toll-free: (866) 311-3268 fax: (480) 926-3598 www.flomlabs.com info@flomlabs.com

Date: February 20, 2009

Applicant: Kenwood USA Corporation

Communications Division

3970 Johns Creek Court, Suite 100

Suwanee, GA 30024

Attention of: Joel E. Berger, Research & Development

JBerger@kenwoodusa.com

(678) 474-4722; FAX: (678) 474-4731

 Equipment:
 NX-210-K2

 FCC ID:
 ALH423500

 FCC Rules:
 90,74,22

Gentlemen:

Enclosed please find your copy of the Engineering Test Report for which you are subject to the restrictions as listed on the attached summary.

Once a Telecommunication Certification Body (TCB) issues a Grant the Federal Communication Commission (FCC) has 30 days to review the application and request added information. It is your decision whether or not to market the equipment subject to a possible recall before the end of the 30 days.

If your equipment is still retained by us, it will be returned to you 30 days after approval is achieved. Our invoice for services has been directed to your Accounts Payable Department.

For any additional information please contact us.

Thank you.

Sincerely yours,

John Erhard

Summary of Restrictions

- 1. All submissions to the FCC are subject to **their** Examiner's interpretation.
- 2. Please allow from 60 to 90 days before hearing from the FCC with regard to any submission.
- 3. The FCC can set aside any action; modify or set aside any action, within 30 days. (FCC Rule 1.108, 1.113).
- 4. Under Rule 2.803, if device is not type accepted/certificated then it must **not** be sold, leased, offered for sale, imported, shipped or distributed or advertised for sale.
- 5. FCC can revoke its certificates at any time if the equipment does not meet or **continue** to meet their Rules. (Rule Parts 2.927, 2.939).
- 6. FCC can request a sample at any time (2.936).

Date: February 20, 2009

Federal Communications Commission

Via: Electronic Filing

Attention: Authorization & Evaluation Division

Kenwood USA Corporation Applicant:

Equipment: NX-210-K2 FCC ID: ALH423500

FCC Rules: 90,74 Part D, 22 Part E

Dear Gentleman:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Best regards,

John Erhard

http://www.flomlabs.com

Test Report

for

FCC ID: ALH423500

Model: NX-210-K2

to

Federal Communications Commission

Rule Part(s) 90, 74 Part D, 22 Part E

Date of report: February 20, 2009

On the Behalf of the Applicant: Kenwood USA Corporation

At the Request of: Kenwood USA Corporation

Communications Division

3970 Johns Creek Court, Suite 100

Suwanee, GA 30024

Attention of: Joel E. Berger, Research & Development

JBerger@kenwoodusa.com

(678) 474-4722; FAX: (678) 474-4731

Reviewed by:

John Erhard

Test Report Revision History

Revision	Date	Revised By	Reason for revision
1.0	February 20, 2009	J Erhard	Original Document
2.0	February 23, 2009	M. Wyman	Added test data to the document
3.0	March 12, 2009	J Erhard	Correct Modulation limiting plot

(FCC Certification (Transmitters) - Revised 9/28/98)

Applicant: Kenwood USA Corporation

FCC ID: ALH423500

By Applicant:

- 1. Letter of Authorization
- 2. Confidentiality Request: 0.457 And 0.459
- 3. Identification Drawings, 2.1033(c)(11)

Label

Location of Label

Compliance Statement

Location of Compliance Statement

- 4. Photographs, 2.1033(c)(12)
- 5. Documentation: 2.1033(c)
 - (3) User Manual
 - (9) Tune Up Info
 - (10) Schematic Diagram
 - (10) Circuit Description

Block Diagram

Parts List

Active Devices

6. MPE/SAR Report

By F.T.L.:

A. Testimonial & Statement of Certification

The Applicant has been cautioned as to the following:

15.21 **Information to the User**.

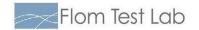
The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) **Special Accessories**.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Testimonial and Statement of Certification


This is to Certify:

- 1. **That** the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. **That** the technical data supplied with the application was taken under my direction and supervision.
- 3. **That** the data was obtained on representative units, randomly selected.
- 4. **That**, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Certifying Engineer:

John Erhard

John & alud

Table of Contents

Rule	<u>Description</u>	<u>Page</u>
0.4000(.)(4.4)		
2.1033(c)(14)	Rule Summary	3
	Standard Test Conditions and Engineering Practices	4
2.1033(c)	General Information Required	5
	Test Results Summary	7
2.1046	Carrier Output Power (Conducted)	8
2.1051	Conducted Spurious Emissions	9
2.1053, 22.353	Field Strength of Spurious Radiation	13
90.210, 74.462, 22.359	Emission Masks (Occupied Bandwidth)	17
90.214	Transient Frequency Behavior	25
2.1047	Audio Low Pass Filter (Voice Input)	29
2.1047	Audio Frequency Response	30
2.1047	Modulation Limiting	31
90.213, 74.464, 22.355	Frequency Stability (Temperature Variation)	38
90.213	Frequency Stability (Voltage Variation)	39
	Test Equipment Utilized	40

Required information per ISO 17025-2005, paragraph 5.10.2:

a) Test Report

b) Laboratory: Flom Test Lab

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044-A) Chandler, AZ 85225

c) Report Number: d0920017

d) Client: Kenwood USA Corporation

Communications Division

3970 Johns Creek Court, Suite 100

Suwanee, GA 30024

e) Identification: NX-210-K2

FCC ID: ALH423500

EUT Description: VHF Digital Transceiver

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: February 20, 2009

EUT Received:

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

I) Measurement Uncertainty: In accordance with FTL internal quality manual.

m) Reviewed by:

John Erhard

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written permission

from this laboratory.

Accessories used during testing:

Type	Quantity	Manufacturer	Model	Serial No.	FCC ID
Antenna	1	Kenwood	KRA-26M		
Antenna	1	Kenwood	KRA-22M		

Sub-part 2.1033(c)(14):

Test and Measurement Data

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts: 90, 74 and 22.

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI/TIA-603-C-2004, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40° C (50° to 104° F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Measurement results, unless otherwise noted, are worst-case measurements.

A2LA

"A2LA has accredited Flom Test Labs, Chandler, AZ for technical competence in the field of Electrical testing. The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO 17025:2005 'General Requirements for the Competence of Testing and Calibration Laboratories' and any additional program requirements in the identified field of testing."

Please refer to www.a2la.org for current scope of accreditation.

Certificate number: 2152.01

ACCREDITED

CERT NO. 2152.01

FCC OATS Reg. #933597

IC Reg. # 2044A-1

List of General Information Required for Certification

In Accordance with ECC Rules and Regulations

	me II, Part 2 and to 90,74,22Sub-part 2.1033
(c)(1):	
Name and Address of Applicant:	Kenwood USA Corporation Communications Division 3970 Johns Creek Court, Suite 100 Suwanee, GA 30024
Manufacturer:	Kenwood Corporation 14-6, Dogenzaka 1-Chome Shibuya-ku, Tokyo 150, Japan OR Kenwood Electronics Technologies PTE Ltd. 1 Ang Mo Kio Street 63 Singapore 569110
(c)(2): FCC ID :	ALH423500
Model Number:	NX-210-K2
(c)(3): Instruction Manual(s):	
Please see attached	d exhibits
(c)(4): Type of Emission :	FM
(c)(5): Frequency Range, MHz:	150 – 174 138-174 (IC Only)
(c)(6): Power Rating, Watts : Switchable	5W (Power output continuously variable to 1 W) x Variable N/A
FCC Grant Note:	
(c)(7): Maximum Allowable Power.	. Watts: 30

DUT Results:

Passes

X

Fails

Subpart 2.1033 (continued)

(c)(8): Voltages & currents in all elements in final RF stage, including final transistor or solid-state device:

Collector Current, A = 1.23 Collector Voltage, Vdc = 7.5 Supply Voltage, Vdc = 7.5

(c)(9): Tune-Up Procedure:

Please see attached exhibits

(c)(10): Circuit Diagram/Circuit Description:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

Please see attached exhibits

(c)(11): Label Information:

Please see attached exhibits

(c)(12): Photographs:

Please see attached exhibits

(c)(13): Digital Modulation Description:

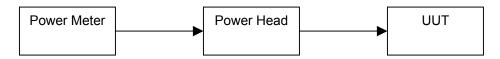
____ Attached Exhibits _x_N/A

(c)(14): Test and Measurement Data:

Follows

Test Results Summary

Specification	Test Name	Pass, Fail,	Comments
		N/A	
2.1046	Carrier Output Power (Conducted)	Pass	
2.1051	Unwanted Emissions (Transmitter Conducted)	Pass	
2.1053	Field Strength of Spurious Radiation	Pass	
90.210	Emission Masks (Occupied Bandwidth)	Pass	
2.1047	Audio Low Pass Filter (Voice Input)	Pass	
2.1047	Audio Frequency Response	Pass	
2.1047	Modulation Limiting	Pass	
90.213	Frequency Stability (Temperature Variation)	Pass	
90.213	Frequency Stability (Voltage Variation)	Pass	


Name of Test: Carrier Output Power (Conducted)

Specification:2.1046Engineer: J ErhardTest Equipment Utilized:i00228, i00341Test Date: 2/26/09

Measurement Procedure

The Unit Under Test (UUT) was connected directly to a power meter input. The peak readings were taken and the result was then compared to the limit.

Test Setup

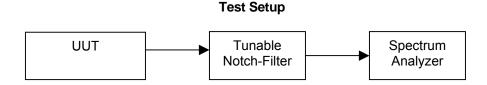
High Power Transmitter Peak Output Power

IC limits

Tuned Frequency	Recorded Measurement	Result
MHz		
138	36.8	Pass
157	37.0	Pass
174	36.9	Pass

FCC limits

Tuned Frequency MHz	Recorded Measurement	Result
150	37.0	Pass
162.5	37.0	Pass
174	36.9	Pass

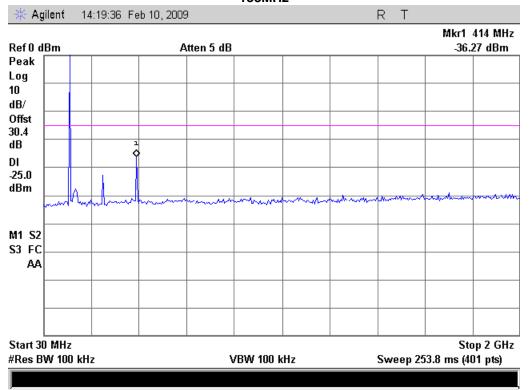


Name of Test: Conducted Spurious Emissions

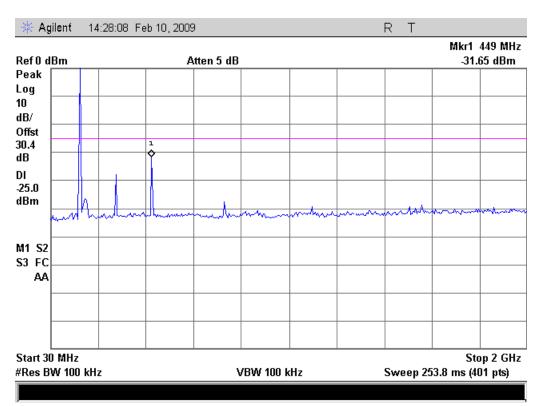
Specification: 2.1051 Engineer: J Erhard Test Equipment Utilized: 100124, i00049 Test Date: 2/26/09

Test Procedure

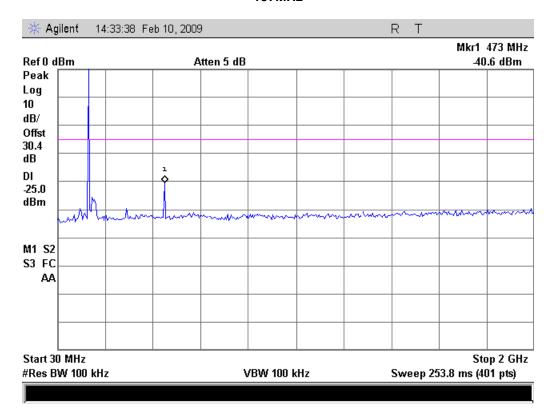
The UUT was connected directly to a spectrum analyzer to verify that the UUT met the requirements for spurious emissions. A tunable notch filter was utilized to ensure the fundamental did not put the spectrum analyzer into compression. The resolution bandwidth set for 100 kHz and the reference level was adjusted to ensure the system had sufficient dynamic range to measure spurious emissions. The frequency range from 30 MHz to the 10th harmonic of the fundamental transmitter was observed and plotted. The limit line was set for –25 dBm for comparison to RSS-119 which is the more stringent limit.



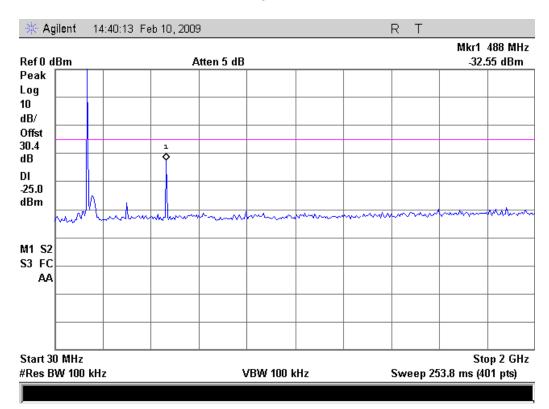
High Power Conducted Spurious Emissions Summary Test Table (FCC and IC)


Tuned	Spurious	Measured Spurious	Specification	Result
Frequency	Frequency	Level	Limit	
MHz	MHz	(dBm)	(dBm)	
138	414	-36.27	-25	Pass
150	449	-31.65	-25	Pass
157	473	-40.60	-25	Pass
162	488	-32.55	-25	Pass
174	523	-40.10	-25	Pass

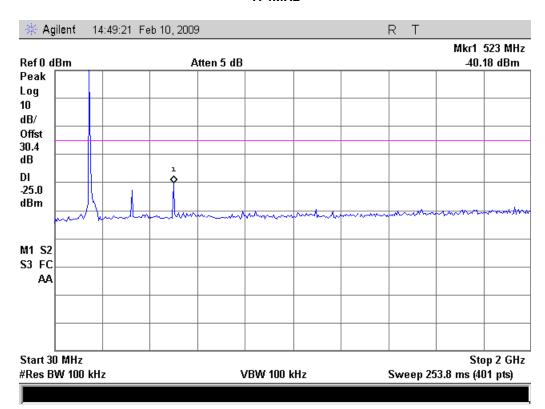
Test Plots 138MHz



150MHz



157MHz



162MHz

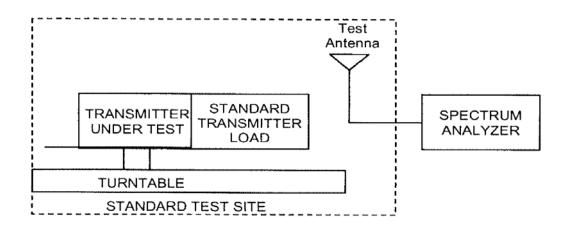
174MHz

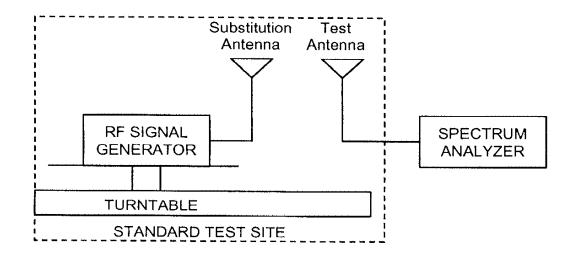
Name of Test: Field Strength of Spurious Radiation

Specification: 2.1053 Engineer: J Erhard Test Equipment Utilized: i00049, i00088, i00089 Test Date: 2/26/09

Test Procedure

A) Connect the equipment as illustrated


- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
 - 2) Video Bandwidth ≥ 3 times Resolution Bandwidth, or 30 kHz
 - 3) Sweep Speed ≤2000 Hz/second
 - 4) Detector Mode = Mean or Average Power
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load that is placed on the turntable. The RF cable to this load should be of minimum length.
- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to \pm the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.
- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:


Radiated spurious emissions dB = $10log_{10}(TX power in watts/0.001) - the levels in step I)$

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

Test Setup

Whip Antenna Test Results 138 MHz (Part 90)

Power output = 29.85 dBm ERP

Emission Frequency (MHz)	Measured Level (dBm)	Correction Factor (dB)	Corrected Value (dBm)	Limit (dBm)	Corrected (dBc)	Result
276.068500	-69.09	16.3	-52.79	-25	-82.64	Pass
414.150000	-68.89	19.1	-49.69	-25	-79.54	Pass
552.200000	-69.49	22.6	-46.89	-25	-76.74	Pass
690.250000	-71.99	23.3	-48.69	-25	-79.54	Pass

150 MHz (Part 90)

Power output = 25.05 dBm ERP

Emission Frequency (MHz)	Measured Level (dBm)	Correction Factor (dB)	Corrected Value (dBm)	Limit (dBm)	Corrected (dBc)	Result
300.054000	-70.39	16.3	-54.09	-25	-79.14	Pass
450.123500	-62.19	19.0	-43.19	-25	-68.24	Pass
600.213500	-70.29	22.6	-47.69	-25	-72.74	Pass
750.250000	-71.49	24.5	-47.09	-25	-72.14	Pass

157 MHz (Part 22)

Power output = 23.25 dBm ERP

					4. — —	
Emission Frequency (MHz)	Measured Level (dBm)	Correction Factor (dB)	Corrected Value (dBm)	Limit (dBm)	Corrected (dBc)	Result
314.065500	-66.39	16.4	-49.99	-25	-73.24	Pass
471.119000	-65.39	19.6	-45.89	-25	-69.14	Pass
628.200000	-71.29	24.6	-46.69	-25	-69.94	Pass
785.250000	-71.59	25.1	-46.49	-25	-72.74	Pass

162 MHz (Part 74)

Power output =26.85 dBm ERP

			1 01101 00	11put -20.00	abiii Lixi	
Emission Frequency (MHz)	Measured Level (dBm)	Correction Factor (dB)	Corrected Value (dBm)	Limit (dBm)	Corrected (dBc)	Result
324.069000	-65.99	17.1	-48.89	-25	-75.74	Pass
486.150000	-71.79	20.3	-51.59	-25	-78.44	Pass
648.200000	-71.69	23.4	-48.29	-25	-75.14	Pass
810.250000	-71.79	25.5	-46.29	-25	-73.14	Pass

174 MHz (Part 90)

Power output = 29.75 dBm ERP

Emission	Measured Level	Correction Factor	Corrected Value	Limit	Corrected	Result
Frequency	(dBm)	(dB)	(dBm)	(dBm)	(dBc)	
(MHz)						
347.887000	-62.79	17.1	-45.69	-25	-75.44	Pass
521.829500	-65.09	20.6	-44.49	-25	-74.24	Pass
695.642000	-71.09	23.4	-47.69	-25	-77.44	Pass
869.810500	-71.39	26.6	-44.89	-25	-74.64	Pass

No other emissions were detected past the 4th harmonic. All emissions were greater than -20 dBc. For Industry Canada the emission were less than -25dBm.

Stubby Antenna Test Results 138 MHz (Part 90)

Power output = 27.85 dBm ERP

Emission Frequency (MHz)	Measured Level (dBm)	Correction Factor (dB)	Corrected Value (dBm)	Limit (dBm)	Corrected (dBc)	Result
276.072000	-67.89	16.3	-51.59	-25	-79.44	Pass
414.189500	-68.59	19.1	-50.49	-25	-78.34	Pass
552.200000	-70.19	22.6	-47.59	-25	-75.44	Pass
690.250000	-71.19	23.3	-47.99	-25	-75.84	Pass

150 MHz (Part 90)

Power output =26.35 dBm ERP

		: 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0				
Emission Frequency (MHz)	Measured Level (dBm)	Correction Factor (dB)	Corrected Value (dBm)	Limit (dBm)	Corrected (dBc)	Result
300.101500	-66.59	16.3	-50.39	-25	-76.84	Pass
450.129500	-60.59	19.0	-41.89	-25	-68.24	Pass
600.194000	-70.29	22.6	-47.59	-25	-73.94	Pass
750.250000	-70.59	24.5	-46.09	-25	-72.44	Pass

157 MHz (Part 22)

Power output = 28.45 dBm ERP

		1 011 01 0 at par = 201 10 a 2 111 2 111				
Emission Frequency (MHz)	Measured Level (dBm)	Correction Factor (dB)	Corrected Value (dBm)	Limit (dBm)	Corrected (dBc)	Result
314.082500	-67.19	16.4	-50.79	-25	-79.24	Pass
471.125500	-60.09	19.6	-40.49	-25	-68.94	Pass
628.200000	-71.89	24.6	-47.29	-25	-75.74	Pass
785.250000	-71.59	25.1	-46.49	-25	-74.94	Pass

162 MHz (Part 74)

Power output = 26.45 dBm ERP

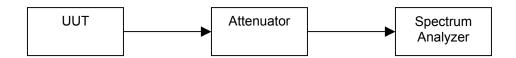
			i ower output = 20:45 dBill ERI			
Emission Frequency (MHz)	Measured Level (dBm)	Correction Factor (dB)	Corrected Value (dBm)	Limit (dBm)	Corrected (dBc)	Result
324.100000	-68.09	17.1	-51.09	-25	-77.54	Pass
486.124500	-59.09	20.3	-39.09	-25	-65.54	Pass
648.190000	-67.69	23.4	-44.39	-25	-70.84	Pass
810.250000	-71.69	25.5	-46.19	-25	-72.64	Pass

174 MHz (Part 90)

Power output = 19.45 dBm ERP

Emission Frequency (MHz)	Measured Level (dBm)	Correction Factor (dB)	Corrected Value (dBm)	Limit (dBm)	Corrected (dBc)	Result
347.879500	-68.29	17.1	-51.19	-25	-70.64	Pass
521.841000	-60.89	20.6	-40.29	-25	-59.74	Pass
695.800000	-71.09	23.4	-47.69	-25	-67.14	Pass
869.750000	-71.89	26.6	-45.29	-25	-72.74	Pass

No other emissions were detected. All emissions were greater than -20 dBc.

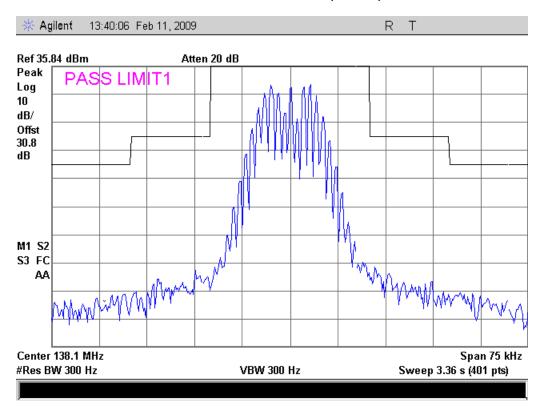


Name of Test: Emission Masks (Occupied Bandwidth)

Specification: 90.210, 74 & 22 Engineer: J Erhard Test Equipment Utilized: i00049 Test Date: 2/26/09

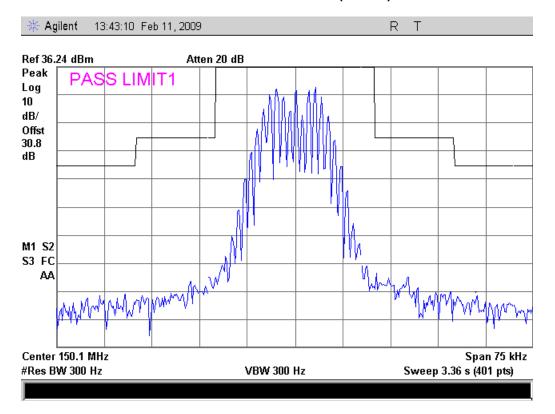
The EUT was connected directly to a spectrum analyzer to verify that the EUT meets the required emissions mask. A reference level plot is provided to verify that the peak power was established prior to testing the mask. A modulation frequency of 2.5 kHz at a level of 500 mVpp was input into the UUT for the analog tests and an internal test pattern was utilized for the digital input.

Test Setup

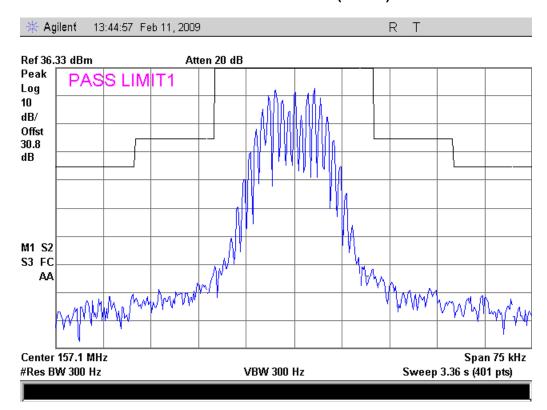


Prior to making the mask test measurement, a reference measurement was taken to set the reference power to the top display line.

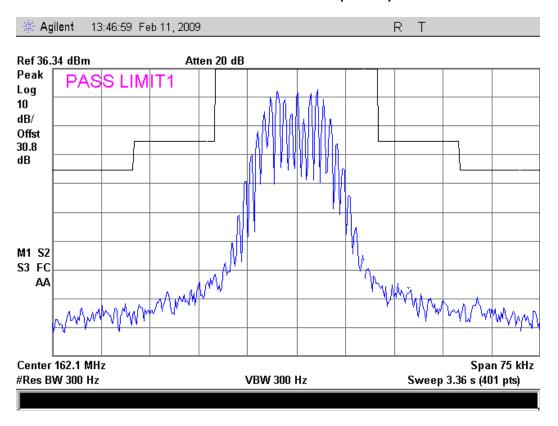
The baseline mask limit lines for the Bandwidth E masks are calculated by the formula: 65dB + 10log(P) which is the lesser value.


Occupied Bandwidth Plots

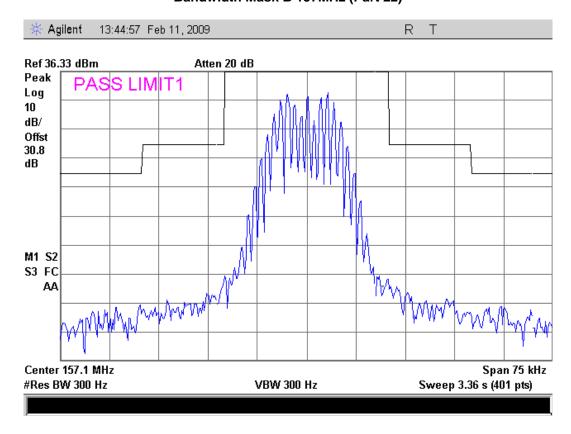
Emission mask B 138MHz (Part 90)



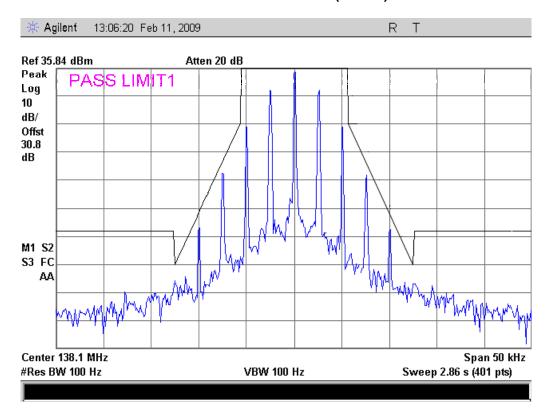
Bandwidth mask B 150MHz (Part 90)



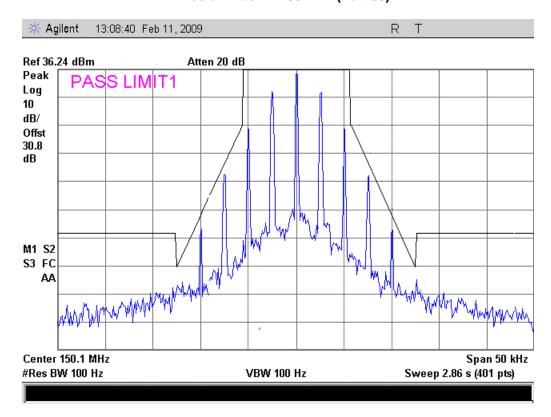
Bandwidth Mask B 174MHz (Part 90)



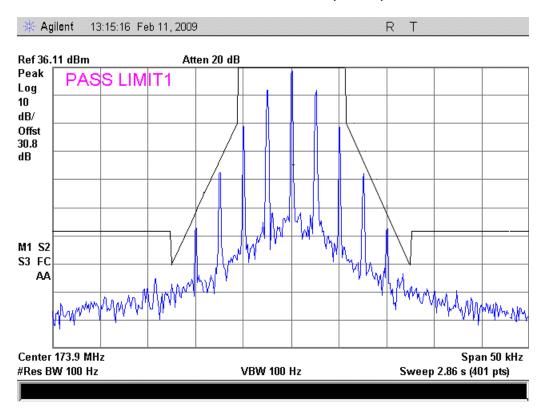
Bandwidth Mask B 162MHz (Part 74)



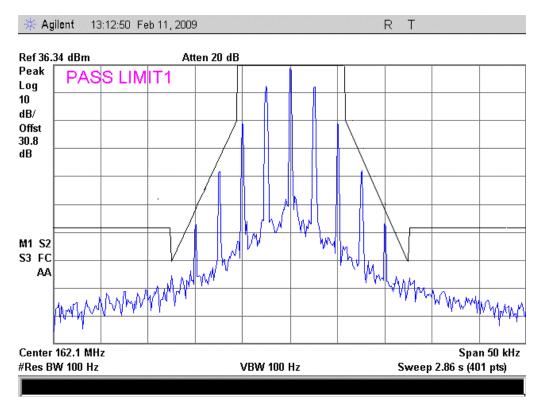
Bandwidth Mask B 157MHz (Part 22)



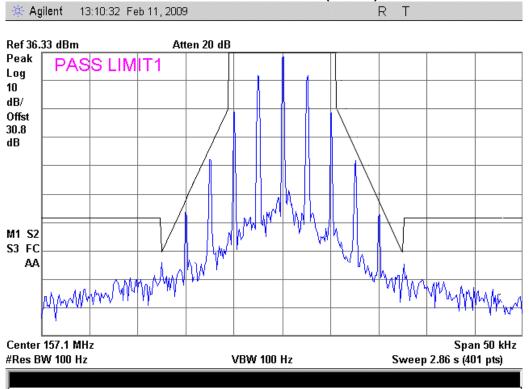
Emission mask D 138 MHz (Part 90)



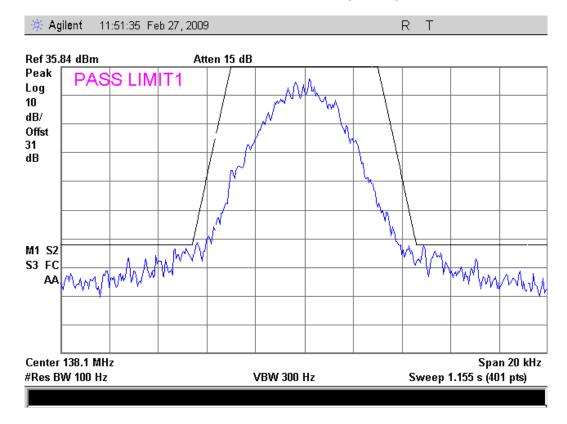
Emission Mask D 150 MHz (Part 90)



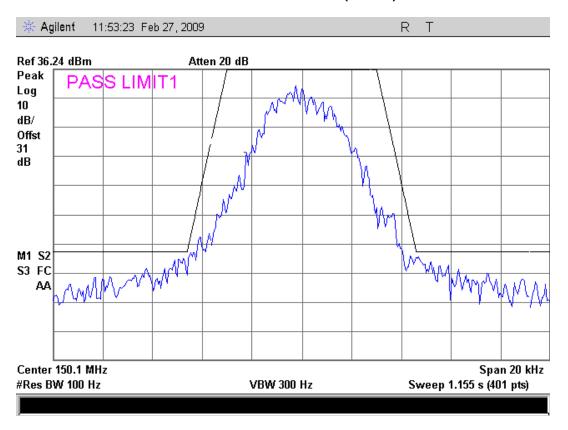
Emission Mask D 174 MHz (Part 90)



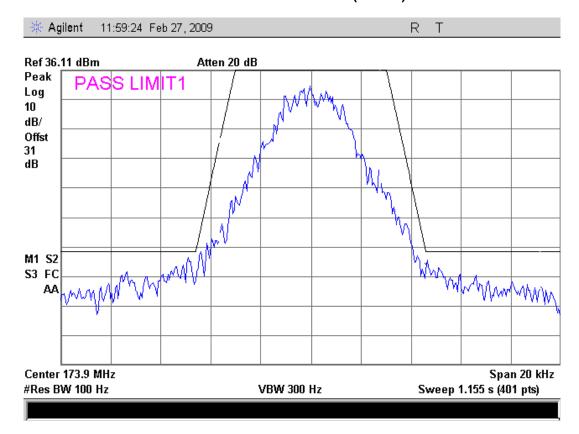
Bandwidth Mask D 162MHz (Part 74)



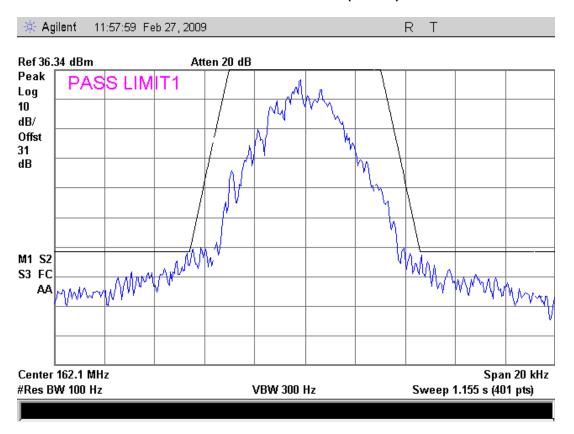
Bandwidth Mask D 157MHz (Part 22)



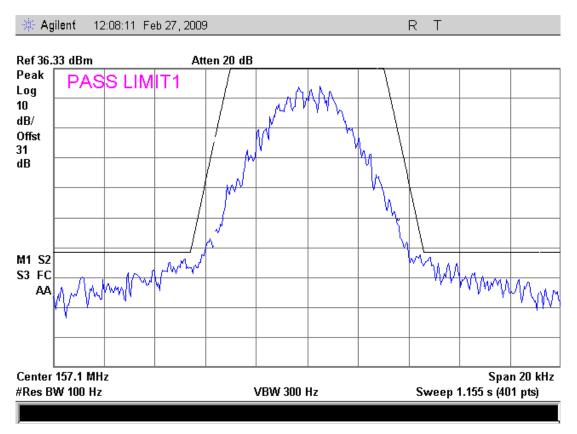
Bandwidth Mask E 138MHz (Part 90)



Bandwidth Mask E 150MHz (Part 90)



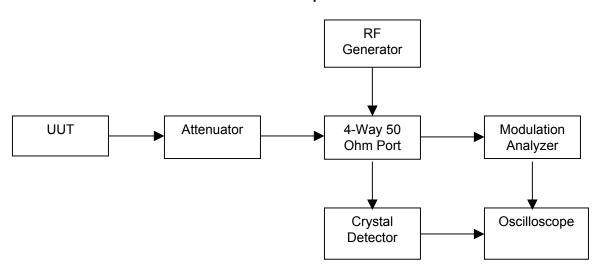
Bandwidth Mask E 174MHz (Part 90)



Bandwidth Mask E 162MHz (Part 74)

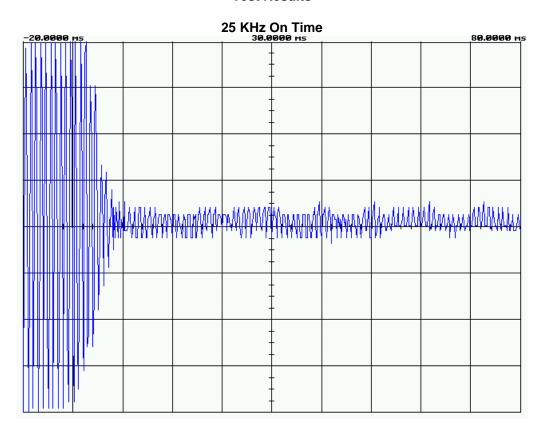
Bandwidth Mask E 157MHz (Part 22)

Name of Test: Transient Frequency Behavior


 Specification:
 90.214
 Engineer: J Erhard

 Test Equipment Utilized:
 100266, i00159, i00321, i00324, i00318
 Test Date: 2/26/09

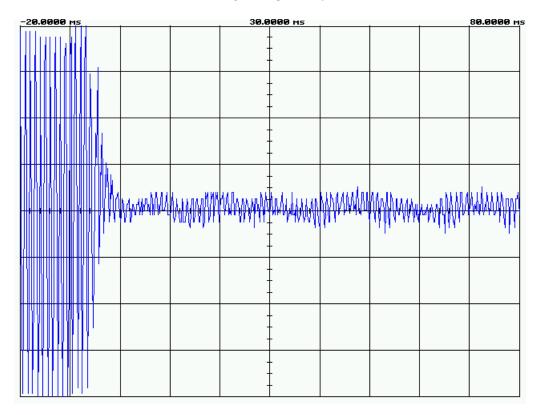
Measurement Procedure


The EUT was setup as shown on the attached page, following TIA-603-C steps a, b, and c as a *guide*. An RF signal generator modulated with a 1 kHz tone and the deviation set to the bandwidth under test tuned to the same frequency as the UUT at a level 30 dBc. An oscilloscope setup using TIA-603 steps j and k was utilized to monitor the carrier on and off time.

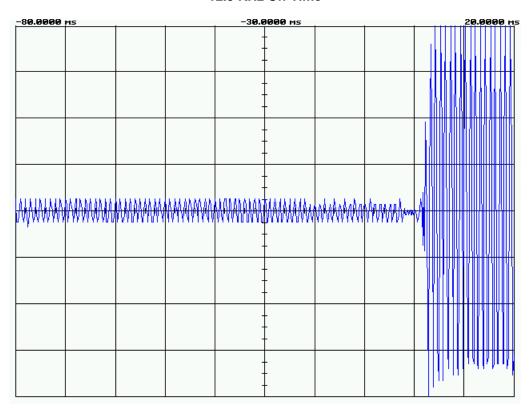
Test Setup



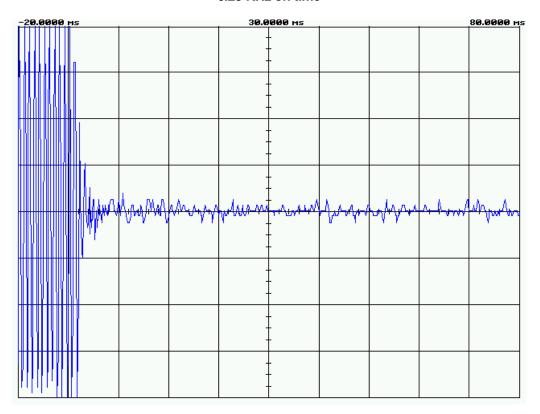
Test Results



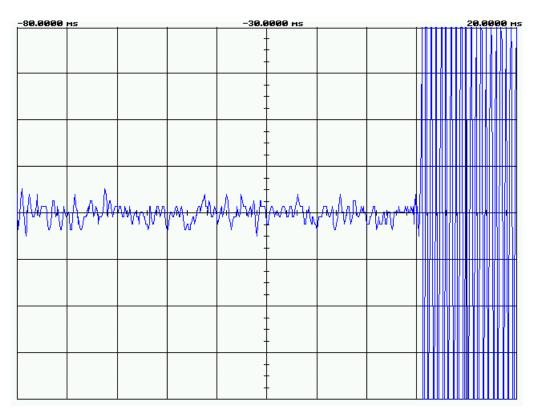
25 KHz Off Time

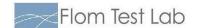


12.5 KHz On Time



12.5 KHz Off Time

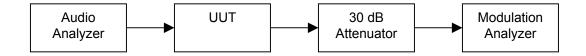




6.25 KHz on time

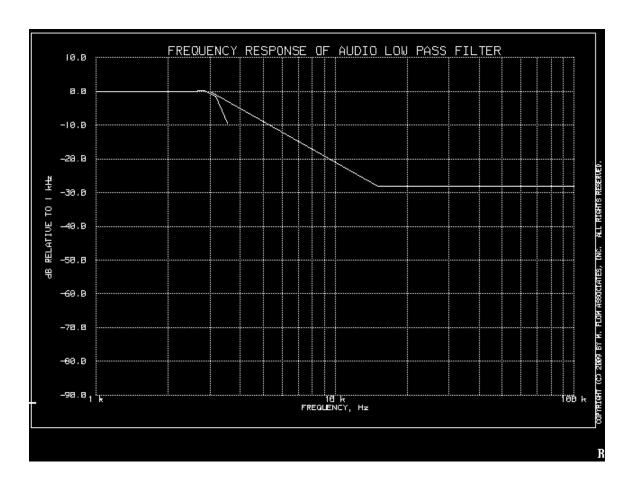
6.25 KHz off time

Name of Test: Audio Low Pass Filter (Voice Input)


 2.1047
 2.1047
 Engineer: J Erhard

 Test Equipment Utilized:
 100324, i00321
 Test Date: 2/26/09

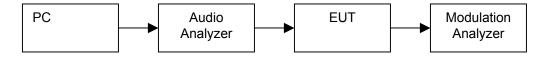
Measurement Procedure


- A) The UUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
- B) The audio output was connected at the output to the modulated stage.

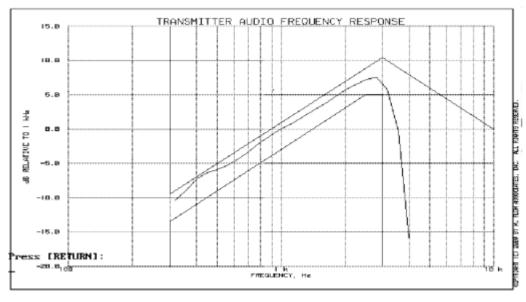
Transmitter Test Set-Up

Measurement Results

This unit is a digital radio and the roll-off for the filter is very linear in the operational band and sharp out of the band,


Name of Test: Audio Frequency Response

Specification:2.1047Engineer: J ErhardTest Equipment Utilized:100324, i00321Test Date: 2/26/09

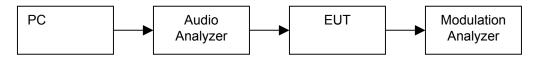

Measurement Procedure

- A) The EUT and test equipment were set up as shown below.
- B) The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- C) The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- D) With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to 50 kHz.
- E) The response in dB relative to 1 kHz was measured, using the HP 8901A Modulation Meter.

Test Setup

Test Results

7

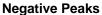

Name of Test: Modulation Limiting

Specification:2.1047(a)Engineer: J ErhardTest Equipment Utilized:100324, i00321Test Date: 2/26/09

Measurement Procedure

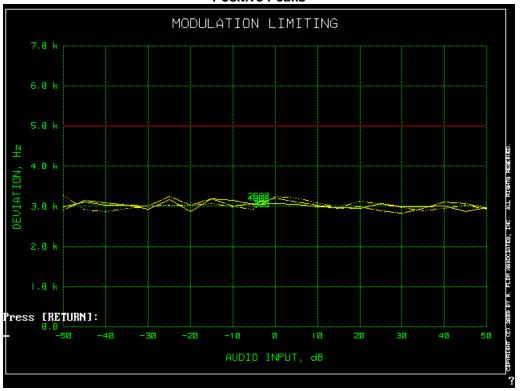
- A) The signal generator was connected to the input of the EUT as shown below.
- B) The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- C) The input level was varied from 30% modulation (±1.5 kHz deviation) to at least 20 dB higher than the saturation point.
- D) Measurements were performed for both negative and positive modulation and the respective results were recorded.

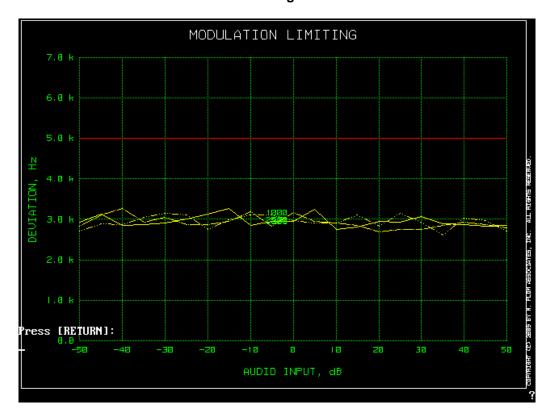
Test Setup



25 KHz Swept Frequency

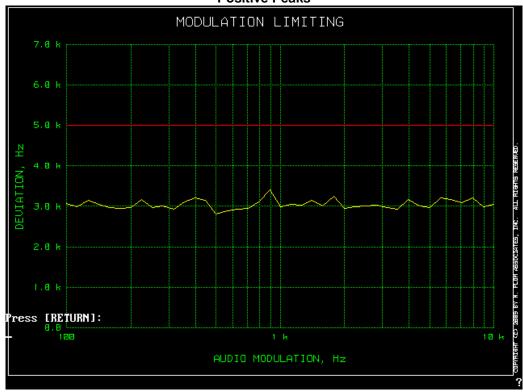
Positive Peaks

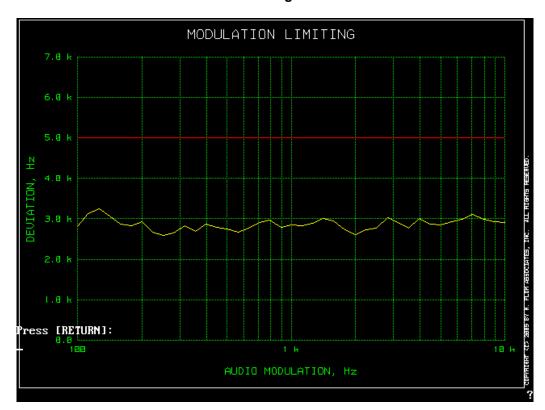




25 KHz Swept Amplitude

Positive Peaks

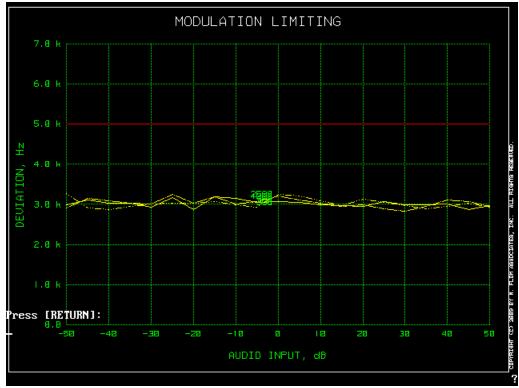

Test Results Negative Peaks



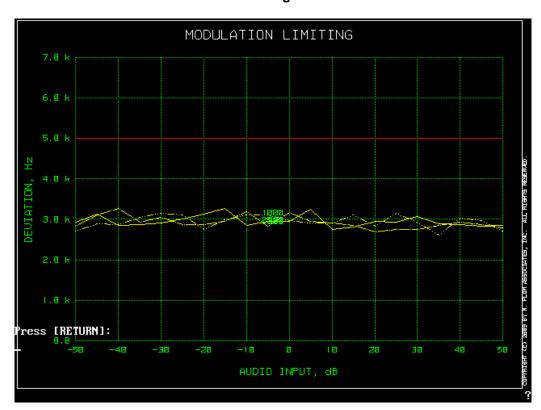
12.5 KHz Swept Frequency

Positive Peaks

Test Results Negative Peaks

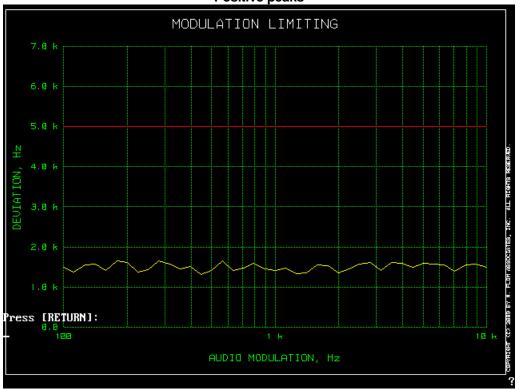


Flom Test Lab 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (866) 311-3268 phone, (480) 926-3598 fax



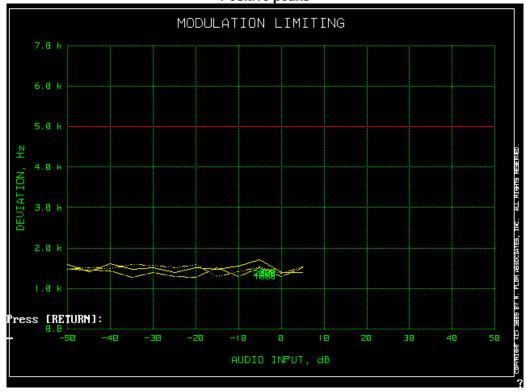
12.5 KHz Swept Amplitude

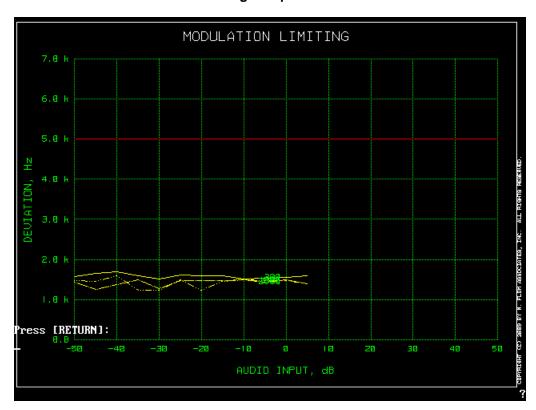
Positive Peaks


Test Results Negative Peaks

6.25 KHz Swept Frequency

Positive peaks

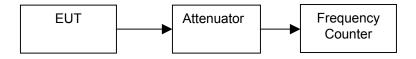

Negative peaks



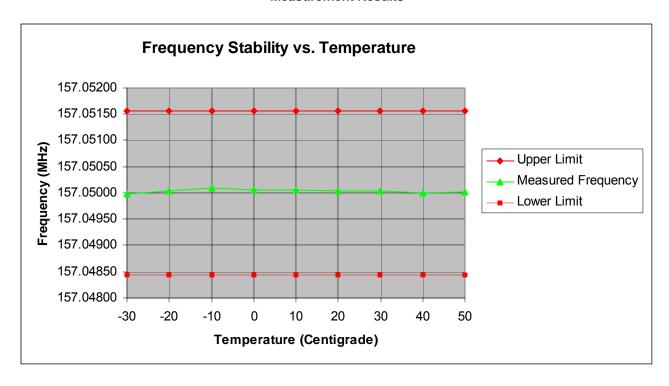
6.25 KHz Swept Amplitude

Positive peaks

Negative peaks


Name of Test: Frequency Stability (Temperature Variation)

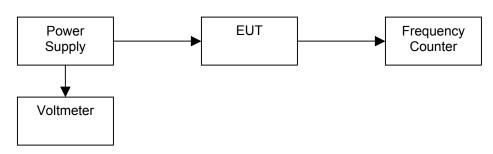
Specification:90.213Engineer: J ErhardTest Equipment Utilized:100019Test Date: 2/26/09


Measurement Procedure

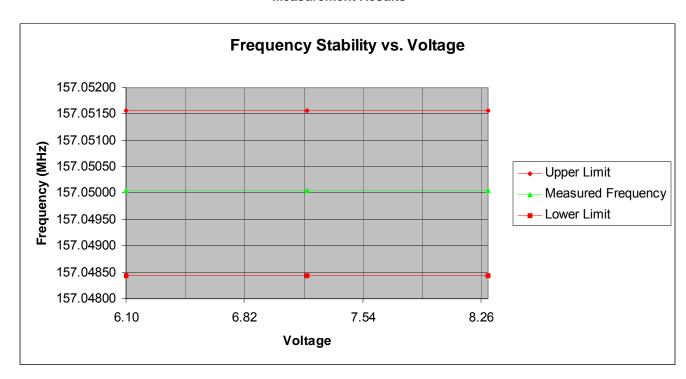
The EUT was placed in an environmental test chamber and the RF output was connected directly to a frequency counter. The temperature was varied from -30°C to 50°C in 10°C increments. After a sufficient time for temperature stabilization the RF output frequency was measured.

Measurement Setup

Measurement Results


Name of Test: Frequency Stability (Voltage Variation)

Specification: 90.213 Engineer: J Erhard
Test Equipment Utilized: 100019, i00319 Test Date: 2/26/09


Measurement Procedure

The EUT was placed in a temperature chamber at $25 \pm 5^{\circ}$ C and connected directly to a frequency counter and variable power supply. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value and the RF output was measured.

Measurement Setup

Measurement Results

Test Equipment Utilized

Description	MFG	Model Number	FTL Asset Number	Last Cal Date	Cal Due Date
Power Supply	HP	6286A	i00005	NCR	NCR
Temperature Chamber	Tenney	Tenney Jr.	i00027	12/8/08	12/08/09
Monopole Antenna Set	Ailtech	DM-105A-T1, T2, T3	i0003, 39, 42, 48	Verified	Verified
Spectrum Analyzer	HP	8566B	i00049	8/22/08	8/22/09
Bi Con Antenna	EMCO	3109B	i00088	10/15/07	10/15/09
Log Periodic Antenna	Aprel	2001	i00089	10/22/07	10/22/09
Tunable Notch Filter	Eagle	TNF-1	i00124	NCR	NCR
Crystal Detector	HP	8472B	i00159	NCR	NCR
Power Meter	HP	E4418B	i00228	10/1/08	10/1/09
Signal Generator	R&S	SMT-03	i00266	NCR	NCR
Power sensor	HP	8482A	i00341	9/30/08	9/30/09
Digitizing Oscilloscope	HP	50402	i00318	Verified	Verified
Modulation Analyzer	HP	8901A	i00321	1/24/08	1/24/09
Audio Analyzer	HP	8903A	i00324	1/24/08	1/24/09
Spectrum Analyzer	Agilent	E4407B	i00331	11/3/08	11/3/09
Frequency Counter	HP	5334B	i00019	1/9/09	1/9/10
Voltmeter	Fluke	87111	i00319	12/5/08	12/5/09

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

END OF TEST REPORT