

	<u>Date(s) of Evaluation</u> February 02-08, 2010	Test Report Serial No. 020210ALH-T1001-S90U	Test Report Revision No. Rev. 1.1 (2nd Release)	
Ť	<u>Test Report Issue Date</u> March 18, 2010	<u>Description of Test(s)</u> Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

SAR TEST REPORT (FCC)								
RF EXPOSURE EVALU	ATION		SPECIFIC	ABSOR	PTION RATE			
APPLICANT / MANUFACTURER	KENWOOD USA CORPORATION				TION			
DEVICE UNDER TEST (DUT)	PORTABLE FM UHF PUSH-TO-TALK RADIO TRANSCEIVER				IO TRANSCEIVER			
DEVICE MODEL(S)	ТК-3360-К2 ТК-3360-М							
DEVICE MODES OF OPERATION			ANALO	DG FM				
MANUF. RATED OUTPUT POWER			5 Watts (C	onducted)				
FREQUENCY RANGE(S) TESTED	FCC		406	.1 - 470.0 M	Hz			
DEVICE IDENTIFIER(S)	FCC ID:			ALH415101				
APPLICATION TYPE			FCC TCB C	ertification				
STANDARD(S) APPLIED			FCC 47 CF	R §2.1093				
		FCC OET	Bulletin 65,	Supplemen	t C (01-01)			
		F	CC KDB 44	7498 D01v0	4			
PROCEDURE(S) APPLIED		FCC KE	B Inquiry T	racking No.	901393			
			IEEE 15	28-2003				
	IEC 62209-1:2005							
	IEC 62209-2 (Draft)							
FCC DEVICE CLASSIFICATION	Licen	sed Non-B	roadcast Tra	insmitter He	eld to Face (TNF)			
RF EXPOSURE CATEGORY		C	ccupationa	/ Controlle	d			
RF EXPOSURE EVALUATION(S)			Face-held &	Body-worn				
DATE(S) OF EVALUATION			February 0					
TEST REPORT SERIAL NO.			020210ALH-	T1001-S90L	J			
TEST REPORT REVISION NO.	Revisi	on 1.1	See p	age 4	March 18, 2010			
		on 1.0	Initial R	elease	March 08, 2010			
TEST REPORT SIGNATORIES		ng Perform	•		eport Prepared By			
		nston - Cel		-	hes - Celltech Labs			
TEST LAB AND LOCATION					eering Laboratory			
					V1X 7R8 Canada			
TEST LAB CONTACT INFO.		.: 250-765-7			: 250-765-7645			
	info@	celltechlat	os.com	www.e	celltechlabs.com			
TEST LAB ACCREDITATION(S)	Test Lab Certificate No. 2470.01							

Applicant:	Kenv	vood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD	
DUT Type:	T Type: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range: 406.1 - 470.0 MH			KEINWOOD		
2010 Celltech Labs Inc. This document is not to be reproduced in who				ole or in part without the prior written	permission of	Celltech Labs Inc.	Page 1 of 134	

Celltech	Date(s) of Evaluation February 02-08, 2010	<u>Test Report Serial No.</u> 020210ALH-T1001-S90U	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lat:	<u>Test Report Issue Date</u> March 18, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION									
	Name		TECH L						
Test Lab Information	Address					owna BC V1	X 7R	3 Canada	
	Name	21-364 Lougheed Road, Kelowna, B.C. V1X 7R8 Canada KENWOOD USA CORPORATION							
Applicant Information	Address	3970 Johns Creek Court, Suite 100, Suwanee, GA 30024 United States							
Standard(s) Applied	FCC		R §2.10		50urt, 50	inte 100, Suwai	iee, e	JA 3002-	
Standard(S) Applied	FCC				upplomon		C		47498 D01v04
Procedure(s) Applied		OET Bulletin 65, Supplement C FCC KDB 447498 D01 KDB Inquiry Tracking No. 901393					+7430 D01004		
Procedure(s) Applied	FCC			ackir	•			150	
	IEEE	1528-2			IEC	62209-1:2005		IEC	62209-2 (Draft)
Device Classification(s)	FCC			Broa	dcast Tra	ansmitter Held t	o Fa	ce (TNF)	
Device Identifier(s)	FCC ID:	ALH4 ²							
Device Model(s)	TK-3360-K2, ⁻					ple Serial No.			I Prototype)
200000							confi	med by	the manufacturer
Device Description	Portable FM L	JHF Pus	h-To-Tal	lk (P1	TT) Radio	o Transceiver			
Frequency Range(s) Tested	406.1 - 470.0	MHz	Manuf	actu	rer's Rat	ted Output Po	wer	5 Watt	s (Conducted)
	36.9 dBm	4.90	Watts	406	6.1 MHz	Test Ch. 1			Av. Conducted
	37.0 dBm	5.01	Watts	417	.0 MHz	Test Ch. 2		w Band	Av. Conducted
	37.0 dBm	5.01	Watts	428	8.0 MHz	Test Ch. 3		w Бапо N _c =5)	Av. Conducted
RF Output Power Level(s) Tested	37.0 dBm	5.01	Watts	439	0.0 MHz	Test Ch. 4	(100)	Av. Conducted	
N Output i ower Level(3) resteu	37.0 dBm	5.01	Watts	450	.0 MHz	Test Ch. 5			Av. Conducted
	37.1 dBm	5.13	Watts	440	.0 MHz	Test Ch. 1	Lic	h Band	Av. Conducted
	37.1 dBm	5.13	Watts	455	5.0 MHz	Test Ch. 2		N _c =3)	Av. Conducted
	37.2 dBm	5.25	Watts	470	.0 MHz	Test Ch. 3	,		Av. Conducted
	Detachable		P/N: K	RA-2	3M	440 - 490 MI	Ηz		Length: 80 mm
Antenna Type(s) Tested	Detachable		P/N: K			400 - 450 MHz			Length: 80 mm
· · · · · · · · · · · · · · · · · · ·	Detachable		P/N: K			440 - 490 MHz			Length: 150 mm
	Detachable		P/N: K	RA-2	7M3	400 - 450 MHz			Length: 171 mm
	Ni-MH		7.2 V			1400 mAh			P/N: KNB-56N
Battery Type(s) Tested	Li-ion		7.4 V			1480 mAh			P/N: KNB-55L
	Li-ion		7.4 V			2000 mAh			P/N: KNB-57L
Body-worn Accessories Tested	Metal Belt-Clip					Plastic Compor			P/N: KBH-12
Audio Accessories Tested	Speaker-Micro					eadset with Boo			
Additional Audio Accessories	Speaker-Micro					eaker-Microph			
Max. SAR Level(s) Evaluated	Face-held		W/kg	1g		TT duty cycle			al / Controlled Exp.
	Body-worn	6.50	W/kg	1g	50% P	TT duty cycle	Oco	cupation	al / Controlled Exp.
FCC/IC Spatial Peak SAR Limit	Head/Body	8.0	W/kg	1g	50% P	TT duty cycle	Oco	cupation	al / Controlled Exp.

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 for the Occupational / Controlled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), IEEE Standard 1528-2003, IEC International Standard 62209-1:2005 and IEC International Draft Standard 62209-2 (106-62209-2-CDV_090323). All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results and statements contained in this report pertain only to the device(s) evaluated. This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

Sum Jund

Test Report Approved By

Sean Johnston Celltech Labs Inc.

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	pe: Portable FM UHF PTT Radio Tran		ransceiver	Transmit Frequency Rang	ge: 406.4	I - 470.0 MHz	KEINWOOD
2010 Celltech La	10 Celltech Labs Inc. This document is not to be reproduced in wh			ble or in part without the prior written	permission of C	Celltech Labs Inc.	Page 2 of 134

	<u>Date(s) of Evaluation</u> February 02-08, 2010	Test Report Serial No. 020210ALH-T1001-S90U	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
s Lab	<u>Test Report Issue Date</u> March 18, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

TABLE OF CONTENTS

1.0 INTRODUCTION	5
2.0 SAR MEASUREMENT SYSTEM	5
3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS	5
4.0 FCC POWER THRESHOLDS FOR PTT DEVICES (<i>f</i> < 0.5 GHz)	6
5.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	6
6.0 SAR MEASUREMENT SUMMARY	7
7.0 MEASURED FLUID DIELECTRIC PARAMETERS	9
8.0 DETAILS OF SAR EVALUATION	10
9.0 SAR EVALUATION PROCEDURES	11
10.0 SYSTEM PERFORMANCE CHECK	11
11.0 SIMULATED EQUIVALENT TISSUES	12
12.0 SAR LIMITS	12
13.0 ROBOT SYSTEM SPECIFICATIONS	13
14.0 PROBE SPECIFICATION (ET3DV6)	14
15.0 PLANAR PHANTOM	14
16.0 DEVICE HOLDER	14
17.0 TEST EQUIPMENT LIST	15
18.0 MEASUREMENT UNCERTAINTIES	16
19.0 REFERENCES	17
APPENDIX A - SAR MEASUREMENT DATA	18
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	101
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	108
APPENDIX E - DIPOLE CALIBRATION	132
APPENDIX F - PROBE CALIBRATION	133
APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY	134

Applicant:	Kenv	wood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Tr	ransceiver	ansceiver Transmit Frequency Range:		.1 - 470.0 MHz	KENWOOD
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 3 of 134

Celltech	<u>Date(s) of Evaluation</u> February 02-08, 2010	Test Report Serial No. 020210ALH-T1001-S90U	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> March 18, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

	REVISION HISTORY								
REVISION NO.	RELEASE DATE								
	1. Added Measurement Uncertainty table (page 16)								
1.1	2. Added "baseline" test setup photos (page 112)	March 18, 2010							
	3. Added antenna-to-belt-clip distances and photos (pages 116-118)								
1.0	Initial Release	March 08, 2010							

Applicant:	· · · ·		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:			ransceiver	Transmit Frequency Rang	e: 406.1 - 470.0 MHz		KEINWOOD
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 4 of 134	

Date(s) of Evaluation February 02-08, 2010	Test Report Serial No. 020210ALH-T1001-S90U	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

1.0 INTRODUCTION

This measurement report demonstrates that the Kenwood USA Corporation Models: TK-3360-K2, TK-3360-M Portable FM UHF PTT Radio Transceiver complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [2]), IEEE Standard 1528-2003 (see reference [3]), IEC Standard 62209-1:2005 (see reference [4]) and IEC Draft Standard 62209-2 (see reference [5]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluations and the measurement equipment used are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

MEASURED RF CONDUCTED AVERAGE OUTPUT POWER LEVELS										
N _c ¹	Antenna Band	Test Freq.	Mode	dBm	Watts					
		406.1 MHz	CW	36.9	4.90					
		417.0 MHz	CW	37.0	5.01					
5	Low	428.0 MHz	CW	37.0	5.01					
		439.0 MHz	CW	37.0	5.01					
		450.0 MHz	CW	37.0	5.01					
		440.0 MHz	CW	37.1	5.13					
3	High	455.0 MHz	CW	37.1	5.13					
		470.0 MHz	CW	37.2	5.25					
Notes	Notes									
1. The test channels were selected in accordance with the procedures specified in FCC KDB 447498 Section 6) c).										
2. The RF cond using a Gigatron	2. The RF conducted output power levels of the DUT were measured by Celltech prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector.									

Applicant:	Kenv	Kenwood USA Corporation		Kenwood USA Corporation Models: TK-3360-K2, TK-3360-M FC		FCC ID:	ALH415101	KENWOOD
DUT Type:	Porta	ortable FM UHF PTT Radio Transceiver		Portable FM UHF PTT Radio Transceiver Transmit Frequency Range: 406.1 -			1 - 470.0 MHz	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 5 of 134		

	<u>Date(s) of Evaluation</u> February 02-08, 2010	<u>Test Report Serial No.</u> 020210ALH-T1001-S90U	Test Report Revision No. Rev. 1.1 (2nd Release)	
Celltech	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testry and Engineering Servois Lab	March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	

4.0 FCC POWER THRESHOLDS FOR PTT DEVICES ($f \le 0.5$ GHz)

FCC SAR Evaluation P	ower Thresholds for PTT De	Manufacturer's Rate	d RF Output Power	
Exposure Conditions	P mW (General Population)	P mW (Occupational)	100% PTT Duty Cycle	50% PTT Duty Cycle
Held to face, <i>d</i> ≥ 2.5 cm	250	1250	5 Watts	2.5 Watts
Body-worn, <i>d</i> ≥ 1.5 cm	200	1000		
Body-worn, <i>d</i> ≥ 1.0 cm	150 750		5 Watts	2.5 Watts
 compared with these three The closest distance betw determine the power three 	ween the user and the device o	1. The conducted output exceeds the FCC thresh requirement.		

5.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within \pm 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within \pm 100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, \pm 25 MHz < 300 MHz and \pm 50 MHz \geq 300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [7]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	<u>+</u> 50 MHz (≥ 300 MHz)
	406.1 MHz	43.9 MHz	< 50 MHz ¹
	417.0 MHz	33 MHz	< 50 MHz ¹
	428.0 MHz	22 MHz	< 50 MHz ¹
450 MHz	439.0 MHz	11 MHz	< 50 MHz ¹
430 MHZ	450.0 MHz	0 MHz	< 50 MHz ¹
	440.0 MHz	10 MHz	< 50 MHz ¹
	455.0 MHz	5 MHz	< 50 MHz ¹
	470.0 MHz	20 MHz	< 50 MHz ¹
Note: 1. Probe calibration and	measurement frequency interval is	< 50 MHz; therefore the additi	onal steps were not required.

Applicant:	Kenv	Kenwood USA Corporation Mo		TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Rang	ge: 406.	1 - 470.0 MHz	KEINWOOD	
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 6 of 134

Celltech Testrg and Engeneering Services Late
--

<u>Date(s) of Evaluation</u> February 02-08, 2010	Test Report Serial No. 020210ALH-T1001-S90U	Test Report Revision No. Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

6.0 SAR MEASUREMENT SUMMARY

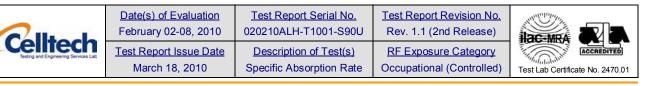
	FACE-HELD SAR EVALUATION RESULTS																						
Test Date	FCC Test Procedure	Antenna Band	Test Freq.	Antenna Part No.	Battery Part No.	Dist to P	vice tance Planar	Cond. Power Before		red SAR W/kg)	SAR Drift During	Scaled with o 1g (V											
	Description						ntom	Test		ity Cycle	Test	PTT Du											
			MHz			DUT	Antenna	Watts	100%	50%	dB	100%	50%										
Feb 4					KNB-56N	2.5 cm	3.7 cm	37.0	5.24	2.62	-0.696	6.15	3.08										
Feb 5	BASELINE /			KRA-23M3	KNB-55L	2.5 cm	3.7 cm	37.0	5.64	2.82	-0.453	6.26	3.13										
Feb 5	HIGHEST SAR	Low	428.0		KNB-57L	2.5 cm	3.7 cm	37.0	4.82	2.41	-0.514	5.43	2.72										
Feb 4	SEARCH				KNB-56N	2.5 cm	3.7 cm	37.0	5.90	2.95	-0.358	6.41	3.21										
Feb 4	PROCEDURE			KRA-27M3	KNB-55L	2.5 cm	3.7 cm	37.0	5.79	2.90	-0.270	6.16	3.08										
Feb 4					KNB-57L	2.5 cm	3.7 cm	37.0	5.26	2.63	-0.340	5.69	2.85										
Feb 4					KNB-56N	2.5 cm	3.7 cm	37.1	5.83	2.92	-0.619	6.72	3.36										
Feb 4	BASELINE /			KRA-23M	KNB-55L	2.5 cm	3.7 cm	37.1	6.00	3.00	-0.396	6.57	3.29										
Feb 4	HIGHEST				KNB-57L	2.5 cm	3.7 cm	37.1	5.99	3.00	-0.425	6.61	3.31										
Feb 5	SAR SEARCH	High	455.0		KNB-56N	2.5 cm	3.7 cm	37.1	6.63	3.32	-0.510	7.46	3.73										
Feb 5	PROCEDURE			KRA-27M	KNB-55L	2.5 cm	3.7 cm	37.1	7.08	3.54	-0.369	7.71	3.86										
Feb 5													KNB-57L	2.5 cm	3.7 cm	37.1	6.55	3.28	-0.309	7.03	3.52		
Feb 5				KRA-23M3	KNB-55L	2.5 cm	3.7 cm	36.9	2.86	1.43	0.127	~	~										
Feb 5			406.1	KRA-27M3	KNB-55L	2.5 cm	3.7 cm	36.9	4.64	2.32	-0.187	4.84	2.42										
Feb 5				KRA-23M3	KNB-55L	2.5 cm	3.7 cm	37.0	4.40	2.20	-0.155	4.56	2.28										
Feb 5	REMAINING	Low	Low	Low	Low	Low	Low	Low		417.0	KRA-27M3	KNB-55L	2.5 cm	3.7 cm	37.0	6.04	3.02	-0.280	6.44	3.22			
Feb 5	TEST CHAN. REDUCTION								Low		KRA-23M3	KNB-55L	2.5 cm	3.7 cm	37.0	3.75	1.88	-0.573	4.28	2.14			
Feb 5													439.0	KRA-27M3	KNB-55L	2.5 cm	3.7 cm	37.0	4.96	2.48	-0.235	5.24	2.62
Feb 8												KRA-23M3	KNB-55L	2.5 cm	3.7 cm	37.0	2.68	1.34	-0.390	2.93	1.47		
Feb 8	•		450.0	KRA-27M3	KNB-55L	2.5 cm	3.7 cm	37.0	5.06	2.53	-0.352	5.49	2.75										
Feb 8				KRA-23M	KNB-55L	2.5 cm	3.7 cm	37.1	4.02	2.01	-0.007	4.03	2.01										
Feb 8	REMAINING		440.0	KRA-27M	KNB-55L	2.5 cm	3.7 cm	37.1	4.41	2.21	-0.096	4.51	2.26										
Feb 8	TEST CHAN. REDUCTION	High	470.0	KRA-23M	KNB-55L	2.5 cm	3.7 cm	37.2	5.63	2.82	-0.373	6.14	3.07										
Feb 8			470.0	KRA-27M	KNB-55L	2.5 cm	3.7 cm	37.2	6.40	3.20	-0.354	6.94	3.47										
	SAR LIMIT(S)			HEAD			SPATIA	L PEAK		RF EXPOSURI		E CATEGO	DRY										
F	FCC 47 CFR 2.10	93		8.0 W/kg			averaged o	ver 1 gram	1	Oc	cupational	/ Control	ed										
Test Dat	e Fluid Type	Ambier	nt Temp.	mp. Fluid Temp. Fluid De		Depth	Atmosph	eric Press	ure F	Relative Hu	midity	թ (K g	/m³)										
Feb 04	450 Head	23.	5 °C	22.8 °C ≥ 15 c		5 cm	10	1.1 kPa		35%		100	00										
Feb 05					35%		100																
Feb 08	450 Head		8 °C	21.5 °C	≥ 15	5 cm	10	1.1 kPa		35%	_	100	00										
		Battery Typ						A	ntenna Ty	/pes Teste	d												
	(NB-56N	Ni-MF			100 mAh		-23M Stub (KRA-27	M Whip (L	ength = 15	0 mm)										
	(NB-55L	Li-ion		· · ·	180 mAh		23M3 Stub				M3 Whip (L												
P/N: ł	KNB-57L	Li-ion		7.4 V, 20	000 mAh																		

Applicant:	Kenwood USA Corporation		Kenwood USA Corporation Models: TK-3360-K2, TK-3360-M FCC I		Kenwood USA Corporation Models: TK-3360-K2, TK-3360-M FC		FCC ID:	ALH415101	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range: 406.1 - 470.0 MHz			KEINWOOD		
2010 Celltech La	abs Inc.	This document is not to be rep	Page 7 of 134						

Celltech	<u>Date(s) of Evaluation</u> February 02-08, 2010	Test Report Serial No. 020210ALH-T1001-S90U	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lat:	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	ACCREDITED
	March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

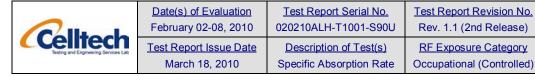
	BODY-WORN SAR EVALUATION RESULTS														
Test Date	FCC Test Proc.		Freq.	Antenna P/N (KRA-)	Battery P/N (KNB-)		ssory e(s)	Dev Dista to Pl Phar	anar	Cond. Power Before Test	1	asured SAR Ig (W/kg)	SAR Drift During Test	with o 1g (V	d SAR droop V/kg)
	Desc		MHz	_(,	(Body	Audio	DUT	ANT.	Watts	100	Duty Cycle % 50%	dB	100%	ty Cycle 50%
Feb 8				23M3	56N	n/a	n/a	1.0	2.9	37.0	7.6		-0.184	7.99	4.00
Feb 8	Note		417.0	27M3	56N	n/a	n/a	1.0	2.9	37.0	8.8		-0.308	9.54	4.77
Feb 8	Note '	I Low	439.0	23M3	56N	n/a	n/a	1.0	2.9	37.0	5.1	8 2.59	-0.626	5.98	2.99
Feb 2			439.0	27M3	56N	n/a	n/a	1.0	2.9	37.0	8.8		-0.420	9.73	4.87
Feb 2	Note '	l High	455.0	23M	56N	n/a	n/a	1.0	2.9	37.1	10.		-0.682	11.8	5.90
Feb 2				27M	56N	n/a	n/a	1.0	2.9	37.1	11.		-0.586	12.6	6.30
Feb 8					56N		Spkr-Mic	1.0	2.9	37.0	8.8		-0.477	9.82	4.91
Feb 8				23M3	551		Headset	1.0	2.9	37.0	9.4		-0.440	10.4	5.20
Feb 8 Feb 8					55L 57L	-	Headset Headset	1.5 1.3	2.7 2.7	37.0 37.0	8.2 9.5		-0.219 -0.158	8.72 9.88	4.36 4.94
Feb 8			417.0				Spkr-Mic	1.0	2.7	37.0	9.5		-0.138	10.8	4.94 5.40
Feb 8					56N		Headset	1.0	2.9	37.0	10.		-0.495	11.5	5.75
Feb 8				27M3	55L	-	Headset	1.5	2.7	37.0	10.		-0.169	10.6	5.30
Feb 8					57L		Headset	1.3	2.7	37.0	11.		-0.293	11.8	5.90
Feb 8	Note 2	2 Low					Spkr-Mic	1.0	2.9	37.0	5.5		-0.991	6.97	3.49
Feb 8		İ	ĺ	23M3	56N		Headset	1.0	2.9	37.0	5.6	8 2.84	-0.800	6.83	3.42
Feb 8				201010	55L		Headset	1.5	2.7	37.0	5.7		-0.685	6.70	3.35
Feb 8			439.0		57L	Belt-Clip	Headset	1.3	2.7	37.0	5.4		-0.692	6.33	3.17
Feb 2			10010		56N	Dont onp	Spkr-Mic	1.0	2.9	37.0	9.3		-0.468	10.5	5.25
Feb 2				27M3			Headset	1.0	2.9	37.0	9.1		-0.575	10.5	5.25
Feb 2					55L	-	Spkr-Mic	1.5	2.7	37.0	8.9		-0.292	9.53	4.77
Feb 2					57L		Spkr-Mic	1.3 1.0	2.7 2.9	37.0 37.1	9.3 9.6		-0.284 -0.596	10.0 11.1	5.00 5.55
Feb 2 Feb 3					56N		Spkr-Mic Headset	1.0	2.9	37.1	9.0		-0.596	11.1	5.65
Feb 3				23M	55L	-	Headset	1.0	2.5	37.1	10.		-0.260	11.0	5.50
Feb 3					57L		Headset	1.3	2.7	37.1	10.		-0.356	11.6	5.80
Feb 3	Note 2	2 High	455.0			-	Spkr-Mic	1.0	2.9	37.1	10.		-0.461	11.7	5.85
Feb 3				0714	56N		Headset	1.0	2.9	37.1	11.		-0.559	13.0	6.50
Feb 3				27M	55L		Headset	1.5	2.7	37.1	11.	2 5.60	-0.247	11.9	5.95
Feb 3					57L		Headset	1.3	2.7	37.1	11.	2 5.60	-0.547	12.7	6.35
Feb 8			406.1	23M3	56N		Headset	1.0	2.9	36.9	7.0	2 3.51	-0.053	7.11	3.56
Feb 3			400.1	27M3	57L		Spkr-Mic	1.3	2.7	36.9	8.8		-0.171	9.16	4.58
Feb 8	Note 3	B Low	428.0	23M3	56N		Headset	1.0	2.9	37.0	8.4		-0.642	9.74	4.87
Feb 3				27M3	57L		Spkr-Mic	1.3	2.7	37.0	9.7		-0.164	10.2	5.10
Feb 8			450.0	23M3	56N	Belt-Clip	Headset	1.0	2.9	37.0	3.6		-0.474	4.08	2.04
Feb 3 Feb 8				27M3 23M	57L 57L		Spkr-Mic Headset	1.3 1.3	2.7 2.7	37.0 37.1	5.8 9.7		-0.278	6.25 10.2	3.13 5.10
Feb 8 Feb 3			440.0	23M 27M	57L 56N		Headset	1.3	2.7	37.1	9.7		-0.211 -0.294	10.2	5.10
Feb 3	Note 3	3 High		27M	57L		Headset	1.3	2.3	37.1	8.9		-0.324	9.60	4.80
Feb 3			470.0	27M	56N		Headset	1.0	2.9	37.2	10.		-0.404	11.5	5.75
	SAR	LIMIT(S)			BODY				TIAL PEA				POSURE		
F		CFR 2.109	3		8.0 W/kg				d over 1				upational /		
	NOTES: 1 - Baseline SAR Evaluations (without accessories) 2 - Highest SAR Search Procedures 3 - Remaining Test Channel Reduction														
Test Da		Fluid Type		nbient Temp		d Temp.	•	Depth		oheric Pres	SURA	Relative I	<u> </u>		(g/m ³)
Feb 02		450 Body		23.8 °C		2.5 °C		5 cm	•	01.1 kPa		35			000
						2.8 °C				01.1 kPa					000
	Feb 03 450 Body 23.5 °C Feb 09 450 Body 23.5 °C					5 cm				35%					
				000											
					Battery Typ								tenna Type		
KNB-	KNB-56N Ni-MH 7.2V, 1400mAh KNB-55L Li-ion 7.4V, 1480mAh KNB-57L Li-ion 7.4V, 2000mAh KRA-23M/M3 Stub KRA-27M/M3 Whip														

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver			Transmit Frequency Range: 406.1 - 470.0 MHz			KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 8 of 134		


March 18, 2010

7.0 MEASURED FLUID DIELECTRIC PARAMETERS

406	.1 MHz B	Body - Fe	b. 03	406	1 MHz	Body - Fe	b. 08	41	7 MHz E	Body - Fel	b. 08	42	8 MHz B	Body - Feb	. 03
		Constan				Constan				c Constar				c Constan	
	arget	Inter.	Dev.	450 T		Inter.	Dev.		arget	Inter.	Dev.		arget	Inter.	Dev.
56.7	<u>+</u> 5%	57.5	+1.4%	56.7	<u>+</u> 5%	56.8	+0.2%	56.7	<u>+</u> 5%	56.9	+0.4%	56.7	<u>+</u> 5%	56.9	+0.4%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	onductiv	vity σ (mh	o/m)	Co	nductiv	/ity σ (mho	o/m)
450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.
0.94	<u>+</u> 5%	0.89	-5.0%	0.94	<u>+</u> 5%	0.91	-3.2%	0.94	<u>+</u> 5%	0.92	-2.1%	0.94	<u>+</u> 5%	0.92	-2.1%
42	8 MHz B	ody - Feb	. 08	439) MHz B	lody - Feb	o. 02	43	9 MHz E	Body - Fel	b. 08	440 MHz Body - Feb. 03			o. 03
D	ielectric	Constan	tε _r	Di	electric	: Constan	tε _r	D	ielectri	c Constar	nt ε _r	D	ielectri	c Constan	tε _r
450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
56.7	<u>+</u> 5%	56.9	+0.4%	56.7	<u>+</u> 5%	57.2	+0.9%	56.7	<u>+</u> 5%	56.5	-0.3%	56.7	<u>+</u> 5%	56.7	0.0%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	onductiv	vity σ (mh	o/m)	Co	nductiv	ity σ (mho	o/m)
450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
0.94	<u>+</u> 5%	0.92	-2.1%	0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.94	0.0%
44(0 MHz B	ody - Feb	. 08	450) MHz B	ody - Feb	o. 03	45	0 MHz E	Body - Fel	b. 08	45	5 MHz B	Body - Feb	o. 02
D	ielectric	Constan	tε _r	Di	electric	Constan	tε _r	D	ielectri	c Constar	nt ε _r	D	ielectri	c Constan	tε _r
450 T	arget	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.
56.7	<u>+</u> 5%	56.5	-0.3%	56.7	<u>+</u> 5%	57.4	+1.2%	56.7	<u>+</u> 5%	56.3	-0.7%	56.7	<u>+</u> 5%	57.1	+0.7%
Co	nductivi	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	onductiv	vity σ (mh	o/m)	Conductivity σ (ml		vity σ (mho	o/m)
450 T	arget	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.
0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.94	0.0%	0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.95	+1.1%
45	5 MHz B	ody - Feb	. 03	470) MHz B	lody - Feb	o. 03	406	6.1 MHz	Head - Fe	eb. 05	41	7 MHz I	lead - Feb	. 05
D	ielectric	Constan	tε _r	Di	electric	: Constan	tε _r	D	ielectri	c Constar	nt ε _r	D	ielectri	c Constan	tε _r
450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.
56.7	<u>+</u> 5%	57.1	+0.7%	56.7	<u>+</u> 5%	56.9	+0.4%	43.5	<u>+</u> 5%	45.1	+3.7%	43.5	<u>+</u> 5%	45.3	+4.1%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	onductiv	vity σ (mh	o/m)	Co	nductiv	luctivity σ (mho/m)	
450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.
0.94	<u>+</u> 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.96	+2.1%	0.87	<u>+</u> 5%	0.84	-3.5%	0.87	<u>+</u> 5%	0.85	-2.4%
42	8 MHz H	ead - Feb	. 04	428	3 MHz H	lead - Feb	. 05	43	9 MHz H	lead - Feb	o. 05	44	0 MHz H	lead - Feb	. 08
D	ielectric	Constan	tε _r	Di	electric	: Constan	tε _r	D	ielectri	c Constar	nt ε _r	D	ielectri	c Constan	tε _r
450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
43.5	<u>+</u> 5%	45.6	+4.8%	43.5	<u>+</u> 5%	45.2	+3.9%	43.5	<u>+</u> 5%	44.8	+3.0%	43.5	<u>+</u> 5%	45.1	+3.7%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	onductiv	vity σ (mh	o/m)	Co	nductiv	ity σ (mho	o/m)
450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
0.87	<u>+</u> 5%	0.83	-4.6%	0.87	<u>+</u> 5%	0.86	-1.2%	0.87	<u>+</u> 5%	0.86	-1.2%	0.87	<u>+</u> 5%	0.86	-1.2%
45	0 MHz H	ead - Feb	. 08	455	5 MHz H	lead - Feb	. 04	45	5 MHz H	lead - Feb	o. 05	47	0 MHz H	lead - Feb	. 08
D	ielectric	Constan	tε _r	Di	electric	: Constan	tε _r	D	ielectri	c Constar	nt ε _r	D	ielectri	c Constan	tε _r
450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
43.5	<u>+</u> 5%	44.4	+2.1%	43.5	<u>+</u> 5%	44.4	+2.1%	43.5	<u>+</u> 5%	44.5	+2.3%	43.5	<u>+</u> 5%	44.5	+2.3%
Conductivity σ (mho/m) Conductivity σ (mho/m)			o/m)	Conductivity σ (mho/m)) Conductivity σ (mho/m)								
00															_
-	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.


	Applicant:	t: Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC	FCC ID: ALH415101		KENWOOD
	DUT Type:	e: Portable FM UHF PTT Radio Transceiv		ransceiver	Transmit Frequency Range: 406.1		- 470.0 MHz	KENWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior writt					permis	sion of C	Celltech Labs Inc.	Page 9 of 134	

8.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels evaluated for SAR were selected in accordance with the procedures described in FCC KDB 447498 Section 6)c).
- 2. The DUT was evaluated for SAR in accordance with the FCC pre-approved test plan and guidance document "interim ptt device test redux adjusted4" per FCC KDB Inquiry Tracking No. 901393.
- 3. The face-held SAR evaluations were performed with the front of the radio placed parallel to the outer surface of the planar phantom. A 2.5 cm spacing was maintained between the front side of the DUT and the outer surface of the planar phantom. The DUT was firstly evaluated at the mid channel of the antenna band with all three battery options ("Highest SAR Search Procedure"). The remaining test frequencies ("Remaining Test Channel Reduction") as required per antenna band based on the number of test channels equation provided in FCC KDB 447498 Section 6c were evaluated with the worst-case battery from the "Highest SAR Search Procedure" evaluations.
- 4. The body-worn SAR evaluations were performed with the back of the radio facing the outer surface of the planar phantom and the DUT battery was aligned parallel to the planar phantom.
- 5. The "Baseline" body-worn SAR evaluations were performed at the mid channel of the antenna band without any body-worn and audio accessories attached to the DUT. The baseline SAR evaluations were performed with the equivalent air-gap separation distance that the belt-clip accessory provides when attached to the back of the radio. The Ni-MH battery (KNB-56N) was selected as the primary battery of the three available battery options for the "Baseline" SAR evaluations based on the lesser spacing between all the battery options from the back of the radio (battery housing) to the user's body (1.0 cm) with the belt-clip accessory attached.
- 6. The "Highest SAR Search Procedure" body-worn SAR evaluations were performed at the mid channel of the antenna band with the belt-clip body-worn accessory attached to the DUT and touching the outer surface of the planar phantom. The DUT was firstly evaluated with the Speaker-Microphone (KMC-45) and Headset-Microphone (KHS-21) audio accessories consecutively with the Ni-MH battery (KNB-56N). The Ni-MH battery (KNB-56N) was selected as the primary battery of the three available battery options for the "Highest SAR Search Procedure" SAR evaluations based on the lesser spacing it provides from the back of the radio (battery housing) to the user's body (1.0 cm). The remaining battery options were evaluated with the worst-case audio accessory from the previous evaluations.
- 7. The (2) additional speaker-microphone audio accessories listed on page 2 of this test report (P/N: KMC-17 and P/N: KMC-21) are identical to the speaker-microphone audio accessory (P/N: KMC-45) evaluated for SAR with the DUT except for the construction detail of the passive speaker-microphone head. SAR evaluations of the DUT with the (2) additional speaker-microphone audio accessories were not required (as per FCC KDB Inquiry Tracking No. 901393).
- 8. The "Remaining Test Channel Reduction" body-worn SAR evaluations were performed for the remaining test frequencies (required per antenna band based on the number of test channels equation provided in FCC KDB 447498 Section 6c). The SAR evaluations for the remaining test frequencies were performed with the worst-case battery and audio accessory combination (per antenna band) from the "Highest SAR Search Procedure" evaluations.
- 9. The area scan evaluation was performed with a fully charged battery. After the area scan was completed the radio was cooled down and the battery was replaced with a fully charged battery prior to the zoom scan evaluation.
- 10. A SAR-versus-Time power droop evaluation was performed in the test configuration that reported the maximum scaled SAR level. See Appendix A (SAR Test Plots) for SAR-versus-Time power droop evaluation plot.
- 11. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 12. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 13. The DUT was tested at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 14. The conducted output power levels of the DUT referenced in this report were measured by Celltech Labs Inc. prior to the SAR evaluations at the antenna connector of the DUT using a Gigatronics 8652A Universal Power Meter in accordance with FCC 47 CFR §2.1046.

Applicant:	: Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Type: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range: 406		1 - 470.0 MHz	KEINWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 10 of 134		

9.0 SAR EVALUATION PROCEDURES

a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.

(ii) For body-worn and face-held devices a planar phantom was used.

b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

10.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, daily system checks were performed with a Fiberglas planar phantom and SPEAG 450 MHz dipole (see Appendix B) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [3]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 398 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ from the SAR system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

			SY	STEM F	PERFO	RMAN	ICE CHE		ALUA	ATIONS	5				
Equiv. Tissue	SAR 1g (W/kg)			Dielect	ric Cons _{&r}	tant	Conductivity σ (mho/m)		ρ	Amb.	Fluid	Fluid	Humid.	Barom. Press.	
Freq. (MHz)	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	(Kg/m ³)	(°C)	(°C)	(cm)	(%)	(kPa)
Head 450	1.87 ±10%	1.87	0.0%	43.5 ±5%	42.9	-1.4%	0.87 ±5%	0.87	0.0%	1000	23.5	22.8	≥ 15	35	101.1
Head 450	1.87 ±10%	1.87	0.0%	43.5 ±5%	44.3	+1.8%	0.87 ±5%	0.87	0.0%	1000	22.2	20.9	≥ 15	35	101.1
Head 450	1.87 ±10%	1.87	0.0%	43.5 ±5%	44.4	+2.0%	0.87 ±5%	0.88	+1.1%	1000	23.8	22.5	≥ 15	35	101.1
Body 450	1.78 ±10%	1.89	+6.2%	56.7 ±5%	56.9	+0.3%	0.94 ±5%	0.95	+1.0%	1000	23.8	22.5	≥ 15	35	101.1
Body 450	1.78 ±10%	1.90	+6.7%	56.7 ±5%	57.4	+1.2%	0.94 ±5%	0.94	0.0%	1000	23.5	22.8	≥ 15	35	101.1
1.	The target	SAR valu	ues are th	e measure	d values t	from the	SAR system	manufac	cturer's d	ipole calib	oration (se	ee Appen	dix E).		
2.	The target	dielectric	paramete	ers are the n	ominal va	alues fron	the SAR sy	stem ma	nufacture	er's dipole	calibration	ו (see Ap	pendix E)		
3.	The fluid temperature was measured prior to and after the system performance check to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.								°C of						
4.						mixture	were measu	red prior	to the sy	/stem per	formance	check us	ing a Die	lectric Pro	be Kit
	Tissue Freq. (MHz) Head 450 Head 450 Head 450 Body 450 Body 450 1. 2. 3.	TissueFreq. (MHz)SPEAG TargetHead 4501.87 ±10%Head 4501.87 ±10%Head 4501.87 ±10%Body 4501.78 ±10%Body 4501.78 ±10%I.The target 3.3.The fluid to the fluid to	Tissue (W/kg) Freq. (MHz) SPEAG Target Meas. Head 450 1.87 ±10% 1.87 Head 450 1.87 ±10% 1.87 Head 450 1.87 ±10% 1.87 Body 450 1.78 ±10% 1.89 Body 450 1.78 ±10% 1.90 1. The target dielectric 2. The target dielectric 3. The fluid temperatur the fluid temperatur 4 The dielectric param	Tissue (W/kg) Freq. (MHz) SPEAG Target Meas. Dev. Head 450 1.87 ±10% 1.87 0.0% Head 450 1.87 ±10% 1.87 0.0% Head 450 1.87 ±10% 1.87 0.0% Head 450 1.87 ±10% 1.87 0.0% Body 450 1.78 ±10% 1.89 +6.2% Body 450 1.78 ±10% 1.90 +6.7% 1. The target dielectric parameter The target dielectric parameter 3. The fluid temperature was m the fluid temperature reporter 4 The dielectric parameters of	Tissue (W/kg) Freq. (MHz) SPEAG Target Meas. Dev. SPEAG Target Head 450 1.87 ±10% 1.87 0.0% 43.5 ±5% Head 450 1.87 ±10% 1.87 0.0% 43.5 ±5% Head 450 1.87 ±10% 1.87 0.0% 43.5 ±5% Body 450 1.78 ±10% 1.87 0.0% 43.5 ±5% Body 450 1.78 ±10% 1.89 +6.2% 56.7 ±5% Body 450 1.78 ±10% 1.90 +6.7% 56.7 ±5% 1. The target SAR values are the measured ±10% 1.90 +6.7% 56.7 ±5% 2. The target dielectric parameters are the n 3. The fluid temperature reported during the fluid temperature reported during the 4 The dielectric parameters of the simulation The dielectric parameters of the simulation	Tissue (W/kg) εr Freq. (MHz) SPEAG Target Meas. Dev. SPEAG Target Meas. Head 450 1.87 ±10% 1.87 0.0% 43.5 ±5% 42.9 Head 450 1.87 ±10% 1.87 0.0% 43.5 ±5% 44.3 Head 450 1.87 ±10% 1.87 0.0% 43.5 ±5% 44.4 Body 450 1.78 ±10% 1.89 +6.2% 56.7 ±5% 56.9 Body 450 1.78 ±10% 1.90 +6.7% 56.7 ±5% 57.4 1. The target dielectric parameters are the measured values the fluid temperature was measured prior to and the fluid temperature was measured prior to and the fluid temperature sof the simulated tirgsue The dielectric parameters of the simulated tirgsue	Tissue (W/kg) ϵ_r Freq. (MHz) SPEAG Target Meas. Dev. SPEAG Target Meas. Dev. Head 450 1.87 ±10% 1.87 0.0% 43.5 ±5% 42.9 -1.4% Head 450 1.87 ±10% 1.87 0.0% 43.5 ±5% 44.3 +1.8% Head 450 1.87 ±10% 1.87 0.0% 43.5 ±5% 44.4 +2.0% Body 450 1.78 ±10% 1.89 +6.2% 56.7 ±5% 56.9 +0.3% Body 450 1.78 ±10% 1.90 +6.7% 56.7 ±5% 57.4 +1.2% 1. The target SAR values are the measured values from the S 2. The target dielectric parameters are the nominal values from the S 3. 3. The fluid temperature reported during the dielectric parameters of the simulated tissue mixture to the fluid temperature reported during the dielectric parameters of the simulated tissue mixture to the fluid temperature reported during the dielectric parameters of the simulated tissue mixture to the fluid temperature reported during the dielectric parameters of the simulated tissue mixture to the fluid temperature the simulated tissue mixture to the fluid temperature the simulated tissue mixture to the fluid temperature the simulated	Tissue(W/kg) ϵ_r σ (CFreq. (MHz)SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetHead 4501.87 ±10%1.87 ±10%0.0%43.5 ±5%42.9-1.4%0.87 ±5%Head 4501.87 ±10%1.87 ±10%0.0%43.5 ±5%44.3+1.8%0.87 ±5%Head 4501.87 ±10%1.87 ±10%0.0%43.5 ±5%44.4+2.0%0.87 ±5%Body 4501.78 ±10%1.89 ±10%+6.2%56.7 ±5%56.9 ±5%+0.3%0.94 ±5%Body 4501.78 ±10%1.90 ±6.7%+6.7%56.7 ±5%57.4+1.2%0.94 ±5%1.The target SAR values are the measured values from the SAR system 2.The target dielectric parameters are the nominal values from the SAR system the fluid temperature reported during the dielectric parameter measured prior to and after the system per the fluid temperature reported during the dielectric parameter measured the dielectric parameters of the simulated tissue mixture were measured tissue mixture were measured tissue mixture were measured the dielectric parameters of the simulated tissue mixture were measured tissue mixture were measured <td>Tissue(W/kg)$\epsilon_r$$\sigma$ (mho/m)Freq. (MHz)SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Head 4501.87 ±10%1.87 ±10%0.0%43.5 ±5%42.9-1.4%0.87 ±5%0.87 ±5%Head 4501.87 ±10%1.87 ±10%0.0%43.5 ±5%44.3+1.8%0.87 ±5%0.87 ±5%Head 4501.87 ±10%1.87 ±10%0.0%43.5 ±5%44.4+2.0%0.87 ±5%0.88 ±5%Body 4501.78 ±10%1.89 ±10%+6.2%56.7 ±5%56.9+0.3%0.94 ±5%0.95Body 4501.78 ±10%1.90 ±6.7%+6.7%56.7 ±5%57.4+1.2%0.94 ±5%0.941.The target SAR values are the measured values from the SAR system manufact ±5%3.The fluid temperature was measured prior to and after the system performance the fluid temperature reported during the dielectric parameter measurements.3.The dielectric parameters of the simulated tissue mixture were measured prior</br></td> <td>Tissue(W/kg)$\varepsilon_r$$\sigma$ (mho/m)Freq. (MHz)SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.Head 4501.87 ±10%1.870.0%43.5 ±5%42.9-1.4%0.87 ±5%0.870.0%Head 4501.87 ±10%1.870.0%43.5 ±5%44.3+1.8%0.87 ±5%0.870.0%Head 4501.87 ±10%1.870.0%43.5 ±5%44.4+2.0%0.87 ±5%0.88+1.1%Body 4501.78 ±10%1.89+6.2%56.7 ±5%56.9+0.3%0.94 ±5%0.95+1.0%Body 4501.78 ±10%1.90+6.7%56.7 ±5%57.4+1.2%0.94 ±5%0.940.0%1.The target SAR values are the measured values from the SAR system manufacturer's d2.The target dielectric parameters are the nominal values from the SAR system manufacturer's d3.The fluid temperature was measured prior to and after the system performance check the fluid temperature reported during the dielectric parameter measurements.4</td> <td>Tissue(W/kg)$\varepsilon_r$$\sigma$ (mho/m)ρ (Kg/m)Freq. (MHz)SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.ρ (Kg/m)Head 4501.87 ±10%1.870.0%43.5 ±5%42.9-1.4%0.87 ±5%0.870.0%1000Head 4501.87 ±10%1.870.0%43.5 ±5%44.3+1.8% ±5%0.87 ±5%0.870.0%1000Head 4501.87 ±10%1.870.0%43.5 ±5%44.4+2.0%1.87 ±5%0.88+1.1%1000Body 4501.78 ±10%1.89+6.2%56.7 ±5%56.9+0.3%1.94 ±5%0.94 ±5%0.94 0.940.0%10001.The target SAR values are the measured values from the SAR system manufacturer's dipole califf2.The target dielectric parameters are the nominal values from the SAR system manufacturer's dipole califf3.The fluid temperature was measured prior to and after the system performance check to ensure the fluid temperature reported during the dielectric parameter measure the fluid temperature reported during the dielectric parameter measure tissue mixture were measured prior to the system performance check to ensure the fluid temperature of the simulated tissue mixture were measured prior to the system performance check to ensure the fluid temperature reported during the dielectric parameter measure the fluid temperature reported during the dielectric parameter measure tissue mixture were measured prior to the system performance check</td> <td>Tissue(W/kg)$\varepsilon_r$$\sigma$ (mho/m)ρ (fgm3)Amb. Temp. (fgm3)Freq. (MHz)SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.MassetMas</td> <td>Tissue(W/kg)$\varepsilon_r$$\sigma$ (mho/m)ρ TargetAmb. reg. (%gm)Fluid Temp. (°C)Amb. Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Amb. Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Head 4501.87 ±10%1.870.0%43.5 ±5%44.3$\pm 1.8\%$0.87 ±5%0.870.0%100023.522.8Head 4501.87 ±10%1.870.0%43.5 ±5%44.4$\pm 2.0\%$$0.87$ ±5%0.88$\pm 1.1\%$100023.822.5Body 4501.78 ±10%1.89$\pm 6.2\%$56.7 ±5%56.9$\pm 0.3\%$$0.94$0.95$\pm 1.0\%$100023.822.5Body 4501.78 ±10%1.90$\pm 6.7\%$56.7 ±5%57.4$\pm 1.2\%$$0.94$$0.94$$0.0\%$100023.522.81.The target dielectric parameters are the measured values from the SAR system manufacturer's dipole calibration (see App.)2.The fluid temp</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td> <td>Tissue(W/kg)$\varepsilon_r$$\sigma$ (mho/m)ρ (Kgm)Amb. (Fuid Temp. (C)Fluid Temp. (C)Head<</td> <td>Tissue(W/kg)$s_r$$\sigma$ (mho/m)ρ_{c}Amb. (kgm)Fluid Temp. (°C)Fluid Depth (°C)Humid. (%)Freq. (MHz)SPEAG TargetMeas.Dev.SPEAG TargetDev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.<t< td=""></t<></td>	Tissue(W/kg) ϵ_r σ (mho/m)Freq. (MHz)SPEAG 	Tissue(W/kg) ε_r σ (mho/m)Freq. (MHz)SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.Head 4501.87 ±10%1.870.0%43.5 ±5%42.9-1.4%0.87 ±5%0.870.0%Head 4501.87 ±10%1.870.0%43.5 ±5%44.3+1.8%0.87 ±5%0.870.0%Head 4501.87 ±10%1.870.0%43.5 ±5%44.4+2.0%0.87 ±5%0.88+1.1%Body 4501.78 ±10%1.89+6.2%56.7 ±5%56.9+0.3%0.94 ±5%0.95+1.0%Body 4501.78 ±10%1.90+6.7%56.7 ±5%57.4+1.2%0.94 ±5%0.940.0%1.The target SAR values are the measured values from the SAR system manufacturer's d2.The target dielectric parameters are the nominal values from the SAR system manufacturer's d3.The fluid temperature was measured prior to and after the system performance check the fluid temperature reported during the dielectric parameter measurements.4	Tissue(W/kg) ε_r σ (mho/m) ρ (Kg/m)Freq. (MHz)SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev. ρ (Kg/m)Head 4501.87 ±10%1.870.0%43.5 ±5%42.9-1.4% 0.87 ±5%0.870.0%1000Head 4501.87 ±10%1.870.0% 43.5 ±5%44.3+1.8% ±5% 0.87 ±5%0.870.0%1000Head 4501.87 ±10%1.870.0% 43.5 ±5%44.4+2.0% 1.87 ±5%0.88+1.1%1000Body 4501.78 ±10%1.89+6.2% 56.7 ±5%56.9+0.3% 1.94 ±5%0.94 ±5%0.94 0.940.0%10001.The target SAR values are the measured values from the SAR system manufacturer's dipole califf2.The target dielectric parameters are the nominal values from the SAR system manufacturer's dipole califf3.The fluid temperature was measured prior to and after the system performance check to ensure the fluid temperature reported during the dielectric parameter measure the fluid temperature reported during the dielectric parameter measure tissue mixture were measured prior to the system performance check to ensure the fluid temperature of the simulated tissue mixture were measured prior to the system performance check to ensure the fluid temperature reported during the dielectric parameter measure the fluid temperature reported during the dielectric parameter measure tissue mixture were measured prior to the system performance check	Tissue(W/kg) ε_r σ (mho/m) ρ (fgm3)Amb. Temp. (fgm3)Freq. (MHz)SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.MassetMas	Tissue(W/kg) ε_r σ (mho/m) ρ TargetAmb. reg. (%gm)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. (°C)Fluid Temp. 	Tissue(W/kg) ε_r σ (mho/m) ρ (Kgm)Amb. (Fuid Temp. (C)Fluid Temp. (C)Head<	Tissue(W/kg) s_r σ (mho/m) ρ_{c} Amb. (kgm)Fluid Temp. (°C)Fluid Depth (°C)Humid. (%)Freq. (MHz)SPEAG TargetMeas.Dev.SPEAG TargetDev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev.SPEAG TargetMeas.Dev. <t< td=""></t<>

Applicant:	Kenwood USA Corporation		Kenwood USA Corporation Models: TK-3360-K2, TK-3360		FCC ID:	ALH415101	KENWOOD	
DUT Type:	Portable FM UHF PTT Radio Transceiver		ransceiver	Transmit Frequency Range: 406.1		1 - 470.0 MHz	KEINWOOD	
2010 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 11 of 134		

Celltech	<u>Date(s) of Evaluation</u> February 02-08, 2010	<u>Test Report Serial No.</u> 020210ALH-T1001-S90U	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lab	<u>Test Report Issue Date</u> March 18, 2010	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> Occupational (Controlled)	Test Lab Certificate No. 2470.01

11.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [8] and [9]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [3]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

	SIMULATED TISSUE MIXTURES	
INGREDIENT	450 MHz Head	450 MHz Body
Water	38.56 %	52.00 %
Sugar	56.32 %	45.65 %
Salt	3.95 %	1.75 %
HEC	0.98 %	0.50 %
Bactericide	0.19 %	0.10 %

12.0 SAR LIMITS

SAR RF EXP	OSURE LIMITS						
FCC 47 CFR 2.1093	General Population	Occupational					
Spatial Average (averaged over the whole body)	0.08 W/kg	0.4 W/kg					
Spatial Peak (averaged over any 1 g of tissue)1.6 W/kg8.0 W/kg							
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) 4.0 W/kg 20.0 W/kg							
The Spatial Average value of the SAR averaged over the w	hole body.						
The Spatial Peak value of the SAR averaged over any 1 g cube) and over the appropriate averaging time.	ram of tissue (defined as a tiss	ue volume in the shape of a					
The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.							
Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.							
Controlled environments are defined as locations where the of their potential exposure and can exercise control over the	• •	viduals who have knowledge					

Applicant:	: Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID	: ALH415101	KENWOOD	
DUT Type:	pe: Portable FM UHF PTT Radio Tran		ransceiver	Transmit Frequency Rang	ge: 40	6.1 - 470.0 MHz	KEINWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in w			ole or in part without the prior written	permission	of Celltech Labs Inc.	Page 12 of 134		

<u>Date(s) of Evaluation</u> February 02-08, 2010	<u>Test Report Serial No.</u> 020210ALH-T1001-S90U	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDIT
March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 24

EDITED

13.0 ROBOT SYSTEM SPECIFICATIONS

Staubil Unimation Corp. Robot Model: RX60LRepeatability0.02 mmNo. of axis6Data Acquisition Electronic (DAE) SystemCell ControllerProcessorAMD Athion XP 2400+Clock Speed2.0 GHzOperating SystemWindows XP ProfessionalData ConverterMeasurement Software: DASY4, V4.7 Build 44Postprocessing Software: SMCAD, V1.8 Build 171Connecting LinesSignal Amplifier, multiplexer, A/D converter, and control logicMeasurement Software: DASY4, V4.7 Build 171Connecting LinesOptical downlink for data and status info., Optical uplink for commands and clockPASY4 Measurement ServerPolical downlink for data and status info., Optical uplink for commands and clockPASY4 Measurement ServerEfficit ProbeFunctionReal-time data evaluation for field measurements and surface detectionHardwareCO/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCOM1, COM2, DAE, Robot, Ethernet, Service InterfaceE-Field ProbeE13DV6Serial No.1590ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomFiberglassThickness2.0 ±0.1 mmVolumeApprox.70 litersValidation PhantomFiberglassThickness2.0 ±0.1 mmVolumeAporox.70 liters	Specifications	
Repeatability0.02 mmNo. of axis6Data Acquisition Electronic (DAE) SystemCell ControllerProcessorAMD Athion XP 2400+Clock Speed2.0 GHzOperating SystemWindows XP ProfessionalData ConvortorMeasurement Software: DASY4, V4.7 Build 44Postprocessing Software:SEMCAD, V1.8 Build 171Connecting LinesOptical downlink for data and status info. Optical uplink for commands and clockDASY4 Measurement Software:SEMCAD, V1.8 Build 171Connecting LinesOptical downlink for data and status info. Optical uplink for commands and clockDASY4 Measurement ServerElectronic (DAM)FunctionReal-time data evaluation for field measurements and surface detectionHardwarePC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCOM1, COM2, DAE, Robot, Ethernet, Service InterfaceE-Field ProbeIntervineModelET3DV6SortuctionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity2.0 2 dB (30 MHz to 3 GHz)Evaluation PhantomFiberglassTypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mmVolumePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mm		Stäubli Unimation Corp. Robot Model: RX60
No. of axis6Data Acquisition Electronic (DAE) SystemCell ControllerMD Athion XP 2400+ProcessorAMD Athion XP 2400+Clock Speed2.0 GHzOperating SystemWindows XP ProfessionalData ConverterSignal Amplifier, multiplexer, A/D converter, and control logicPeaturesSignal Amplifier, multiplexer, A/D converter, and control logicBatt ConverterMeasurement Software: DASY4, V4.7 Build 44Postprocessing Software: SEMCAD, V1.8 Build 171Connecting LinesOptical downlink for data and status info., Optical uplink for commands and clockDASY4 Measurement ServerFunctionReal-time data evaluation for field measurements and surface detectionHardwarePC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCOM1, COM2, DAE, Robot, Ethernet, Service InterfaceE-Field ProbeModelET3DV6Serial No.1590ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomShell MaterialFiberglassThickness2.0 ±0.1 mmVolumeApprox. 70 litersValidation PhantomShell MaterialFiberglassConterial PhantomShell MaterialFiberglass		· · · · · · · · · · · · · · · · · · ·
Data Acquisition Electronic (DAE) System Cell Controller Processor AMD Athion XP 2400+ Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical daminifier, multiplexer, A/D converter, and control logic Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical dominink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Evention Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Evaluation Fiber optic detection system Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Evaluation Phantom Evaluation Phantom Shell Material Fiberglass Evaluation Phantom Evaluation Phantom Shell Material Fiberglass Evaluation Phantom Evaluation Phantom Shell M	· · ·	
Cell Controller Processor AMD Athlon XP 2400+ Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Features Features Signal Amplifier, multiplexer, A/D converter, and control logic Postprocessing Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Etable Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHZ Linearity ±0.2 dB (30 MHz to 3 GHz) Evaluation Phantom Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 70 liters Validation Phantom Fibergl		
Processor AMD Athlon XP 2400+ Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Signal Amplifier, multiplexer, A/D converter, and control logic Processing Software Desprocessing Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Evaluation Phantom Shell Material Thickness 2.0 ±0.1 mm Volume Approx. 70 liters Validation Phantom Fiberglass Thickness 2.0 ±0.1 mm) System
Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Evaluation System Features Signal Amplifier, multiplexer, A/D converter, and control logic Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Efficit Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity 10.2 dB (30 MHz to 3 GHz) Evaluation Phantom Stolf Material Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx.70 liters Validation Phantom Fiberglass Thickness		
Operating SystemWindows XP ProfessionalData ConverterFeaturesSignal Amplifier, multiplexer, A/D converter, and control logicBeaturesSignal Amplifier, multiplexer, A/D converter, and control logicBoftwareSignal Amplifier, multiplexer, A/D converter, and control logicBoftwareSignal Amplifier, multiplexer, A/D converter, and control logicConnecting LinesOptical downlink for data end status info., Optical uplink for commands and clockDASY4 Measurement ServerPostprocessing Software: SEMCAD, V1.8 Build 171FunctionReal-time data evaluation for field measurements and surface detectionHardwarePC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCOM1, COM2, DAE, Robot, Ethernet, Service InterfaceE-Field ProbeTiangular core fiber optic detection systemModelTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomTypePlanar PhantomShell MaterialFiberglassJuiddation PhantomValidation PhantomShell MaterialFiberglassShell MaterialFiberglassShell MaterialFiberglassShell MaterialFiberglassJuidaterialFiberglassLinearist2.0 ±0.1 mm		
Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model E-Field Probe Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Evaluation Phantom Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 70 liters Yalidation Phantom Fiberglass Type Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 70 liters Yalidation Phantom Fiberglass Thickness 2.0 ±0.1 mm	· · ·	
FeaturesSignal Amplifier, multiplexer, A/D converter, and control logicBoftwareMeasurement Software: DASY4, V4.7 Build 44Postprocessing Software: SEMCAD, V1.8 Build 171Connecting LinesOptical downlink for data and status info., Optical uplink for commands and clockDASY4 Measurement ServerPeal-time data evaluation for field measurements and surface detectionHardwareReal-time data evaluation for field measurements and surface detectionHardwareCO/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCO/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCO/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCO/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCO/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConstructionTisp0Serial No.1590ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomShell MaterialFiberglassThickness2.0 ±0.1 mmVolumeApprox.70 litersValidation PhantomShell MaterialFiberglassShell MaterialFiberglassShell MaterialFiberglassShell MaterialFiberglassContextContextContextContextContextContextContextContextContextContextContextContextContextContextCon		Windows XP Professional
Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Evaluation Phantom Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 70 liters Validation Phantom Fiberglass Type Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm Validation Phantom Fiberglass Thickness 2.0 ±0.1 mm	Data Converter	
Software Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Ether Service Topologia Topologia Topologia Model ET3DV6 Serial NO. 1590 Topologia Topologia Topologia Topologia Frequency 10 MHz to 6 GHz Triangular core fiber optic detection system Topologia Topologia <thtopologia< th=""> <thtopologia< th=""> Top</thtopologia<></thtopologia<>	Features	
Postprocessing Software: SEMCAD, V1.8 Build 171Connecting LinesOptical downlink for data and status info., Optical uplink for commands and clockDASY4 Measurement ServerFunctionReal-time data evaluation for field measurements and surface detectionHardwarePC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCOM1, COM2, DAE, Robot, Ethernet, Service InterfaceE-Field ProbeModelET3DV6Serial No.1590ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomFiberglassTypePlanar PhantomShell MaterialSiberglassTypePlanar PhantomVolumePlanar PhantomShell MaterialFiberglassTypePlanar PhantomShell MaterialFiberglassTypePlanar PhantomTypePlanar PhantomThickness2.0 ±0.1 mmOrdina Shell MaterialFiberglassTypePlanar Phantom	Software	Measurement Software: DASY4, V4.7 Build 44
DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe E Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Evaluation Phantom Fiberglass Type Planar Phantom Volume Approx. 70 liters Validation Phantom Fiberglass Type Planar Phantom Volume Approx. 70 liters Validation Phantom Fiberglass Thickness 2.0 ±0.1 mm Volume Planar Phantom Tipe Planar Phantom Validation Phantom Z0 ±0.1 mm		Postprocessing Software: SEMCAD, V1.8 Build 171
FunctionReal-time data evaluation for field measurements and surface detectionHardwarePC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCOM1, COM2, DAE, Robot, Ethernet, Service InterfaceE-Field ProbeModelET3DV6Serial No.1590ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomFiberglassTypePlanar PhantomVolumeApprox. 70 litersValidation PhantomFiberglassTypePlanar PhantomTypePlanar PhantomTypePlanar PhantomTypePlanar PhantomTickness2.0 ±0.1 mmVolumePlanar PhantomTypePlanar PhantomTickness2.0 ±0.1 mmTypePlanar PhantomTickness2.0 ±0.1 mm	Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
HardwarePC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAMConnectionsCOM1, COM2, DAE, Robot, Ethernet, Service InterfaceE-Field ProbeModelET3DV6Serial No.1590ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomTypePlanar PhantomShell MaterialFiberglassOutput2.0 ±0.1 mmValidation PhantomTypePlanar PhantomDiscrete Shell MaterialSiberglassThickness2.0 ±0.1 mmColumePlanar PhantomTypePlanar PhantomDiscrete Shell MaterialFiberglassTypePlanar PhantomDiscrete Shell MaterialSiberglassTypePlanar PhantomTypePlanar PhantomDiscrete Shell MaterialSiberglassTypePlanar PhantomTypePlanar PhantomType	DASY4 Measurement Server	
ConnectionsCOM1, COM2, DAE, Robot, Ethernet, Service InterfaceE-Field ProbeModelET3DV6Serial No.1590ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomFiberglassTypePlanar PhantomShell MaterialFiberglassVolumeApprox.70 litersValidation PhantomTypePlanar PhantomDistanceTypePlanar PhantomDistance </th <th>Function</th> <th>Real-time data evaluation for field measurements and surface detection</th>	Function	Real-time data evaluation for field measurements and surface detection
E-Field ProbeModelET3DV6Serial No.1590ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomPlanar PhantomTypePlanar PhantomShell MaterialFiberglassVolumeApprox. 70 litersValidation PhantomFiberglassTypePlanar PhantomTypePlanar PhantomDistrict Shell MaterialFiberglassTypePlanar PhantomTypePlanar PhantomTypePlanar PhantomTypePlanar PhantomTypePlanar PhantomTypePlanar PhantomTypePlanar PhantomTypePlanar PhantomShell MaterialFiberglassTypePlanar PhantomShell MaterialFiberglassShell MaterialFiberglassContart Shell MaterialFiberglassShell MaterialFiberglass	Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
ModelET3DV6Serial No.1590ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomTypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mmVolumePlanar PhantomTypePlanar PhantomFiberglass2.0 ±0.1 mmTypePlanar PhantomTickness2.0 ±0.1 mmDetermineDetermineTypePlanar PhantomDetermineDetermineShell MaterialFiberglassColumePlanar PhantomDetermine<	Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
Serial No.1590ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomPlanar PhantomTypePlanar PhantomShell MaterialFiberglassOlume2.0 ±0.1 mmVolumeApprox.70 litersYalidation PhantomShell MaterialFiberglassIteration PhantomOutputPlanar PhantomDifferenceYalidation PhantomShell MaterialFiberglassIteration PhantomOutputPlanar PhantomIteration PhantomYalidation PhantomShell MaterialFiberglassOutputPlanar PhantomShell MaterialFiberglassIteration PhantomFiberglassShell MaterialFiberglassShell MaterialFiberglass </th <th>E-Field Probe</th> <th></th>	E-Field Probe	
ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomTypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mmVolumeApprox. 70 litersValidation PhantomTypePlanar PhantomDiscretionShell MaterialOutput2.0 ±0.1 mmDiscretionShell MaterialTypePlanar PhantomDiscretionShell MaterialOutputShell MaterialShell MaterialFiberglassOutputShell MaterialShell MaterialShell SolutionShell MaterialShell SolutionShell MaterialSolutionShell MaterialSolutionShell MaterialSolutionShell MaterialSolutionShell MaterialSolutionShell MaterialSolutionShell MaterialSolutionShell MaterialSolutionShell MaterialSolutionShell SolutionSolution	Model	ET3DV6
Frequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomTypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mmVolumeApprox. 70 litersValidation PhantomPlanar PhantomShell MaterialFiberglassImage: Description of the strength of the s	Serial No.	1590
Linearity±0.2 dB (30 MHz to 3 GHz)Evaluation PhantomTypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mmVolumeApprox. 70 litersValidation PhantomShell MaterialFiberglassTypePlanar PhantomShell MaterialSinglassTypePlanar PhantomShell MaterialFiberglassShell MaterialFiberglassOutputState State	Construction	Triangular core fiber optic detection system
Evaluation PhantomTypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mmVolumeApprox.70 litersValidation PhantomPlanar PhantomTypePlanar PhantomShell MaterialFiberglassDiscretionSinglassThickness2.0 ±0.1 mm	Frequency	10 MHz to 6 GHz
TypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mmVolumeApprox. 70 litersValidation PhantomPlanar PhantomTypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mm	Linearity	±0.2 dB (30 MHz to 3 GHz)
Shell MaterialFiberglassThickness2.0 ±0.1 mmVolumeApprox. 70 litersValidation PhantomPlanar PhantomTypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mm	Evaluation Phantom	
Thickness2.0 ±0.1 mmVolumeApprox. 70 litersValidation PhantomPlanar PhantomTypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mm	Туре	Planar Phantom
Volume Approx. 70 liters Validation Phantom Planar Phantom Type Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Shell Material	Fiberglass
Validation Phantom Type Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Thickness	2.0 ±0.1 mm
TypePlanar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mm	Volume	Approx. 70 liters
Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Validation Phantom	
Thickness 2.0 ±0.1 mm	Туре	Planar Phantom
	Shell Material	Fiberglass
Volume Approx. 70 liters	Thickness	2.0 ±0.1 mm
	Volume	Approx. 70 liters

Applicant:	Kenwood USA Corporation		Cenwood USA Corporation Models: TK-3360-K2, TK-3360-M FCC ID:		ALH415101	KENWOOD	
DUT Type:	Porta	ble FM UHF PTT Radio T	ransceiver	Transmit Frequency Rang	e: 406.1 - 470.0 MHz		KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						f Celltech Labs Inc.	Page 13 of 134

Celltech

	<u>Date(s) of Evaluation</u> February 02-08, 2010	Test Report Serial No. 020210ALH-T1001-S90U	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
Lat	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	ACCREDITED
	March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

14.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core; Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, glycol)	
Calibration:	In air from 10 MHz to 2.5 GHz In head simulating tissue at frequencies of 900 MHz	
Frequency: Directivity:	and 1.8 GHz (accuracy \pm 8%) 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) \pm 0.2 dB in head tissue (rotation around probe axis)	
,	\pm 0.2 dB in head tissue (rotation around probe axis) \pm 0.4 dB in head tissue (rotation normal to probe axis) 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB	
Surface Detect: Dimensions:	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm	
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	ET3DV6 E-Field Probe

15.0 PLANAR PHANTOM

The planar phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table. The planar phantom was used for the DUT SAR evaluations and the system performance check evaluations. See Appendix G for dimensions and specifications of the planar phantom.

Planar Phantom

16.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65° . The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

		1					
Applicant: Kenwood USA Corporation		Models:	ТК-3360-К2, ТК-3360-М	FCC ID:	ALH415101	KENWOOD	
DUT Type:	T Type: Portable FM UHF PTT Radio T		ransceiver	er Transmit Frequency Range:		.1 - 470.0 MHz	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in w			produced in who	ole or in part without the prior written	permission o	Celltech Labs Inc.	Page 14 of 134

Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	
February 02-08, 2010	020210ALH-T1001-S90U	Rev. 1.1 (2nd Release)	
Test Report Issue Date	<u>Description of Test(s)</u>	RF Exposure Category	Test Lab Certificate No. 2470.01
March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	

17.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION			CALIBRATED	DUE DATE
x	Schmid & Partner DASY4 System	-	-	-	-
x	-DASY4 Measurement Server	00158	1078	CNR	CNR
x	-Robot	00046	599396-01	CNR	CNR
x	-DAE4	00019	353	28Apr09	28Apr10
x	-ET3DV6 E-Field Probe	00017	1590	16Jul09	16Jul10
x	-SPEAG D450V3 Validation Dipole	000217	1068	18Jan10	18Jan11
x	-Barski Planar Phantom	00155	03-01	CNR	CNR
x	HP 85070C Dielectric Probe Kit	00033	US39240170	CNR	CNR
x	HP E4408B Spectrum Analyzer	00015	US39240170	23Apr08	28Apr10
x	Gigatronics 8652A Power Meter	00007	1835272	23Apr08	28Apr10
x	Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	28Apr10
x	HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr10
x	Rohde & Schwarz SMR20 Signal Generator	00006	100104	CNR	CNR
x	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required	·	·		

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Tra		ransceiver	Transmit Frequency Rang	e: 406.1 - 470.0 MHz		KLINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole				ole or in part without the prior written	permission of (Celltech Labs Inc.	Page 15 of 134

Celltech

<u>Date(s) of Evaluation</u> February 02-08, 2010	<u>Test Report Serial No.</u> 020210ALH-T1001-S90U	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	Hac
Test Report Issue Date	Description of Test(s)	RF Exposure Category	
March 18 2010	Specific Absorption Rate	Occupational (Controlled)	Test

18.0 MEASUREMENT UNCERTAINTIES

	UNCER		GET FOR D		UATI	ON			
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (450 MHz)	E.2.1	6.65	Normal	1	1	1	6.65	6.65	x
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	œ
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	x
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	œ
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	œ
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	œ
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	œ
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	x
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	x
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	x
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	œ
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	x
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	œ
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	x
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	x
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measured)	E.3.3	5	Normal	1	0.64	0.43	3.2	2.2	x
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	x
Liquid Permittivity (measured)	E.3.3	4.8	Normal	1	0.6	0.49	2.9	2.4	×
Combined Standard Uncertainty			RSS				11.82	11.33	
Expanded Uncertainty (95% Confide	Expanded Uncertainty (95% Confidence Interval)						23.63	22.66	
Mea	surement U	ncertainty Tabl	e in accordanc	e with IEEE Sta	indard	1528-20	03		

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	pe: Portable FM UHF PTT Radio Transcei		ransceiver	Transmit Frequency Rang	ge: 406.	1 - 470.0 MHz	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in wh			ole or in part without the prior written	permission of	Celltech Labs Inc.	Page 16 of 134	

19.0 REFERENCES

[1] Federal Communications Commission - "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.

[2] Federal Communications Commission - "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[3] IEEE Standard 1528-2003 - "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.

[4] IEC International Standard 62209-1:2005 - "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices - Human models, instrumentation, and procedures."

[5] International Standard IEC 62209-2 Draft (106-62209-2-CDV_090323) - "Human exposure to radio frequency fields from hand-held & body-mounted wireless comm. devices - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (30 MHz to 6 GHz)".

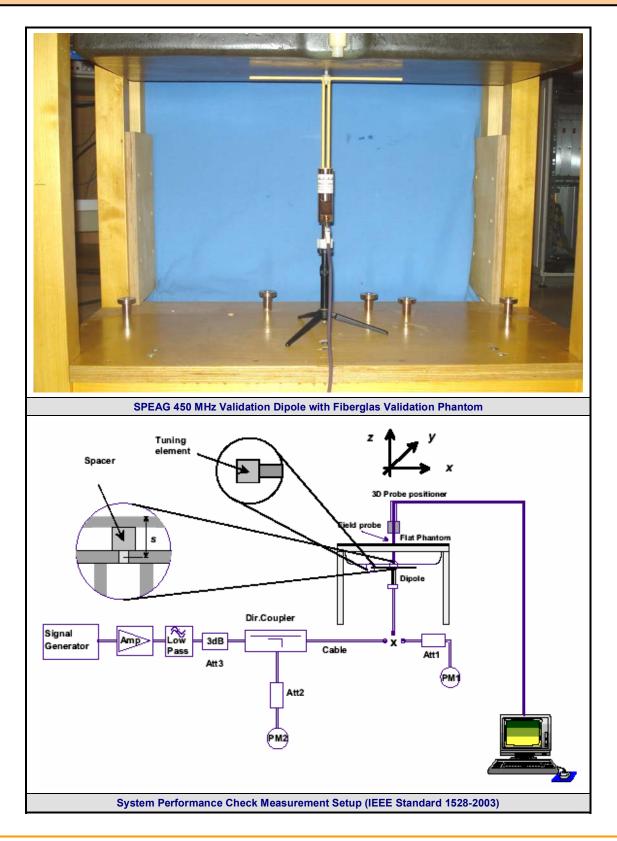
[6] Federal Communications Commission, Office of Engineering and Technology - "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v04: November 2009.

[7] Federal Communications Commission, Office of Engineering and Technology - "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz"; KDB 450824 D01 v01r01: January 2007.

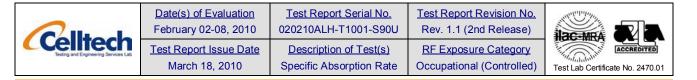
[8] Schmid & Partner Engineering AG - DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.

[9] Schmid & Partner Engineering AG - DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.

Applicant:	Kenv	vood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver		ransceiver	Transmit Frequency Range: 406.1 - 470.0 MHz			KEINWOOD
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 17 of 134	


Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	manan
February 02-08, 2010	020210ALH-T1001-S90U	Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA


Applicant:	Kenv	Kenwood USA Corporation		TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transce		ransceiver	Transmit Frequency Range: 406.1		1 - 470.0 MHz	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole of				ole or in part without the prior written	permission of	Celltech Labs Inc.	Page 89 of 134

Celltech	<u>Date(s) of Evaluation</u> February 02-08, 2010	Test Report Serial No. 020210ALH-T1001-S90U	<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lat	<u>Test Report Issue Date</u> March 18, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

SYSTEM PERFORMANCE CHECK MEASUREMENT SETUP

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	pe: Portable FM UHF PTT Radio Tra		ransceiver	Transmit Frequency Rang	ge: 406	1 - 470.0 MHz	KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in wh				ole or in part without the prior written	permission of	Celltech Labs Inc.	Page 90 of 134

Date Tested: 02/04/2010

System Performance Check - 450 MHz Dipole - HSL

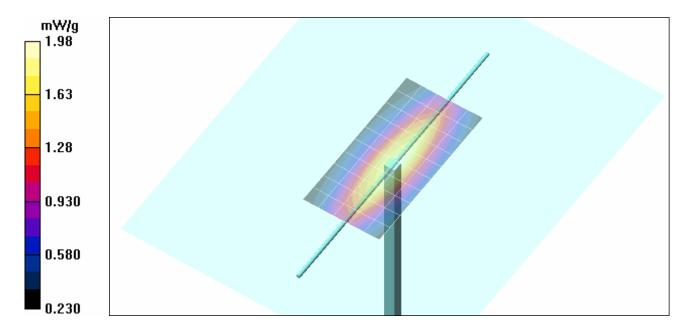
DUT: Dipole D450V3; Asset: 000217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 23.5°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.87 mho/m; ϵ_r = 42.9; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.34, 7.34, 7.34); Calibrated: 16/07/2009

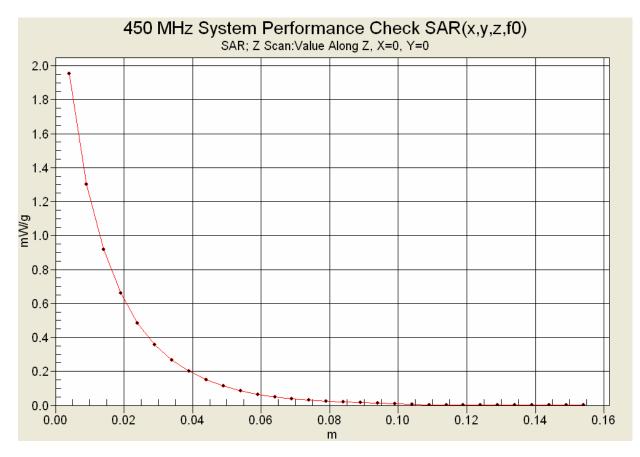
- Sensor-Surface: 4mm (Mechanical Surface Detection)

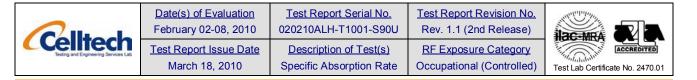

- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole


Head d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.97 mW/g Head d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 48.4 V/m; Power Drift = -0.154 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.25 mW/g Maximum value of SAR (measured) = 1.98 mW/g


Applicant:	Kenv	Kenwood USA Corporation		TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiv		ransceiver	Transmit Frequency Range: 406.1 - 470.0 MHz		1 - 470.0 MHz	KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in wh				ole or in part without the prior written	permission of	Celltech Labs Inc.	Page 91 of 134

	Date(s) of Evaluation February 02-08, 2010	Test Report Serial No. 020210ALH-T1001-S90U	Test Report Revision No. Rev. 1.1 (2nd Release)	
Celltech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testing and Engineering Services Lab	March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	

Z-Axis Scan

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceive		ransceiver	Transmit Frequency Rang	ge: 406.	1 - 470.0 MHz	KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in wh			ole or in part without the prior written	permission of	Celltech Labs Inc.	Page 92 of 134	

Date Tested: 02/05/2010

System Performance Check - 450 MHz Dipole - HSL

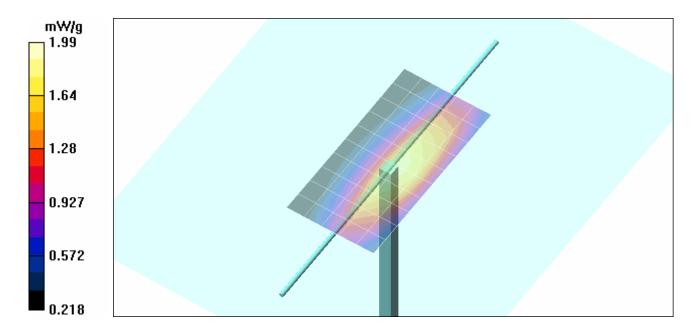
DUT: Dipole D450V3; Asset: 000217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.2°C; Fluid Temp: 20.9°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.87 mho/m; ϵ_r = 44.3; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.34, 7.34, 7.34); Calibrated: 16/07/2009

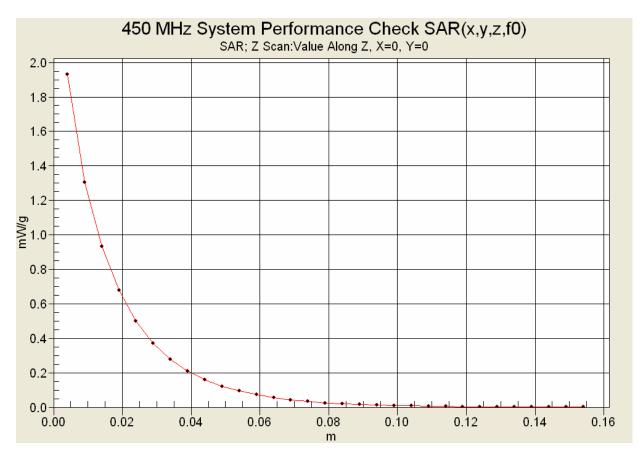
- Sensor-Surface: 4mm (Mechanical Surface Detection)

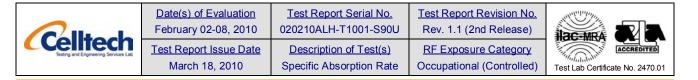

- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole


Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.86 mW/g Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 42.0 V/m; Power Drift = -0.154 dB Peak SAR (extrapolated) = 2.96 W/kg SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.23 mW/g Maximum value of SAR (measured) = 1.99 mW/g


Applicant:	Kenv	vood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Rang	ge: 406.	1 - 470.0 MHz	KEINWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part with				ole or in part without the prior written	permission of	Celltech Labs Inc.	Page 93 of 134

	<u>Date(s) of Evaluation</u> February 02-08, 2010	<u>Test Report Serial No.</u> 020210ALH-T1001-S90U	Test Report Revision No. Rev. 1.1 (2nd Release)	
Celltech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lab	March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	

Z-Axis Scan

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transcei		ransceiver	Transmit Frequency Rang	ge: 406.	1 - 470.0 MHz	KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in wh			ole or in part without the prior written	permission of	Celltech Labs Inc.	Page 94 of 134	

Date Tested: 02/08/2010

System Performance Check - 450 MHz Dipole - HSL

DUT: Dipole D450V3; Asset: 000217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.88 mho/m; ϵ_r = 44.4; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.34, 7.34, 7.34); Calibrated: 16/07/2009

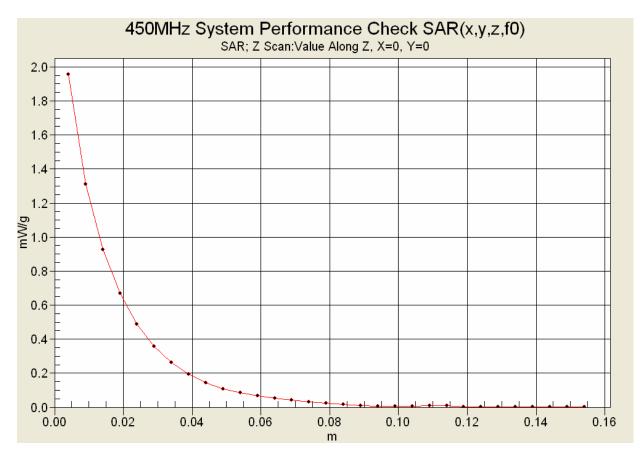
- Sensor-Surface: 4mm (Mechanical Surface Detection)

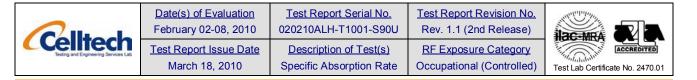
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole


Head d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.93 mW/g Head d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 48.0 V/m; Power Drift = -0.002 dB Peak SAR (extrapolated) = 2.92 W/kg SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.25 mW/g Maximum value of SAR (measured) = 2.00 mW/g


Applicant:	Kenv	wood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Tr	ransceiver	Transmit Frequency Rang	ge: 406.	1 - 470.0 MHz	KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 95 of 134			

Callback	<u>Date(s) of Evaluation</u> February 02-08, 2010	<u>Test Report Serial No.</u> 020210ALH-T1001-S90U	Test Report Revision No. Rev. 1.1 (2nd Release)	
Celltech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lab	March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	

Z-Axis Scan

Applicant:	Kenv	wood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range: 406		.1 - 470.0 MHz	KEINWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 96 of 134		

Date Tested: 02/02/2010

System Performance Check - 450 MHz Dipole - MSL

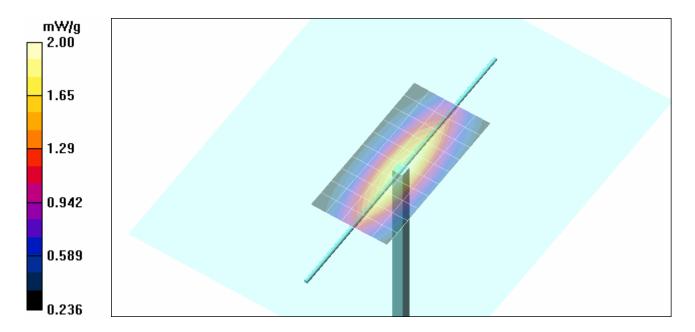
DUT: Dipole D450V3; Asset: 000217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 23.8°C; Fluid Temp: 22.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.95 mho/m; ϵ_r = 56.9; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.34, 7.34, 7.34); Calibrated: 16/07/2009

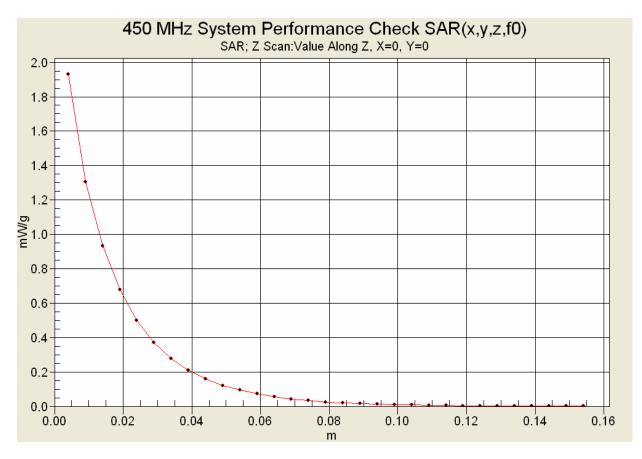
- Sensor-Surface: 4mm (Mechanical Surface Detection)

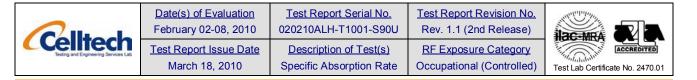

- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole


Body d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.96 mW/g Body d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 45.6 V/m; Power Drift = -0.052 dB Peak SAR (extrapolated) = 2.93 W/kg SAR(1 g) = 1.89 mW/g; SAR(10 g) = 1.27 mW/g Maximum value of SAR (measured) = 2.00 mW/g


Applicant:	Kenv	wood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	UT Type: Portable FM UHF PTT Radio Trans		ransceiver	Transmit Frequency Rang	ge: 406.	1 - 470.0 MHz	KENWOOD
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 97 of 134		

	<u>Date(s) of Evaluation</u> February 02-08, 2010	<u>Test Report Serial No.</u> 020210ALH-T1001-S90U	Test Report Revision No. Rev. 1.1 (2nd Release)	
Celltech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lab	March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	

Z-Axis Scan

Applicant:	Kenv	wood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	pe: Portable FM UHF PTT Radio Transceiver Transmit Frequency Range: 406.1 - 470.0 MHz		KEINWOOD				
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 98 of 134		

Date Tested: 02/03/2010

System Performance Check - 450 MHz Dipole - MSL

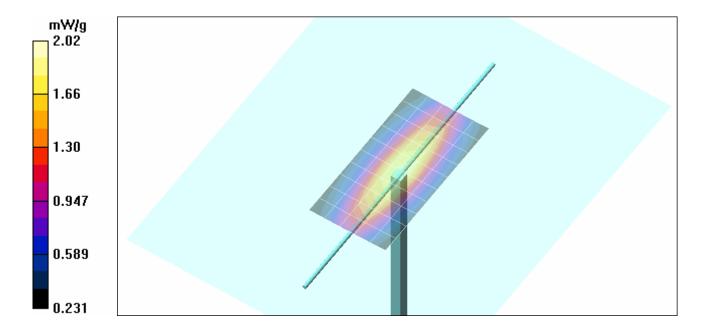
DUT: Dipole D450V3; Asset: 000217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 23.5°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.94 mho/m; ϵ_r = 57.4; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.34, 7.34, 7.34); Calibrated: 16/07/2009

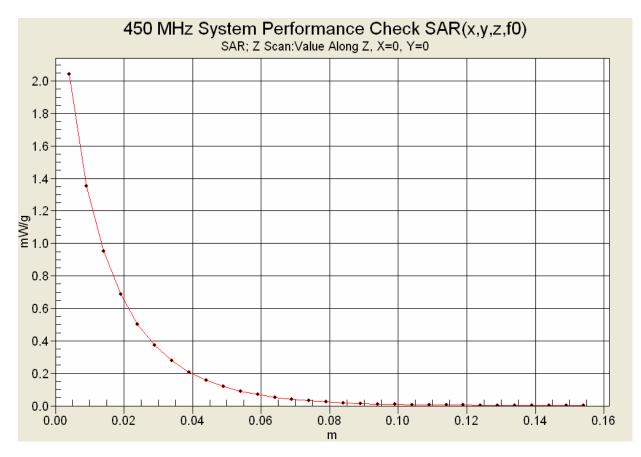
- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

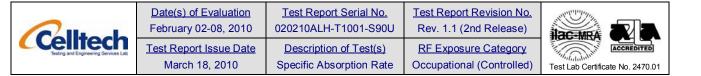
System Performance Check - 450 MHz Dipole


Head d=15mm Pin=398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.89 mW/g Head d=15mm Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.9 V/m; Power Drift = -0.002 dB Peak SAR (extrapolated) = 2.97 W/kg SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.27 mW/g Maximum value of SAR (measured) = 2.02 mW/g

Applicant:	Kenv	wood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	JT Type: Portable FM UHF PTT Radio Transce		ransceiver	Transmit Frequency Range: 406.1 - 470.0 MHz		KEINWOOD	
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 99 of 134		

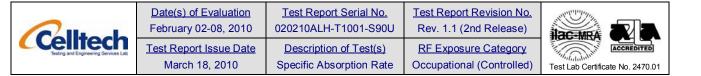
Celltech	<u>Date(s) of Evaluation</u> February 02-08, 2010	<u>Test Report Serial No.</u> 020210ALH-T1001-S90U	Test Report Revision No. Rev. 1.1 (2nd Release)	
Testing and Engineering Services Lat:	Test Report Issue Date March 18, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Z-Axis Scan


Applicant:	Kenv	wood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	DUT Type: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Rang	ge: 406.	1 - 470.0 MHz	KEINWOOD	
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 100 of 134	

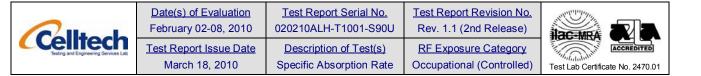
Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	and an and a second sec
February 02-08, 2010	020210ALH-T1001-S90U	Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS


Applicant:	Kenv	wood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	UT Type: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range: 406.1 - 470.0 MHz		1 - 470.0 MHz	KEINWOOD	
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 101 of 134		

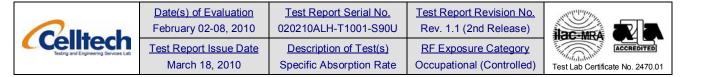
450 MHz System Performance Check & DUT Evaluations (Head)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 04/Feb/2010 Frequency (GHz)							
			04) 1 :				
FCC_eHFCC OET 65 Supp							
FCC_sHFCC OET 65 Sup				ts for Head Sigma			
	st_e Eps						
Te *************		ma of Ul	M ********	detected at a later to the			
_							
Freq			Test_e				
0.3500	44.70	0.87					
0.3600	44.58						
0.3700	44.46	0.87					
0.3800	44.34						
0.3900	44.22		45.67				
0.4000	44.10						
0.4100	43.98	0.87	45.33	0.82			
0.4200	43.86	0.87	45.54	0.83			
0.4300	43.74	0.87	45.65	0.83			
0.4400	43.62	0.87	44.84	0.84			
0.4500	43.50	0.87	44.43	0.85			
0.4600	43.45	0.87	44.36	0.86			
0.4700	43.40	0.87	44.37	0.87			
0.4800	43.34	0.87	44.42	0.88			
0.4900	43.29	0.87	43.75	0.88			
0.5000	43.24	0.87	43.43	0.88			
0.5100	43.19	0.87	43.60	0.90			
0.5200 43.14 0.88 43.34 0.91							
0.5300	43.08	0.88	43.06	0.91			
0.5400	43.03	0.88	42.91	0.92			
0.5500	42.98	0.88	42.62	0.93			


Applicant:	Kenwood USA Corporation Models		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD	
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range: 406		1 - 470.0 MHz	KEINWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 102 of 134		

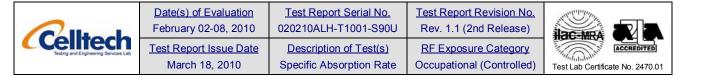
450 MHz System Performance Check & DUT Evaluations (Head)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 05/Feb/2010 Frequency (GHz) FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM									
Freq		FCC at	Test_e	Tost s					
0.3500	44.70	0.87		0.78					
0.3600	44.58	0.87							
0.3700	44.46	0.87							
0.3800	44.34								
0.3900	44.22	0.87	45.22	0.81					
0.4000	44.10	0.87	45.51	0.83					
0.4100	43.98	0.87	44.84	0.84					
0.4200	43.86	0.87	45.48	0.85					
0.4300	43.74	0.87	45.14	0.86					
0.4400	43.62	0.87	44.80	0.86					
0.4500	43.50	0.87	44.28	0.87					
0.4600	43.45	0.87	44.79	0.88					
0.4700	43.40	0.87	43.71	0.90					
0.4800	43.34	0.87	43.45	0.89					
0.4900	43.29	0.87	43.99	0.90					
0.5000	43.24	0.87		0.90					
0.5100	43.19	0.87	43.40	0.91					
0.5200	43.14	0.88	43.04	0.93					
0.5300	43.08	0.88	42.78	0.94					
0.5400	43.03	0.88	42.85	0.95					
0.5500	42.98	0.88	43.03	0.96					


Applicant:	Kenwood USA Corporation Models:		TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD	
DUT Type:	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range: 40		1 - 470.0 MHz	KENWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 103 of 134	

450 MHz System Performance Check & DUT Evaluations (Head)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 08/Feb/2010 Frequency (GHz) FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM									
Freq	FCC eH	FCC s⊦	Test_e	Test s					
0.3500	44. 7 0	0.87		0.78					
0.3600	44.58	0.87	46.96	0.78					
0.3700	44.46	0.87	46.42	0.79					
0.3800	44.34								
0.3900	44.22	0.87	46.15	0.81					
0.4000	44.10	0.87	-	0.82					
0.4100	43.98	0.87	45.55	0.84					
0.4200	43.86	0.87	45.54						
0.4300	43.74	0.87	45.51						
0.4400	43.62	0.87	-	0.86					
0.4500	43.50								
0.4600	43.45	0.87	44.61	0.86					
0.4700	43.40	0.87	44.49	0.90					
0.4800	43.34	0.87	44.13	0.88					
0.4900	43.29	0.87	44.42	0.91					
0.5000	43.24	0.87							
0.5100	43.19	0.87	43.59						
0.5200	43.14	0.88	43.44	0.92					
0.5300	43.08	0.88	43.02						
0.5400	43.03	0.88	43.22						
0.5500	42.98	0.88	43.03	0.95					


Applicant:	Kenwood USA Corporation Mode		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range: 40		1 - 470.0 MHz	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 104 of 134	

450 MHz System Performance Check & DUT Evaluations (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 02/Feb/2010 Frequency (GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Freq FCC eBFCC sBTest e Test s 0.3500 57.70 0.93 58.52 0.86 0.3600 57.60 0.93 58.39 0.88 57.50 0.93 58.56 0.88 0.3700 0.3800 57.40 0.93 58.12 0.90 58.34 0.3900 57.30 0.93 0.89 0.4000 0.93 58.12 0.90 57.20 0.4100 57.10 0.93 57.53 0.92 0.4200 57.00 0.94 57.15 0.91 0.4300 56.90 0.94 57.24 0.93 0.4400 56.80 0.94 56.87 0.94 0.4500 56.70 0.94 56.87 0.95 0.4600 56.66 0.94 57.33 0.95 0.4700 56.62 0.94 56.49 0.95 0.4800 56.58 0.94 56.60 0.98 56.54 0.94 57.09 0.4900 0.99 0.5000 56.51 0.94 55.96 0.99 0.5100 56.47 0.94 56.62 1.00 56.43 0.5200 0.95 56.13 1.01 0.95 55.96 1.01 0.5300 56.39 0.5400 56.35 0.95 56.16 1.02 0.5500 56.31 0.95 55.43 1.03

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver		ransceiver	Transmit Frequency Range: 406		.1 - 470.0 MHz	KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 105 of 134	

450 MHz System Performance Check & DUT Evaluations (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 03/Feb/2010 Frequency (GHz) FCC eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***** FCC eBFCC sBTest e Test s Freq 0.3500 57.70 0.93 58.57 0.84 0.3600 57.60 0.93 58.84 0.87 57.50 0.93 58.02 0.87 0.3700 58.29 0.3800 57.40 0.93 0.88 0.3900 57.30 0.93 57.31 0.87 0.4000 57.20 0.93 57.29 0.88 0.4100 57.10 0.93 57.74 0.90 0.4200 57.00 0.94 57.28 0.90 0.4300 56.90 0.94 56.87 0.93 0.4400 56.80 0.94 56.68 0.94 0.4500 56.70 0.94 57.38 0.94 0.4600 56.66 0.94 56.81 0.95 0.4700 56.62 0.94 56.85 0.96 0.4800 56.58 0.94 56.08 0.98 56.54 0.94 56.94 0.98 0.4900 0.5000 56.51 0.94 56.27 0.98 0.5100 56.47 0.94 56.40 1.01 56.43 0.5200 0.95 56.01 1.00 0.95 55.62 1.01 0.5300 56.39 0.5400 56.35 0.95 56.15 1.01 0.5500 56.31 0.95 55.53 1.03

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceive		ransceiver	Transmit Frequency Range: 40		6.1 - 470.0 MHz	KEINWOOD
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 106 of 134

DUT Evaluations (Body)							
Celltech Labs Inc. Test Result for UIM Dielectric Parameter 08/Feb/2010 Frequency (GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM							
Freq 0.3500 0.3600 0.3700 0.3800 0.4000 0.4100 0.4200 0.4200 0.4300 0.4400 0.4500 0.4500 0.4600 0.4700 0.4600 0.4700 0.4800 0.4900 0.5000 0.5100 0.5200 0.5300 0.5400	FCC_eB 57.70 57.60 57.50 57.40 57.30 57.20 57.10 57.00 56.90 56.80 56.62 56.62 56.62 56.58 56.54 56.54 56.51 56.47 56.43 56.39 56.35	FCC_st 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	57.25 58.02 57.96 57.01 57.47 56.26 57.24 56.77 56.50 56.28 56.25 55.94 55.77 56.71 55.90 55.97 55.09 55.09 55.09	0.84 0.85 0.86 0.87 0.89 0.90 0.91 0.92 0.92 0.93 0.93 0.93 0.93 0.94 0.96 0.95 0.97 0.96 0.98 0.97 0.99			

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:		ALH415101	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range: 40		406.1	- 470.0 MHz	KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 107 of 134			

Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	and all and a second second
February 02-08, 2010	020210ALH-T1001-S90U	Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

APPENDIX E - DIPOLE CALIBRATION

Applicant:	Kenv	wood USA Corporation	Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio T	ransceiver	Transmit Frequency Rang	ge: 406.	1 - 470.0 MHz	KENWOOD
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.			Page 132 of 134			

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Celltech

Client

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate	No: D4	50V3-10	68 Jan	10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object	D450V3 - SN: 100	68	
Calibration procedure(s)	QA CAL-15.v5 Calibration Proces	dure for dipole validation kits below	/ 800 MHz
Calibration date:	January 18, 2010		
The measurements and the uncert All calibrations have been conduct	ainties with confidence pr ed in the closed laboraton	onal standards, which realize the physical units obability are given on the following pages and a y facility: environment temperature $(22 \pm 3)^{\circ}$ C and	re part of the certificate.
Calibration Equipment used (M&TE			
Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ET3DV6 (LF)	SN: 1507	03-Jul-09 (No. ET3-1507_Jul09)	Jul-10
DAE4	SN: 654	04-May-09 (No. DAE4-654_May09)	May-10
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Poković	Technical Manager	Storthe
This calibration certificate shall not	: be reproduced except in	full without written approval of the laboratory.	Issued: January 20, 2010

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

S

С

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	NE 0
BAST VEISION	DASTS	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.2 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.87 mW / g
SAR normalized	normalized to 1W	4.70 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.76 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.25 mW / g
SAR normalized	normalized to 1W	3.14 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.17 mW / g ± 17.6 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	0.90 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	condition	
SAR measured	398 mW input power	1.78 mW / g
SAR normalized	normalized to 1W	4.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.58 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.19 mW / g
SAR normalized	normalized to 1W	2.99 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	3.06 mW / g ± 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.5 Ω - 5.9 jΩ		
Return Loss	- 21.0 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	54.8 Ω - 9.3 jΩ
Return Loss	- 20.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.350 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 16, 2009

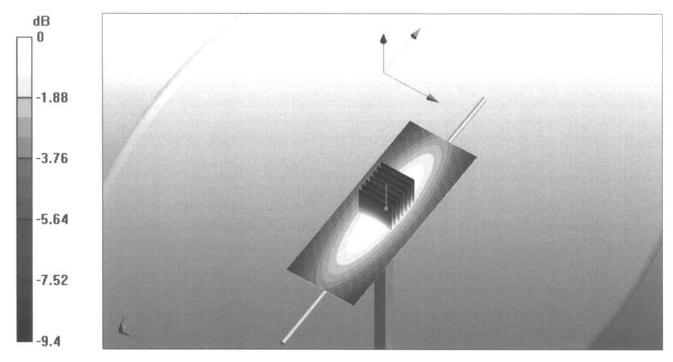
Date/Time: 1/18/2010 10:59:37 AM

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1068

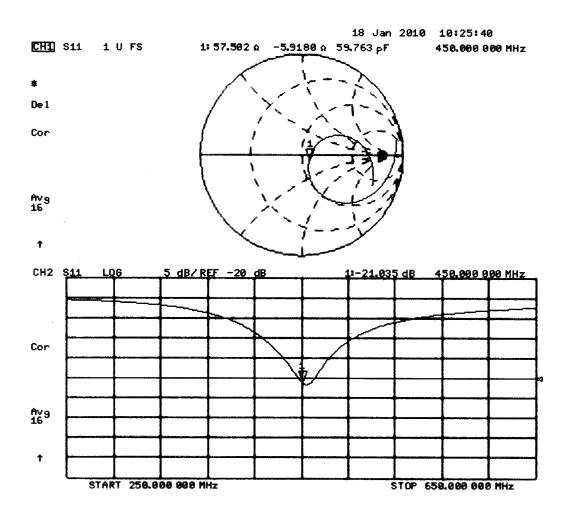
Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.86 mho/m; ϵ_r = 44.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1507 (LF); ConvF(6.66, 6.66, 6.66); Calibrated: 7/3/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 5/4/2009
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57


Head/d=15mm, Pin=398mW/Area Scan (41x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.99 mW/g

Head/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm Reference Value = 50.2 V/m; Power Drift = -0.020 dB Peak SAR (extrapolated) = 2.78 W/kg

SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.25 mW/g

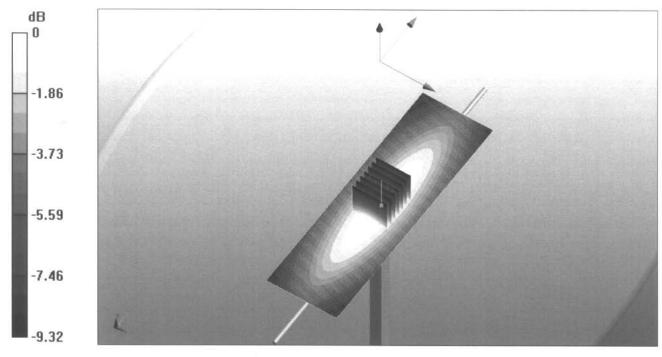
Maximum value of SAR (measured) = 2 mW/g

0 dB = 2mW/g

DASY5 Validation Report for Body TSL

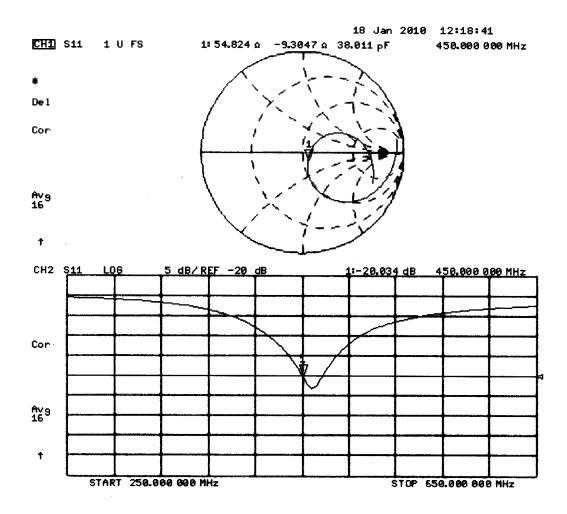
DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1068

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium: MSL450 Medium parameters used: f = 450 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: ET3DV6 SN1507 (LF); ConvF(7.11, 7.11, 7.11); Calibrated: 7/3/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 5/4/2009
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57

Body/d=15mm, Pin=398mW/Area Scan (61x201x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.9 mW/g


Body/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.4 V/m; Power Drift = -0.034 dB Peak SAR (extrapolated) = 2.71 W/kg SAR(1 g) = 1.78 mW/g; SAR(10 g) = 1.19 mW/g Maximum value of SAR (measured) = 1.9 mW/g

 $0 \, dB = 1.9 \, mW/g$

Impedance Measurement Plot for Body TSL

Date(s) of Evaluat	on <u>Test Report Se</u>	erial No. <u>Test Repo</u>	rt Revision No.	ndululu w	
February 02-08, 20	010 020210ALH-T10	001-S90U Rev. 1.1 (2nd Release)	AC-MRA	
Test Report Issue	Description of	Test(s) RF Expos	sure Category		ACCREDITED
March 18, 2010	Specific Absorp	tion Rate Occupation	nal (Controlled)	est Lab Certifica	ate No. 2470.01

APPENDIX F - PROBE CALIBRATION

Applicant:	Kenv	Kenwood USA Corporation Models:		TK-3360-K2, TK-3360-M FCC ID:		ALH415101	KENWOOD
DUT Type:	e: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range: 406.1 - 470.0		1 - 470.0 MHz	KEINWOOD	
2010 Celltech La	Itech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 133 of 134		

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS REAL STREET

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

Client Celltech		c (ertificate No: ET3-1590_Jul09
CALIBRATION (CERTIFICAT	Ē	
Object	ET3DV6 - SN:1	590	
Calibration procedure(s)		QA CAL-12.v5, QA CAL- edure for dosimetric E-fi	23.v3 and QA CAL-25.v2 ald probes
Calibration date:	July 16, 2009		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	rtainties with confidence cted in the closed laborat	probability are given on the follow	e physical units of measurements (SI). Ing pages and are part of the certificate. Ire (22 ± 3)°C and humidity < 70%.
Primary Standards		Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013 Jan	
DAE4	SN: 660	9-Sep-08 (No. DAE4-660 Se	
	1		· ·
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oc	t-07) In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check O	ct-08) In house check: Oct-09
			-
	Name	Function	Signature
Calibrated by:	Marcel Fehr	Laboratory Techr	ician M.M.
Approved by:	Katja Pokovic	Technical Manag	er Sola Mit
			Issued: July 16, 2009
This calibration certificate shall no	ot be reproduced except	in full without written approval of t	ne laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	ϕ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1590_Jul09

Probe ET3DV6

SN:1590

Manufactured: Last calibrated: Recalibrated: March 19, 2001 July 21, 2008 July 16, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free	Diode C	ompression ^B		
NormX	1.83 ± 10.1%	μV/(V/m) ²	DCP X	90 mV
NormY	2.02 ± 10.1%	μV/(V/m)²	DCP Y	95 mV
NormZ	1.73 ± 10.1%	μ V/(V/m) ²	DCP Z	85 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

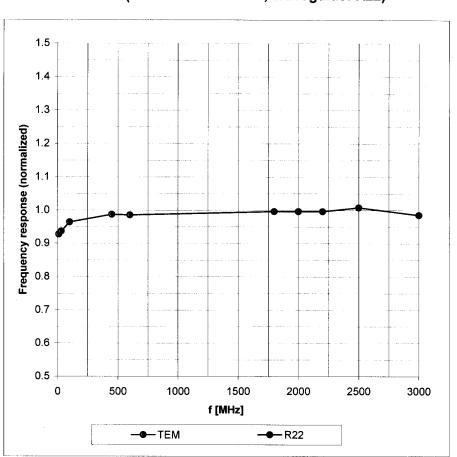
Please see Page 8.

Boundary Effect

TSL 835 MHz Typical SAR gradient: 5 % per mm

Sensor Center t	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	9.9	6.3
SAR _{be} [%]	With Correction Algorithm	0.9	0.6

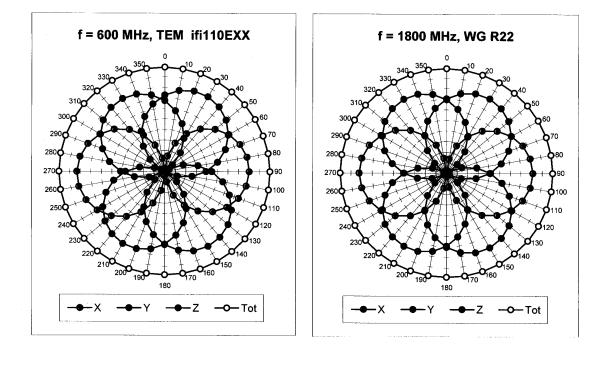
Sensor Offset

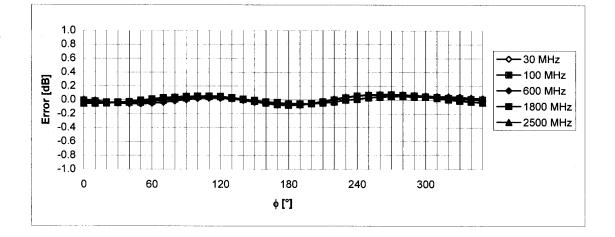

Probe Tip to Sensor Center

2.7 mm

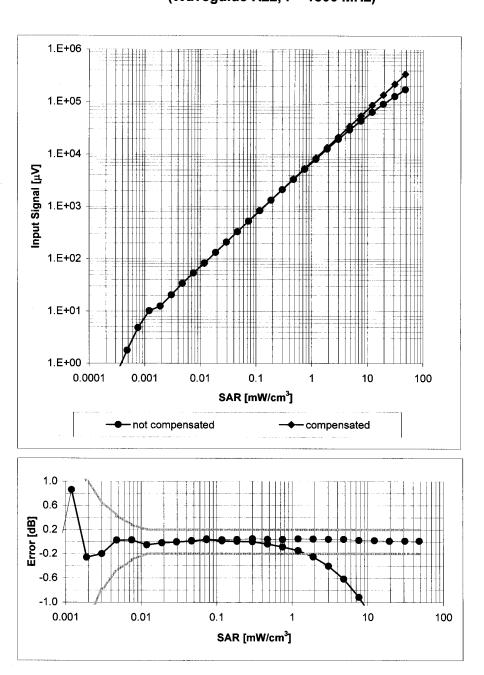
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

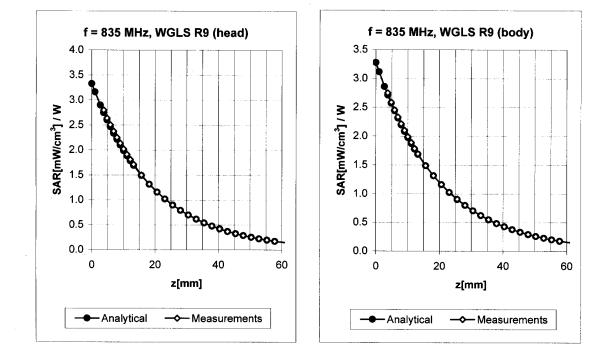

^B Numerical linearization parameter: uncertainty not required.


Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

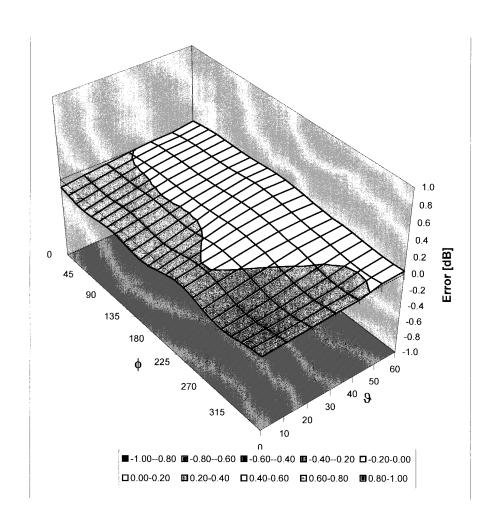
Receiving Pattern (ϕ **),** ϑ = 0°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.29	1.90	7.34 ± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.37	2.32	6.59 ± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.22	1.91	7.34 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.30	2.77	6.34 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1590_Jul09

Deviation from Isotropy in HSL

Error (φ, ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

<u>Date(s) of Evaluation</u>	Test Report Serial No.	Test Report Revision No.	
February 02-08, 2010	020210ALH-T1001-S90U	Rev. 1.1 (2nd Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
March 18, 2010	Specific Absorption Rate	Occupational (Controlled)	

APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Kenwood USA Corporation		Models:	TK-3360-K2, TK-3360-M	FCC ID:	ALH415101	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transc		ransceiver	Transmit Frequency Range: 406.4		1 - 470.0 MHz	KENWOOD
2010 Celltech Labs Inc.		This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 134 of 134

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334 E-mail: <u>barskiind@shaw.ca</u> Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item : Flat Planar Phantom Unit # 03-01 Date: June 16, 2003 Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

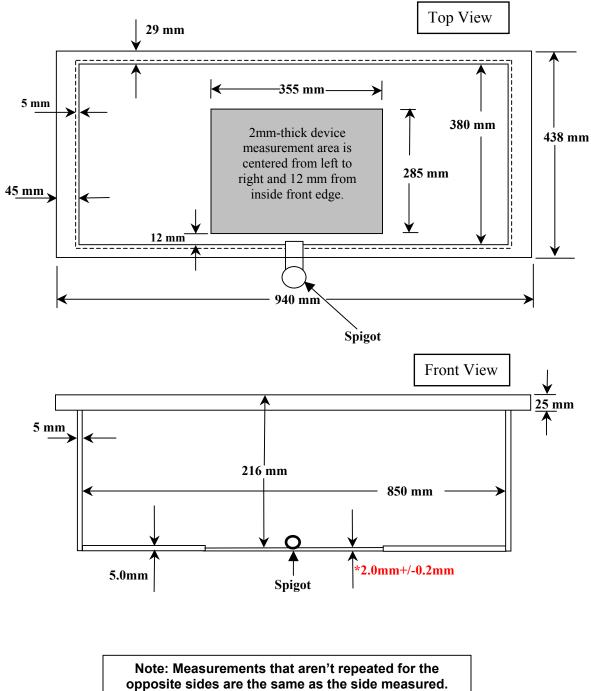
Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

