.0	5.0		N	/A		N/A				N	/A	
4	NX-320-K3	512.0	5.1	A10	8.21	4.1	1	A11	8.51	4.26	A12	8.43	4.22	
5		012.0	0.1	1110	-0.200	4.3	0		-0.014	4.27		-0.132	4.35	
	SAR LIM	ITS			ВО	DY			SPATIAL	PEAK	RF	EXPOSUR	E CATEGORY	
	FCC 47 CFR	2.1093			8.0 \	N/kg			1g aver	aging	0	ccupationa	I / Controlled	
Note	s													
Test	Test Mode = CW (Unmodulated Continuous Wave)							JT Dista	ance to Ph	antom	Anten	na Distanc	e to Phantom	
Phan	Phantom = Barski Planar Phantom						1.5 cm	5 cm Rack of radio to phontom		ck of radio to phantom 2.6 cm Antenna base to phantom			hase to phantom	
Audio	Audio accessories do not contain any built-in radiating element						1.5 (111	Back of radio to phantom		2.0 0111	2.6 cm Antenna base to phantom			

C = Column; R = Row A6-A8 (A = Audio) denotes the corresponding Audio Accessory SAR Plot # as shown in Appendix A

Test Procedures applied to K3 Model in accordance with FCC KDB 643646 D01v01 (see reference [6])

- 1. Preliminary evaluations were performed in order to select the default audio accessory, per audio accessory category, expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions, based on similar construction and operating requirements (see Appendix D for photographs of the manufacturer's disclosed accessory options).
- 2. Based on the SAR previously measured in the body-worn test sequence with default audio accessory, if the SAR for the antenna, body-worn accessory and battery combination(s) applicable to an audio accessory was/were > 4.0 W/kg and ≤ 6.0 W/kg, test that audio accessory using the highest body-worn SAR combination (antenna, battery and body-worn accessory) and channel configuration previously identified that is applicable to the audio accessory (C2R5, C4R5, C6R5).
- 3. The required immediately adjacent channels were not evaluated based on the measured SAR levels were < 6.0 W/kg.
- 4. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Test Procedures applied to K, K2 Model Variants (per FCC KDB Inquiry Tracking No. 235657)

1. For the remaining default audio accessories identified for categories 2, 3 & 4, all SAR measured for each combination of antenna, battery, body-worn accessory and audio accessory with the K3 model with SAR >= 7.0 W/kg must be repeated for the K2 and K models for such combinations. When the highest SAR measured for a K3 model combination of antenna, battery, body-worn accessory and audio accessory is < 7.0 W/kg, measure SAR for the K2 and K model using the highest SAR reported for each K3 combination; i.e., at least one test per combination. However, if the highest reported SAR for a K3 combination is < 5.0 W/kg, no test is needed for that combination. For each K2 and K model combination, if the measured SAR is > 7.0 W/kg repeat all SAR measured for that combination when the reported K3 model SAR is > 6.0 W/kg.

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ansceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	ech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Phantom = Barski Planar Phantom

C = Column; R = Row

Audio accessories do not contain any built-in radiating element

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category

2.6 cm

Antenna base to phantom

SAR MEASUREMENT SUMMARY (CONT.)

BODY-WORN	SAR	EVALU	ATION	N RESU	JLTS (with F	Rema	ining D	efault Aud	io Acc	c's by C	Category)
Test Date(s): Jan.	27, 2011			1	2		3	4		5	6
			1g SAI	R (W/kg)	1g SAR (W/kg)	1g SA	R (W/kg)	1g SAR (W/kg)	1g SA	R (W/kg)	1g SAR (W/kg)
			Li-i	on Battery	/ KNB-55L (b)	Li-i	on Battery	KNB-55L (b)	Li-	ion Battery	KNB-55L (b)
Antenna / Part	Test	Cond.		Belt-Clip k	(BH-12 (1)		Belt-Clip K	BH-12 (1)		Belt-Clip k	(BH-12 (1)
•	Freq.	Power	AU	IDIO ACC.	CATEGORY 2	AL	JDIO ACC. (CATEGORY 3	Α	UDIO ACC.	CATEGORY 4
Model	(MHz)	(W)	E	arpiece P	/N: KHS-27	Palm-Mic Kit P/N: KHS-9BL			Spea	aker-Mic P/	N: KMC-48GPS
			100%	100% ptt d/f 50%		100% ptt d/f		50% ptt d/f	100	% ptt d/f	50% ptt d/f
			SAR I	Drift dB	50%+droop	SAR	Drift dB	50%+droop	SAR	Drift dB	50%+droop
	450.0	5.0		N.	/A		N/	A		N.	/A
	463.3	4.9		N.	/A	N/A				N.	/A
	476.7	<i>4</i> Q	Δ13	9.30	4.65	Δ14	9.86	4.93	Δ15	9.04	4.52
NX-320-K3	470.7	4.5	AIS	-0.347	5.04	АТТ	-0.215	5.18	AIS	-0.220	4.75
	490.0	4.9		N.	/A		N/	A	N/A		
SAR LIM	ITS			ВО	DY		SPATIA	L PEAK	RF EXPOSURE CATEGORY		
FCC 47 CFR 2.1093 8.0 W/kg						1g averaging			O	ccupationa	I / Controlled
Notes											
Mode = CW (Unmod	dulated Co	ontinuous W	/ave)		D	UT Dist	ance to Ph	antom	Anten	na Distanc	e to Phantom
	Antenna / Part No. / Test Freq. Range / Radio Model ANT. C KRA-27M (450-490 MHz) NX-320-K3 SAR LIM FCC 47 CFR	Test Date(s): Jan. 27, 2011 Antenna / Part No. / Test Freq. Range / Radio Model ANT. C KRA-27M (450-490 MHz) NX-320-K3 SAR LIMITS FCC 47 CFR 2.1093	Test Date(s): Jan. 27, 2011 Antenna / Part No. / Test Freq. Range / Radio Model ANT. C KRA-27M (450-490 MHz) NX-320-K3 SAR LIMITS FCC 47 CFR 2.1093	Test Date(s): Jan. 27, 2011 Antenna / Part No. / Test Freq. Range / Radio Model ANT. C KRA-27M (450-490 MHz) NX-320-K3 SAR LIMITS FCC 47 CFR 2.1093 1g SAl Lii-i 1rest Cond. Freq. (W) 450.0 5.0 463.3 4.9 476.7 4.9 A13	Test Date(s): Jan. 27, 2011 1 1 1 1 1 1 1 1 1	Test Date(s): Jan. 27, 2011 Antenna / Part No. / Test Freq. Range / Radio Model ANT. C KRA-27M (450-490 MHz) NX-320-K3 SAR LIMITS Antenna / Part Test Freq. (MHz) Test Freq. (MHz) Cond. Freq. (W) Cond. Freq. (W) Cond. Freq. (W) Earpiece P/N: KHS-55L (b) Belt-Clip KBH-12 (1) AUDIO ACC. CATEGORY 2 Earpiece P/N: KHS-27 100% ptt d/f SAR Drift dB 50%+droop N/A N/A A13 9.30 4.65 -0.347 5.04 A90.0 4.9 N/A SAR LIMITS BODY FCC 47 CFR 2.1093 8.0 W/kg	Test Date(s): Jan. 27, 2011 Antenna / Part No. / Test Freq. Range / Radio Model Test Model Test Freq. (W) Antenna / Part No. / Test Freq. (W) Range / Radio Model Test Freq. (W) Freq. (W) Test Freq. (W) Freq. (W) Earpiece P/N: KHS-27 Palir 100% ptt d/f 50% ptt d/f 100% SAR Drift dB 50%+droop SAR ANT. C KRA-27M (450-490 MHz) NX-320-K3 ANT. C KRA-27M (450-490 MHz) A13 9.30 4.65 A14 ANT. C KRA-27M (450-490 MHz) A13 9.30 4.65 A14 SAR LIMITS BODY FCC 47 CFR 2.1093 Roman Antenna / Part Nyles	Test Date(s): Jan. 27, 2011 1 2 3	Test Date(s): Jan. 27, 2011 1 2 3 4 1g SAR (W/kg) 1g SAR	Test Date(s): Jan. 27, 2011 1 2 3 4	Antenna / Part No. / Test Freq. Range / Radio Model Test Range / Radio Model Ant. C KRA-27M (450-490 MHz) NX-320-K3 SAR LIMITS Range / Radio Model Test Range / Radio Model 1g SAR (W/kg) 1g SAR

Test Procedures applied to K3 Model in accordance with FCC KDB 643646 D01v01 (see reference [6])

1. Preliminary evaluations were performed in order to select the default audio accessory, per audio accessory category, expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions, based on similar construction and operating requirements (see Appendix D for photographs of the manufacturer's disclosed accessory options).

1.5 cm

A9-A15 (A = Audio) denotes the corresponding Audio Accessory SAR Plot # as shown in Appendix A

Back of radio to phantom

- 2. Based on the SAR previously measured in the body-worn test sequence with default audio accessory, if the SAR for the antenna, body-worn accessory and battery combination(s) applicable to an audio accessory was/were > 4.0 W/kg and ≤ 6.0 W/kg, test that audio accessory using the highest body-worn SAR combination (antenna, battery and body-worn accessory) and channel configuration previously identified that is applicable to the audio accessory (C2R4, C4R4, C6R4).
- 3. The required immediately adjacent channels were not evaluated based on the measured SAR levels were < 6.0 W/kg.
- 4. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Test Procedures applied to K, K2 Model Variants (per FCC KDB Inquiry Tracking No. 235657)

1. For the remaining default audio accessories identified for categories 2, 3 & 4, all SAR measured for each combination of antenna, battery, body-worn accessory and audio accessory with the K3 model with SAR >= 7.0 W/kg must be repeated for the K2 and K models for such combinations. When the highest SAR measured for a K3 model combination of antenna, battery, body-worn accessory and audio accessory is < 7.0 W/kg, measure SAR for the K2 and K model using the highest SAR reported for each K3 combination; i.e., at least one test per combination. However, if the highest reported SAR for a K3 combination is < 5.0 W/kg, no test is needed for that combination. For each K2 and K model combination, if the measured SAR is > 7.0 W/kg repeat all SAR measured for that combination when the reported K3 model SAR is > 6.0 W/kg.

Applicant:	Kenwood USA Corporation FCC ID: ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD				
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ansceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	ch Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

Test Lab Certific

SAR MEASUREMENT SUMMARY (CONT.)

	BODY-WORN			JATIC		•							<u> </u>		
	20-K3 Test Date(s):	Jan. 27, 2	2011			-K Test Date((s): Ma	ar. 31 -			(2 Test Da		31 - Apr. 6, 2011		
С					1	2			3	4		5	6		
					R (W/kg)	1g SAR (W			AR (W/kg)	1g SAR (W/kg		1g SAR (W/kg) 1g SAR (
				Ni-	MH Battery	y KNB-56N (d	c)	Ni	-MH Battery	/ KNB-56N (c)	Ni	-MH Batter	y KNB-56N (c)		
	Antenna / Part No. / Test Freq.	Test	Cond.		Belt-Clip k	(BH-12 (1) Belt-Clip KE			(BH-12 (1)		Belt-Clip	KBH-12 (1)			
R	Range / Radio	Freq.	Power	AUDIO ACC. CATEGORY			2		AUDIO ACC.	CATEGORY 3	A	AUDIO ACC.	CATEGORY 4		
	Model (MHz)		(W)		Earpiece P	/N: KHS-27		Pa	Ilm-Mic Kit	P/N: KHS-9BL	Spe	aker-Mic P	N: KMC-48GPS		
						1009	% ptt d/f	50% ptt 0	d/f	100	% ptt d/f	50% ptt d/f	1009	% ptt d/f	50% ptt d/f
				SAR	Drift dB	50%+dro	ор	SAF	R Drift dB	50%+droop	SAR	Drift dB	50%+droop		
1		470.0	4.9	A19	11.8	5.90		A23	10.9	5.45	A27	12.5	6.25		
2		470.0	4.0	7117	-0.050	5.97		1123	0.100	-	1127	0.040	-		
3	ANT. D	484.0	4.9	A18	12.6	6.30		A22	13.0	6.50	A26	13.6	6.80		
4	KRA-27M2		7.8	AIO	-0.649 7.32			ALL	-0.424	7.17	A20	-0.333	7.34		
5	(470-512 MHz) NX-320-K3	498.0	5.0	A17	12.6	6.30		A21	12.5	6.25	A25	12.7	6.35		
6	NA-32U-N3	430.0	5.0	A17	-0.650	7.32		7121	-0.159	6.48	AZJ	-0.430	7.01		
7		512.0	5.1	A16	11.8	5.90		A20	11.6	5.80	A24	12.1	6.05		
8		312.0	5.1	Alo	-0.189	6.16		AZU	-0.312	6.23	AZT	-0.254	6.41		
9		470.0	N/A		N	/A			N.	/A		N	I/A		
10	ANT. D	484.0	5.0		N	/A		A29	12.1	6.05	A30	12.6	6.30		
11	KRA-27M2	101.0	0.0					AZ	-0.551	6.87	7150	-0.499	7.07		
12	(470-512 MHz) NX-320-K	498.0	5.1	A28	11.6	5.8		N/A				N/A			
13	14X-320-K		• • •		-0.365	6.31		IV/A							
14		512.0	N/A		N	/A				/A		N/A			
15		470.0	N/A		N	/A			N.	/A			/A		
16	ANT. D	484.0	5.0		N	/A		A32	11.7	5.85	A33	12.1	6.05		
17	KRA-27M2								-0.549	6.64		-0.550	6.87		
18 19	(470-512 MHz) NX-320-K2	498.0	5.0	A31	12.6 -0.287	6.30 6.73			N	/A		N	I/A		
20		512.0	N/A		N	/A			N	/A		N	I/A		
	SAR LIMITS BODY								SPATIA	L PEAK	RF	EXPOSUR	E CATEGORY		
	FCC 47 CFR 2.1093 8.0 W/kg								1g ave	raging	0	ccupationa	al / Controlled		
Notes															
Test N	Mode = CW (Unmod	dulated Co	ontinuous V	Vave)				DUT [Distance to	Phantom	Ante	nna Distan	ce to Phantom		
Phant	Phantom = Barski Planar Phantom						4 7				0.0	A t	haan ta ult		
Audio	accessories do not	contain a	ny built-in	radiatin	g element		1.7 (cm	Back of rad	io to phantom	2.8 cm	Antenna	base to phantom		
C = C	olumn; R = Row		A16-A37	(A = Au	idio) denote	s the corresp	onding	g Audic	Accessory	SAR Plot # as sh	nown in Ap	pendix A			

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD	
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	KENWOOD			
2011 Celltech La	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

April 14, 2011

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

SAR MEASUREMENT SUMMARY (CONT.)

Test Procedures applied to K3 Model in accordance with FCC KDB 643646 D01v01 (see reference [6])

- 1. Preliminary evaluations were performed in order to select the default audio accessory, per audio accessory category, expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions, based on similar construction and operating requirements (see Appendix D for photographs of the manufacturer's disclosed accessory options).
- 2. Based on the SAR previously measured in the body-worn test sequence with default audio accessory, if the SAR for the antenna, bodyworn accessory and battery combination(s) applicable to an audio accessory was/were > 4.0 W/kg and ≤ 6.0 W/kg, test that audio accessory using the highest body-worn SAR combination (antenna, battery and body-worn accessory) and channel configuration previously identified that is applicable to the audio accessory (C2R8, C4R8, C6R8).
- 3. When the SAR measured in #2 above is > 6.0 W/kg (C2R8, C4R8, C6R8), test that audio accessory on the required immediately adjacent channels (C2R23, C4R23, C6R23); testing of the other required channels still needs consideration (C2R4, C2R2, C4R4, C4R1, C6R4, C6R1).
- 4. When the SAR for an audio accessory measured in #3 above is > 7.0 W/kg (C2R4, C2R6, C4R8, C6R8, C6R6), test that audio accessory on all required channels.
- 5. If the SAR measured in #3/#4 above is > 7.0 W/kg and it is one of the accessories within a group of similar audio accessories, test all other audio accessories within that group of similar audio accessories using the highest body-worn SAR combination (antenna, battery and body-worn accessory) and channel configuration previously identified that is applicable to the audio accessory (see next pages).
- 6. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Test Procedures applied to K, K2 Model Variants (per FCC KDB Inquiry Tracking No. 235657)

1. For the remaining default audio accessories identified for categories 2, 3 & 4, all SAR measured for each combination of antenna, battery, body-worn accessory and audio accessory with the K3 model with SAR >= 7.0 W/kg must be repeated for the K2 and K models for such combinations. When the highest SAR measured for a K3 model combination of antenna, battery, body-worn accessory and audio accessory is < 7.0 W/kg (C2R3/5, C4R3, C6R3), measure SAR for the K2 and K model using the highest SAR reported for each K3 combination; i.e., at least one test per combination (C2R12, C4R10, C6R10, C2R18, C4R16, C6R16). However, if the highest reported SAR for a K3 combination is < 5.0 W/kg, no test is needed for that combination. For each K2 and K model combination, if the measured SAR is > 7.0 W/kg repeat all SAR measured for that combination when the reported K3 model SAR is > 6.0 W/kg.

Applicant:	Kenw	vood USA Corporation FCC ID: ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD		
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 37 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

Test Lab Certificate No. 2470.01

SAR MEASUREMENT SUMMARY (CONT.)

BODY	-WORN SAR	EVALUAT	ION RESU	LTS - ADD	ITIONAL A	UDIO .	ACC'S PER	CATEGORY	
С	K3 Test Date(s):	Jan. 31, 2011	K, K2 Test D	ates: Mar. 31 -	Apr. 6, 2011		1	2	
							1g SAR (W	/kg)	
R	Antenna & Part No.	Audio Accessory	Radio	Test Frequency	Conducted Power	Ni-MH	Battery 1400 m	Ah KNB-56N (c)	
, K	(Freq. Range)	& Part No.	Model	(MHz)	(W)	Plot	100% ptt d/f	50% ptt d/f	
	` ' ' ' ' '					#	SAR Drift dB	50%+droop	
1				470.0	4.9	A34	12.1	6.05	
2			NX-320-K3	470.0	4.9	A34	0.189	-	
3			NX-320-K3	484.0	4.9	A35	13.2	6.60	
4				404.0	4.9	ASS	-0.511	7.42	
5			NX-320-K	484.0	5.0	A36	11.5	5.75	
6		Headset	101 020 11	10 1.0	0.0	1100	-0.453	6.38	
7		KHS-10-OH	NX-320-K2	484.0	5.0	A37	11.8	5.90	
8							-0.535	6.67	
9				498.0	5.0	A38	12.1	6.05	
10 11			NX-320-K3				-0.287 11.4	6.46 5.70	
12				512.0	5.1	A39	-0.121	5.86	
13							11.3	5.65	
14		Headset KHS-21		470.0	4.9	A40	0.051	-	
15			NX-320-K3				12.7	6.35	
16					484.0	4.9	A41	-0.576	7.25
17			NX-320-K	484.0	F 0	A42	12.7	6.35	
18			NA-32U-K	464.0	5.0	A42	-0.432	7.01	
19			NX-320-K2	484.0	5.0	A43	11.5	5.75	
20			14X-020-112	404.0	5.0	7143	-0.538	6.51	
21				498.0	5.0	A44	12.7	6.35	
22			NX-320-K3				-0.325	6.84	
23	ANT. D			512.0	5.1	A45	12.1	6.05	
24	KRA-27M2						-0.208	6.35	
25 26	(470-512 MHz)		NX-320-K3	470.0	4.9	A46	12.0 0.010	6.00	
27							13.0	6.50	
28				484.0	4.9	A47	-0.607	7.48	
29							11.9	5.95	
30		Headset	NX-320-K	484.0	5.0	A48	-0.533	6.73	
31		KHS-22	NIX 200 KO	404.0	5.0	4.40	11.9	5.95	
32			NX-320-K2	484.0	5.0	A49	-0.504	6.68	
33				498.0	5.0	A50	12.5	6.25	
34			NX-320-K3	₹30.0	5.0	A30	-0.196	6.54	
35			14X-020-K3	512.0	5.1	A51	12.1	6.05	
36				0.2.0	5. 1	1.201	-0.175	6.30	
37				470.0	4.9	A52	11.8	5.90	
38			NX-320-K3				0.009	-	
39				484.0	4.9	A53	12.7	6.35	
40							-0.517	7.15	
41 42			NX-320-K	484.0	5.0	A54	12.1 -0.547	6.05 6.86	
43							11.5	5.75	
44			NX-320-K2	484.0	5.0	A55	-0.559	6.54	
45				400.0	5.0	1.5.5	12.7	6.35	
46				498.0	5.0	A56	-0.316	6.83	
47			NX-320-K3	512.0	5.1	A 5.7	11.2	5.60	
48				512.0	5.1	A57	-0.275	5.97	

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD		
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 38 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

SAR MEASUREMENT SUMMARY (CONT.)

BODY	-WORN SAR	EVALUAT	ION RESU	LTS - ADD	ITIONAL A	UDIO	ACC'S PER	CATEGORY						
С	K3 Test Date(s): J	Jan. 28, 31, 201	1 K, K2 Te	est Date(s): Ap	r.		1	2						
							1g SAR (W	/kg)						
R	Antenna & Part No.	Audio Accessory	Radio	Test Frequency	Conducted Power	Ni-MF	Battery 1400 m	Ah KNB-56N (c)						
K	(Freq. Range)	& Part No.	Model	(MHz)	(W)	Plot	100% ptt d/f	50% ptt d/f						
	· · · · · ·			, ,	` ,	#	SAR Drift dB	50% + droop						
49				470.0	4.9	A58	12.3	6.15						
50			NX-320-K3	470.0	4.9	AJO	-0.169	6.39						
51			10X 020 X0	484.0	4.9	A59	12.8	6.40						
52							-0.428	7.06						
53		II. a da at	NX-320-K	484.0	5.0	A60	12.0	6.00						
54 55		Headset KHS-7A					-0.602 12.0	6.89 6.00						
56		14.10 174	NX-320-K2	484.0	5.0	A61	-0.493	6.72						
57							12.8	6.40						
58				498.0	5.0	A62	-0.276	6.82						
59			NX-320-K3	512.0	5.1	A63	11.8	5.90						
60				512.0	5.1	A03	-0.154	6.11						
61				470.0	4.9	A64	11.0	5.50						
62			NX-320-K3	47 0.0	4.0	7101	-0.177	5.73						
63				484.0	4.9	A65	13.6	6.80						
64 65							-0.430 11.8	7.51 5.90						
66		Earpiece KHS-23	NX-320-K	484.0	5.0	A66	-0.509	6.63						
67							12.2	6.10						
68			NX-320-K2	484.0	5.0	A67	-0.540	6.91						
69				400.0	5.0	1.60	12.6	6.30						
70			NX-320-K3	498.0	5.0	A68	-0.286	6.73						
71			NX-320-K3	512.0	5.1	A69	11.2	5.60						
72	ANT. D			012.0	0.1	7107	-0.027	5.63						
73	KRA-27M2 (470-512 MHz)			470.0	4.9	A70	10.8	5.40						
74	(470-312 MHZ)		NX-320-K3				0.268	-						
75 76				484.0	4.9	A71	12.6 -0.542	6.30 7.14						
77						-	-	-					12.5	6.25
78		Earpiece	NX-320-K	484.0	5.0	A72	-0.499	7.01						
79		KHS-25	NIV 000 I/O	40.4.0	5.0	4.72	12.0	6.00						
80			NX-320-K2	484.0	5.0	A73	-0.483	6.71						
81				498.0	5.0	A74	12.5	6.25						
82			NX-320-K3	.55.5	0.0	, -	-0.403	6.86						
83				512.0	5.1	A75	12.2	6.10						
84							-0.206	6.40						
85 86				470.0	4.9	A76	11.5 -0.338	5.75 6.22						
87			NX-320-K3				-0.338 13.2	6.22 6.60						
88				484.0	4.9	A77	-0.470	7.35						
89							12.4	6.20						
90		Earpiece KHS-26	NX-320-K	484.0	5.0	A78	-0.569	7.07						
91							12.3	6.15						
92			NX-320-K2	484.0	5.0	A79	-0.461	6.84						
93			14A-320-112				13.2	6.60						
94			NX-320-K3 -	498.0	5.0	A80	-0.363	7.18						
95							12.0	6.00						
96				512.0	5.1	A81	-0.196	6.28						
70				l .			-0.180	0.20						

Applicant:	Kenw	nwood USA Corporation FC		ALH431000 DUT Models:		NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	rtable UHF-H PTT Radio Transc		iver Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 39 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category

April 14, 2011 March 30 - April 7, 2011 Specific Absorption Rate Occupational (Controlled)

SAR	MEASUREN	IENT SUI	MMARY (C	ONT.)					
BOD	Y-WORN SAF	REVALUA	TION RESU	LTS - AI	DITIONAL	AUDIO	ACC'S PER	CATEGORY	
С	K3 Test Date(s):	Jan. 28, 31, 20)11 K, K2 Te	est Date(s):	Apr.		1	2	
R	Antenna & Part No.	Audio Accessory	Radio	Test Frequenc	Conducted Power		1g SAR (W Battery 1400 m	Ah KNB-56N (c)	
	(Freq. Range)	& Part No.	Model	(MHz)	(W)	Plot #	100% ptt d/f SAR Drift dB	50% ptt d/f 50% + droop	
97 98			NX-320-K3	470.0	4.9	A82	10.7 0.098	5.35	
99 100				484.0	4.9	A83	13.5 -0.485	6.75 7.55	
101 102		Palm-Mic	NX-320-K	484.0	5.0	A84	12.5 -0.538	6.25 7.07	
103		KHS-8BL		NX-320-K2	484.0	5.0	A85	11.9 -0.559	5.95 6.77
105			NX-320-K3	498.0	5.0	A86	12.4 -0.339	6.20 6.70	
107				512.0	5.1	A87	12.1 -0.060	6.05 6.13	
109		Speaker-Mic KMC-21			470.0	4.9	A88	11.0 0.054	5.50
111			NX-320-K3	484.0	4.9	A89	13.1 -0.505	6.55 7.36	
117 118				498.0	5.0	A90	13.2 -0.347	6.60 7.15	
			NX-320-K	498.0	5.0	A91	12.3 -0.253	6.15 6.52	
			NX-320-K2	498.0	5.0	A92	12.5 -0.277	6.25 6.66	
119 120	ANT. D KRA-27M2		NX-320-K3	512.0	5.1	A93	12.1 -0.268	6.05 6.44	
121	(470-512 MHz)		NX-320-K3	470.0	4.9	A94	12.5 -0.223	6.25 6.58	
123 124				484.0	4.9	A95	13.3 -0.461	6.65 7.39	
125 126		Speaker-Mic	NX-320-K	484.0	5.0	A96	11.8 -0.571	5.90 6.73	
127 128		KMC-45	NX-320-K2	484.0	5.0	A97	12.7 -0.508	6.35 7.14	
129 130			NX-320-K3	498.0	5.0	A98	12.8 -0.467	6.40 7.13	
131 132				512.0	5.1	A99	11.9 -0.291	5.95 6.36	
133 134				470.0	4.9	A100	11.8 -0.603	5.90 6.78	
135 136		Speaker M:	NX-320-K3	484.0	4.9	A101	13.2 -0.455	6.60 7.33	
141 142		Speaker-Mid KMC-45 with KEP-2		498.0	5.0	A102	13.4 -0.175	6.70 6.98	
		Earphone Kit	NX-320-K	498.0	5.0	A103	12.4 -0.560	6.20 7.05	
			NX-320-K2	498.0	5.0	A104	12.6 -0.471	6.30 7.02	
143			NX-320-K3	512.0	5.1	A105	12.2 -0.250	6.10 6.46	
	SAR LIMITS		BODY		SPATIAL PE	AK		RE CATEGORY	
FCC 47 CFR 2.1093			8.0 W/kg		1g average			al / Controlled	

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD		
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 40 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

Test Lab Certif

SAR MEASUREMENT SUMMARY (CONT.)

Test Procedures applied to K3 Model in accordance with FCC KDB 643646 D01v01 (see reference [6])

If the SAR previously measured with default audio accessory per category was > 7.0 W/kg and it is one of the accessories within a group of similar audio accessories, test all other audio accessories within that group of similar audio accessories using the highest body-worn SAR combination (antenna, battery and body-worn accessory) and channel configuration previously identified that is applicable to the audio accessory.

When the SAR for a similar audio accessory evaluated per above is > 7.0 W/kg (C2R4, C2R16, C2R28, C2R40, C2R52, C2R64, C2R76, C2R88, C2R94, C2R100, C2R112, C2R118, C2R124, C2R130, C2R136), test that audio accessory on all required channels using the same combination.

Test Mode = CW (Unmodulated Continuous Wave)	DUT Dis to Phar		Antenna Dis to Phant	
Phantom = Barski Planar Phantom				
C = Column; R = Row	KRA-27M2	1.7 cm	KRA-27M2	2.8 cm
Body-worn Accessory = Belt-Clip (P/N: KBH-12)	(Antenna D)	Belt-Clip	(Antenna D)	2.0 (111
Audio accessories do not contain any built-in radiating element				

Test Procedures applied to K, K2 Model Variants (per FCC KDB Inquiry Tracking No. 235657)

1. For the rest of the additional (non-default) audio accessories, all SAR measured for each combination of antenna, battery, body-worn accessory and audio accessory with the K3 model with SAR >= 7.0 W/kg must be repeated for the K2 and K models for such combinations. When the highest SAR measured for a K3 model combination of antenna, battery, body-worn accessory and audio accessory is < 7.0 W/kg, measure SAR for the K2 and K model using the highest SAR reported for each K3 combination; i.e., at least one test per combination. However, if the highest reported SAR for a K3 combination is < 5.0 W/kg, no test is needed for that combination. For each K2 and K model combination, if the measured SAR is > 7.0 W/kg repeat all SAR measured for that combination when the reported K3 model SAR is > 6.0 W/kg. A combination should be determined according to audio accessory part numbers; not by audio category.

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 41 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

12.0 SAR SCALING (TUNE-UP TOLERANCE)

(K3) SAF	R LEVEI	S SCALED 1	TO KENWO	OD MAXIM	IUM T	OLER	ANCE SPECI	FICATION
Test Config.	Freq. (MHz)	Antenna Part No.	Battery Part No.	Conducted Power (W)	(inc. c	Level Iroop) V/kg)	Scale to 5.0 W (5 W + 0 dB)	Scaled SAR 1g (W/kg)
Body-worn	463.3	KRA-23M (A)	KNB-55L (b)	4.9	4.96	B2	+0.088 dB	5.06
Body-worn	476.7	KRA-23M (A)	KNB-55L (b)	4.9	4.53	В3	+0.088 dB	4.62
Body-worn	490.0	KRA-23M (A)	KNB-55L (b)	4.9	2.91	B4	+0.088 dB	2.97
Body-worn	463.3	KRA-23M (A)	KNB-57L (a)	4.9	5.15	B5	+0.088 dB	5.26
Body-worn	463.3	KRA-23M (A)	KNB-56N (c)	4.9	4.81	В6	+0.088 dB	4.91
Body-worn	463.3	KRA-23M (A)	KBP-5 (d)	4.9	5.04	В7	+0.088 dB	5.14
Body-worn	463.3	KRA-27M (C)	KNB-55L (b)	4.9	5.13	B14	+0.088 dB	5.24
Body-worn	476.7	KRA-27M (C)	KNB-55L (b)	4.9	5.22	B15	+0.088 dB	5.33
Body-worn	490.0	KRA-27M (C)	KNB-55L (b)	4.9	4.25	B16	+0.088 dB	4.34
Body-worn	476.7	KRA-27M (C)	KNB-57L (a)	4.9	4.80	B17	+0.088 dB	4.90
Body-worn	476.7	KRA-27M (C)	KNB-56N (c)	4.9	5.20	B18	+0.088 dB	5.31
Body-worn	476.7	KRA-27M (C)	KBP-5 (d)	4.9	4.96	B19	+0.088 dB	5.06
Body-worn	484.0	KRA-27M2 (D)	KNB-55L (b)	4.9	6.00	B22	+0.088 dB	6.12
Body-worn	470.0	KRA-27M2 (D)	KNB-55L (b)	4.9	5.27	B23	+0.088 dB	5.38
Body-worn	484.0	KRA-27M2 (D)	KNB-57L (a)	4.9	6.45	B26	+0.088 dB	6.58
Body-worn	470.0	KRA-27M2 (D)	KNB-57L (a)	4.9	5.35	B27	+0.088 dB	5.46
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	6.47	B30	+0.088 dB	6.60
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	6.22	B31	+0.088 dB	6.35
Body-worn	484.0	KRA-27M2 (D)	KBP-5 (d)	4.9	6.12	B34	+0.088 dB	6.25
Body-worn	470.0	KRA-27M2 (D)	KBP-5 (d)	4.9	5.55	B35	+0.088 dB	5.66
Body-worn	463.3	KRA-23M (A)	KNB-57L (a)	4.9	6.34	A1	+0.088 dB	6.47
Body-worn	476.7	KRA-23M (A)	KNB-57L (a)	4.9	4.03	A3	+0.088 dB	4.11
Body-worn	463.3	KRA-23M (A)	KNB-57L (a)	4.9	5.85	A4	+0.088 dB	5.97
Body-worn	463.3	KRA-23M (A)	KNB-57L (a)	4.9	5.50	A5	+0.088 dB	5.61
Body-worn	476.7	KRA-27M (C)	KNB-55L (b)	4.9	5.04	A9	+0.088 dB	5.14
Body-worn	476.7	KRA-27M (C)	KNB-55L (b)	4.9	5.18	A10	+0.088 dB	5.29
Body-worn	476.7	KRA-27M (C)	KNB-55L (b)	4.9	4.75	A11	+0.088 dB	4.85
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.32	A14	+0.088 dB	7.47
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	5.97	A15	+0.088 dB	6.09
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.17	A18	+0.088 dB	7.32
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	5.45	A19	+0.088 dB	5.56
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.34	A22	+0.088 dB	7.49

Notes:

- 1. The SAR levels reported are based on 50% PTT duty factor including SAR droop.
- 2. The right-side column of split SAR Level column denotes the corresponding SAR Plot # (see Appendix A).
- 3. The scaled SAR levels are below the FCC Occupational SAR Limit of 8.0 W/kg.

Applicant:	Kenw	rood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	rtable UHF-H PTT Radio Transc		ver Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	ssion of Celltech Labs Inc.	Page 42 of 361		

Dates of Evaluation (K3)
Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category

Occupational (Controlled)

SAR SCALING (TUNE-UP TOLERANCE) (CONT.)

(K3) SAR	LEVEL	S SCALED T	O KENWO	OD MAXIM	UM T	OLER	ANCE SPECI	FICATION
Test Config.	Freq. (MHz)	Antenna Part No.	Battery Part No.	Conducted Power (W)	(inc. c	Level Iroop) V/kg)	Scale to 5.0 W (5 W + 0 dB)	Scaled SAR 1g (W/kg)
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	6.25	A23	+0.088 dB	6.38
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	6.05	A24	+0.088 dB	6.17
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.42	A25	+0.088 dB	7.57
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	5.65	A28	+0.088 dB	5.77
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.25	A29	+0.088 dB	7.40
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	6.00	A32	+0.088 dB	6.12
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.48	A33	+0.088 dB	7.63
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	5.90	A36	+0.088 dB	6.02
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.15	A37	+0.088 dB	7.30
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	6.39	A40	+0.088 dB	6.52
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.06	A41	+0.088 dB	7.20
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	5.73	A44	+0.088 dB	5.85
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.51	A45	+0.088 dB	7.66
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	5.40	A48	+0.088 dB	5.51
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.14	A49	+0.088 dB	7.29
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	6.22	A52	+0.088 dB	6.35
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.35	A53	+0.088 dB	7.50
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	5.35	A56	+0.088 dB	5.46
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.55	A57	+0.088 dB	7.70
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	5.50	A60	+0.088 dB	5.61
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.36	A61	+0.088 dB	7.51
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	6.58	A64	+0.088 dB	6.71
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.39	A65	+0.088 dB	7.54
Body-worn	470.0	KRA-27M2 (D)	KNB-56N (c)	4.9	6.78	A68	+0.088 dB	6.92
Body-worn	484.0	KRA-27M2 (D)	KNB-56N (c)	4.9	7.33	A69	+0.088 dB	7.48

Notes:

- 1. The SAR levels reported are based on 50% PTT duty factor including SAR droop.
- 2. The right-side column of split SAR Level column denotes the corresponding SAR Plot # (see Appendix A).
- 3. The scaled SAR levels are below the FCC Occupational SAR Limit of 8.0 W/kg.

Applicant:	Kenw	Kenwood USA Corporation		Corporation FCC ID: ALH431000 DUT Models: NX-320-K/K2/K3		KENWOOD
DUT Type:	Porta	ortable UHF-H PTT Radio Transceiver		Transmitter Frequency Range: 450.0 - 512.0 MHz		
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 43 of 361	

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Rev. 1.3 (4th Release)

RF Exposure Category

Test Report Revision No.

Occupational (Controlled)

13.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels evaluated for SAR were selected in accordance with the procedures described in FCC KDB 447498 Section 6) c) (see reference [5]).
- 2. The DUT was evaluated for SAR in accordance with the procedures described in FCC KDB 643646 D01v01 (see reference [6]).
- 3. The area scan evaluation was performed with a fully charged battery. After the area scan was completed the radio was cooled down and the battery was replaced with a fully charged battery prior to the zoom scan evaluation.
- 4. The SAR droop of the DUT was measured by the DASY4 system for the duration of the SAR evaluations. The measured SAR droop was added to the measured SAR levels to report scaled SAR levels as shown in the SAR test data tables. A SAR-versus-Time power droop evaluation was performed (see SAR Plot #A25 Appendix A).
- 5. The fluid temperature was measured prior to and after the SAR evaluations. The fluid temperature remained within +/-2°C during the SAR evaluations.
- 6. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 7. The DUT was tested at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.

14.0 SAR EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Kenw	Kenwood USA Corporation F		ood USA Corporation FCC ID		ALH431000	ALH431000 DUT Models:		KENWOOD
DUT Type:	Porta	ortable UHF-H PTT Radio Transceiv		Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD		
2011 Celltech La	O11 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs In					sion of Celltech Labs Inc.	Page 44 of 361		

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release)

15.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, daily system checks were performed with a planar phantom and SPEAG 450 MHz dipole (see Appendix B) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [3]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 398 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the SAR system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

				5	SYSTEM	PERF	ORM	ANCE C	HECK	EVAL	UATIO	NS				
Test	Equiv. Tissue		SAR 1g (W/kg)		Dielec	tric Cons ε _r	stant		nductivit (mho/m)		ρ	Amb.	Fluid	Fluid Depth	Humid.	Barom. Press.
Date	Freq. (MHz)	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	(Kg/m³)	Temp. (°C)	Temp. (°C)	(cm)	(%)	(kPa)
Jan 04	Body 450	1.78 ±10%	1.92	+7.9%	56.7 ±5%	58.8	+3.7%	0.94 ±5%	0.93	-1.1%	1000	23.0	22.4	≥ 15	35	101.1
Jan 06	Head 450	1.87 ±10%	1.93	+3.2%	43.5 ±5%	45.6	+4.8%	0.87 ±5%	0.88	+1.1%	1000	23.5	22.5	≥ 15	40	101.1
Jan 26	Body 450	1.78 ±10%	1.85	+3.9%	56.7 ±5%	57.7	+1.8%	0.94 ±5%	0.91	-3.2%	1000	23.3	22.7	≥ 15	35	101.1
Jan 27	Body 450	1.78 ±10%	1.84	+3.4%	56.7 ±5%	58.2	+2.6%	0.94 ±5%	0.91	-3.2%	1000	23.1	22.4	≥ 15	35	101.1
Jan 28	Body 450	1.78 ±10%	1.89	+6.2%	56.7 ±5%	58.9	+3.9%	0.94 ±5%	0.93	-1.1%	1000	24.0	23.1	≥ 15	40	101.1
Jan 31	Body 450	1.78 ±10%	1.90	+6.7%	56.7 ±5%	59.3	+4.6%	0.94 ±5%	0.93	-1.1%	1000	24.1	23.2	≥ 15	40	101.1
Mar 30	Body 450	1.78 ±10%	1.89	+6.2%	56.7 ±5%	58.2	+2.6%	0.94 ±5%	0.93	-1.1%	1000	22.0	20.1	≥ 15	31	101.1
Mar 31	Body 450	1.78 ±10%	1.89	+6.2%	56.7 ±5%	58.2	+2.6%	0.94 ±5%	0.93	-1.1%	1000	22.0	20.1	≥ 15	31	101.1
Apr 04	Body 450	1.78 ±10%	1.83	+2.8%	56.7 ±5%	58.7	+3.5%	0.94 ±5%	0.91	-3.2%	1000	22.0	20.1	≥ 15	31	101.1
Apr 05	Body 450	1.78 ±10%	1.80	+1.1%	56.7 ±5%	58.6	+3.4%	0.94 ±5%	0.91	-3.2%	1000	20.0	20.2	≥ 15	30	101.1
Apr 06	Body 450	1.78 ±10%	1.80	+1.1%	56.7 ±5%	58.4	+3.0%	0.94 ±5%	0.91	-3.2%	1000	20.0	20.2	≥ 15	33	101.1
Apr 07	Head 450	1.87 ±10%	1.94	+3.7%	43.5 ±5%	45.0	+3.4%	0.87 ±5%	0.84	-3.4%	1000	22.0	21.4	≥ 15	33	101.1
	1.	The targ	et SAR '	values a	re the me	asured v	values fi	rom the S/	AR syste	m manı	ufacturer'	s dipole o	calibratio	n (see Ap	pendix E).
	2.	The targ	et dielec	tric para	meters are	e the nor	minal va	lues from	the SAR	system	manufac	turer's dip	ole calib	ration (se	e Append	ix E).
Notes	3.							d after the ance chec			mance c	heck eva	luations.	The flu	iid tempei	rature
	4.							e mixture Appendix		easured	d prior to	the syst	em perfo	ormance	check us	sing a

Applicant:	Kenw	Kenwood USA Corporation FCC ID		ALH431000	ALH431000 DUT Models:		KENWOOD
DUT Type:	Porta	Portable UHF-H PTT Radio Transceive		Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 45 of 361	

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

16.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [8] and [9]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [3]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

	SIMULATED TISSUE MIXTURES	
INGREDIENT	450 MHz HEAD	450 MHz BODY
Water	38.56 %	52.00 %
Sugar	56.32 %	45.65 %
Salt	3.95 %	1.75 %
HEC	0.98 %	0.50 %
Bactericide	0.19 %	0.10 %

17.0 SAR LIMITS

SAR RF EXP	OSURE LIMITS	
FCC 47 CFR 2.1093	General Population	Occupational
Spatial Average (averaged over the whole body)	0.08 W/kg	0.4 W/kg
Spatial Peak (averaged over any 1 g of tissue)	1.6 W/kg	8.0 W/kg
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	Kenw	Kenwood USA Corporation		ALH431000	ALH431000 DUT Models:		KENWOOD	
DUT Type:	Porta	rtable UHF-H PTT Radio Transceiver		Transmitter Frequency Range: 450.0 - 512.0 MHz			KENWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 46 of 361			

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u>
Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.3 (4th Release)

18.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
<u>Data Converter</u>	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
Continuite	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1590
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Evaluation Phantom	
Туре	Barski Planar Phantom
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 70 liters
<u>Validation Phantom</u>	
Туре	Barski Planar Phantom
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 70 liters

Applicant:	Kenw	Kenwood USA Corporation F		ALH431000	ALH431000 DUT Models:		KENWOOD	
DUT Type:	Porta	ortable UHF-H PTT Radio Transceiver		Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 47 of 361			

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

121510ALH-T1070-S90U

Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Rev. 1.3 (4th Release)

RF Exposure Category

Test Report Revision No.

Occupational (Controlled)

19.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core;

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In head simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity: \pm 0.2 dB in head tissue (rotation around probe axis)

 \pm 0.4 dB in head tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB

Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm; Tip length: 16 mm;

Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone

ET3DV6 E-Field Probe

20.0 BARSKI PLANAR PHANTOM

The Barski Planar Phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table. The planar phantom was used for the DUT SAR evaluations and the system performance check evaluations. See Appendix G for dimensions and specifications of the Barski Planar Phantom.

Barski Planar Phantom

21.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. For evaluations of larger devices a Plexiglas platform is attached to the device holder.

Device Holder

Applicant:	Kenw	Kenwood USA Corporation FCC II		ALH431000	ALH431000 DUT Models:		KENWOOD	
DUT Type:	Porta	Portable UHF-H PTT Radio Transc		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in who				ne prior written permis	sion of Celltech Labs Inc.	Page 48 of 361	

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

22.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION	
USED	DESCRIPTION	AGGET NO.	OLIVIAL NO.	CALIBRATED	INTERVAL	
х	Schmid & Partner DASY4 System	-	-	-	-	
х	-DASY4 Measurement Server	00158	1078	CNR	CNR	
х	-Robot	00046	599396-01	CNR	CNR	
х	-DAE4	00019	353	27Apr10	Annual	
х	-ET3DV6 E-Field Probe	00017	1590	15Jul10	Annual	
х	-SPEAG D450V3 Validation Dipole	00217	1068	18Jan10	Biennial	
х	-Side Planar Phantom	00156	161	CNR	CNR	
х	-Barski Planar Phantom	00155	03-01	CNR	CNR	
х	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR	
х	Gigatronics 8652A Power Meter	00007	1835272	04May10	Biennial	
х	Gigatronics 80701A Power Sensor	00014	1833699	04May10	Biennial	
х	HP 8753ET Network Analyzer	00134	US39170292	04May10	Biennial	
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	CNR	CNR	
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR	
Abbr.	CNR = Calibration Not Required					

23.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION

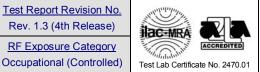
SAR dipoles calibrated less than two years ago but more than one year ago were confirmed by maintaining return loss (< -20dB, within 20% of prior calibration) and impedance (within 5Ω from prior calibration) requirements per extended calibrations in FCC KDB 450824 (see reference [7]).

	SPEAG VALIDATION DIPOLE D450V3 - SN: 1068								
Measurement Date	Freq.	TSL	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ			
January 18, 2010	450 MHz	Head	-21.0		57.5				
February 7, 2011	450 WII 12	пеац	-21.3	1.5%	53.8	3.7			
January 18, 2010	450 MHz	Body	-20.0		54.8				
February 7, 2011	450 MINZ	ьоцу	-20.5	2.5%	50.4	4.4			

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	table UHF-H PTT Radio Transceive		Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 49 of 361

April 14, 2011

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011


Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U Description of Test(s)

Specific Absorption Rate

Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

24.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION												
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}			
Measurement System												
Probe Calibration (450 MHz)	E.2.1	6.65	Normal	1	1	1	6.65	6.65	∞			
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	oc			
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	oc			
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	oc o			
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	oc			
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞			
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	∞			
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞			
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	∞			
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞			
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	oc			
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞			
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞			
Test Sample Related												
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12			
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8			
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	oc			
Phantom and Tissue Parameters												
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	00			
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	oc			
Liquid Conductivity (measured)	E.3.3	4.6	Normal	1	0.64	0.43	2.9	2.0	∞			
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	×			
Liquid Permittivity (measured)	E.3.3	4.9	Normal	1	0.6	0.49	3.0	2.4	×			
Combined Standard Uncertainty		RSS				11.77	11.31					
Expanded Uncertainty (95% Confidence	e Interval)		k=2				23.54	22.63				

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Applicant:	Kenw	Kenwood USA Corporation		ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ortable UHF-H PTT Radio Transceiver		Transmitter Frequency Range: 450.0 - 512.0 MHz			KENWOOD
2011 Celltech La	abs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

April 14, 2011

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate

Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

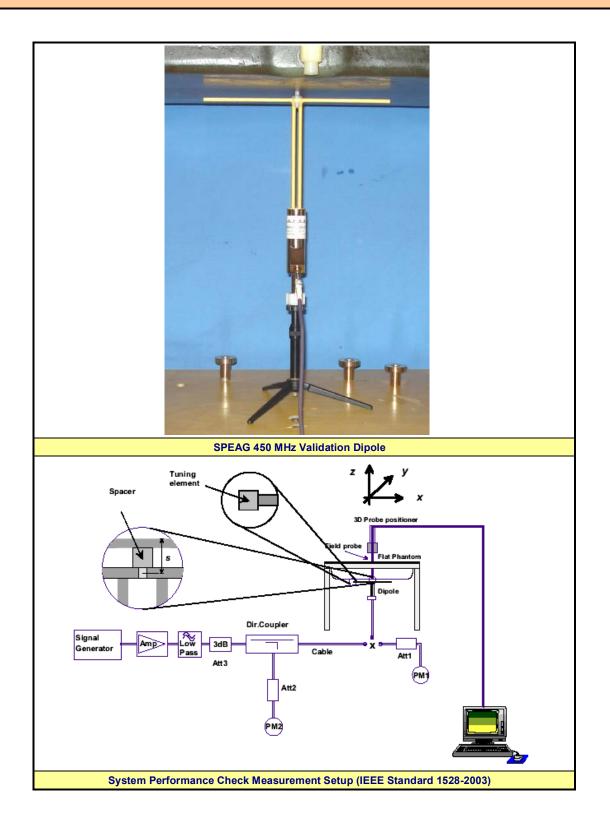
25.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [3] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [4] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices - Human models, instrumentation, and procedures."
- [5] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v04: November 2009.
- [6] Federal Communications Commission, Office of Engineering and Technology "SAR Test Reduction Considerations for Occupational PTT Radios", KDB 643646 D01v01: December 2010.
- [7] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz"; KDB 450824 D01v01r01: January 2007.
- [8] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.
- [9] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [10] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- [11] Federal Communications Commission "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.
- [12] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 21 Application Note, SAR Sensitivities: Sept. 2005.

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	rtable UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 51 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011


Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category

APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	table UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 246 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u>
March 30 - April 7, 2011

Description of Test(s)
Specific Absorption Rate

Test Report Serial No.

121510ALH-T1070-S90U

Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 01/04/2011

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 23.0°C; Fluid Temp: 22.4°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

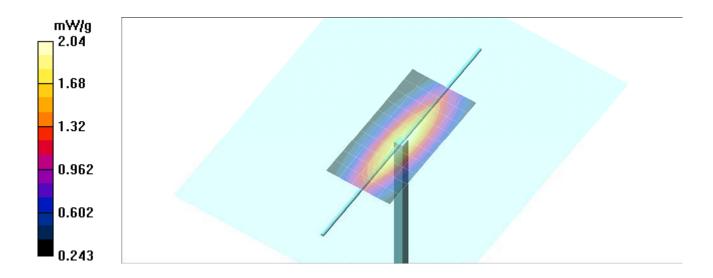
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.93 mho/m; ε_r = 58.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Body d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.03 mW/g

Body d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

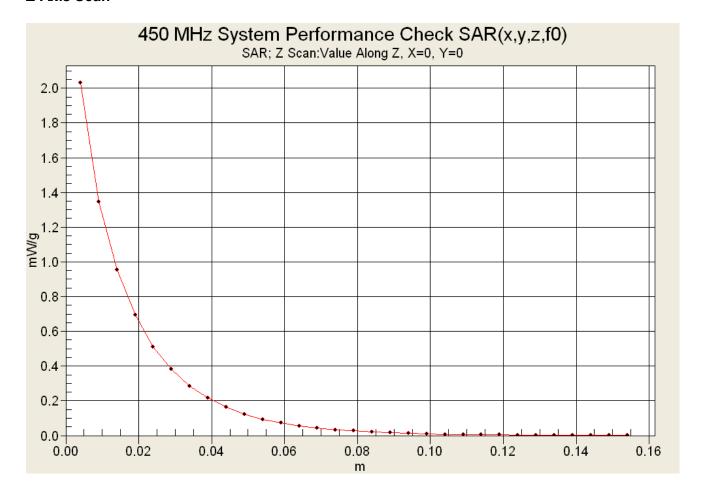
Reference Value = 45.7 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 3.06 W/kg

SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.28 mW/g Maximum value of SAR (measured) = 2.04 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ortable UHF-H PTT Radio Transceive		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 247 of 361

Dates of Evaluation (K/K2) March 30 - April 7, 2011


Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

Rev. 1.3 (4th Release) RF Exposure Category Occupational (Controlled)

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	table UHF-H PTT Radio Transceiver		Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 248 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Description of Test(s) Specific Absorption Rate

Test Report Serial No.

121510ALH-T1070-S90U

Rev. 1.3 (4th Release) RF Exposure Category

Test Report Revision No.

Date Tested: 01/06/2011

System Performance Check - 450 MHz Dipole - Head

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 23.5°C; Fluid Temp: 22.5°C; Barometric Pressure: 101.1 kPa; Humidity: 40%

Communication System: CW

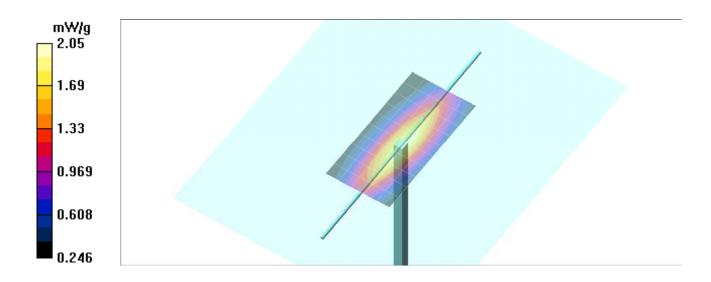
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.88 mho/m; ϵ_r = 45.6; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.25, 7.25, 7.25); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.02 mW/g

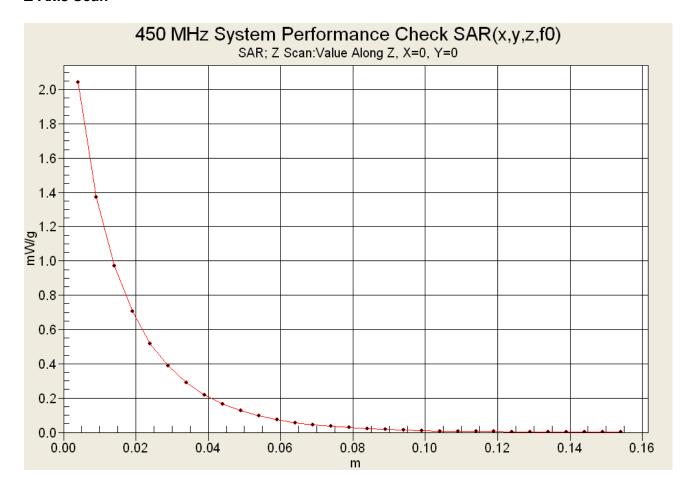
Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.2 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 2.99 W/kg

SAR(1 g) = 1.93 mW/g; SAR(10 g) = 1.29 mW/gMaximum value of SAR (measured) = 2.05 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	rtable UHF-H PTT Radio Transceive		Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 249 of 361



121510ALH-T1070-S90U Dates of Evaluation (K/K2) Description of Test(s) March 30 - April 7, 2011 Specific Absorption Rate

Test Report Serial No.

Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

Applicant:	Kenw	Kenwood USA Corporation		ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	rtable UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 250 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate

Rev. 1.3 (4th Release) RF Exposure Category

Test Report Revision No.

Date Tested: 01/26/2011

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 23.3°C; Fluid Temp: 22.7°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

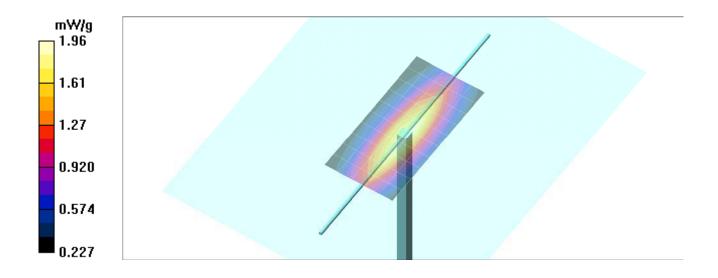
Communication System: CW Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ϵ_r = 57.7; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Body d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.92 mW/g

Body d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.6 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 2.92 W/kg

SAR(1 g) = 1.85 mW/g; SAR(10 g) = 1.24 mW/gMaximum value of SAR (measured) = 1.96 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ortable UHF-H PTT Radio Transceiv		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 251 of 361

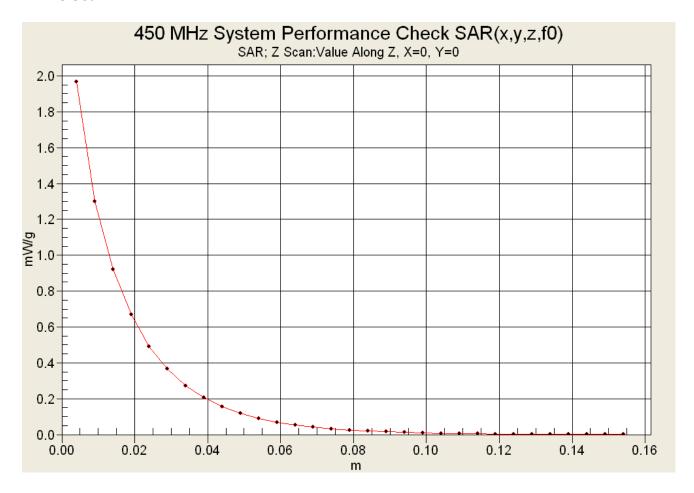
Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Description of Test(s)

Specific Absorption Rate

Test Report Serial No.


121510ALH-T1070-S90U

Test Report Revision No.

Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

Applicant:	Kenw	Kenwood USA Corporation		ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	Portable UHF-H PTT Radio Transcei		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 252 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

121510ALH-T1070-S90U

Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Rev. 1.3 (4th Release)

RF Exposure Category

Test Report Revision No.

Occupational (Controlled)

Test Lab Certificate No. 2470.01

Date Tested: 01/27/2011

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 23.1°C; Fluid Temp: 22.4°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

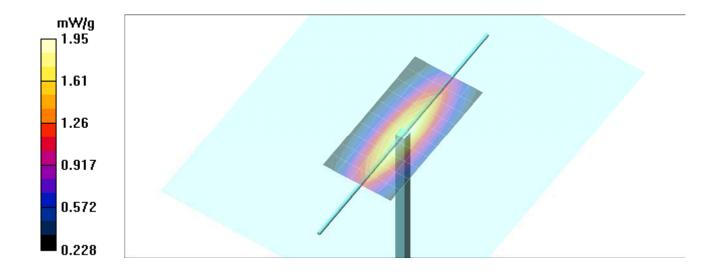
Communication System: CW Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 58.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Body d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.94 mW/g

Body d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

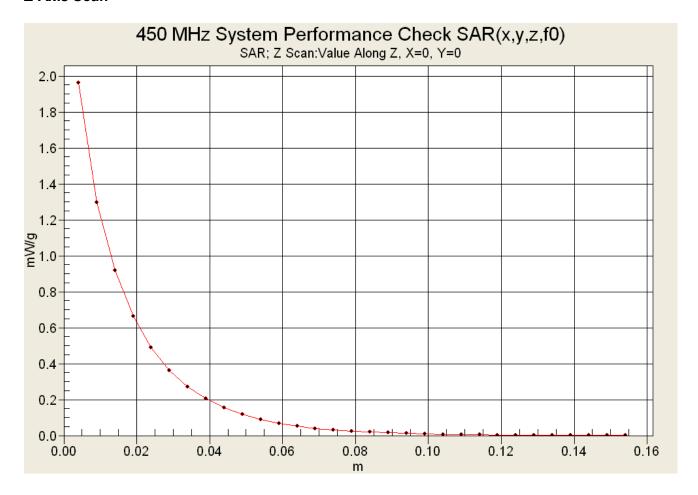
Reference Value = 45.7 V/m; Power Drift = 0.034 dB

Peak SAR (extrapolated) = 2.91 W/kg

SAR(1 g) = 1.84 mW/g; SAR(10 g) = 1.23 mW/gMaximum value of SAR (measured) = 1.95 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ortable UHF-H PTT Radio Transceive		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 253 of 361

March 30 - April 7, 2011


121510ALH-T1070-S90U Dates of Evaluation (K/K2) Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	table UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 254 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate

Rev. 1.3 (4th Release) RF Exposure Category

Date Tested: 01/28/2011

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 24.0°C; Fluid Temp: 23.1°C; Barometric Pressure: 101.1 kPa; Humidity: 40%

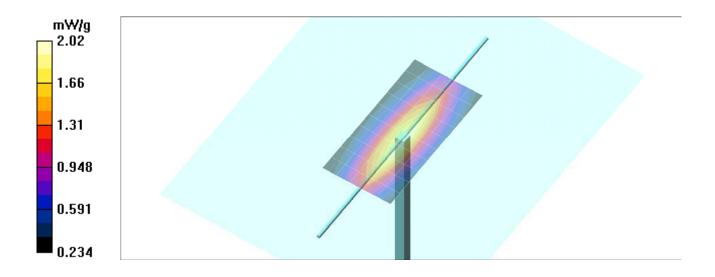
Communication System: CW Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.93 mho/m; ϵ_r = 58.9; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Body d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.95 mW/g

Body d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.5 V/m; Power Drift = 0.064 dB

Peak SAR (extrapolated) = 3.01 W/kg

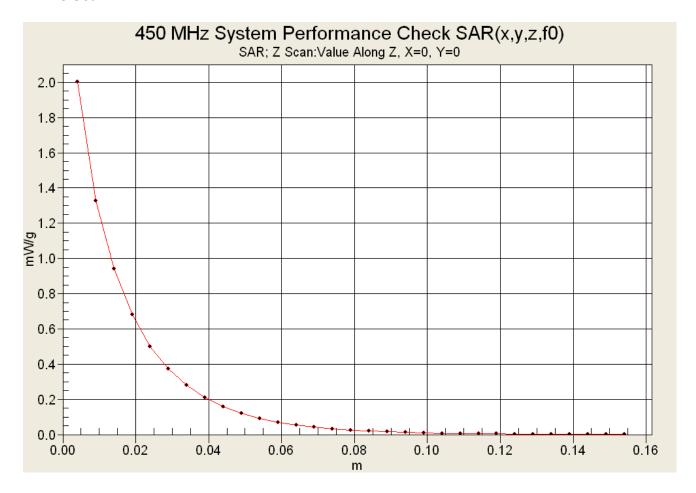
SAR(1 g) = 1.89 mW/g; SAR(10 g) = 1.26 mW/gMaximum value of SAR (measured) = 2.02 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	table UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be re	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 255 of 361

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Description of Test(s)


Specific Absorption Rate

Test Report Serial No.
121510ALH-T1070-S90U

Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	rtable UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 256 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Rev. 1.3 (4th Release)

Date Tested: 01/31/2011

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 24.1°C; Fluid Temp: 23.2°C; Barometric Pressure: 101.1 kPa; Humidity: 40%

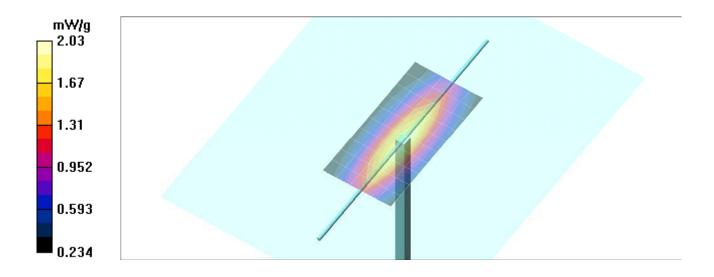
Communication System: CW Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.93 mho/m; ϵ_r = 59.3; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Body d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.95 mW/g

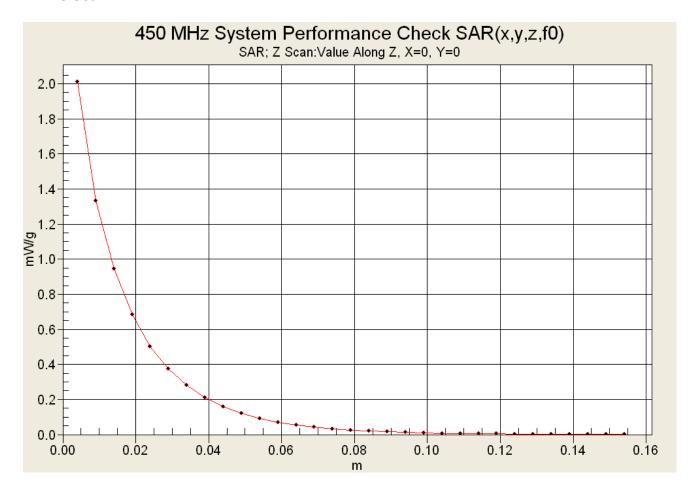
Body d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.6 V/m; Power Drift = 0.060 dB

Peak SAR (extrapolated) = 3.03 W/kg

SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.27 mW/g Maximum value of SAR (measured) = 2.03 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	table UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 257 of 361


Dates of Evaluation (K/K2) March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

121510ALH-T1070-S90U Rev. 1.3 (4th Release)

Description of Test(s) RF Exposure Category

Specific Absorption Rate Occupational (Controlled)

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	table UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 258 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate

Rev. 1.3 (4th Release) RF Exposure Category

Test Report Revision No.

Date Tested: 03/30/2011

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.0°C; Fluid Temp: 20.1°C; Barometric Pressure: 101.1 kPa; Humidity: 31%

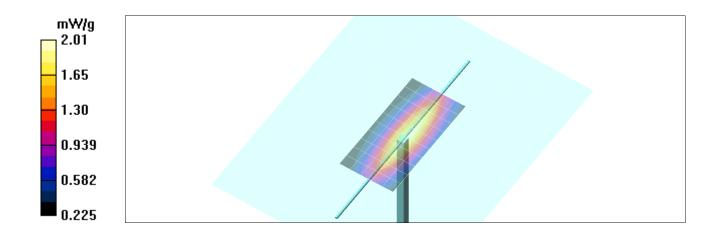
Communication System: CW Frequency: 450 MHz: Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; $\sigma = 0.93 \text{ mho/m}$; $\epsilon_r = 58.2$; $\rho = 1000 \text{ kg/m}^3$

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.02 mW/g

Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 44.8 V/m; Power Drift = -0.008 dB

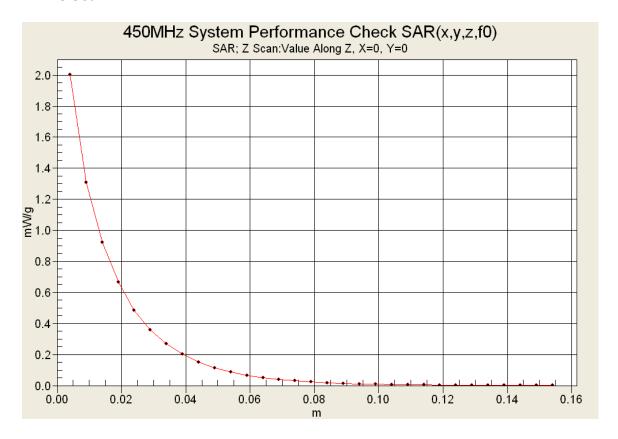
Peak SAR (extrapolated) = 3.05 W/kg

SAR(1 g) = 1.89 mW/g; SAR(10 g) = 1.25 mW/gMaximum value of SAR (measured) = 2.01 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	table UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 259 of 361

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U


Description of Test(s)

Specific Absorption Rate

RF Exposure Category Occupational (Controlled)

Rev. 1.3 (4th Release)

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 260 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category

Date Tested: 03/31/2011

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.0°C; Fluid Temp: 20.1°C; Barometric Pressure: 101.1 kPa; Humidity: 31%

Communication System: CW

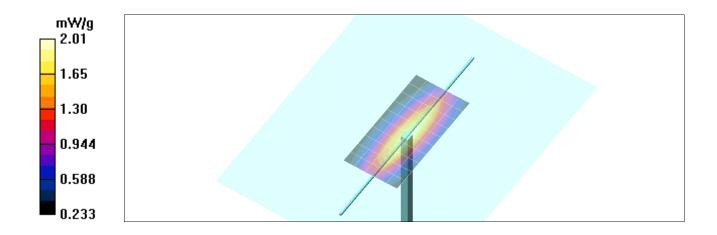
Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.93 mho/m; ε_r = 58.2; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.96 mW/g

Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.8 V/m; Power Drift = 0.049 dB

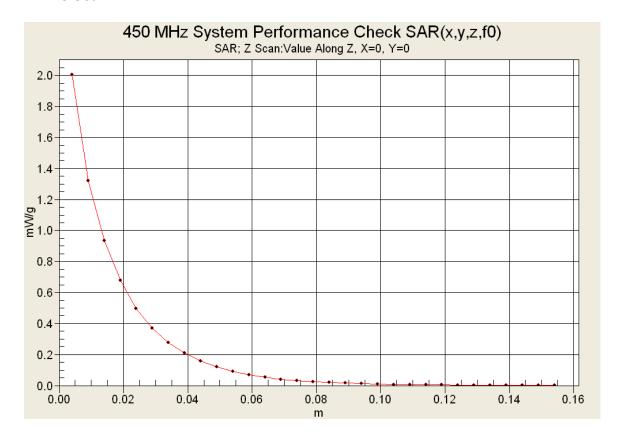
Peak SAR (extrapolated) = 3.04 W/kg

SAR(1 g) = 1.89 mW/g; SAR(10 g) = 1.26 mW/gMaximum value of SAR (measured) = 2.01 mW/g

Applicant:	Kenw	Kenwood USA Corporation		ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ortable UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 261 of 361

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U


Description of Test(s)

Specific Absorption Rate

RF Exposure Category Occupational (Controlled)

Rev. 1.3 (4th Release)

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 262 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Description of Test(s)

Specific Absorption Rate

Test Report Serial No.

121510ALH-T1070-S90U

Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 04/04/2011

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.0°C; Fluid Temp: 20.1°C; Barometric Pressure: 101.1 kPa; Humidity: 31%

Communication System: CW

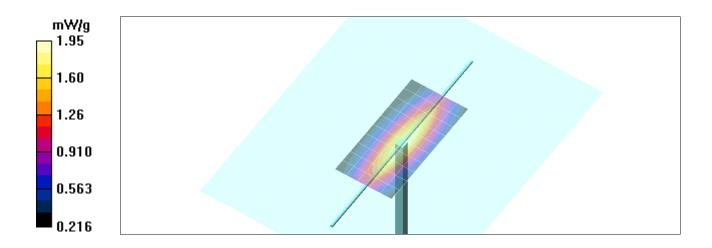
Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ε_r = 58.7; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.92 mW/g

Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.4 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 2.93 W/kg

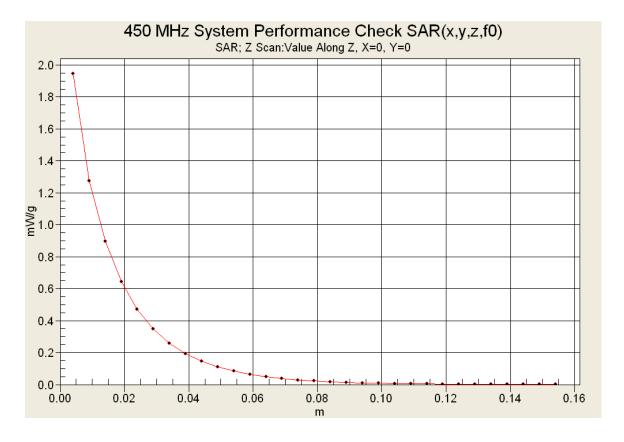
SAR(1 g) = 1.83 mW/g; SAR(10 g) = 1.21 mW/g Maximum value of SAR (measured) = 1.95 mW/g

Applicant:	Kenw	Kenwood USA Corporation		ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	Portable UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 263 of 361	

Dates of Evaluation (K/K2) March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate


RF Exposure Category

Occupational (Controlled)

Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	hole or in part without the	ne prior written permis	sion of Celltech Labs Inc.	Page 264 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.3 (4th Release)

Date Tested: 04/05/2011

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 20.0°C; Fluid Temp: 20.2°C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

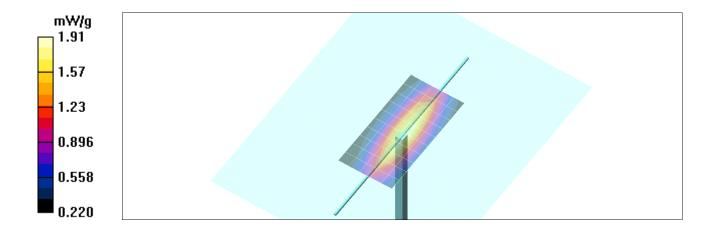
Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ε_r = 58.6; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.90 mW/g

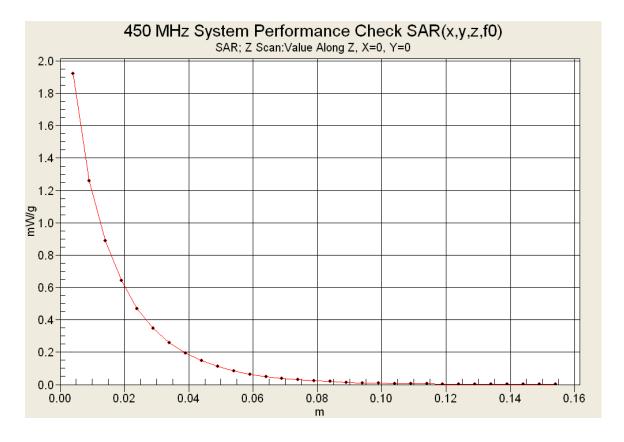
Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 44.8 V/m; Power Drift = 0.101 dB

Peak SAR (extrapolated) = 2.89 W/kg

SAR(1 g) = 1.8 mW/g; SAR(10 g) = 1.2 mW/g Maximum value of SAR (measured) = 1.91 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	rtable UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be r	eproduced in w	n whole or in part without the prior written permission of Celltech Labs Inc.			Page 265 of 361


Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate

Rev. 1.3 (4th Release) RF Exposure Category Occupational (Controlled)

Applicant:	Kenwood USA Corporation		FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Portable UHF-H PTT Radio Transceiver			Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 266 of 361	

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

Date Tested: 04/06/2011

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 20.0°C; Fluid Temp: 20.2°C; Barometric Pressure: 101.1 kPa; Humidity: 33%

Communication System: CW

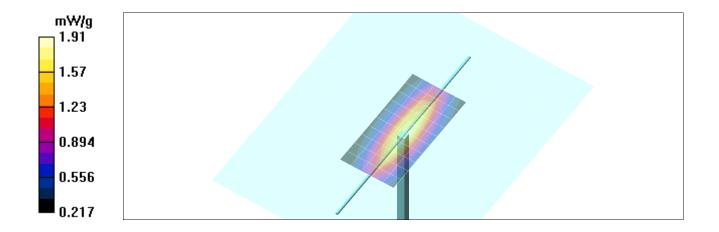
Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ε_r = 58.4; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.87 mW/g

Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

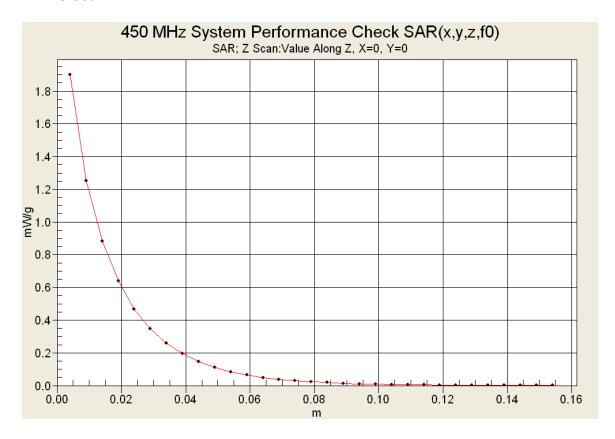
Reference Value = 45.2 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 2.85 W/kg

SAR(1 g) = 1.8 mW/g; SAR(10 g) = 1.2 mW/gMaximum value of SAR (measured) = 1.91 mW/g

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		KENWOOD
2011 Celltech La	ibs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 267 of 361	

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011


Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

Z-Axis Scan

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written prior writt			ne prior written permis	sion of Celltech Labs Inc.	Page 268 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category Occupational (Controlled)

Rev. 1.3 (4th Release)

Date Tested: 04/07/2011

System Performance Check - 450 MHz Dipole - Head

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.0°C; Fluid Temp: 21.4°C; Barometric Pressure: 101.1 kPa; Humidity: 33%

Communication System: CW

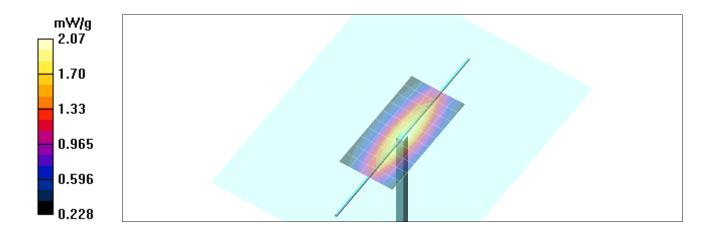
Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.84 mho/m; ε_r = 45; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.25, 7.25, 7.25); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.04 mW/g

Head d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.5 V/m; Power Drift = 0.053 dB

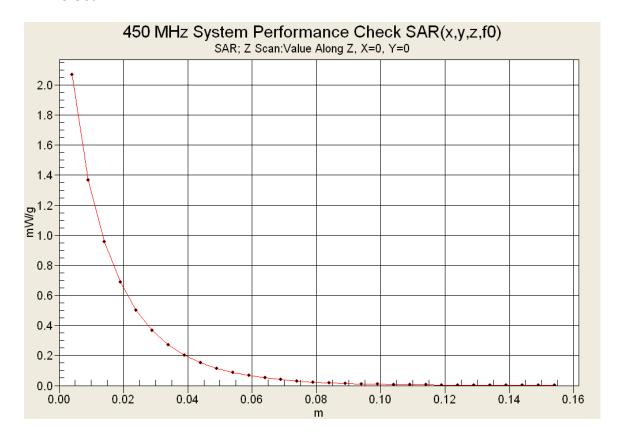
Peak SAR (extrapolated) = 3.03 W/kg

SAR(1 g) = 1.94 mW/g; SAR(10 g) = 1.3 mW/gMaximum value of SAR (measured) = 2.07 mW/g

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ansceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 269 of 361		

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011 <u>Test Report Serial No.</u> 121510ALH-T1070-S90U


Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.3 (4th Release)

Z-Axis Scan

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Frequency Range: 450.0 - 512.0 MH			KENWOOD
2011 Celltech La	bs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 270 of 361		

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

Rev. 1.3 (4th Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Ir			sion of Celltech Labs Inc.	Page 271 of 361	

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

Test Lab Certification

450 MHz Head

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 06/Jan/2011

Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	*****	*****	*****	*****
Freq	FCC_eH	IFCC_sl	-HTest_e	Test_s
0.3500	44.70	0.87	48.20	0.81
0.3600	44.58	0.87	48.37	0.82
0.3700	44.46	0.87	47.65	0.82
0.3800	44.34	0.87	47.19	0.84
0.3900	44.22	0.87	47.20	0.84
0.4000	44.10	0.87	47.25	0.86
0.4100	43.98	0.87	46.40	0.86
0.4200	43.86	0.87	45.95	0.86
0.4300	43.74	0.87	45.60	0.87
0.4400	43.62	0.87	45.47	0.87
0.4500	43.50	0.87	45.61	0.88
0.4600	43.45	0.87	45.56	0.88
0.4700	43.40	0.87	45.31	0.88
0.4800	43.34	0.87	44.72	0.89
0.4900	43.29	0.87	44.84	0.90
0.5000	43.24	0.87	44.86	0.90
0.5100	43.19	0.87	44.68	0.91
0.5200	43.14	0.88	44.37	0.91
0.5300	43.08	0.88	44.00	0.93
0.5400	43.03	0.88	44.05	0.95
0.5500	42.98	0.88	43.95	0.96

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio T	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 272 of 361	

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category Occupational (Controlled)

Rev. 1.3 (4th Release)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 04/Jan/2011

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

******	*****	******	******	******
Freq	FCC_eH	FCC_sl	HTest_e	Test_s
0.3500	57. 7 0	0.93	60.17	0.85
0.3600	57.60	0.93	60.61	0.86
0.3700	57.50	0.93	60.23	0.85
0.3800	57.40	0.93	59.86	0.87
0.3900	57.30	0.93	59.86	0.87
0.4000	57.20	0.93	59.60	0.88
0.4100	57.10	0.93	59.25	0.88
0.4200	57.00	0.94	59.06	0.90
0.4300	56.90	0.94	59.51	0.91
0.4400	56.80	0.94	59.84	0.91
0.4500	56.70	0.94	58.76	0.93
0.4600	56.66	0.94	59.45	0.91
0.4700	56.62	0.94	58.45	0.94
0.4800	56.58	0.94	58.49	0.94
0.4900	56.54	0.94	58.38	0.96
0.5000	56.51	0.94	58.46	0.96
0.5100	56.47	0.94	58.58	0.97
0.5200	56.43	0.95	57.95	0.98
0.5300	56.39	0.95	57.96	0.98
0.5400	56.35	0.95	57.90	0.99
0.5500	56.31	0.95	57.48	1.00

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	os Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 273 of 361		

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U Test Report Revision No.
Rev. 1.3 (4th Release)

Occupational (Controlled)

RF Exposure Category

450 MHz Body

Description of Test(s)

Specific Absorption Rate

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 26/Jan/2011

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

*********	******	******	*******	*******
Freq	FCC_eH	IFCC_sh	Test_e	Test_s
0.3500	57.70	0.93	59.28	0.81
0.3600	57.60	0.93	58.27	0.81
0.3700	57.50	0.93	57.79	0.83
0.3800	57.40	0.93	58.74	0.83
0.3900	57.30	0.93	57.80	0.85
0.4000	57.20	0.93	58.39	0.85
0.4100	57.10	0.93	57.87	0.86
0.4200	57.00	0.94	57.69	0.88
0.4300	56.90	0.94	57.68	0.87
0.4400	56.80	0.94	58.15	0.88
<mark>0.4500</mark>	56.70	0.94	57.69	0.91
0.4600	56.66	0.94	57.99	0.91
0.4700	56.62	0.94	56.94	0.92
0.4800	56.58	0.94	56.89	0.93
0.4900	56.54	0.94	56.86	0.93
0.5000	56.51	0.94	57.20	0.95
0.5100	56.47	0.94	57.36	0.96
0.5200	56.43	0.95	56.80	0.96
0.5300	56.39	0.95	56.78	0.99
0.5400	56.35	0.95	56.88	0.98
0.5500	56.31	0.95	56.31	1.00

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 274 of 361	

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

Test Report Revision No. Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
27/Jan/2011

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

******	******	*****	******	******
Freq	FCC_eH	FCC_sl	Test_e	Test_s
0.3500	57.70	0.93	58.93	0.83
0.3600	57.60	0.93	58.83	0.83
0.3700	57.50	0.93	58.61	0.84
0.3800	57.40	0.93	59.35	0.85
0.3900	57.30	0.93	58.68	0.87
0.4000	57.20	0.93	58.73	0.87
0.4100	57.10	0.93	58.48	0.88
0.4200	57.00	0.94	58.29	0.89
0.4300	56.90	0.94	58.31	0.90
0.4400	56.80	0.94	58.46	0.90
0.4500	56.70	0.94	58.19	0.91
0.4600	56.66	0.94	58.23	0.92
0.4700	56.62	0.94	57.48	0.93
0.4800	56.58	0.94	57.00	0.93
0.4900	56.54	0.94	57.22	0.94
0.5000	56.51	0.94	57.62	0.95
0.5100	56.47	0.94	57.26	0.97
0.5200	56.43	0.95	56.70	0.96
0.5300	56.39	0.95	57.11	0.98
0.5400	56.35	0.95	57.01	0.98
0.5500	56.31	0.95	56.68	1.00

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	011 Celltech Labs Inc. This document is not to be reproduced in whole of			hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 275 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Description of Test(s)

Specific Absorption Rate

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 28/Jan/2011

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

*******	*****	******	*******	******
Freq	FCC_eH	FCC_sh	Test_e	Test_s
0.3500	57.70	0.93	60.24	0.86
0.3600	57.60	0.93	60.20	0.86
0.3700	57.50	0.93	59.64	0.87
0.3800	57.40	0.93	59.70	0.87
0.3900	57.30	0.93	59.43	0.89
0.4000	57.20	0.93	59.78	0.89
0.4100	57.10	0.93	59.31	0.90
0.4200	57.00	0.94	58.71	0.91
0.4300	56.90	0.94	59.07	0.91
0.4400	56.80	0.94	58.74	0.92
0.4500	56.70	0.94	58.85	0.93
0.4600	56.66	0.94	58.99	0.93
0.4700	56.62	0.94	58.77	0.93
0.4800	56.58	0.94	58.64	0.95
0.4900	56.54	0.94	58.26	0.96
0.5000	56.51	0.94	58.02	0.97
0.5100	56.47	0.94	57.87	0.98
0.5200	56.43	0.95	57.92	0.98
0.5300	56.39	0.95	57.86	1.00
0.5400	56.35	0.95	57.54	1.00
0.5500	56.31	0.95	57.59	1.00

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in who				ne prior written permis	sion of Celltech Labs Inc.	Page 276 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
31/Jan/2011

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon

***********	******	******	*******	******
Freq	FCC_eH	FCC_sl	HTest_e	Test_s
0.3500	57.70	0.93	60.18	0.85
0.3600	57.60	0.93	60.19	0.85
0.3700	57.50	0.93	59.70	0.86
0.3800	57.40	0.93	60.14	0.87
0.3900	57.30	0.93	59.41	0.89
0.4000	57.20	0.93	59.38	0.88
0.4100	57.10	0.93	59.96	0.91
0.4200	57.00	0.94	59.49	0.92
0.4300	56.90	0.94	59.91	0.92
0.4400	56.80	0.94	59.17	0.93
0.4500	56.70	0.94	59.31	0.93
0.4600	56.66	0.94	58.91	0.94
0.4700	56.62	0.94	58.58	0.95
0.4800	56.58	0.94	59.45	0.96
0.4900	56.54	0.94	59.35	0.97
0.5000	56.51	0.94	59.50	0.98
0.5100	56.47	0.94	58.00	0.98
0.5200	56.43	0.95	58.76	0.98
0.5300	56.39	0.95	58.84	1.00
0.5400	56.35	0.95	58.90	1.01
0.5500	56.31	0.95	58.74	1.02

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ortable UHF-H PTT Radio Transceiver		Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in wh				hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 277 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 30/Mar/2011

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM

Test s Sigma of UIM FCC_eBFCC_sBTest_e Test_s Freq 0.3500 57.70 0.93 57.84 0.83 0.3600 57.60 0.93 59.29 0.84 0.3700 57.50 0.93 58.81 0.85 57.40 0.93 58.40 0.3800 0.85 0.3900 57.30 0.93 58.14 0.87 0.4000 57.20 0.93 57.62 0.86 0.4100 57.10 57.62 0.88 0.93 0.4200 57.00 0.94 58.29 0.89 0.89 0.4300 56.90 0.94 58.16 0.4400 0.90 56.80 0.94 57.80 0.4500 0.94 58.15 0.93 56.70 0.4600 56.66 0.94 57.57 0.92 0.4700 56.62 0.94 57.22 0.95 0.4800 56.58 0.94 57.25 0.94 0.4900 56.54 0.94 56.80 0.95 56.66 0.95 0.5000 56.51 0.94 56.47 0.94 57.05 0.97 0.5100 0.5200 56.43 0.95 56.52 0.97 56.45 0.99 0.5300 56.39 0.95 56.35 0.95 1.00 0.5400 56.87 0.5500 56.31 0.95 56.54 1.00

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Transceiver		Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in who			hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 278 of 361	

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011

Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.3 (4th Release) RF Exposure Category

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 31/Mar/2011

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

******	******	*******	******
FCC_eB	FCC_sE	3 Test_e	Test_s
57.70	0.93	59.13	0.83
57.60	0.93	58.92	0.83
57.50	0.93	59.01	0.84
57.40	0.93	58.87	0.85
57.30	0.93	58.34	0.87
57.20	0.93	58.70	0.86
57.10	0.93	58.34	0.87
57.00	0.94	58.23	0.88
56.90	0.94	58.77	0.91
56.80	0.94	58.92	0.90
56.70	0.94	58.24	0.91
56.66	0.94	58.39	0.93
56.62	0.94	57.66	0.93
56.58	0.94	58.37	0.93
56.54	0.94	57.71	0.93
56.51	0.94	57.62	0.94
56.47	0.94	57.74	0.95
56.43	0.95	57.37	0.97
56.39	0.95	57.85	0.98
56.35	0.95	57.01	0.98
56.31	0.95	56.77	1.00
	FCC_eB 57.70 57.60 57.50 57.40 57.30 57.20 57.10 57.00 56.90 56.80 56.70 56.66 56.62 56.58 56.54 56.51 56.47 56.43 56.39 56.35	FCC_eB FCC_sE 57.70 0.93 57.60 0.93 57.50 0.93 57.40 0.93 57.30 0.93 57.20 0.93 57.10 0.93 57.00 0.94 56.90 0.94 56.80 0.94 56.60 0.94 56.62 0.94 56.62 0.94 56.54 0.94 56.54 0.94 56.51 0.94 56.47 0.94 56.43 0.95 56.39 0.95	57.60 0.93 58.92 57.50 0.93 59.01 57.40 0.93 58.87 57.30 0.93 58.34 57.20 0.93 58.70 57.10 0.93 58.34 57.00 0.94 58.23 56.90 0.94 58.77 56.80 0.94 58.92 56.70 0.94 58.39 56.62 0.94 57.66 56.58 0.94 57.71 56.51 0.94 57.74 56.47 0.94 57.74 56.39 0.95 57.85 56.35 0.95 57.01

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	table UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in whether the control of the cont			hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 279 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Test Report Serial No.</u> 121510ALH-T1070-S90U Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category

Dates of Evaluation (K/K2) March 30 - April 7, 2011 <u>Description of Test(s)</u>
Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 01/Apr/2011

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test s Sigma of UIM

FCC_eB FCC_sB Test_e Freq Test_s 0.3500 57.70 0.93 60.37 0.85 0.3600 57.60 0.93 60.38 0.86 0.3700 57.50 0.93 60.21 0.86 0.3800 57.40 0.93 60.31 0.88 0.3900 57.30 0.93 60.22 0.88 0.89 60.04 0.4000 57.20 0.93 0.4100 57.10 0.93 59.55 0.91 0.4200 57.00 0.94 59.73 0.90 0.4300 56.90 0.94 59.08 0.91 0.4400 56.80 0.94 59.54 0.92 0.4500 56.70 0.94 59.25 0.93 0.4600 56.66 0.94 59.01 0.94 0.4700 56.62 0.94 58.62 0.94 56.58 58.83 0.95 0.4800 0.94 0.94 58.87 0.96 0.4900 56.54 0.5000 56.51 0.94 58.23 0.95 0.94 0.98 0.5100 56.47 58.36 0.98 0.5200 56.43 0.95 58.16 0.5300 0.95 57.92 1.00 56.39 0.5400 56.35 0.95 58.53 0.99 0.5500 56.31 0.95 58.01 1.01

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Transceiver		Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in wh			hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 280 of 361

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

March 30 - April 7, 2011

Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

Test Report Serial No. 121510ALH-T1070-S90U

121510ALH-T1070-S90U Rev. 1.3 (4th Release)

Description of Test(s) RF Exposure Category

Specific Absorption Rate Occupational (Controlled)

450 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
04/Apr/2011

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM

Test s Sigma of UIM FCC_eBFCC_sBTest_e Test_s Freq 0.3500 57.70 0.93 59.58 0.83 0.3600 57.60 0.93 59.84 0.86 0.3700 57.50 0.93 59.51 0.83 57.40 0.93 60.00 0.3800 0.86 0.3900 57.30 0.93 59.39 0.87 0.4000 57.20 0.93 59.34 0.86 0.4100 58.68 57.10 0.93 0.87 0.4200 57.00 0.94 58.61 0.87 0.90 0.4300 56.90 0.94 58.64 0.4400 58.47 0.90 56.80 0.94 0.4500 58.73 0.91 56.70 0.94 0.4600 56.66 0.94 57.85 0.91 0.4700 56.62 0.94 58.13 0.93 0.4800 56.58 0.94 58.21 0.92 0.4900 56.54 0.94 57.52 0.94 0.95 0.5000 56.51 0.94 58.15 0.94 58.08 0.95 0.5100 56.47 0.5200 56.43 0.95 57.47 0.96 0.97 0.5300 56.39 0.95 57.54 0.95 56.85 0.99 0.5400 56.35 0.5500 56.31 0.95 57.31 1.00

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in who				hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 281 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

Test Report Serial No. 121510ALH-T1070-S90U Test Report Revision No. Rev. 1.3 (4th Release)

Dates of Evaluation (K/K2) March 30 - April 7, 2011

RF Exposure Category Description of Test(s) Specific Absorption Rate Occupational (Controlled)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 05/Apr/2011

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test's Sigma of UIM

*****	******		******	******
Freq	FCC_eB	FCC_sl	3 Test_e	Test_s
0.3500	57. 7 0	$0.9\overline{3}$	$60.\overline{2}0$	$0.8\overline{4}$
0.3600	57.60	0.93	59.29	0.83
0.3700	57.50	0.93	59.38	0.84
0.3800	57.40	0.93	59.79	0.85
0.3900	57.30	0.93	59.14	0.86
0.4000	57.20	0.93	58.79	0.86
0.4100	57.10	0.93	58.99	0.87
0.4200	57.00	0.94	59.14	0.88
0.4300	56.90	0.94	58.25	0.88
0.4400	56.80	0.94	58.12	0.90
<mark>0.4500</mark>	56.70	0.94	58.64	0.91
0.4600	56.66	0.94	58.49	0.92
0.4700	56.62	0.94	58.16	0.92
0.4800	56.58	0.94	58.16	0.93
0.4900	56.54	0.94	57.91	0.95
0.5000	56.51	0.94	57.85	0.95
0.5100	56.47	0.94	57.61	0.95
0.5200	56.43	0.95	57.82	0.96
0.5300	56.39	0.95	57.21	0.97
0.5400	56.35	0.95	57.11	0.98
0.5500	56.31	0.95	56.99	0.99

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	ble UHF-H PTT Radio Ti	ransceiver	Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	1 Celltech Labs Inc. This document is not to be reproduced in w			hole or in part without th	ne prior written permis	sion of Celltech Labs Inc.	Page 282 of 361

Dates of Evaluation (K3) Jan. 4,6,26-28,31, 2011

March 30 - April 7, 2011

Dates of Evaluation (K/K2) Description of Test(s)

Test Report Serial No. 121510ALH-T1070-S90U

RF Exposure Category Specific Absorption Rate Occupational (Controlled)

Rev. 1.3 (4th Release)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 06/Apr/2011

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

******	****	******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.3500	57.70	0.93	59.96	0.84
0.3600	57.60	0.93	60.09	0.85
0.3700	57.50	0.93	60.15	0.86
0.3800	57.40	0.93	59.41	0.87
0.3900	57.30	0.93	59.31	0.86
0.4000	57.20	0.93	59.56	0.87
0.4100	57.10	0.93	58.73	0.88
0.4200	57.00	0.94	58.79	0.89
0.4300	56.90	0.94	58.83	0.89
0.4400	56.80	0.94	58.73	0.90
<mark>0.4500</mark>	56.70	0.94	58.40	0.91
0.4600	56.66	0.94	58.47	0.91
0.4700	56.62	0.94	58.10	0.94
0.4800	56.58	0.94	58.30	0.95
0.4900	56.54	0.94	57.82	0.93
0.5000	56.51	0.94	57.81	0.96
0.5100	56.47	0.94	57.56	0.96
0.5200	56.43	0.95	58.03	0.96
0.5300	56.39	0.95	57.83	0.98
0.5400	56.35	0.95	57.11	0.99
0.5500	56.31	0.95	57.42	1.00
	Freq 0.3500 0.3600 0.3700 0.3800 0.3900 0.4000 0.4100 0.4200 0.4300 0.4400 0.4500 0.4600 0.4700 0.4800 0.4900 0.5000 0.5100 0.5200 0.5300 0.5400	Freq	Freq FCC_eB FCC_sE 0.3500 57.70 0.93 0.3600 57.60 0.93 0.3700 57.50 0.93 0.3800 57.40 0.93 0.3900 57.30 0.93 0.4000 57.20 0.93 0.4100 57.10 0.93 0.4200 57.00 0.94 0.4300 56.90 0.94 0.4400 56.80 0.94 0.4500 56.66 0.94 0.4700 56.62 0.94 0.4800 56.58 0.94 0.4900 56.54 0.94 0.5000 56.51 0.94 0.5100 56.47 0.94 0.5200 56.43 0.95 0.5300 56.35 0.95	0.3500 57.70 0.93 59.96 0.3600 57.60 0.93 60.09 0.3700 57.50 0.93 60.15 0.3800 57.40 0.93 59.41 0.3900 57.30 0.93 59.31 0.4000 57.20 0.93 59.56 0.4100 57.10 0.93 58.73 0.4200 57.00 0.94 58.79 0.4300 56.90 0.94 58.83 0.4400 56.80 0.94 58.43 0.4500 56.60 0.94 58.40 0.4600 56.66 0.94 58.47 0.4700 56.62 0.94 58.30 0.4900 56.58 0.94 58.30 0.5000 56.51 0.94 57.81 0.5100 56.47 0.94 57.56 0.5200 56.43 0.95 58.03 0.5300 56.39 0.95 57.83 0.5400 5

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	Portable UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	1 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 283 of 361		

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

Description of Test(s)
Specific Absorption Rate
RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.3 (4th Release)

450 MHz Head

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
07/Apr/2011
Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

**********	******	******	*******	******
Freq	FCC eH	FCC sh	Test e	Test s
0.3500	44. 7 0	0.87	47. 8 1	$0.7\overline{5}$
0.3600	44.58	0.87	47.40	0.74
0.3700	44.46	0.87	47.49	0.77
0.3800	44.34	0.87	46.75	0.76
0.3900	44.22	0.87	46.77	0.79
0.4000	44.10	0.87	46.55	0.78
0.4100	43.98	0.87	45.46	0.79
0.4200	43.86	0.87	46.12	0.80
0.4300	43.74	0.87	45.70	0.82
0.4400	43.62	0.87	45.56	0.82
0.4500	43.50	0.87	45.01	0.84
0.4600	43.45	0.87	45.10	0.85
0.4700	43.40	0.87	44.37	0.85
0.4800	43.34	0.87	44.34	0.87
0.4900	43.29	0.87	44.15	0.88
0.5000	43.24	0.87	44.06	0.88
0.5100	43.19	0.87	43.77	0.90
0.5200	43.14	0.88	43.77	0.90
0.5300	43.08	0.88	43.87	0.90
0.5400	43.03	0.88	43.60	0.93
0.5500	42.98	0.88	43.65	0.94

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	Portable UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 284 of 361		

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

<u>Dates of Evaluation (K/K2)</u> March 30 - April 7, 2011 Test Report Serial No. 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category

Occupational (Controlled)

Test Lab Certificate No. 2470.01

APPENDIX E - DIPOLE CALIBRATION

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	Portable UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 359 of 361			

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Accreditation No.: SCS 108

Certificate No: D450V3-1068_Jan10

CALIBRATION CERTIFICATE

Object

D450V3 - SN: 1068

Calibration procedure(s)

QA CAL-15.V5

Calibration Procedure for dipole validation kits below 800 MHz

Calibration date:

January 18, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ET3DV6 (LF)	SN: 1507	03-Jul-09 (No. ET3-1507_Jul09)	Jul-10
DAE4	SN: 654	04-May-09 (No. DAE4-654_May09)	May-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician ·	iv Upl
Approved by:	Katja Pokovic	Technical Manager	

Issued: January 20, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D450V3-1068_Jan10

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL_

tissue simulating liquid

ConF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.2 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.87 mW / g
SAR normalized	normalized to 1W	4.70 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.76 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.25 mW / g
SAR normalized	normalized to 1W	3.14 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.17 mW / g ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	0.90 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	<u> </u>
SAR measured	398 mW input power	1.78 mW / g
SAR normalized	normalized to 1W	4.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.58 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.19 mW / g
SAR normalized	normalized to 1W	2.99 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	3.06 mW / g ± 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.5 Ω - 5.9 jΩ
Return Loss	- 21.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	54.8 Ω - 9.3 jΩ
Return Loss	- 20.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,350 ns
	1.000 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 16, 2009

Certificate No: D450V3-1068_Jan10

DASY5 Validation Report for Head TSL

Date/Time: 1/18/2010 10:59:37 AM

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1068

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.86 \text{ mho/m}$; $\varepsilon_r = 44.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(6.66, 6.66, 6.66); Calibrated: 7/3/2009

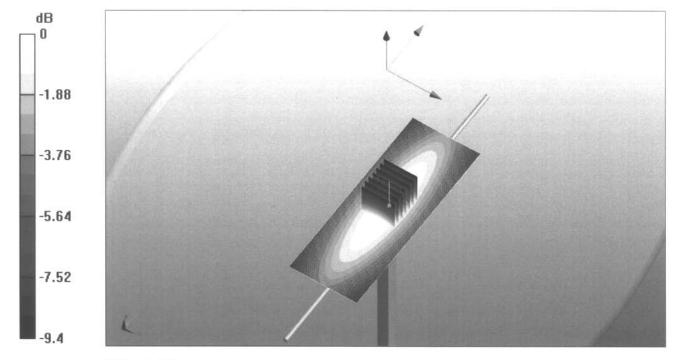
Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn654; Calibrated: 5/4/2009

Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

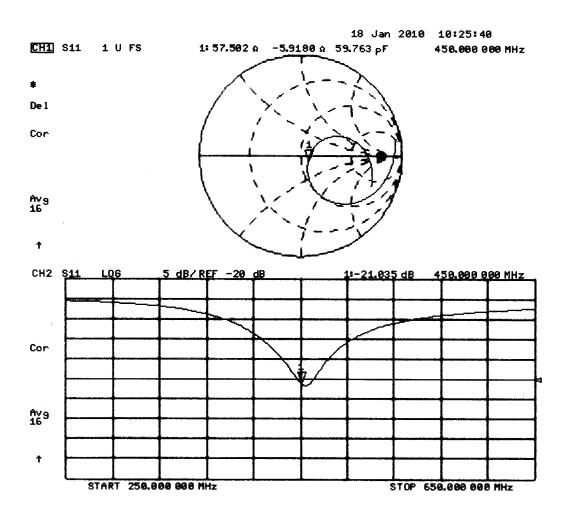
Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57

Head/d=15mm, Pin=398mW/Area Scan (41x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.99 mW/g


Head/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.2 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 2.78 W/kg


SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.25 mW/g

Maximum value of SAR (measured) = 2 mW/g

0 dB = 2mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 1/18/2010 1:24:11 PM

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1068

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: MSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.9 \text{ mho/m}$; $\varepsilon_r = 54.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

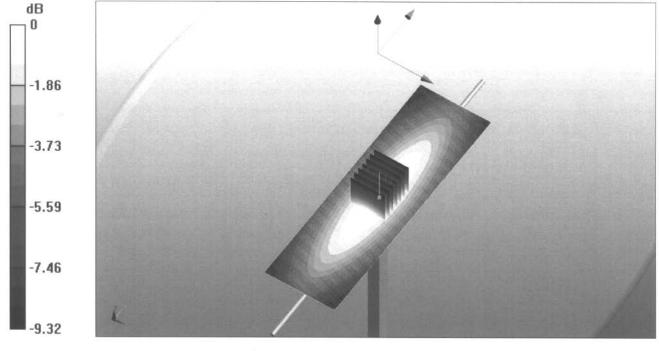
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(7.11, 7.11, 7.11); Calibrated: 7/3/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 5/4/2009
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57

Body/d=15mm, Pin=398mW/Area Scan (61x201x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.9 mW/g


Body/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.4 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 2.71 W/kg

SAR(1 g) = 1.78 mW/g; SAR(10 g) = 1.19 mW/g

Maximum value of SAR (measured) = 1.9 mW/g

0 dB = 1.9 mW/g

Impedance Measurement Plot for Body TSL

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2) March 30 - April 7, 2011 <u>Test Report Serial No.</u> 121510ALH-T1070-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX F - PROBE CALIBRATION

Applicant:	Kenw	Kenwood USA Corporation FCC ID: ALH431000 DUT Models: NX-320-K/K2/K3		NX-320-K/K2/K3	KENWOOD			
DUT Type:	Porta	table UHF-H PTT Radio Transceiver		Transmitter Frequency Range:		450.0 - 512.0 MHz	KENWOOD	
2011 Celltech La	ibs Inc.	This document is not to be r	eproduced in w	produced in whole or in part without the prior written permission of Celltech Labs Inc.				

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Celltech

Accreditation No.: SCS 108

Certificate No: ET3-1590 Jul10

CALIBRATION CERTIFICATE

Object **ET3DV6 - SN:1590**

Calibration procedure(s) QA CAL-01.v6, QA CAL-12.v8, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

at water than and

1967年1964年1966年1966年

Calibration date: July 15, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10
DAE4	SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11
:			
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10

Name Function
Calibrated by Jeton Kastrati Laboratory Technician

Katja Pokovic

Technical Manager

Issued: July 15, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Approved by:

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx.y.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ET3DV6 SN:1590

Probe ET3DV6

SN:1590

Manufactured:

March 19, 2001

Last calibrated:

July 16, 2009

Recalibrated:

July 15, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1590 July 15, 2010

DASY/EASY - Parameters of Probe: ET3DV6 SN:1590

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.86	2.06	1.77	± 10.1%
DCP (mV) ³	91,4	92.4	83.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6)

Numerical linearization parameter: uncertainty not required.

¹ Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ET3DV6 SN:1590

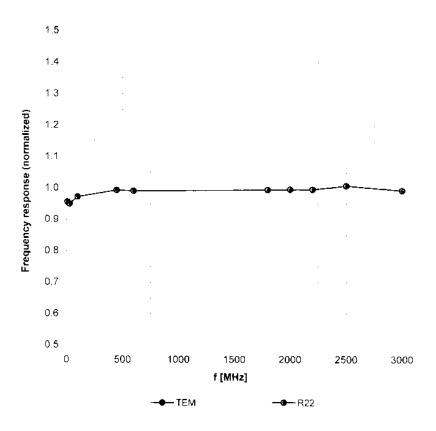
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Cor	nvF Y Co	onvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	4 3.5 ± 5%	0.87 ± 5%	7.25	7.25	7.25	0.20	2.19 ± 13.3%
835	± 50 / ± 100	41.5 ± 5%	$0.90 \pm 5\%$	6.27	6.27	6.27	0.32	2.49 ± 11.0%
900	± 50 / ± 100	41.5 ± 5%	$0.97 \pm 5\%$	6.12	6.12	6.12	0.27	2.86 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4 4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

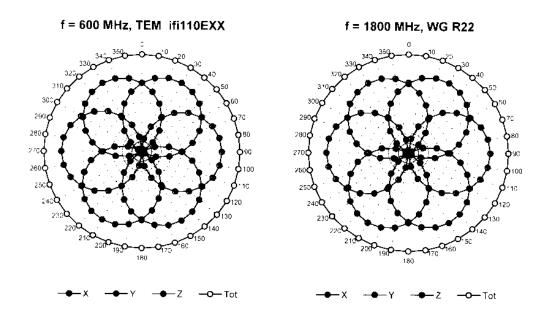
ET3DV6 SN:1590 July 15, 2010

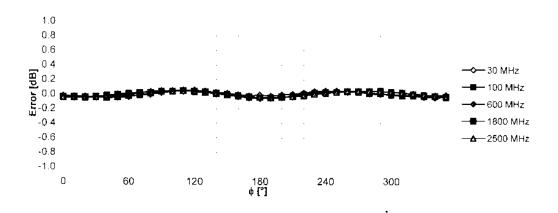
DASY/EASY - Parameters of Probe: ET3DV6 SN:1590


Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Cor	vFY Co	nvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	56.7 ± 5%	0.94 ± 5%	7.73	7.73	7.73	0.13	2.06 ± 13.3%
835	± 50 / ± 100	55.2 ± 5%	$0.97 \pm 5\%$	6.33	6.33	6.33	0.22	3.60 ± 11.0%
900	± 50 / ± 100	55.0 ± 5%	$1.05 \pm 5\%$	6.15	6.15	6.15	0.28	2.94 ± 11.0%

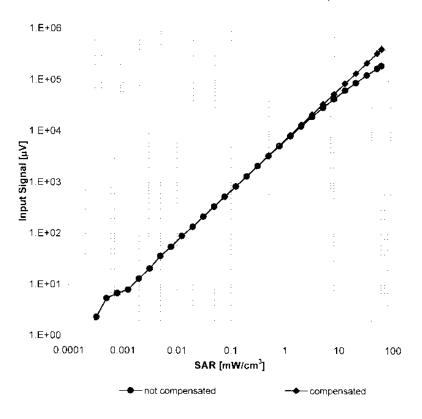
The validity of ± 100 MHz only applies for DASY v4 4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

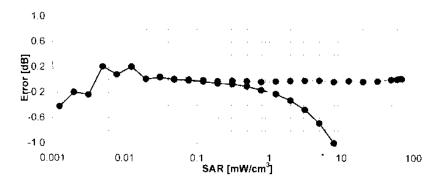

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

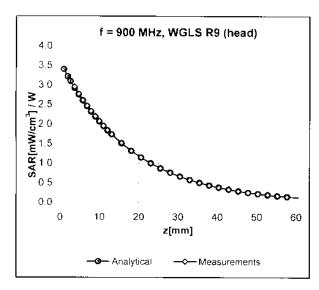


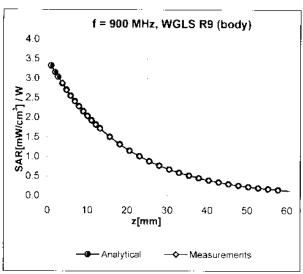


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

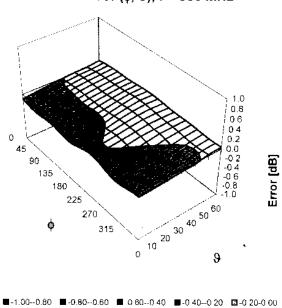
(Waveguide R22, f = 1800 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ET3DV6 SN:1590


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

□ 0.00-0.20 ■ 0 20-0.40 □ 0.40-0.60 ■ 0.60-0.80 ■ 0.80 1.00

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

ET3DV6 SN:1590 July 15, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1590
Place of Assessment:	Zurich
Date of Assessment:	July 17, 2010
Probe Calibration Date:	July 15, 2010

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 450 and 835 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

150 MHz

ConvF

 $8.5 \pm 10\%$

 $\varepsilon_r = 52.3$

 $\sigma = 0.76 \text{ mho/m}$

(head tissue)

300 MHz

ConvE

 $7.7 \pm 9\%$

 $\varepsilon_r = 45.3$

 $\sigma = 0.87 \text{ m ho/m}$

(head tissue)

150 MHz

ConvF

 $7.9 \pm 10\%$

 $\varepsilon_r = 61.9$

 $\sigma = 0.80 \text{ mho/m}$

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY4 Manual.

<u>Dates of Evaluation (K3)</u> Jan. 4,6,26-28,31, 2011

Dates of Evaluation (K/K2)

March 30 - April 7, 2011

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.3 (4th Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Test Report Serial No.

121510ALH-T1070-S90U

Applicant:	Kenw	ood USA Corporation	FCC ID:	ALH431000	DUT Models:	NX-320-K/K2/K3	KENWOOD
DUT Type:	Porta	able UHF-H PTT Radio Transceiver		Transmitter Free	quency Range:	450.0 - 512.0 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 361 of 361			

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334

E-mail: <u>barskiind@shaw.ca</u>
Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item: Flat Planar Phantom Unit # 03-01

Date: June 16, 2003

Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details		
Shape	Compliance to geometry according to drawing	Supplied CAD drawing		
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area		
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05		

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

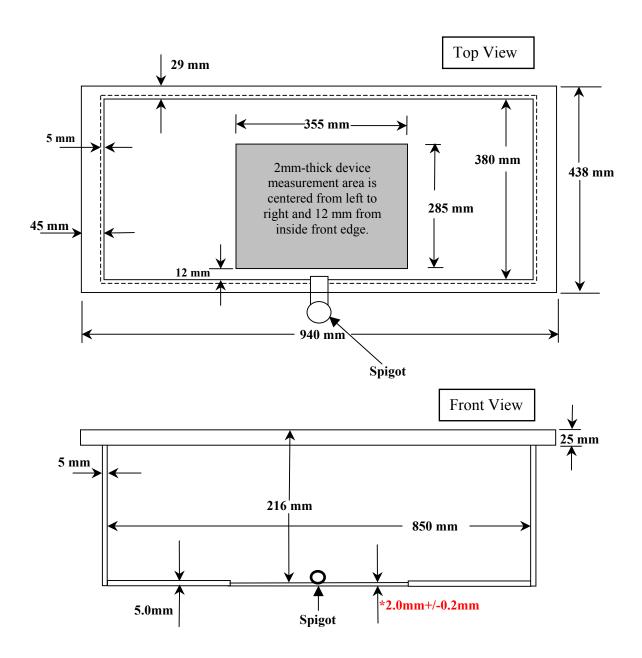
Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

Note: Measurements that aren't repeated for the opposite sides are the same as the side measured.

This drawing is not to scale.