

Max. SAR Level(s) Evaluated

FCC Spatial Peak SAR Limit

Date(s) of Evaluation Aug. 05 - Sept. 07, 2010

Test Report Issue Date

Test Report Serial No. 080310ALH-T1037-S90U

Rev. 1.0 (Initial Release) RF Exposure Category

Test Report Revision No.

Occupational / Controlled Exposure

Occupational / Controlled Exposure

Description of Test(s) October 26, 2010 Specific Absorption Rate

Occupational (Controlled)

DECLARATION			- SAR	1						•	,
Test Lab Information	CELLTECH LA	ABS INC.		21-36	64 Lo	ughee	d Road	d, Kelowr	a, B.C.	V1X 7R8 C	Canada
Test Lab Accreditation(s)	ISO 17025 (A2	LA Test La	b Certific	ate No.	2470	.01)					
Applicant Information	KENWOOD US	SA CORPO	RATION	3970	John	s Cree	ek Cou	rt, Suite	100, Su	wanee, GA	30024 USA
Application Type(s)	FCC	TCB Certifi	ication								
Standard(s) Applied	FCC	47 CFR §2	.1093								
	FCC	OET Bullet	in 65, Sup	plemen	t C	KDB	44749	8 D01v0	4 KI	DB Inquiry 1	rack No. 218833
Procedure(s) Applied	FCC	Occupation	nal PTT To	est Redu	uction	Draft	Consid	derations	(v 07 1	5 10 Jul 29	2010)
	IEEE	1528-2003					IE	C 62	209-1:2	2005	
Device Classification(s)	FCC	Licensed N	lon-Broad	cast Tra	ansmit	tter He	eld to F	ace (TNF	-) - FCC	Part 90	
Device Identifier(s)	FCC ID:	ALH41380	1						·		
Device Model(s)	TK-3312-1 (tes	ted)	TK-3317	-1		Note	: Mode	ls are ele	ectrically	and mech	anically identical
Test Sample Serial No.	1SU12 (Identic	al Prototype	e)	Hard	ware	Rev. N		0		rmware Re	
Date of Sample Receipt	August 03, 201	0	Date(s)	of Eval	uatio	ns	Aug. 0	5-06, 09-	13, 16-	17, 31, Sep	t. 01-03, 07, 2010
Device Description	Portable FM U	HF Push-To	-Talk (PT	T) Radio	Tran	sceive	er				
Device Frequency Range(s)	450.0 - 512.0 N	ИHz									
Manufacturer's Rated Output Power	5 Watts (Condu	ucted)			M	-		ince Spe	c. +	-/- 0 dB	
	36.90 dBm		4.90 Wa						Average Conducted		
	36.90 dBm		4.90 Wa	tts		463	.3 MHz	<u> </u>		Average	Conducted
	36.90 dBm		4.90 Wa	tts		470	.0 MHz	<u> </u>		Average	Conducted
RF Output Power Level(s) Tested	36.99 dBm		5.00 Wa	tts		476	.7 MHz	<u> </u>		Average	Conducted
The Catput Found Love, (c) Footou			5.00 Wa	tts		484	.0 MHz	<u> </u>		Average	Conducted
	37.08 dBm		5.10 Wa			490	.0 MHz	<u> </u>		Average	Conducted
	37.08 dBm		5.10 Watts		498	498.0 MHz			Average	Conducted	
	37.16 dBm			5.20 Watts			512.0 MHz			Average Conducted	
	Detachable Stu		P/N: KR						Nc = 4	Length: 79 mm	
	Detachable Stu	ıb	P/N: KR			Anteni		B 470-512 MHz		Nc = 4	Length: 74 mm
Antenna Type(s) Tested	Detachable Stu	ıb	P/N: KR			Anteni		450-490		Nc = 4	Length: 80 mm
, , , , , , , , , , , , , , , , , , ,	Detachable Stu	-	P/N: KR			Anteni		470-512		Nc = 4	Length: 80 mm
	Detachable Wh		P/N: KR			Anteni		450-490		Nc = 4	Length: 149 mm
	Detachable Wh	nip	P/N: KR	A-27M2		Anteni		470-512		Nc = 4	Length: 140 mm
Battery Type(s) Tested	Ni-MH		7.2 V				0 mAh			KNB-29N	Battery a
	Li-ion		7.4 V			200	0 mAh		P/N: ł	KNB-45L	Battery b
Body-worn Accessories Tested	Metal Belt-Clip									P/N: KB	
	Category 1: He			ory 2: Ea				ry 3: Wir			ry 4: Speaker-Mic
	PN: KHS-10-O	,		IS-23 (D	efaul		`		efault)	· · · · · · · · · · · · · · · · · · ·	
Audio Accession Today	PN: KHS-10-BI	1	PN: KF			_	PN: KH	S-9BL		PN: KM	
Audio Accessories Tested	PN: KHS-21		PN: KF				-			PN: KM	C-21
	PN: KHS-22		PN: KF	IS-27			-		-		
	PN: KHS-7		-			-	-			-	
	PN: KHS-7A		-			-				-	
Mary CAR Lavel(a) Evaluated	Face-held	4.68	W/kg	1g	50)% PT	T duty	cycle	Occu	pational / C	ontrolled Exposure

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 for the Occupational / Controlled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), IEEE Standard 1528-2003 and IEC International Standard 62209-1:2005. All measurements were performed in accordance with the SAR system manufacturer recommendations.

1g

1g

50% PTT duty cycle

50% PTT duty cycle

7.62 W/kg

8.0 W/kg

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

Body-worn

Head/Body

The results and statements contained in this report pertain only to the device(s) evaluated.

Sun Johns **Test Report Approved By Sean Johnston** Lab Manager Celltech Labs Inc.

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	ALH413800 Freq. Range:		KENWOOD	
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in wh				ole or in part without the	e prior written permission	n of Celltech Labs Inc.	Page 1 of 309	

<u>Test Report Issue Date</u> October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)
Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category

TABLE OF CONTENTS							
1.0 INTRODUCTION	4						
2.0 SAR MEASUREMENT SYSTEM	4						
3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS	4						
4.0 FCC POWER THRESHOLDS FOR PTT DEVICES (f < 0.5 GHz)							
5.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES							
6.0 NO. OF TEST CHANNELS (N _c)	•						
7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING							
8.0 SAR MEASUREMENT SUMMARY							
SAR MEASUREMENT SUMMARY (CONT.)	8						
SAR MEASUREMENT SUMMARY (CONT.)							
SAR MEASUREMENT SUMMARY (CONT.)							
SAD MEASUREMENT SUMMARY (CONT.)	10						
SAR MEASUREMENT SUMMARY (CONT.)							
SAR MEASUREMENT SUMMARY (CONT.)							
SAR MEASUREMENT SUMMARY (CONT.)							
SAR MEASUREMENT SUMMARY (CONT.)							
SAR MEASUREMENT SUMMARY (CONT.)							
SAR MEASUREMENT SUMMARY (CONT.)	16						
SAR MEASUREMENT SUMMARY (CONT.)	17						
SAR MEASUREMENT SUMMARY (CONT.)							
SAR MEASUREMENT SUMMARY (CONT.)							
SAR MEASUREMENT SUMMARY (CONT.)							
9.0 SAR SCALING	21						
SAR SCALING (CONT.)	22						
10.0 FLUID DIELECTRIC PARAMETERS	23						
FLUID DIELECTRIC PARAMETERS (CONT.)	24						
FLUID DIELECTRIC PARAMETERS (CONT.)	25						
FLUID DIELECTRIC PARAMETERS (CONT.)							
11.0 DETAILS OF SAR EVALUATION	27						
12.0 SAR EVALUATION PROCEDURES							
13.0 SYSTEM PERFORMANCE CHECK							
14.0 SIMULATED EQUIVALENT TISSUES	29						
15.0 SAR LIMITS	29						
16.0 ROBOT SYSTEM SPECIFICATIONS	30						
17.0 PROBE SPECIFICATION (ET3DV6)	31						
18.0 BARSKI PLANAR PHANTOM	31						
19.0 DEVICE HOLDER	31						
20.0 TEST EQUIPMENT LIST	32						
21.0 MEASUREMENT UNCERTAINTIES							
22.0 REFERENCES	34						
APPENDIX A - SAR MEASUREMENT DATA	35						
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	228						
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS							
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS							
APPENDIX E - DIPOLE CALIBRATION	306						
APPENDIX F - PROBE CALIBRATION							
APPENDIX G - BARSKI PHANTOM CERTIFICATE OF CONFORMITY							
APPENDIX H - OCCUPATIONAL PTT TEST REDUCTION DRAFT CONSIDERATIONS							

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800 Freq. Range:		450 - 512 MHz	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 2 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

REVISION HISTORY									
REVISION NO.	REVISION NO. DESCRIPTION IMPLEMENTED BY RELEASE DATE								
1.0	Initial Release	Jon Hughes	October 26, 2010						

TEST REPORT SIGN-OFF									
DEVICE TESTED BY	DEVICE TESTED BY REPORT PREPARED BY QA REVIEW BY REPORT APPROVED BY								
Scott Kulifaj	Scott Kulifaj	Jon Hughes	Sean Johnston						

Applicant:	Kenwood USA Corporation FCC ID:		Kenwood USA Corporation FCC ID:		ALH413800 Freq. Range:		KENWOOD	
DUT Type:	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD		
2010 Celltech La	ltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 3 of 309	

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

1.0 INTRODUCTION

This measurement report demonstrates that the Kenwood USA Corporation Models: TK-3312-1, TK-3317-1 Portable FM UHF PTT Radio Transceiver complies with the SAR (Specific Absorption Rate) RF exposure requirements FCC 47 CFR §2.1093 (see reference [1]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [2]), IEEE Standard 1528-2003 (see reference [3]) and IEC Standard 62209-1:2005 (see reference [4]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (joystick), and remote control is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

N	MEASURED RF CO	NDUCTED OUTPU	JT POWER LEVEL	.S
Test Frequency	Mode	dBm	Watts	Method
450.0 MHz	CW	36.90	4.9	Average Conducted
463.3 MHz	CW	36.90	4.9	Average Conducted
470.0 MHz	CW	36.90	4.9	Average Conducted
476.7 MHz	CW	36.99	5.0	Average Conducted
484.0 MHz	CW	36.99	5.0	Average Conducted
490.0 MHz	CW	37.08	5.1	Average Conducted
498.0 MHz	CW	37.08	5.1	Average Conducted
512.0 MHz	CW	37.16	5.2	Average Conducted

Notes

- 1. The test channels were selected in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [5]).
- 2. The RF conducted output power levels of the DUT were measured by Celltech prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector of the radio in accordance with FCC 47 CFR §2.1046 (see reference [12]).

Applicant:	Kenwood USA Corporation FCC ID:		orporation FCC ID: ALH413800 Freq. Range:		450 - 512 MHz	KENWOOD	
DUT Type:	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech La	litech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (Initial Release)

4.0 FCC POWER THRESHOLDS FOR PTT DEVICES ($f \le 0.5$ GHz)

FCC SAR Evaluation P	ower Thresholds for PTT De	Manufacturer's Rated RF Output Power			
Exposure Conditions	P mW (General Population)	P mW (Occupational)	100% PTT Duty Cycle	50% PTT Duty Cycle	
Held to face, d ≥ 2.5 cm	250	5 Watts	2.5 Watts		
Body-worn, <i>d</i> ≥ 1.5 cm	200	1000			
Body-worn, <i>d</i> ≥ 1.0 cm	Body-worn, <i>d</i> ≥ 1.0 cm 150		5 Watts	2.5 Watts	
compared with these three 2. The closest distance between determine the power three	veen the user and the device o	r its antenna is used to	The conducted output exceeds the FCC thresh requirement.		

5.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within ± 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ± 100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, ± 25 MHz < 300 MHz and ± 50 MHz ≥ 300 MHz, require additional steps (per FCC KDB 450824 D01v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [7]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	±50 MHz (≥ 300 MHz)	
	450.0 MHz	0 MHz	< 50 MHz ¹	
	463.3 MHz	13.3 MHz	< 50 MHz ¹	
	470.0 MHz	20 MHz	< 50 MHz ¹	
450 MHz	476.7 MHz	26.7 MHz	< 50 MHz ¹	
430 WHZ	484.0 MHz	34 MHz	< 50 MHz ¹	
	490.0 MHz	40 MHz	< 50 MHz ¹	
	498.0 MHz	48 MHz	< 50 MHz ¹	
	512.0 MHz	62 MHz	> 50 MHz ²	

^{1.} The probe calibration and measurement frequency interval is < 50 MHz; therefore the additional steps were not required.

^{2.} The probe calibration and measurement frequency interval is > 50 MHz; therefore the following additional steps were implemented (per FCC KDB 450824 D01v01r01 - see reference [7]): The measured 1-g SAR may be compensated with respect to +5% tolerances in ε_r and -5% tolerances in σ_r computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness. SAR sensitivity data is per SPEAG DASY4 Manual (see reference [8]).

Probe C	Probe Calibration Frequency = 450 MHz			MHz	Target Parameters:			Head 43.5 ε _r / 0.87 σ			Body = 56.7 ε_r / 0.94 σ		
Test Freq.	Tissue	σ	Coeff.	Sens.	εr	Coeff.	Sens.	% Change	Comper	Compensated SAR at 512 MHz			
512 MHz	Body	2.1%	0.67	n/a	-0.9%	-0.56	-0.504%	0.504%	7.66 W/	/kg	1g	50% ptt d/c	
	P	aramete	er				ϵ	σ	ρ				
		f = 450 N	Hz, d=1	$5\mathrm{mm}$									
	_	$(\epsilon_r = 43.5)$	5, $\sigma = 0.87$										
			SAR I	Peak			- 0.56	+ 0.67	-				
${ m SAR}~1{ m g}$						- 0.46	+ 0.43	0.09					
			SAR 1	10 g			- 0.37	+ 0.22	0.17				

Note: Per the SAR system manufacturer SPEAG, the above sensitivity data (Head) from the DASY4 manual (see reference [8]) can be applied to Body tissue parameters provided the approximation is for <5% deviation of liquid parameters.

Applicant:	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Porta	ble FM UHF PTT Radio T	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 5 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)

Specific Absorption Rate

Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

6.0 NO. OF TEST CHANNELS (Nc)

Antenna Type	Antenna Part No.	Antenna Freq. Range	Test Freq. Range	N _c	Test Frequencies
Stub	KRA-17M	450 - 490 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz
Stub	KRA-17M2	470 - 512 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz
Stub	KRA-23M	440 - 490 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz
Stub	KRA-23M2	470 - 520 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz
Whip	KRA-27M	440 - 490 MHz	450.0 - 490.0 MHz	4	450.0, 463.3, 476.7, 490.0 MHz
Whip	KRA-27M2	470 - 520 MHz	470.0 - 512.0 MHz	4	470.0, 484.0, 498.0, 512.0 MHz

Note: The number of test channels per antenna frequency range was calculated in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [5]).

7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING

Part No.	Description		Accessory Type	
KRA-27M	Whip Antenna (440-490)			
KRA-27M2	Whip Antenna (470-520)			
KRA-23M	Stub Antenna (440-490)		Antenna	
KRA-23M2	Stub Antenna (470-520)	Antenna		
KRA-17M	Stub Antenna (450-490)	_		
KRA-17M2	Stub Antenna (470-512)			
KNB-45L	Battery Pack 2000mAh (Li-ion)		Battery	
KNB-29N	Battery Pack 1500mAh (Ni-MH)		Battory	
KBH-10	Belt-Clip		Body-worn	
		Audio Accessory Category		
KHS-21	Single muff Headset w/boom mic			
KHS-10-OH	Over-the-Head Headset Vox Ready			
KHS-10-BH	Behind-the-Head Headset Vox Ready	- Category 1 - Headset		
KHS-22	Behind-the-Head Headset w/boom mic			
KHS-7	Single-speaker Lightweight Headset Vox Ready			
KHS-7A	Single-speaker Lightweight Headset with PTT Vox Ready			
KHS-23	2Wire Ear-Bud w/mic/PTT Vox Ready		Audio	
KHS-25	D Earpiece w/boom mic & PTT	- Category 2 - Earpiece	Addio	
KHS-26	PTT & Mic in line 2P	Category 2 - Larpiece		
KHS-27	D Earpiece, PTT W/Mic			
KHS-8BL	2Wire Palm Mic Kit Vox Ready	- Category 3 - Wire Kit		
KHS-9BL	3Wire Lapel Mic Kit Black Vox Ready	Category 3 - Wile Kit		
KMC-45	Speaker-Microphone			
KMC-21	Speaker-Microphone	Category 4 - Speaker-Mic		
KMC-48GPS	Speaker-Microphone			

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 6 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

RF Exposure Category Description of Test(s) Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (Initial Release)

8.0 SAR MEASUREMENT SUMMARY

		F	ACE-HELI	D SAI	R EVALUAT	ION	RESULT	S		
С	Test Date(s): Au	ıgust 17, 2010)		1		2		3	4
				1g	SAR (W/kg)	1g S	SAR (W/kg)	1g :	SAR (W/kg)	1g SAR (W/kg)
R	Antenna P/N	Test Frequency	Conducted Power	Ni-MF	l Battery 1500 m	nAh K	NB-29N (a)	Li-ion	Battery 2000 m	Ah KNB-45L (b)
K	(Freq. Range)	(MHz)	(W)	Plot	100% ptt d/f	50)% ptt d/f	Plot	100% ptt d/f	50% ptt d/f
		()	(/	#	SAR Drift dB	50%	% + droop	#	SAR Drift dB	50% + droop
1		450.0	4.9		N/A				N/A	-
2	KRA-17M	463.3	4.9		N/A				N/A	
3	(450-490 MHz)	476.7	5.0		N/A				N/A	
4	Antenna A	490.0	5.1		N/A			F1	5.12	2.56
5		450.0	0.1		TW/A				-0.551	2.91
6		470.0	4.9		N/A				N/A	
7		484.0	5.0		N/A			F2	6.98	3.49
8	KRA-17M2								-0.224	3.67
9	(470-512 MHz) Antenna B	498.0	5.1		N/A			F3	7.88	3.94
10	11 510 0 50				8.24		4.12		-0.336 8.15	4.26 4.08
	512.0 5.2			F5	-0.554		4.12	F4	-0.401	4.47
13		450.0	4.9		-0.554 N/A		4.00		-0.401 N/A	4.47
14	KRA-23M	463.3	4.9		N/A				N/A	
15	(450-490 MHz)	476.7	5.0	N/A				N/A		
16	`Antenna C							F0	4.39	2.20
17		490.0	5.1		N/A			F6	-0.443	2.43
18		470.0	4.9	N/A				N/A		
19	KRA-23M2	484.0	5.0		N/A				N/A	
20	(470-512 MHz)	498.0	5.1		N/A				N/A	
21	Antenna D	512.0	5.2		N/A			F7	6.10	3.05
22								-0.644 3.54		
23		450.0	4.9		N/A			N/A		
24 25	KRA-27M (450-490 MHz)	463.3 476.7	4.9 5.0		N/A				N/A N/A	
26	Antenna E	4/0./	5.0	N/A					6.27	3.14
27		490.0	5.1		N/A			F8	-0.466	3.49
28		470.0	4.9		N/A				N/A	0.40
29			-					F^	6.82	3.41
30	KRA-27M2	484.0	5.0		N/A			F9	-0.378	3.72
31	(470-512 MHz)	498.0	5.1		N/A			F10	8.43	4.22
32	Antenna F	490.0	ບ. ເ		IN/A			FIU	-0.245	4.46
33	512.0		5.2	F12	8.01		4.01	F11	8.22	4.11
34					-0.615		4.61		-0.394	4.50
	8		HEAD		SPATIAL PE	EAK	RF EXPOSU	RE CATEGORY		
FCC	47 CFR 2.1093	de 6	8.0 W/kg		1g averag	je	Occupation	al / Controlled		
Notes										
Test N	lode = CW (Unmod	ulated Continuo	ous Wave)		Phantom	= Bar	ski Planar Ph	antom		
DUT S	Spacing to Phantom	= 2.5 cm		Antenna Distance to Phantom = 3.3 cm						
C = C	olumn				R = Row					

Test Date	Fluid Type	Type Ambient Fluid Temp.		Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 17	450 Head	23.0°C	23.5 °C	≥ 15 cm	101.1 kPa	35%	1000

Applicant:	Kenwood USA Corporation FC		FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver			DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	oroduced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 7 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

SAR MEASUREMENT SUMMARY (CONT.)

FACE-HELD SAR EVALUATION PROCEDURES

Test Procedures applied per "FCC Occupational PTT Test Reduction Draft Considerations" (see ref. [6] & App. H)

- 1. For face-held configuration, the battery with the highest capacity was selected as the default battery (battery "b").
- 2. The SAR configurations highlighted in yellow denote the starting points of the evaluation (highest output power channel).
- 3. When the head SAR of an antenna tested on the highest output power channel using the default battery is \leq 4.0 W/kg (C4R22), testing of the required immediately adjacent channel(s) is not necessary. When the head SAR of an antenna tested on the highest output power channel using the default battery is \leq 3.5 W/kg (C4R5, C4R17, C4R27), testing of all other required channels is not necessary.
- 4. When the head SAR of an antenna tested on the highest output power channel using the default battery is \geq 4.0 W/kg (C4R12, C4R34), head SAR should be measured for that antenna on the required immediately adjacent channel(s) (C4R10, C4R32) (this procedure is applied recursively for each adjacent channel). SAR evaluations for the remaining channels are not required if the highest SAR channel or adjacent channel is < 6.0 W/kg.
- 5. When the highest SAR of an antenna tested using the default battery is \geq 4.0 W/kg (C4R12, C4R34), test additional batteries on the channel that resulted in the highest SAR for that antenna when tested with the standard default battery (C2R12, C2R34).
- 6. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Applicant:	Kenv	Kenwood USA Corporation		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 8 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (Initial Release)

	BODY-W	VORN SAR	EVALUATI	ON R	ESULTS -	WITH	JUA TUC	OIO A	CCESSORI	ES
С	Test Date(s): A	ugust 5-6, 9-1	0, 2010		1		2		3	4
				1g :	SAR (W/kg)	1g S	AR (W/kg)	1g	SAR (W/kg)	1g SAR (W/kg)
	Automo D/N	Test	Conducted		DEFAULT BO	DY-WO	RN ACCESS	SORY: I	BELT-CLIP (P/N	: KBH-10)
R	Antenna P/N (Freq. Range)	Frequency	Power	Ni-MH	Battery 1500	mAh KN	IB-29N (a)	Li-ion	Battery 2000 m	Ah KNB-45L (b)
	(Freq. Runge)	(MHz)	(W)	Plot	100% ptt d/f	50°	% ptt d/f	Plot	100% ptt d/f	50% ptt d/f
				#	SAR Drift dB		+ droop	#	SAR Drift dB	50% + droop
1		450.0	4.9	B5	9.49		4.75	B1	9.55	4.78
2		450.0	4.9	ВЭ	0.330		-	ы	0.053	-
3	KRA-17M	463.3	4.9	В6	13.0		6.50	B2	11.9	5.95
4	(450-490 MHz)	400.0	4.5	ВО	-0.649		7.55	D2	-0.276	6.34
5	Antenna A	476.7	5.0	B7	10.2		5.10	В3	9.11	4.56
6					-0.661		5.94		-0.235	4.81
7		490.0	5.1	B8	8.46		4.23	B4	7.60	3.80
8				-0.570		4.82		-0.373	4.41	
9			N/A	١		В9	11.4	5.70		
	470.0 4.9					•			-0.548	6.47
11	KRA-17M2	5.0		N/A	١		B10	11.1	5.55	
12	(470-512 MHz)				44.0		5.00		-0.277	5.92
13	Antenna B	498.0	5.1	B13	11.8		5.90	B11	12.4	6.20
14					-0.657		6.86		-0.504	6.96
15		512.0	5.2	B14	11.9 -0.344		5.95 6.45	B12	13.0	6.50
16 17					-0.344		0.43		-0.470 7.90	7.24 3.95
18		450.0	4.9		N/A	4		B15	0.090	3.95
19	KRA-23M				8.28	4.14			8.87	4.44
20	(450-490 MHz)	463.3	4.9	B19	-0.550		4.70	B16	-0.600	5.09
21	Antenna C						4.70		7.22	3.61
22		476.7	5.0		N/A	4		B17	-0.406	3.96
23									6.75	3.38
24		490.0	5.1		N/A	١.		B18	-0.832	4.09
25		470.0	4.0	504	11.2		5.60	Doo	10.9	5.45
26		470.0	4.9	B24	-0.900		6.89	B20	-0.441	6.03
27	KRA-23M2	404.0	F.0	DOE	9.64		4.82	D04	9.93	4.97
28	(470-512 MHz)	484.0	5.0	B25	-1.03		6.11	B21	-0.656	5.77
29	Antenna D	498.0	5.1		N/A	1		B22	9.39	4.70
30		700.0	0.1		14/7	•		522	-0.549	5.33
31	512.0			N/A	۸.		B23	9.04	4.52	
32									-0.578	5.16
	SAF	RLIMITS			BODY	SPATI	AL PEAK	F	RF EXPOSURE (CATEGORY
FCC 4	7 CFR 2.1093	Health Canada	Safety Code 6	8	.0 W/kg	1g a	verage		Occupational /	Controlled
Notes						_				
Test M	lode = CW (Unmod	dulated Continue	ous Wave)		Phantom	= Barski	Planar Pha	ntom		
C = Cc	,	R = R	,		DUT Space	cing to P	hantom = 1.	3 cm Be	elt-Clip Spacing	
	na Distance to Pha	ntom: KRA-	17M/M2 (Antenn	a A/B) =	•				enna C/D) = 3.1	cm
7 (11(011)	2.0141100 10 1 114			~,00)	J.= Jiii			(, and	.ca 0,D, 0.1	•

Test Date	Fluid Type	Ambient Temp.	Fluid Temp.	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 5	450 Body	22.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 6	450 Body	22.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 9	450 Body	21.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 10	450 Body	21.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000

Applicant:	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Portable FM UHF PTT Radio Transceiver			DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 9 of 309

Test Report Issue Date
October 26, 2010
Description of Test(s)
Specific Absorption Rate

Test Report Serial No. 080310ALH-T1037-S90U

Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

	BODY-WOR	N SAR EV	ALUATION	RESI	JLTS - WITI	HOUT AUDIO	ACCE	SSORIES (CONT.)		
С	Test Date(s): Au	gust 5-6, 9-10), 2010		1	2		3	4		
				1g	SAR (W/kg)	1g SAR (W/kg)	1g	SAR (W/kg)	1g SAR (W/kg)		
	Automor D/N	Test	Conducted		DEFAULT B	ODY-WORN ACCES	SORY: I	BELT-CLIP (P/N:	KBH-10)		
R	Antenna P/N (Freg. Range)	Frequency	Power	Ni-MI	Ni-MH Battery 1500 mAh KNB-29N (a)			n Battery 2000 n	nAh KNB-45L (b)		
	((MHz)	(W)	Plot	100% ptt d/f	50% ptt d/f	Plot	100% ptt d/f	50% ptt d/f		
				# SAR Drift dB 50% + droop		#	SAR Drift dB	50% + droop			
33		450.0	4.9		N/A		B26	8.27	4.14		
34								-0.093	4.22		
35	KRA-27M	463.3	4.9	B30	10.0	5.00	B27	9.80	4.90		
36	36 (450-490 MHz)				-0.430	5.52	DE.	-0.224	5.16		
37	Antenna E	476.7	5.0		N/A			9.26	4.63		
38		47 0.7	0.0		14// (B28	-0.346	5.01		
39		490.0	5.1		N/A		B29	9.49	4.75		
40		400.0	0.1		14//		BZO	-0.301	5.09		
41		470.0	4.9	B35	10.5	5.25	B31	10.4	5.20		
42		17 0.0	1.0	200	-0.337	5.67	501	-0.237	5.49		
43	KRA-27M2	484.0	5.0	B36	9.86	4.93	B32	10.2	5.10		
44	(470-512 MHz)	10 1.0	0.0	500	-0.811	5.94	502	-0.313	5.48		
45	Antenna F	498.0	5.1	B37	12.7	6.35	B33	12.7	6.35		
46		100.0	0.1	501	-0.556	7.22	200	-0.346	6.88		
47		512.0	5.2	B38	12.6	6.30	B34	11.5	5.75		
48		012.0	0.2	500	-0.633	7.29	501	-0.316	6.18		
		SAR LIMITS			BODY	SPATIAL P	EAK	RF EXPOSU	RE CATEGORY		
FC	C 47 CFR 2.1093	Health Ca	anada Safety Co	de 6	8.0 W/kg	1g averag	ge	Occupation	al / Controlled		
Note	Notes										
Test	Mode = CW (Unmod	dulated Continu	ous Wave)		Phantom	= Barski Planar Pha	antom				
	Column	R = 1				cing to Phantom = 1	.3 cm B	elt-Clip Spacing			
Anter	nna Distance to Pha	ntom: KRA-27N	//M2 (Antenna E	(F) = 3.	0 cm						

Test Date	Fluid Type	Ambient Temp.	Fluid Temp.	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 5	450 Body	22.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 6	450 Body	22.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 9	450 Body	21.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 10	450 Body	21.0°C	21.0°C	≥ 15 cm	101.1 kPa	35%	1000

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio T	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	n of Celltech Labs Inc.	Page 10 of 309			

<u>Test Report Issue Date</u> October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

SAR MEASUREMENT SUMMARY (CONT.)

BODY-WORN SAR EVALUATION PROCEDURES - WITHOUT AUDIO ACCESSORIES

Test Procedures applied per "FCC Occupational PTT Test Reduction Draft Considerations" (see ref. [6] & App. H)

- 1. For body-worn configuration, select the thinnest standard battery with the highest capacity as the default battery. Please note Battery "a" & Battery "b" are identical dimensions; therefore Battery "b" was selected based on the higher capacity.
- 2. The belt-clip accessory is the manufacturer's only disclosed body-worn accessory and is therefore the default accessory.
- 3. The SAR configurations highlighted in yellow denote the starting points of the evaluation (highest output power channel).
- 4. When the body SAR of an antenna tested on the highest output power channel using the default battery is ≥ 4.0 W/kg (C4R8, C4R24, C4R32, C4R40), body SAR should be measured for that antenna on the required immediately adjacent channel(s) (C4R6, C4R22, C4R30, C4R38). This procedure is applied recursively to each adjacent channel.
- 5. When the body SAR of an antenna tested on the highest output power channel using the default battery is > 6.0 W/kg (C4R16, C4R48), all required channels should be measured for that antenna (C4R14, C4R12, C4R10, C4R46, C4R34, C4R32).
- 6. When the highest SAR of an antenna tested using the default battery is \geq 4.0 W/kg (C4R4, C4R16, C4R20, C4R26, C4R36, C4R48), test additional batteries on the channel that resulted in the highest SAR for that antenna when tested with the standard default battery (C2R4, C2R16, C2R20, C2R26, C2R36, C2R48).
- 7. When the body SAR of an antenna tested using an additional battery is \geq 6.0 W/kg (C2R16, C2R26), test additional batteries on the immediately adjacent channel(s) for that antenna (C2R14, C2R28). This procedure is not applied recursively to each adjacent channel.
- 8. When the body SAR of an antenna tested using an additional battery is ≥ 7.0 W/kg (C2R4, C2R48), test additional batteries on all other required channels for that antenna (C2R1, C2R6, C2R8 & C2R46, C2R44, C2R42).
- 9. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		ortable FM UHF PTT Radio Transceiver DUT Models: TK-33		TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	oroduced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 11 of 309	

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

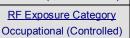
Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (Initial Release)

	В	ODY-V	VORN S	SAR E	VALUA	TION R	ESUL	TS - WIT	H DEF	AULT	AUDIO A	ACCESS	SORIE	ES	
С	Test Dates: Au	ug. 11-13,	16, 2010		1	2		3	4		5	6		7	8
					1g SAR (W	/kg)		1g SAR (W	/kg)		1g SAR (W	kg)		1g SAR (W	/kg)
					io Acc. Cat		+	lio Acc. Cat			io Acc. Cat	<u> </u>	Auc	lio Acc. Ca	•
	Antenna	Toot	Cond.		set P/N: Ki			piece P/N:	•		Kit P/N: K	• •		Mic P/N: KN	
R	P/N	Test Freg.	Power		ry a (P/N: k			ry a (P/N: k			ry a (P/N: K			ery a (P/N: F	
	(Freq. Range)	(MHz)	(W)	Datte	100%	50%	Datte	100%	50%	Datte	100%	50%	Datte	100%	50%
	ixalige)			Plot	ptt d/f	ptt d/f	Plot	ptt d/f	ptt d/f	Plot	ptt d/f	ptt d/f	Plot	ptt d/f	ptt d/f
				#	SAR Drift dB	50% d/f +droop	#	SAR Drift dB	50% d/f +droop	#	SAR Drift dB	50% d/f +droop	#	SAR Drift dB	50% d/f +droop
1					9.74	4.87		9.72	4.86		10.2	5.1		9.84	4.92
2		450.0	4.9	A1	0.150	-	A4	0.273	-	A20	0.188	-	A28	0.247	-
3		400.0	4.0	40	11.4	5.70	۸.	12.5	6.25	0.04	12.0	6.00	400	11.8	5.90
4	KRA-17M	463.3	4.9	A2	-0.807	6.86	A5	-0.859	7.62	A21	-0.669	7.00	A29	-0.694	6.92
5	(450-490) Antenna A	476.7	5.0	A3	8.55	4.28	A6	10.0	5.00	A22	9.59	4.80	A30	9.36	4.68
6	Antonna A	470.7	5.0	AS	-0.639	4.95	Au	-0.817	6.03	AZZ	-0.791	5.75	A30	0.247	-
7		490.0	5.1		N/A		A7	7.47	3.74	A23	7.41	3.71		N/A	
8		100.0	0.1					-0.540	4.23		-0.545	4.20			_
9 10		470.0	4.9	A43	10.3 -0.955	5.15 6.42	A45	11.3 -1.08	5.65 7.25	A61	10.2 -0.643	5.10 5.91	A62	10.8 -0.948	5.40 6.72
11					8.09	4.05		8.46	4.23			5.91		8.38	4.19
12	KRA-23M2	484.0	5.0	A44	-0.817	4.88	A46	-0.841	5.13		N/A		A63	-0.972	5.24
13	(470-512) Antenna D	498.0	5.1		N/A		A47	8.04	4.02		N/A			N/A	
14	Antenna D	490.0	5.1		IN/A		747	-0.597	4.61		IN/A			IN/A	
15		512.0	5.2		N/A		A48	8.64	4.32		N/A		N/A		
16 17		450.0	4.9		N/A			-1.08 N/A	5.54	N/A			N/A		
18	KDA 27M		4.9		9.29	4.65		10.1	5.05		9.99	5.00		9.63	4.82
19	KRA-27M (450-490)	463.3	4.9	A64	-0.610	5.35	A65	-0.577	5.77	A66	-0.550	5.67	A67	-0.510	5.41
20	Antenna E	476.7	5.0		N/A	0.00		N/A	0.11		N/A	0.01		N/A	0.41
21		490.0	5.1		N/A			N/A			N/A			N/A	
22		470.0	4.9	A68	11.3	5.65	A92	10.8	5.40	A108	10.7	5.35	A116	10.7	5.35
23		470.0	7.5	7.00	-0.467	6.29	7.02	-0.444	5.98	71100	-0.415	5.89	71110	-0.461	5.95
24 25	KRA-27M2	484.0	5.0	A69	10.2 -0.771	5.10 6.09	A93	10.4 -0.723	5.20 6.14	A109	9.89 -0.644	4.95 5.74	A117	10.2 -0.796	5.10 6.13
26	(470-512)				12.4	6.20		12.2	6.10		12.4	6.20		12.1	6.05
27	Antenna F	498.0	5.1	A70	-0.609	7.13	A94	-0.623	7.04	A110	-0.597	7.11	A118	-0.501	6.79
28		512.0	5.2	A71	12.4	6.20	A95	12.0	6.0	A111	12.8	6.40	A119	12.4	6.20
29		312.0	5.2	A	-0.608	7.13	Ass	-0.757	7.14	AIII	-0.636	7.41	Alla	-0.681	7.25
		S	AR LIMITS	3			E	BODY	SPA	ATIAL P	EAK	RF E	EXPOSI	JRE CATE	SORY
	FCC 47 CFR 2.1093 Health Canada Safety Co						8.0) W/kg	1	g avera	ge	Oc	cupatio	nal / Contro	olled
Notes	Notes														
Test N	Node = CW (Ur	nmodulate	d Continuo	ous Wav	/e)			Antenna D	istance to	Phanto	n	DI	UT Dist	ance to Pha	antom
Phant	Phantom = Barski Planar Phantom					KR	A-17M (Antenna A)		3.2 cm					
C = C	C = Column						KRA-23M2 (Antenna D)					1.3	1.3 cm with Belt-Clip accessory		
R = R	ow					KRA-27M/M2 (Antenna E/F) 3.0 cm				Í					
		not conta	ain a built-i	n radiat	ing element					P/N: KB					
	Audio accessories do not contain a built-in radiating element Body-worn Accessory = Belt-Clip (P/N: KBH-10)														

Test Date	Fluid Type	Ambient Temp.	Fluid Temp.	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Aug 11	450 Body	20.0°C	22.5°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 12	450 Body	22.0°C	22.5°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 13	450 Body	22.0°C	23.5°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 16	450 Body	22.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio T	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	Page 12 of 309				



<u>Test Report Issue Date</u> October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

	E	BODY-V	VORN	SAR	EVALUA	TION R	ESUL	TS - WI	TH DEF	AULT	AUDIO	ACCES	SORII	ES		
С	Test Dates: A	ug. 11-13,	16, 2010		1	2		3	4		5	6		7	8	
					1g SAR (W	/kg)		1g SAR (W	/kg)		1g SAR (W	/kg)		1g SAR (W/	kg)	
				Aud	io Acc. Cat	tegory 1	Aud	lio Acc. Cat	egory 2	Aud	io Acc. Cat	egory 3	Aud	io Acc. Cate	egory 4	
	Antenna	Test	Cond.	Head	set P/N: Ki	1S-10-OH	Ear	piece P/N:	KHS-23	Wire	Kit P/N: K	HS-8BL	Spkr-Mic P/N: KMC-48GPS			
R	P/N (Freg.	Freq.	Power	Batte	ry b (P/N: h	(NB-45L)	Batte	ery b (P/N: h	(NB-45L)	Batte	ry b (P/N: h	(NB-45L)	Battery b (P/N: KNB-45L)			
	Range)	(MHz)	(W)	Plot	100% ptt d/f	50% ptt d/f	Plot	100% ptt d/f	50% ptt d/f	Plot	100% ptt d/f	50% ptt d/f	Plot	100% ptt d/f	50% ptt d/f	
				#	SAR Drift dB	50% d/f +droop	#	SAR Drift dB	50% d/f +droop	#	SAR Drift dB	50% d/f +droop	#	SAR Drift dB	50% d/f +droop	
30		470.0	4.9		N/A			N/A			N/A			N/A		
31		484.0	5.0		N/A			N/A			N/A			N/A		
32	KRA-17M2 (470-512)	498.0	5.1	A31	10.5	5.25	A33	10.5	5.25	A35	11.3	5.65	A37	10.8	5.40	
33	Antenna B	400.0	0.1		-0.209	5.51	7100	-0.195	5.49	7100	-0.447	6.26	7.07	-0.389	5.91	
34		512.0	5.2	A32	11.9	5.95	A34	12.3	6.15	A36	12.1	6.05	A38	12.0	6.00	
35				7102	-0.389	6.51	A34	-0.339	6.65	7100	-0.458	6.72	7100	-0.317	6.45	
36		450.0	4.9		N/A	1	N/A				N/A			N/A		
37	KRA-23M	463.3	4.9	A39	8.00	4.00	A40	8.21	4.11	A41	8.99	4.50	A42	8.12	4.06	
38	(450-490) Antenna C	470.7	5.0		-0.713	4.71		-0.560	4.67		-0.729	5.32		-0.688	4.76	
39 40	7 1110111114 0	476.7 490.0	5.0 5.1		N/A			N/A N/A			N/A N/A			N/A N/A		
40					N/A					DATIAL		DEE	VDOCI		ODV	
			AR LIMIT					BODY	5	PATIAL				RE CATEG		
FCC 47 CFR 2.1093 Health Canada Safety Code 6								8.0 W/kg		1g aver	age	Occ	upation	nal / Contro	lea	
Note	•	l la an a al al a	tl Oti					A 4	- Di-t	Di		DUI	. Di - 1	4 - Di		
	Mode = CW (iuous W	ave)				Antonna I		3.2 cm	וטע	Distan	ice to Phant	.om	
	Column	ridilai PN		R = Rov	,		KRA-17M2 (Antenna B KRA-23M (Antenna C)			1.3 (3 cm with Belt-Clip accessory			
							, ,									
Audi	Audio accessories do not contain a built-in radiating element Body-worn Accessory = Belt-Clip (P/N: KBH-10)															

Test Date	Fluid Type	Ambient Temp.	Fluid Temp.	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 11	450 Body	20.0°C	22.5°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 12	450 Body	22.0°C	22.5°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 13	450 Body	22.0°C	23.5°C	≥ 15 cm	101.1 kPa	35%	1000
Aug 16	450 Body	22.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000

Applicant:	Kenv	enwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Porta	ble FM UHF PTT Radio T	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech La	bs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)
RF Exposure Category

Occupational (Controlled)

SAR MEASUREMENT SUMMARY (CONT.)

SAR EVALUATION PROCEDURES - DEFAULT AUDIO ACCESSORIES

Test Procedures applied per "FCC Occupational PTT Test Reduction Draft Considerations" (see ref. [6] & App. H)

- 1. The SAR configurations highlighted in yellow denote the starting points of the evaluation per procedures described below.
- 2. Preliminary evaluations were performed in order to select the default accessory, per audio accessory category (see manufacturer's disclosed accessory listing, Section 7.0), expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions, based on similar construction and operating requirements (see Appendix D for photographs of the manufacturer's disclosed accessory options).
- 3. Based on the SAR measured in the body-worn test sequence (without audio accessory), if the SAR for the antenna, body-worn accessory and battery combination(s) applicable to an audio accessory is/are > 4.0 W/kg, test that audio accessory using the highest body-worn SAR combination and channel configuration applicable to the audio accessory (C2R4, C4R4, C6R4, C8R4, C2R10, C4R10, C6R10, C8R10, C2R19, C4R19, C6R19, C8R19, C2R29, C4R29, C6R29, C8R29, C2R35, C4R35, C6R35, C8R35, C2R38, C4R38, C6R38, C8R38).
- 4. If the SAR measured for an audio accessory combination is > 6.0 W/kg (C2R4, C8R4, C2R10, C8R10, C2R35, C4R25, C6R25, C8R25), test that audio accessory on the required immediately adjacent channels (C2R1, C2R6, C8R1, C8R5, C2R12, C2R33, C4R33, C6R33, C8R33).
- 5. If the SAR measured for an audio accessory combination is > 7.0 W/kg (C4R4, C6R4, C4R10, C2R29, C4R29, C6R29, C8R29), test that audio accessory on all required channels (C4R1, C4R6, C4R8, C6R1, C6R6, C6R8, C4R12, C4R14, C4R16, C2R27, C2R25, C2R23, C4R27, C4R25, C4R23, C6R27, C6R25, C6R23, C8R27, C8R25, C8R23).
- 6. Additional audio accessories per category were not tested if the highest SAR channel(s) and/or adjacent channel(s) were < 7.0 W/kg.
- 7. When test reduction applies, the slots for such configurations are denoted with N/A (Not Applicable).

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD		
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		Portable FM UHF PTT Radio Transceiver DUT Models:		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 14 of 309		

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

	BODY-WO	RN SAR E	VALUATION	RESU	JLTS -	ADDITIO	NAL A	JDIO ACCE	SSOR	IES				
С	Test Date(s): Au	gust 31, Septen	nber 1-3, 7, 2010					1		2				
								1g SAR	R (W/kg)					
_	Antenna P/N	Audio	Audio		est	Conducted	Ni-N	MH Battery 1500		NB-29N (a)				
R	(Freq. Range)	Accessory & Category	Accessory P/N		uency Hz)	Power (W)	Plot	100% ptt d/f		0% ptt d/f				
		a Category	F/IN	(141)	112)	(**)	#	SAR Drift dB		% + droop				
1								9.45		4.73				
2				45	0.0	4.9	A8	-0.454		5.25				
3				40		4.0	4.0	11.6		5.80				
4			KIIC OF	46	3.3	4.9	A9	-0.910		7.15				
5			KHS-25	47	6.7	F.0	A 10	9.55		4.78				
6				47	6.7	5.0	A10	-0.922		5.90				
7				40	0.0	5.1	A11	7.21		3.61				
8			430		0.0	J. I	AII	-0.667		4.20				
9				45	0.0	4.9	A12	8.88		4.44				
10				45	0.0	7.0	712	0.456		-				
11				46	3.3	4.9	A13	10.6		5.30				
12		Earpiece	KHS-26		0.0	1.0	71.0	-0.702		6.23				
13		(c/2)		47	6.7	5.0	A14	9.06		4.53				
14								-0.494		5.08				
15	KRA-17M			49	0.0	5.1	A15	6.79		3.40				
16	(450-490 MHz)							-0.548		3.85				
17	Antenna A			45	0.0	4.9	A16	10.1		5.05				
18								0.034						
19				46	3.3	4.9	A17	11.5		5.75				
20			KHS-27					-0.728		6.80				
21				47	6.7	5.0	A18	9.24		4.62				
22				_	-	_	-					-0.920		5.71
23				49	0.0	5.1	A19	6.86		3.43				
24 25								-0.566		3.91				
26				45	0.0	4.9	A24	10.4 0.268		5.20				
27								11.9		5.95				
28		Wire Kit		46	3.3	4.9	A25	-0.795		7.15				
29		(c/3)	KHS-9BL					9.57		4.85				
30		(3-2)		47	6.7	5.0	A26	-0.960		5.97				
31								6.96		3.48				
32				49	0.0	5.1	A27	-0.442		3.85				
	SA	AR LIMITS		В	ODY	SPATIA	L PEAK	RF EXPO	SURE CA					
FCC	47 CFR 2.1093	1	da Safety Code 6) W/kg	1g av			ional / Co					
Notes			•				, i							
	lode = CW (Unmo	dulated Continu	ous Wave)		Antenn	a Distance t	o Phanton	n DUT D	istance to	Phantom				
	om = Barski Planar		-,			A-17M		KRA.		1.3 cm				
	C = Column R = Row					enna A)	3.2 cn	n (Anter		Belt-Clip				
	Audio accessories do not contain a built-in radiating elemen		nt f	Body-wor	n Accessory	= Belt-Clip	(P/N: KBH-10)		L					
Test [Date Fluid Type Ambient Temp. Fluid		l Temp.		id Depth	Atmosph Pressu	eric Rela		ρ (Kg /m³)					
Aug	31 450 Boo	dy 20.	0°C 22	2.5°C	≥	15 cm	101.1 kl			1000				
Sep		-		3.0°C		15 cm	101.1 kl		%	1000				
Sep	t 2 450 Boo	dy 22.	0°C 22	2.0°C	≥	15 cm	101.1 kl	Pa 35	%	1000				
Sep				3.0°C		15 cm	101.1 kl			1000				
Sep	t 7 450 Boo	dy 21.	5°C 22	2.0°C	≥	15 cm	101.1 kl	Pa 35	%	1000				

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio T	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	n of Celltech Labs Inc.	Page 15 of 309			

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

В	ODY-WORN	SAR EVAL	UATION R	ESU	JLTS -	ADD	ITIO	NAL A	UD	IO ACCESS	SORI	ES
С	Test Date(s): Au	ugust 31, Sep	tember 1-3, 7	, 201	0					1		2
					_ ,					1g SAR (W/	kg)	
R	Antenna P/N	Audio Accessory	Audio Accessory		Test quency	-	ducted ower	Ni-N	ИΗΙ	Battery 1500 m	h KNI	3-29N (a)
IX.	(Freq. Range)	& Category	P/N	1	MHz)		(W)	Plot		100% ptt d/f	50°	% ptt d/f
				Ì	,		` ′	#		SAR Drift dB	50%	+ droop
33					170.0		4.9	A49		10.6		5.30
34					17 0.0		4.9	A49		-0.871		6.48
35					184.0		5.0	A50		9.76		4.88
36			VHC 25	KHS-25	104.0	;	5.0	ASU		-1.09		6.27
37			KH3-23	498.0	100.0		5.1	A51		7.95		3.98
38				498.0	·	J. I	AST		-0.613		4.58	
39					512.0		5.2	A52		9.24		4.62
40				_ :) 1 Z . U		J.Z	A52		-1.54		6.59
41				470.0			4.9	A53		9.94		4.97
42				470.0		4.9	ASS		-1.03		6.30	
43					184.0		5.0	A54		8.30		4.15
44	KRA-23M2 (470-512 MHz) Antenna D	Earpiece	KHS-26	404.0	,	5.0	A34		-0.638		4.81	
45		(c/2)		498.0			5.1	A55		7.89		3.95
46				45		,	5.1	ASS		-0.533		4.46
47					512.0		5.2	A56		9.52		4.76
48				,	012.0	•	5.2	A30		-1.62		6.91
49				470.0			4.9	A57		9.81		4.91
50							4.9	AST		-0.699		5.76
51				,	184.0		5.0	A58		9.20		4.60
52			KHS-27	_	104.0	•	5.0	A30		-0.937		5.71
53			N 13-21		198.0		5.1	A59		7.49		3.75
54					FJU.U	,	J. I	739		-0.479		4.18
55					512.0		5.2	A60		9.04		4.52
56				`	712.0	<u> </u>	J.Z	AUU		-1.57		6.49
	SAF	RLIMITS			BODY	'	SPATI	AL PEAK	(RF EXPOSUR	E CAT	EGORY
FCC	FCC 47 CFR 2.1093 Health Canada Safety Code 6						1g a	verage		Occupationa	I / Cor	ntrolled
Notes												
Test Mo	de = CW (Unmodula	ated Continuou	s Wave)		DUT	Distar	nce to	Phantom	1	Antenna Distar	nce to	Phantom
Phanton	n = Barski Planar Pl	nantom										
C = Colu	C = Column R = Row					A-23M	12	1.3 cm		KRA-23M2		3.1 cm
Body-wo	ody-worn Accessory = Belt-Clip (P/N: KBH-10)					-	Belt-Clip)	(Antenna D)		J. 1 CIII	
Audio accessories do not contain a built-in radiating element												

Test Date	Fluid Type	Ambient Temp.	Fluid Temp.	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 31	450 Body	20.0°C	22.5°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 1	450 Body	21.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 2	450 Body	22.0°C	22.0°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 3	450 Body	23.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 7	450 Body	21.5°C	22.0°C	≥ 15 cm	101.1 kPa	35%	1000

Applicant:	Kenv	enwood USA Corporation FO		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ortable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in what is not to be reproduced				ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 16 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Test Date(s): August 31, September 1-3, 7, 2010 Test Antenna P/N (Freq. Range) Audio Accessory (MHz) Frequency (MHz) Power (MHz)		BODY-WORN	SAR EVAL	UATION R	ESULTS -	ADDITION	AL AUI	DIO ACCESS	SORIES
Antenna Pin Acade Audio Frequency Frequency Recessory Frequency Recessory Recessory	С	Test Date(s): Aug	gust 31, Septemb	er 1-3, 7, 2010				1	2
## Antenna F RACESSORY R. Category Pin Frequency (W) Plower (HHz) Plower (HZ) Plower (HZ)			Audio	Audio	Toot	Conducted		1g SAR (W/	kg)
Freq. Range	R						Ni-MH		
ST ST ST ST ST ST ST ST	• •	(Freq. Range)						·	
KHS-21 Headset (c/1) KHS-22 A70.0 A81 A82 A84 A84 A85 A85							#		
SPECIAL PROPERTY NAME	_				470.0	4.9	A72		
Result								ļ	
RHS-21 498.0 5.1 A74 12.3 6.15					484.0	5.0	A73		
Company Comp				KHS-21					
Salar Sala					498.0	5.1	A74		
S12.0 S.2 A75 -0.664 7.40									
Arcolor Arco					512.0	5.2	A75		
KRA-27M2 KRA-27M2 KRA-27M2 Headset (c/1) KRS-10-BH KRS								ļ	
KRA-27M2					470.0	4.9	A76		
Red								į	
Result					484.0	5.0	A77		
TO TO TO TO TO TO TO TO				KHS-10-BH					
Ti Ti Ti Ti Ti Ti Ti Ti					498.0	5.1	A78		
T2 T3 T4 T5 T5 T6 T5 T6 T7 T7									
Read					512.0	5.2	A79		
Red									
Company Controlled Contro					470.0	4.9	A80		
RRA-27M2									
Antenna F			Headset	1410.00	484.0	5.0	A81		
78 79 80 81 81 82 83 84 85 86 87 88 89 90 91 91 92 93 94 94 95 96 SAR LIMITS 80 512.0 5.2 A83 11.9 5.95 -0.667 6.94 10.3 5.15 -0.467 5.73 -0.467 5.73 -0.620 6.17 498.0 5.1 A86 11.8 5.90 -0.529 6.66 87 470.0 4.9 A88 10.9 5.45 -0.661 7.57 89 10.1 5.2 A87 13.0 6.50 -0.661 7.57 89 10.1 5.05 96 484.0 5.0 A89 10.1 5.05 96 11.8 5.90 -0.467 6.07 91 10.1 5.05 96 96 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled		,	(c/1)	KHS-22	400.0	5 4	4.00		
80 81 82 83 84 85 86 87 88 89 90 90 91 92 93 94 95 96 SAR LIMITS 80 470.0 4.9 4.9 4.9 4.9 4.9 4.9 4.9	78	Antenna	(0.1)		498.0	5.1	A82	-0.653	6.92
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 SAR LIMITS A70.0 4.9 470.0 4.9 484.0 470.0 4.9 484.0 5.0 484.0 5.0 484.0 5.0 485 -0.467 5.73 10.7 5.35 -0.620 6.17 484.0 5.1 486 -0.529 6.66 6.66 7.57 470.0 4.9 488 470.0 4.9 488 470.0 4.9 488 470.0 4.9 488 470.0 4.9 488 10.9 5.45 -0.467 6.07 9.1 9.2 9.3 9.4 484.0 5.0 484.0 5.0 488 484.0 5.0 488 10.9 5.45 -0.467 6.07 9.0 484.0 5.0 488 10.1 5.05 9.0 11.8 5.90 9.0 11.8 5.90 9.0 11.8 5.90 9.0 12.3 6.15 -0.754 7.32 FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled	79				512.0	5 2	۸02	11.9	5.95
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 SAR LIMITS KHS-7 484.0 484.0 5.0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4	80				312.0	5.2	A03	-0.667	6.94
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 SAR LIMITS RHS-7 484.0 5.0 484.0 5.0 A85 -0.467 5.73 10.7 5.35 -0.620 6.17 488.0 5.1 A86 11.8 5.90 -0.529 6.66 -0.529 6.66 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.467 6.07 -0.467 6.07 -0.467 6.07 -0.717 5.96 -0.717 5.96 -0.753 7.02 -0.753 7.02 -0.754 7.32 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled	81				470.0	49	Δ84	10.3	5.15
Reference	82					1.0	7.01		5.73
Result					484.0	5.0	A85		
86 87 88 89 90 91 92 93 94 95 96 SAR LIMITS BODY SPATIAL PEAK FCC 47 CFR 2.1093 Health Canada Safety Code 6 87 512.0 5.1 A86 -0.529 6.66 -0.529 6.66 -0.529 6.66 -0.529 6.66 -0.529 6.66 -0.529 6.66 -0.529 6.66 -0.529 6.66 -0.529 6.66 -0.529 6.66 -0.520 -0.661 7.57 -0.661 7.57 484.0 5.0 A89 10.1 5.05 -0.717 5.96 -0.753 7.02 -0.753 7.02 -0.754 7.32 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled				KHS-7					
87 88 90 91 92 93 94 95 96 SAR LIMITS BODY SPATIAL PEAK 13.0 6.50 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.757 -0.757 6.07 -0.717 5.96 -0.717 5.96 -0.753 7.02 -0.753 7.02 -0.754 7.32 -0.754 7.32 -0.754 7.32 -0.754 7.32 -0.754 7.32 -0.754 7.32 -0.754 7.32 -0.754 7.32 -0.754 7.32					498.0	5.1	A86		
88 90 91 92 93 94 95 96 SAR LIMITS BODY SPATIAL PEAK A88 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.661 7.57 -0.467 6.07 -0.467 6.07 -0.717 5.96 -0.717 5.96 -0.753 7.02 -0.753 7.02 -0.754 7.32 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled								+	
A					512.0	5.2	A87		
90 91 92 93 94 95 96 SAR LIMITS BODY SPATIAL PEAK A88 -0.467 6.07 -0.717 5.96 -0.717 5.96 -0.753 7.02 -0.754 7.32 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled								ļ	
91 92 93 94 95 96 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 10.1 5.05 -0.717 5.96 -0.717 5.96 -0.753 7.02 -0.753 7.02 -0.754 7.32 RF EXPOSURE CATEGORY 19 average Occupational / Controlled					470.0	4.9	A88		
92 93 94 95 96 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 15.0 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY 12.3 6.15 -0.754 7.32 Coupational / Controlled								ļ	
93 94 95 96 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 11.8 5.90 -0.753 7.02 8.1 12.3 6.15 -0.754 7.32 SPATIAL PEAK RF EXPOSURE CATEGORY Occupational / Controlled					484.0	5.0	A89		
94 95 96 5.1 A90 -0.753 7.02 12.3 6.15 -0.754 7.32 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled				KHS- 7A				+	
95 96 512.0 5.2 A91 12.3 6.15 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled					498.0	5.1	A90		
96 SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled								+	
SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled					512.0	5.2	A91		
FCC 47 CFR 2.1093 Health Canada Safety Code 6 8.0 W/kg 1g average Occupational / Controlled		9	AR LIMITS		BODY	SPATIA	L PEAK		
	FCC		1	la Safety Code					
			Tiouran Guriat	and control of the	3.0 11/10	ıy av		Cocapatione	Controlled
Test Mode = CW (Unmodulated Continuous Wave) DUT Distance to Phantom Antenna Distance to Phantom			dulated Continuo	us Wave)	DUT D	istance to Pha	ntom	Antenna Distan	ce to Phantom
Phantom = Barski Planar Phantom KRA-27M2 1.3 cm KRA-27M2						KRA-27M2 1.			3.0 cm
C = Column R = Row (Antenna F) Belt-Clip (Antenna F)					,	, ,		· · · · · · · · · · · · · · · · · · ·	5.0 GIII
Audio accessories do not contain a built-in radiating element Body-worn Accessory = Belt-Clip (P/N: KBH-10)	Audio	accessories do no	t contain a built-ii	n radiating elem	ent Body-wo	rn Accessory =	Belt-Clip	(P/N: KBH-10)	

Applicant:	Kenv	nwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	rtable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	0 Celltech Labs Inc. This document is not to be reproduced in wh				prior written permissio	n of Celltech Labs Inc.	Page 17 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

В	ODY-WORN	SAR EVAL	UATION R	ESU	ILTS - A	ADDITIC	NAL AL	IDIO ACCESS	SORIES		
С	Test Date(s): A	ugust 31, Sep	tember 1-3, 7	', 201	0			1	2		
R	Antenna P/N	Audio Accessory	Audio Accessory		Test quency	Conducto	ed Ni-Mi	1g SAR (W/kg) Ni-MH Battery 1500 mAh KNB-29N (a)			
	(Freq. Range)	& Category	P/N		MHz)	(W)	Plot	100% ptt d/f	50% ptt d/f		
							#	SAR Drift dB	50% + droop		
97					170.0	4.9	A96	10.9	5.45		
98					+70.0	4.9	A90	-0.521	6.14		
99			KHS-25		184.0	5.0	A97	9.54	4.77		
100				+04.0	5.0	A97	-0.772	5.70			
101			Ki 10-25		198.0	5.1	A98	12.0	6.00		
102				-	+90.0	5.1	A90	-0.542	6.80		
103					512.0	5.2	A99	11.5	5.75		
104				·	012.0	5.2	Ass	-0.796	6.91		
105				4-	170.0	4.9	A100	10.8	5.40		
106					+70.0	4.5	7100	-0.350	5.85		
107	KRA-27M2			48	184.0	5.0	A101	10.3	5.15		
108	(470-512 MHz)	Earpiece	KHS-26		+04.0	5.0	Alui	-0.820	6.22		
109	Antenna F	(c/2)		1410 20	_	198.0	5.1	A102	12.4	6.20	
110				-				+50.0	0.1	7102	-0.550
111					ı	512.0	5.2	A103	11.9	5.95	
112				`	712.0	0.2	7100	-0.697	6.99		
113						4.9	A104	10.4	5.20		
114					470.0	7.0	7104	-0.440	5.75		
115				_	184.0	5.0	A105	9.46	4.73		
116			KHS-27		10 1.0	0.0	71100	-0.549	5.37		
117			14.10 27	4	198.0	5.1	A106	11.4	5.70		
118						.	71.00	-0.620	6.57		
119				ļ	512.0	5.2	A107	12.1	6.05		
120				`		Ų. <u> </u>	707	-0.779	7.24		
	SAR LIMITS					SPATIA	AL PEAK	RF EXPOSUR	E CATEGORY		
FCC 47	FCC 47 CFR 2.1093 Health Canada Safety Code 6					1g av	/erage	Occupationa	I / Controlled		
Notes											
Test Mo	ode = CW (Unmodu	us Wave)		DUT Dis	stance to P	hantom	Antenna Distanc	e to Phantom			
Phantor	Phantom = Barski Planar Phantom					27M2	1.3 cm	KRA-27M2	2.0		
C = Col	C = Column R = Row					(Antenna F) Belt-Clip (Antenna F)			3.0 cm		
Audio a	ccessories do not o	contain a built-ir	n radiating elem	ent	Body-wo	rn Accesso	ry = Belt-Cl	p (P/N: KBH-10)			

Test Date	Fluid Type	Ambient Temp.	Fluid Temp.	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 31	450 Body	20.0°C	22.5°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 1	450 Body	21.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 2	450 Body	22.0°C	22.0°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 3	450 Body	23.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 7	450 Body	21.5°C	22.0°C	≥ 15 cm	101.1 kPa	35%	1000

Applicant:	Kenv	enwood USA Corporation FCC		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	h Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 18 of 309

<u>Test Report Issue Date</u> October 26, 2010 Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

D	ODV WODN	CAD EVALL	IATION DI	EQUI TO	ADDITIO	NIAL ALI	DIO ACCESS	CODIEC	
	ı				- ADDITIC	MAL AU			
С	Test Date(s): A	August 31, Septe	ember 1-3, 7,	2010			1	2	
							1g SAR (W/kg)		
R	Antenna P/N	Audio	Audio	Test	Conduct	ed Ni-MH	Battery 1500 mA	h KNB-29N (a)	
ĸ	(Freq. Range)	Accessory & Category	Accessory P/N	Frequency (MHz)	Power (W)	Plot	100% ptt d/f	50% ptt d/f	
					(,	#	SAR Drift dB	50% + droop	
121							10.0	5.00	
122				470.0	4.9	A112	-0.367	5.44	
123							9.92	4.96	
124		Wire Kit	KIIO ODI	484.0	5.0	A113	-0.883	6.08	
125		(c/3)	KHS-9BL	4600			11.4	5.70	
126				498.0	5.1	A114	-0.587	6.52	
127				540.0	5.0	A 4 4 5	11.5	5.75	
128				512.0	5.2	A115	-0.822	6.95	
129				470.0 484.0	4.9	A120	10.0	5.00	
130					4.9	A120	-0.353	5.42	
131	KRA-27M2 - (470-512 MHz) Antenna F				5.0	A121	9.70	4.85	
132			KMC-45		5.0	AIZI	-0.799	5.83	
133			KIVIC-45	498.0	5.1	A122	10.6	5.30	
134				490.0	5.1	AIZZ	-0.386	5.79	
135				512.0	5.2	A123	12.4	6.20	
136		Speaker-Mic		312.0	5.2	A123	-0.771	7.40	
137		(c/4)		470.0	4.9	A124	9.71	4.86	
138				470.0	4.5	A124	-0.355	5.27	
139				484.0	5.0	A125	9.83	4.92	
140			KMC-21	707.0	3.0	7120	-0.745	5.83	
141			INVIO-Z I	498.0	5.1	A126	11.3	5.65	
142				750.0	J. 1	7120	-0.616	6.51	
143				512.0	5.2	A127	11.6	5.80	
144				012.0	0.2	7.127	-0.746	6.89	
	SAI	RLIMITS		BODY	SPATIA	AL PEAK	RF EXPOSUR	E CATEGORY	
FCC 4	7 CFR 2.1093	Health Canada Sa	afety Code 6	8.0 W/kg	1g a	verage	Occupationa	I / Controlled	
Notes									
Test Mo	ode = CW (Unmod	lulated Continuous	s Wave)	DUT	Distance to	Phantom	Antenna Distan	ce to Phantom	
Phantor	m = Barski Planar	Phantom		KR	KRA-27M2 1.3		KRA-27M2	3.0 cm	
C = Col	umn	(Ant	enna F)	Belt-Clip	(Antenna F)	3.0 cm			
Audio a	ccessories do not	contain a built-in	radiating eleme	ent Body-	Body-worn Accessory = Belt-Clip (P/N: KBH-10)				

Test Date	Fluid Type	Ambient Temp.	Fluid Temp.	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Aug 31	450 Body	20.0°C	22.5°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 1	450 Body	21.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 2	450 Body	22.0°C	22.0°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 3	450 Body	23.0°C	23.0°C	≥ 15 cm	101.1 kPa	35%	1000
Sept 7	450 Body	21.5°C	22.0°C	≥ 15 cm	101.1 kPa	35%	1000

Applicant:	Kenv	enwood USA Corporation FCC II		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Porta	ortable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in whether the control of the cont				ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 19 of 309	

<u>Test Report Issue Date</u> October 26, 2010 Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

SAR MEASUREMENT SUMMARY (CONT.)

SAR EVALUATION PROCEDURES - ADDITIONAL AUDIO ACCESSORIES

Test Procedures applied per "FCC Occupational PTT Test Reduction Draft Considerations" (see ref. [6] & App. H)

1. Based on the SAR measurement results with the default audio accessories, if the SAR measured for a default audio accessory combination was > 7.0 W/kg, all additional accessory options within each accessory category were evaluated.

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	table FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 20 of 309

<u>Test Report Issue Date</u> October 26, 2010 Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

9.0 SAR SCALING

SAR LEVELS SCALED TO KENWOOD MAXIMUM OUTPUT POWER SPEC. (5 WATTS) Plot # Test Freq. Antonna Rattory Meas. Cond. SAR Level Scaling to Scaled SAR													
Plot #	Test Config.	Freq. (MHz)	Antenna	Battery	Meas. Cond. Pwr. (Watts)	SAR Level 1g (W/kg)	Scaling to 5 Watts (dB)	Scaled SAR 1g (W/kg)					
B5	Body-worn	450.0	Α	а	4.9	4.75	+0.0877	4.85					
B1	Body-worn	450.0	Α	b	4.9	4.78	+0.0877	4.88					
B6	Body-worn	463.3	Α	а	4.9	7.55	+0.0877	7.70					
B2	Body-worn	463.3	Α	b	4.9	6.34	+0.0877	6.47					
B9	Body-worn	470.0	В	b	4.9	6.47	+0.0877	6.60					
B15	Body-worn	450.0	С	b	4.9	3.95	+0.0877	4.03					
B19	Body-worn	463.3	С	а	4.9	4.70	+0.0877	4.80					
B16	Body-worn	463.3	С	b	4.9	5.09	+0.0877	5.19					
B24	Body-worn	470.0	D	а	4.9	6.89	+0.0877	7.03					
B20	Body-worn	470.0	D	b	4.9	6.03	+0.0877	6.15					
B26	Body-worn	450.0	Е	b	4.9	4.22	+0.0877	4.31					
B30	Body-worn	463.3	Е	а	4.9	5.52	+0.0877	5.63					
B27	Body-worn	463.3	Е	b	4.9	5.16	+0.0877	5.27					
B35	Body-worn	470.0	F	а	4.9	5.67	+0.0877	5.79					
B31	Body-worn	470.0	F	b	4.9	5.49	+0.0877	5.60					
A1	Body-worn	450.0	Α	а	4.9	4.87	+0.0877	4.97					
A4	Body-worn	450.0	Α	а	4.9	4.86	+0.0877	4.96					
A20	Body-worn	450.0	Α	а	4.9	5.10	+0.0877	5.20					
A28	Body-worn	450.0	Α	а	4.9	4.92	+0.0877	5.02					
A2	Body-worn	463.3	Α	а	4.9	6.86	+0.0877	7.00					
A5	Body-worn	463.3	Α	а	4.9	7.62	+0.0877	7.78					
A21	Body-worn	463.3	Α	а	4.9	7.00	+0.0877	7.14					
A29	Body-worn	463.3	Α	а	4.9	6.92	+0.0877	7.06					
A43	Body-worn	470.0	D	а	4.9	6.42	+0.0877	6.55					
A45	Body-worn	470.0	D	а	4.9	7.25	+0.0877	7.40					
A61	Body-worn	470.0	D	а	4.9	5.91	+0.0877	6.03					
A62	Body-worn	470.0	D	а	4.9	6.72	+0.0877	6.86					
A64	Body-worn	463.3	Е	а	4.9	5.35	+0.0877	5.46					
A65	Body-worn	463.3	Е	а	4.9	5.77	+0.0877	5.89					
A66	Body-worn	463.3	E	а	4.9	5.67	+0.0877	5.79					
A67	Body-worn	463.3	Е	а	4.9	5.41	+0.0877	5.52					
A68	Body-worn	470.0	F	а	4.9	6.29	+0.0877	6.42					
A92	Body-worn	470.0	F	а	4.9	5.98	+0.0877	6.10					
A108	Body-worn	470.0	F	а	4.9	5.89	+0.0877	6.01					
A116	Body-worn	470.0	F	а	4.9	5.95	+0.0877	6.07					

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in wh	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 21 of 309

<u>Test Report Issue Date</u> October 26, 2010

Description of Test(s)

Specific Absorption Rate

Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

SAR SCALING (CONT.)

SAR L	SAR LEVELS SCALED TO KENWOOD MAXIMUM OUTPUT POWER SPEC. (5 WATTS) Test Freq. Antonno Bottom Meas. Cond. SAR Level Scaling to Scaled SAR													
Plot #	Test Config.	Freq. (MHz)	Antenna	Battery	Meas. Cond. Pwr. (Watts)	SAR Level 1g (W/kg)	Scaling to 5 Watts (dB)	Scaled SAR 1g (W/kg)						
A39	Body-worn	463.3	С	b	4.9	4.71	+0.0877	4.81						
A40	Body-worn	463.3	С	b	4.9	4.67	+0.0877	4.77						
A41	Body-worn	463.3	С	b	4.9	5.32	+0.0877	5.43						
A42	Body-worn	463.3	С	b	4.9	4.76	+0.0877	4.86						
A8	Body-worn	450.0	Α	а	4.9	5.25	+0.0877	5.36						
A9	Body-worn	463.3	Α	а	4.9	7.15	+0.0877	7.30						
A12	Body-worn	450.0	Α	а	4.9	4.44	+0.0877	4.53						
A13	Body-worn	463.3	Α	а	4.9	6.23	+0.0877	6.36						
A16	Body-worn	450.0	Α	а	4.9	5.05	+0.0877	5.15						
A17	Body-worn	463.3	Α	а	4.9	6.80	+0.0877	6.94						
A24	Body-worn	450.0	Α	а	4.9	5.20	+0.0877	5.31						
A25	Body-worn	463.3	Α	а	4.9	7.15	+0.0877	7.30						
A49	Body-worn	470.0	D	а	4.9	6.48	+0.0877	6.61						
A53	Body-worn	470.0	D	а	4.9	6.30	+0.0877	6.43						
A57	Body-worn	470.0	D	а	4.9	5.76	+0.0877	5.88						
A72	Body-worn	470.0	F	а	4.9	5.57	+0.0877	5.68						
A76	Body-worn	470.0	F	а	4.9	5.49	+0.0877	5.60						
A80	Body-worn	470.0	F	а	4.9	5.44	+0.0877	5.55						
A84	Body-worn	470.0	F	а	4.9	5.73	+0.0877	5.85						
A88	Body-worn	470.0	F	а	4.9	6.07	+0.0877	6.19						
A96	Body-worn	470.0	F	а	4.9	6.14	+0.0877	6.27						
A100	Body-worn	470.0	F	а	4.9	5.85	+0.0877	5.97						
A104	Body-worn	470.0	F	а	4.9	5.75	+0.0877	5.87						
A112	Body-worn	470.0	F	а	4.9	5.44	+0.0877	5.55						
A120	Body-worn	470.0	F	а	4.9	5.42	+0.0877	5.53						
A124	Body-worn	470.0	F	а	4.9	5.27	+0.0877	5.38						

Notes:

- 1. The SAR levels reported are based on 50% PTT duty factor including SAR droop.
- 2. The scaled SAR levels are below the FCC/IC Occupational SAR Limit of 8.0 W/kg.

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 22 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

10.0 FLUID DIELECTRIC PARAMETERS

450	MHz Bo	dy – Aug	ust 5	490	MHz Bo	dy – Aug	ust 5	512	MHz Bo	ody – Aug	just 5	450	MHz B	ody – Aug	ust 6
D	ielectric	Constan	t ε _r	Di	ielectric	Constan	tε _r	D	ielectri	c Constan	ıt ε _r	D	ielectri	c Constan	tε _r
450 T	Target	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
56.7	<u>+</u> 5%	56.3	-0.7%	56.7	<u>+</u> 5%	55.8	-1.6%	56.7	<u>+</u> 5%	55.6	-1.9%	56.7	<u>+</u> 5%	57.7	+1.8%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	nductiv	vity σ (mh	o/m)	Co	nductiv	ity σ (mho	o/m)
450 T	Target	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
0.94	<u>+</u> 5%	0.92	-2.1%	0.94	<u>+</u> 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.96	+2.1%	0.94	<u>+</u> 5%	0.91	-3.2%
463.3	3 MHz B	ody – Aug	gust 6	470	MHz Bo	dy – Aug	ust 6	476.	7 MHz E	Body – Au	gust 6	484	MHz B	ody – Aug	ust 6
D	ielectric	Constan	tε _r	Di	ielectric	Constan	tε _r	D	ielectri	c Constan	ıt ε _r	D	ielectri	tric Constant ε _r	
450 T	Target	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.
56.7	<u>+</u> 5%	57.2	+1%	56.7	<u>+</u> 5%	57.0	+0.5%	56.7	<u>+</u> 5%	57.4	+1.2%	56.7	<u>+</u> 5%	57.4	+1.2%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mh	o/m)	Co	nductiv	ity σ (mho	o/m)
450 T	Target	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.
0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.94	0.0%	0.94	<u>+</u> 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.95	+1.1%
490	MHz Bo	dy – Aug	ust 6	498	MHz Bo	ody –Aug	ust 6	512	MHz Bo	ody – Aug	just 6	450 MHz Body – Augu			ust 9
D	ielectric	Constan	tε _r	Di	ielectric	Constan	tε _r	D	ielectri	c Constan	ıt ε _r	D	ielectri	c Constan	t ε _r
450 T	Target	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 1	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
56.7	<u>+</u> 5%	57.1	0.7%	56.7	<u>+</u> 5%	56.9	+0.4%	56.7	<u>+</u> 5%	56.8	+0.2%	56.7	<u>+</u> 5%	55.5	-2.1%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	nductiv	vity σ (mh	o/m)	Co	nductiv	ity σ (mho	o/m)
450 T	Target	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 1	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
0.94	<u>+</u> 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.96	+2.1%	0.94	<u>+</u> 5%	0.97	+3.2%	0.94	<u>+</u> 5%	0.94	0.0%
463.3	3 MHz B	ody – Aug	gust 9	470	MHz Bo	dy – Aug	ust 9	476.	7 MHz E	Body – Au	gust 9	480	MHz B	ody – Aug	ust 9
D	ielectric	Constan	tε _r	Di	ielectric	Constan	tε _r	D	ielectri	c Constan	ıt ε _r	D	ielectri	c Constan	t ε _r
450 T	Target	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
56.7	<u>+</u> 5%	56.2	-1.0%	56.7	<u>+</u> 5%	56.1	-1.1%	56.7	<u>+</u> 5%	55.8	-1.6%	56.7	<u>+</u> 5%	55.7	-1.8%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	nductiv	vity σ (mh	o/m)	Co	nductiv	ity σ (mho	o/m)
450 T	Target	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.
0.94	<u>+</u> 5%	0.94	0.0%	0.94	<u>+</u> 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.95	+1.1%
484	MHz Bo	dy – Aug	ust 9	490	MHz Bo	dy – Aug	ust 9	498	MHz Bo	ody – Aug	just 9	512	MHz B	ody – Aug	ust 9
D	ielectric	Constan	tε _r	Di	ielectric	Constan	tε _r	D	ielectri	c Constan	ıt ε _r	D	ielectri	c Constan	tε _r
450 T	Target	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.
56.7	<u>+</u> 5%	55.8	-1.6%	56.7	<u>+</u> 5%	56.1	-1.1%	56.7	<u>+</u> 5%	56.4	-0.5%	56.7	<u>+</u> 5%	55.5	-2.1%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	nductiv	vity σ (mh	o/m)	Co	nductiv	ity σ (mho	o/m)
450 T	Target	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.
0.94	<u>+</u> 5%	0.96	+2.1%	0.94	<u>+</u> 5%	0.98	+4.3%	0.94	<u>+</u> 5%	0.97	+3.2%	0.94	<u>+</u> 5%	0.98	+4.3%
AEO	MHz Bo	dy – Augu	ıst 10	463.3	MHz Bo	ody – Aug	just 10	470	MHz Bo	dy – Aug	ust 10	484	MHz Bo	dy – Augu	ust 10
450		Constan	t e.	Di	ielectric	Constan	tε _r	D	ielectri	c Constan	ıt ε _r	D	ielectri	c Constan	tε _r
	ielectric	Constan	- 01										_		
D	ielectric Farget	Meas.	Dev.		arget	Inter.	Dev.	450 1	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.
D					arget <u>+</u> 5%	Inter. 56.4	Dev. -0.5%	450 T 56.7	<u>+</u> 5%	Meas. 56.6	Dev. -0.2%	450 T 56.7	<u>+</u> 5%	Inter. 56.3	Dev. -0.7%
450 T 56.7	Target <u>+</u> 5%	Meas.	Dev. +1.1%	450 T 56.7	<u>+</u> 5%		-0.5%	56.7	<u>+</u> 5%		-0.2%	56.7	<u>+</u> 5%		-0.7%
450 T 56.7	Target <u>+</u> 5%	Meas. 57.3	Dev. +1.1%	450 T 56.7	<u>+</u> 5%	56.4	-0.5%	56.7 Co	<u>+</u> 5%	56.6	-0.2%	56.7 Co	<u>+</u> 5%	56.3	-0.7%

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be reproduced in v		ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 23 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

FLUID DIELECTRIC PARAMETERS (CONT.)

	MHz Bo	dy – Augu	ıst 10	512 MHz Body – August 10 450 MHz Body – August Dielectric Constant ε _r Dielectric Constant ε					ust 11	463.3	MHz B	ody – Aug	just 11		
D	Dielectric	Constan	t ε _r	Di	electric	Constan	tε _r	D	ielectric	Constan	ıt ε _r	D	ielectri	Constan	tε _r
450	Target	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.
56.7	<u>+</u> 5%	56.4	-0.5%	56.7	<u>+</u> 5%	55.9	-1.4%	56.7	<u>+</u> 5%	55.7	-1.8%	56.7	<u>+</u> 5%	55.7	-1.8%
Co	onductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mh	o/m)	Co	nductiv	vity σ (mho	o/m)
450 1	Target	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.
0.94	<u>+</u> 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.96	+2.1%	0.94	<u>+</u> 5%	0.92	-2.1%	0.94	<u>+</u> 5%	0.94	0.0%
470	MHz Bo	dy – Augu	ıst 11	512 I	MHz Bo	dy – Augı	ust 11	450	MHz Bo	dy – Aug	ust 12	463.3	MHz B	ody – Aug	just 12
D	Dielectric	Constan	tε _r	Di	electric	Constan	tε _r	D	ielectric	Constan	ıt ε _r	D	ielectri	c Constan	tε _r
450 1	Target	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.
56.7	<u>+</u> 5%	56.3	-0.7%	56.7	<u>+</u> 5%	55.2	-2.6%	56.7	<u>+</u> 5%	58.0	+2.3%	56.7	<u>+</u> 5%	58.0	+2.3%
Co	onductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mh	o/m)	Co	nductiv	vity σ (mho	o/m)
450	Target	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.
0.94	<u>+</u> 5%	0.94	0.0%	0.94	<u>+</u> 5%	0.98	+4.3%	0.94	<u>+</u> 5%	0.90	-4.3%	0.94	<u>+</u> 5%	0.91	-3.2%
470	MHz Bo	dy – Augu	ıst 12	484	MHz Bo	dy –Augu	ıst 12	498	MHz Bo	dy – Aug	ust 12	512	MHz Bo	dy – Augu	ust 12
D	Dielectric	Constan	tε _r	Di	electric	Constan	tε _r	D	ielectric	Constan	ıt ε _r	D	ielectri	Constan	tε _r
450	Target	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.
56.7	<u>+</u> 5%	57.3	+1.1%	56.7	<u>+</u> 5%	57.7	+1.8%	56.7	<u>+</u> 5%	57.6	+1.6%	56.7	<u>+</u> 5%	57.2	+0.9%
Co	onductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mh	o/m)	Co	nductiv	vity σ (mho	o/m)
450	Target	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.
0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.96	+2.1%
450	MHz Bo	dy – Augu	ıst 13	470 I	MHz Bo	dy – Augı	ust 13	484	MHz Bo	dy – Aug	ust 13	498	MHz Bo	dy – Augu	ust 13
D	Dielectric	Constan	tε _r	Di	electric	Constan	tε _r	D	ielectric	Constan	ıt ε _r	D	ielectri	c Constan	tε _r
450	Target	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.
56.7	<u>+</u> 5%	55.1	+2.8%	56.7	<u>+</u> 5%	55.2	-2.6%	56.7	<u>+</u> 5%	55.1	-2.8%	56.7	<u>+</u> 5%	54.3	-4.2%
Co	onductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mh	o/m)	Co	nductiv	ity σ (mho	o/m)
450 1	Target	Meas.							muucuv	ity 0 (iiiiii	O/III))	···aaoti··	ity o (iiiiic	
0.94	. =0/		Dev.	450 T	arget	Meas.	Dev.		arget	Inter.	Dev.		arget	Inter.	Dev.
0.04	<u>+</u> 5%	0.9	Dev. -4.3%		arget <u>+</u> 5%	Meas. 0.92	Dev. -2.1%							` `	Dev. +1.1%
		0.9 <mark>dy – Aug</mark> t	-4.3%	450 T 0.94	<u>+</u> 5%		-2.1%	450 T 0.94	arget <u>+</u> 5%	Inter.	Dev. -1.1%	450 T 0.94	arget <u>+</u> 5%	Inter.	+1.1%
450	MHz Bo		-4.3%	450 T 0.94 476.7	<u>+</u> 5%	0.92	-2.1% just 16	450 T 0.94 484	arget <u>+</u> 5% MHz Bo	Inter. 0.93	Dev. -1.1% ust 16	450 T 0.94 490 I	arget <u>+</u> 5% MHz Bo	Inter. 0.95	+1.1%
450 D	MHz Bo	dy – Augu	-4.3%	450 T 0.94 476.7	± 5% MHz Bo	0.92 ody – Aug	-2.1% just 16	450 T 0.94 484	arget <u>+</u> 5% MHz Bo	Inter. 0.93 dy – Aug	Dev. -1.1% ust 16	450 T 0.94 490 I	arget <u>+</u> 5% MHz Bo	Inter. 0.95 ody – Augu	+1.1%
450 D	MHz Boo	dy – Augu Constan	-4.3% ust 16 t ε _r	450 T 0.94 476.7	± 5% MHz Bo	0.92 ody – Aug Constan	-2.1% just 16 t ε _r	450 T 0.94 484	± 5% MHz Bo	Inter. 0.93 dy – Aug	Dev. -1.1% ust 16 ut ε _r	450 T 0.94 490 I	arget <u>+</u> 5% MHz Bo	Inter. 0.95 ody – Augu	+1.1% ust 16 t ε _r
450 450 1 56.7	MHz Boo Dielectric Target	dy – Augu Constant Meas.	-4.3% ust 16 t ε _r Dev1.2%	450 T 0.94 476.7 Di 450 T 56.7	± 5% MHz Boselectric arget ± 5%	0.92 ody – Aug Constan Inter.	-2.1% yust 16 t ε _r Dev. -4.8%	450 T 0.94 484 D 450 T 56.7	± 5% MHz Boulelectric arget ± 5%	Inter. 0.93 dy – Augu Constant Inter.	Dev1.1% ust 16 it ε _r Dev3.0%	450 T 0.94 490 I D 450 T 56.7	± 5% MHz Bo ielectric arget ± 5%	Inter. 0.95 ody – Augu Constan Meas.	+1.1% ust 16 t ε _r Dev. -3.2%
450 T 56.7	MHz Boo Dielectric Target	Constant Meas.	-4.3% ust 16 t ε _r Dev1.2%	450 T 0.94 476.7 Di 450 T 56.7	± 5% MHz Boselectric arget ± 5%	0.92 ody – Aug Constan Inter. 54.0	-2.1% yust 16 t ε _r Dev. -4.8%	450 T 0.94 484 D 450 T 56.7	± 5% MHz Boulelectric arget ± 5%	Inter. 0.93 dy – August Constant Inter. 55.0	Dev1.1% ust 16 it ε _r Dev3.0%	450 T 0.94 490 I D 450 T 56.7	± 5% MHz Bo ielectric arget ± 5% nductiv	Inter. 0.95 ody – Augu c Constant Meas. 54.9	+1.1% ust 16 t ε _r Dev. -3.2%
450 1 450 1 56.7	MHz Boo Dielectric Target ± 5%	Constant Meas. 56.0	-4.3% ust 16 t ε _r Dev1.2% o/m)	450 T 0.94 476.7 Di 450 T 56.7	± 5% MHz Bo electric arget ± 5% nductiv	0.92 ody – Aug Constan Inter. 54.0 ity σ (mho	-2.1% gust 16 t ε _r Dev. -4.8%	450 T 0.94 484 D 450 T 56.7	± 5% MHz Bo ielectric arget ± 5% onductiv	Inter. 0.93 dy - Augree Constant Inter. 55.0	Dev1.1% ust 16 ut ε _r Dev3.0% o/m)	450 T 0.94 490 I D 450 T 56.7	± 5% MHz Bo ielectric arget ± 5% nductiv	Inter. 0.95 ody – Augu c Constan Meas. 54.9	+1.1% ust 16 t ε _r Dev. -3.2% p/m)
450 1 56.7 Cc 450 1 0.94	MHz Boo Dielectric Target ± 5% Dielectric Target ± 5%	Constant Meas. 56.0 ity σ (mho	-4.3% ust 16 t ε _r Dev1.2% o/m) Dev1.1%	450 T 0.94 476.7 Di 450 T 56.7 Co 450 T 0.94	± 5% MHz Bo electric arget ± 5% nductiv arget ± 5%	0.92 cody – Aug constan Inter. 54.0 ity σ (mho	-2.1% gust 16 t s _r Dev. -4.8% D/m) Dev. 0.0%	450 T 0.94 484 D 450 T 56.7 Cc 450 T 0.94	± 5% MHz Bo ielectric rarget ± 5% nductiv rarget ± 5%	Inter. 0.93 dy - Augue Constant Inter. 55.0 ity o (mhe Inter.	Dev1.1% ust 16 ut ε _r Dev3.0% o/m) Dev. 0.0%	450 T 0.94 490 I 0 D 450 T 56.7 Co 450 T 0.94	± 5% MHz Bo ielectric arget ± 5% nductiv arget ± 5%	Inter. 0.95 dy - Augu c Constant Meas. 54.9 vity o (mho Meas.	+1.1% ust 16 t s _r Dev. -3.2% o/m) Dev. +1.1%
450 1 56.7 Cc 450 1 0.94 498	MHz Boo Dielectric Target ± 5% Dielectric Target ± 5% MHz Boo	Constant Meas. 56.0 ity σ (mho Meas. 0.93	-4.3% ust 16 t ε _r Dev1.2% b/m) Dev1.1%	450 T 0.94 476.7 Di 450 T 56.7 Co 450 T 0.94	± 5% MHz Be electric arget ± 5% nductiv arget ± 5% WHz He	0.92 cody – Aug Constan Inter. 54.0 ity σ (mho Inter. 0.94	-2.1% pust 16 t ε _r Dev. -4.8% p/m) Dev. 0.0%	450 T 0.94 484 D 450 T 56.7 Cc 450 T 0.94 484	± 5% MHz Bo ielectric arget ± 5% mductiv arget ± 5% MHz He	Inter. 0.93 dy – Augi c Constant Inter. 55.0 ity σ (mho Inter. 0.94	Dev1.1% ust 16 tt ε _r Dev3.0% co/m) Dev. 0.0%	450 T 0.94 490 I D 450 T 56.7 Co 450 T 0.94	± 5% MHz Bo ielectric arget ± 5% nductiv arget ± 5% MHz He	Inter. 0.95 ody – Augu c Constan Meas. 54.9 vity σ (mho Meas. 0.95	+1.1% ust 16 t ε _r Dev. -3.2% b/m) Dev. +1.1%
450 1 56.7 Cc 450 1 0.94 498	MHz Boo Dielectric Target ± 5% Dielectric Target ± 5% MHz Boo	Constant Meas. 56.0 ity σ (mho Meas. 0.93	-4.3% ust 16 t ε _r Dev1.2% b/m) Dev1.1%	450 T 0.94 476.7 Di 450 T 56.7 Co 450 T 0.94	± 5% MHz Be electric arget ± 5% nductiv arget ± 5% WHz He	0.92 cody – Auge Constant Inter. 54.0 ity σ (mho Inter. 0.94 ad – Augu	-2.1% pust 16 t ε _r Dev. -4.8% p/m) Dev. 0.0%	450 T 0.94 484 D 450 T 56.7 Co 450 T 0.94	± 5% MHz Bo ielectric arget ± 5% mductiv arget ± 5% MHz He	Inter. 0.93 dy – August Constant Inter. 55.0 dity o (mhounter. 0.94 ad – August August Constant Inter.	Dev1.1% ust 16 tt ε _r Dev3.0% co/m) Dev. 0.0%	450 T 0.94 490 D 450 T 56.7 Co 450 T 0.94 490 D	± 5% MHz Bo ielectric arget ± 5% nductiv arget ± 5% MHz He	Inter. 0.95 ody – Augu c Constan Meas. 54.9 rity o (mho Meas. 0.95	+1.1% ust 16 t ε _r Dev. -3.2% b/m) Dev. +1.1%
450 1 56.7 Cc 450 1 0.94 498	MHz Boo Dielectric Target ± 5% Dielectric Target ± 5% MHz Boo Dielectric	Constant Meas. 56.0 ity σ (mho Meas. 0.93 dy – Augu	-4.3% ust 16 t ε _r Dev1.2% o/m) Dev1.1% ust 16 t ε _r	450 T 0.94 476.7 Di 450 T 56.7 Co 450 T 0.94	± 5% MHz Bo electric arget ± 5% nductiv arget ± 5% MHz He electric	0.92 c Constan Inter. 54.0 ity σ (mho Inter. 0.94 ad – Augu	-2.1% Just 16 t ε _r Dev. -4.8% Dom) Dev. 0.0% Just 17 Left ε _r	450 T 0.94 484 D 450 T 56.7 Co 450 T 0.94	± 5% MHz Booielectric arget ± 5% onductiv arget ± 5% MHz He ielectric	Inter. 0.93 dy - August Constant Inter. 55.0 ity o (mhounter. 0.94 ad - August Constant Constant	Dev1.1% ust 16 it ε _r Dev3.0% o/m) Dev. 0.0% ust 17 it ε _r	450 T 0.94 490 D 450 T 56.7 Co 450 T 0.94 490 D	± 5% MHz Bo ielectric arget ± 5% nductiv arget ± 5% MHz He	Inter. 0.95 ody - Augu c Constant Meas. 54.9 vity σ (mho Meas. 0.95 ad - Augu c Constant	+1.1% ust 16 t e _r Dev. -3.2% o/m) Dev. +1.1% ust 17 t e _r
450 1 56.7 Ccc 450 1 0.94 498 Cc 450 1 56.7	MHz Boo Dielectric Target ± 5% Dielectric Target ± 5% MHz Boo Dielectric Target ± 5%	Meas. 56.0 ity σ (mho Meas. 0.93 dy – Augu Constant	-4.3% ust 16 t ε _r Dev1.2% b/m) Dev1.1% ust 16 t ε _r Dev3.2%	450 T 0.94 476.7 Di 450 T 56.7 Co 450 T 0.94 450 I 0.94 450 T 43.5	± 5% MHz Bo electric arget ± 5% nductiv arget ± 5% WHz Hea electric arget ± 5%	0.92 ody – Aug Constant Inter. 54.0 ity o (mho Inter. 0.94 ad – Augu Constant Meas.	-2.1% pust 16 t ε _r Dev. -4.8% Dev. 0.0% ust 17 t ε _r Dev. -1.1%	450 T 0.94 484 D 450 T 56.7 Cc 450 T 0.94 484 D 450 T 43.5	± 5% MHz Bo ielectric farget ± 5% mductiv farget ± 5% MHz He ielectric farget ± 5%	Inter. 0.93 dy - Augre Constant Inter. 55.0 ity o (mhounter) Inter. 0.94 ad - Augre Constant Inter.	Dev1.1% ust 16 tt ε _r Dev3.0% co/m) Dev. 0.0% ust 17 tt ε _r Dev2.3%	450 T 0.94 490 I 56.7 Co 450 T 0.94 490 I 0 450 T 43.5	± 5% MHz Bo ielectric arget ± 5% nductiv arget ± 5% MHz He ielectric arget ± 5%	Inter. 0.95 ody – Augu c Constan Meas. 54.9 vity σ (mho Meas. 0.95 ad – Augu c Constan Meas.	+1.1% ust 16 t ε _r Dev. -3.2% b/m) Dev. +1.1% t ε _r Dev. -2.5%
450 1 56.7 Ccc 450 1 0.94 498 E 56.7 Ccc	MHz Boo Dielectric Target ± 5% Dielectric Target ± 5% MHz Boo Dielectric Target ± 5%	Meas. 56.0 ity σ (mho Meas. 0.93 dy – Augu Constant Inter. 54.9	-4.3% ust 16 t ε _r Dev1.2% b/m) Dev1.1% ust 16 t ε _r Dev3.2%	450 T 0.94 476.7 Di 450 T 56.7 Co 450 T 0.94 450 I 450 T 43.5 Co	± 5% MHz Bo electric arget ± 5% nductiv arget ± 5% WHz Hea electric arget ± 5%	0.92 cody – Auguste Constant Inter. 54.0 ity σ (mhouse Inter. 0.94 ad – Auguste Constant Meas. 43.0	-2.1% pust 16 t ε _r Dev. -4.8% Dev. 0.0% ust 17 t ε _r Dev. -1.1%	450 T 0.94 484 D 450 T 56.7 Co 450 T 0.94 484 D 450 T 0.94 484 C 450 T	± 5% MHz Bo ielectric farget ± 5% mductiv farget ± 5% MHz He ielectric farget ± 5%	Inter. 0.93 dy – August Constant Inter. 55.0 dity o (mhoust Inter. 0.94 ad – August Constant Inter. 42.5	Dev1.1% ust 16 tt ε _r Dev3.0% co/m) Dev. 0.0% ust 17 tt ε _r Dev2.3%	450 T 0.94 490 I 56.7 Co 450 T 0.94 490 I 450 T 43.5 Co	± 5% MHz Bo ielectric arget ± 5% nductiv arget ± 5% MHz He ielectric arget ± 5%	Inter. 0.95 ody – Augu c Constan Meas. 54.9 rity o (mho Meas. 0.95 cad – Augu c Constan Meas. 42.4	+1.1% ust 16 t ε _r Dev. -3.2% b/m) Dev. +1.1% t ε _r Dev. -2.5%

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 24 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

FLUID DIELECTRIC PARAMETERS (CONT.)

498	MHz Hea	ad – Augu							ust 31	463.	3 MHz E	Body – Au	gust 31		
D	ielectric	Constan	t ε _r	D	ielectric	Constan	ıt ε _r	D	ielectri	c Constan	ıt ε _r		Dielectr	ic Consta	nt ε _r
450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 1	arget	Meas.	Dev.	450 7	Γarget	Inter.	Dev.
43.5	<u>+</u> 5%	42.5	-2.3%	43.5	<u>+</u> 5%	42.5	-2.3%	56.7	<u>+</u> 5%	56.8	+0.2%	56.7	<u>+</u> 5%	55.8	-1.6%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mh	o/m)	Co	nductiv	vity σ (mh	o/m)	С	onducti	ivity σ (mh	io/m)
450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 1	arget	Meas.	Dev.	450 7	Γarget	Inter.	Dev.
0.87	<u>+</u> 5%	0.88	+1.1%	0.87	<u>+</u> 5%	0.89	+2.3%	0.94	<u>+</u> 5%	0.9	-4.3%	0.94	<u>+</u> 5%	0.92	-2.1%
476.7	MHz Bo	ody – Aug	ust 31	490	MHz Bo	dy – Aug	ust 31	45	0 MHz E	Body – Se	pt. 1	46	3.3 MHz	Body – S	ept. 1
D	ielectric	Constan	tε _r	D	ielectric	Constan	ıt ε _r	D	ielectri	c Constan	ıt ε _r		Dielectr	ic Consta	nt ε _r
450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Meas.	Dev.	450 1	Γarget	Inter.	Dev.
56.7	<u>+</u> 5%	55.6	-1.9%	56.7	<u>+</u> 5%	55.5	-2.1%	56.7	<u>+</u> 5%	56.9	+0.4%	56.7	<u>+</u> 5%	56.5	-0.4%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mh	o/m)	Co	nductiv	vity σ (mh	o/m)	С	onducti	ivity σ (mh	io/m)
450 T	arget	Inter.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Meas.	Dev.	450 1	Target	Inter.	Dev.
0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.94	0.0%	0.94	<u>+</u> 5%	0.91	-3.2%	0.94	<u>+</u> 5%	0.91	-3.2%
47	0 MHz B	ody – Sep	ot. 1	476	7 MHz	Body – Se	ept. 1	48	4 MHz E	Body – Se	pt. 1	4	90 MHz	Body - Se	ept. 1
D	ielectric	Constant	t ε _r	D	ielectric	Constan	ıt ε _r	D	ielectri	c Constan	ıt ε _r		Dielectr	ic Consta	nt ε _r
450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 1	arget	Inter.	Dev.	450 1	Γarget	Meas.	Dev.
56.7	<u>+</u> 5%	56.1	-1.1%	56.7	<u>+</u> 5%	56.3	-0.7%	56.7	<u>+</u> 5%	56.3	-0.7%	56.7	<u>+</u> 5%	56.2	-0.9%
Co	nductiv	ity σ (mho	o/m)	Co	nductiv	ity σ (mh	o/m)	Co	nductiv	vity σ (mh	o/m)	С	onducti	ivity σ (mh	io/m)
450 T	arget	Meas.	Dev.	450 T	arget	Inter.	Dev.	450 1	arget	Inter.	Dev.	450 7	Target	Meas.	Dev.
0.94	<u>+</u> 5%	0.92	-2.1%	0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.93	-1.1%
49	8 MHz B	ody – Sep	ot. 1	512	2 MHz B	ody – Se	pt. 1	45	0 MHz E	Body – Se	pt. 2	4	70 MHz	Body - Se	ept. 2
D	ielectric	Constant	tε _r	D	ielectric	Constan	it ε _r	D	ielectri	Constan	it ε _r	Dielectric Constar			nt ε _r
450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 1	arget	Meas.	Dev.	450 7	Γarget	Meas.	Dev.
56.7	<u>+</u> 5%	55.7	-1.8%	56.7	<u>+</u> 5%	56.0	-1.2%	56.7	<u>+</u> 5%	57.4	+1.2%	56.7	<u>+</u> 5%	56.9	+0.4%
Co	nductiv	ity σ (mho	p/m)	Co	nductiv	ity σ (mh	o/m)	Co	nductiv	vity σ (mh	o/m)	С	onducti	ivity σ (mh	io/m)
450 T	arget	Inter.	Dev.	450 T	arget	Inter.	Dev.	450 1	arget	Meas.	Dev.	450 7	Γarget	Meas.	Dev.
0.94	<u>+</u> 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.94	0.0%	0.94	<u>+</u> 5%	0.91	-3.2%	0.94	<u>+</u> 5%	0.92	-2.1%
48	4 MHz B	ody – Sep	ot. 2	498	MHz B	ody – Se	pt. 2	51	2 MHz E	Body – Se	pt. 2	4	50 MHz	Body - Se	ept. 3
D	ielectric	Constan	tε _r	D	ielectric	Constan	it ε _r	D	ielectri	Constan	t ε _r		Dielectr	ic Consta	nt ε _r
450 T	arget	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Meas.	Dev.	450 1	Γarget	Meas.	Dev.
56.7	<u>+</u> 5%	57.0	+0.5%	56.7	<u>+</u> 5%	57.0	+0.5%	56.7	<u>+</u> 5%	56.4	-0.5%	56.7	<u>+</u> 5%	56.3	-0.7%
Co	nductiv	ity σ (mho	p/m)	Co	nductiv	ity σ (mh	o/m)	Co	nductiv	vity σ (mh	o/m)	С	onducti	ivity σ (mh	io/m)
450 T	arget	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Meas.	Dev.	450	Γarget	Meas.	Dev.
0.94	<u>+</u> 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.93	-1.1%	0.94	<u>+</u> 5%	0.94	0.0%	0.94	<u>+</u> 5%	0.92	-2.1%
		ody – Sep		484	4 MHz B	ody – Se	pt. 3	49	8 MHz E	Body – Se	pt. 3	5	12 MHz	Body - Se	ept. 3
D	ielectric	Constan	t ε _r	D	ielectric	Constan	ıt ε _r	D	ielectri	c Constan	ıt ε _r		Dielectr	ic Consta	nt ε _r
450 T	arget	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Meas.	Dev.	450 1	Target	Meas.	Dev.
56.7	<u>+</u> 5%	56.0	-1.2%	56.7	<u>+</u> 5%	56.3	-0.7%	56.7	<u>+</u> 5%	56.7	0.0%	56.7	<u>+</u> 5%	56.0	-1.2%
Co	nductiv	ity σ (mho	p/m)			ity σ (mh	o/m)	Co	nductiv	vity σ (mh	o/m)	С	onducti	ivity σ (mh	io/m)
450 T	arget	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 1	arget	Meas.	Dev.	450 1	Target	Meas.	Dev.
0.94	+ 5%	0.95	+1.1%	0.94	<u>+</u> 5%	0.94	0.0%	0.94	<u>+</u> 5%	0.97	+3.2%	0.94	<u>+</u> 5%	0.97	+3.2%

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in wh	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 25 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

FLUID DIELECTRIC PARAMETERS (CONT.)

45	0 MHz B	ody – Sep	ot. 7	470	MHz B	Body – Se	pt. 7	48	4 MHz E	Body – Se	pt. 7	49	98 MHz	Body - Se	pt. 7
D	ielectric	Constan	tε _r	D	ielectric	Constan	t ε _r	D	ielectri	c Constar	ıt ε _r		Dielectr	ic Consta	nt ε _r
450 T				450 T	arget	Meas.	Dev.	450 1	Target	Meas.	Dev.	450 1	arget	Meas.	Dev.
56.7	<u>+</u> 5%	57.0	+0.5%	56.7	<u>+</u> 5%	57.3	+1.0%	56.7	<u>+</u> 5%	56.8	+0.2%	56.7	<u>+</u> 5%	56.5	-0.4%
Co	Conductivity σ (mho/m)			Conductivity σ (mho/m)			Co	Conductivity σ (mho/m)				Conductivity σ (mho/m)			
450 T	arget	Meas.	Dev.	450 T	arget	Meas.	Dev.	450 1	Target	Meas.	Dev.	450 1	arget	Meas.	Dev.
0.94	<u>+</u> 5%	0.90	-4.3%	0.94	<u>+</u> 5%	0.92	-2.1%	0.94	<u>+</u> 5%	0.92	-2.1%	0.94	<u>+</u> 5%	0.94	0.0%
51:	2 MHz B	ody – Sep	ot. 7												
D	ielectric	Constan	tε _r												
450 T	arget	Meas.	Dev.												
56.7	<u>+</u> 5%	56.6	-0.2%												
Co	nductiv	ity σ (mho	o/m)												
450 T	arget	Meas.	Dev.												
0.94															

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 26 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

11.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels evaluated for SAR were selected in accordance with the procedures described in FCC KDB 447498 Section 6) c) (see reference [5]).
- 2. The DUT was evaluated for SAR in accordance with the procedures described in FCC Occupational PTT Test Reduction *Draft* Considerations (see reference [6] and Appendix H).
- 3. The area scan evaluation was performed with a fully charged battery. After the area scan was completed the radio was cooled down and the battery was replaced with a fully charged battery prior to the zoom scan evaluation.
- 4. The SAR droop of the DUT was measured by the DASY4 system for the duration of the SAR evaluations. The measured SAR droop was added to the measured SAR levels to report scaled SAR levels as shown in the SAR test data tables. A SAR-versus-Time power droop evaluation was performed in the test configuration that reported the maximum measured SAR droop. Please refer to Appendix A for the SAR-versus-Time power droop evaluation plot.
- 5. The fluid temperature was measured prior to and after the SAR evaluations. The fluid temperature after the SAR evaluations remained within +/-2°C of the fluid temperature measured prior to the SAR evaluations.
- 6. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 7. The DUT was tested at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.

12.0 SAR EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	ant: Kenwood USA Corporation		FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in wh				ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 27 of 309	

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

13.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, daily system checks were performed with a planar phantom and SPEAG 450 MHz dipole (see Appendix B) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [3]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 398 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the SAR system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

				S	YSTEM	PERF	ORMA	NCE CH	ECK E	VALUA	TIONS	3				
Test	Equiv. Tissue	SAF	R 1g (W/k	g)	Dielectr	ic Const	ant ε _r	Conduc	tivity σ (r	mho/m)	ρ	Amb.	Fluid	Fluid Depth	Humid.	Barom.
Date	Freq. (MHz)	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	(Kg/m³)	Temp. (°C)	Temp. (°C)	(cm)	(%)	Press. (kPa)
Aug 05	Body 450	1.78 ±10%	1.84	+3.4%	56.7 ±5%	56.3	-0.7%	0.94 ±5%	0.92	-2.1%	1000	22.0	23.0	≥ 15	35	101.1
Aug 06	Body 450	1.78 ±10%	1.78	0.0%	56.7 ±5%	57.7	+1.8%	0.94 ±5%	0.91	-3.2%	1000	22.0	23.0	≥ 15	35	101.1
Aug 09	Body 450	1.78 ±10%	1.9	+6.7%	56.7 ±5%	55.5	-2.1%	0.94 ±5%	0.94	0.0%	1000	21.0	23.0	≥ 15	35	101.1
Aug 10	Body 450	1.78 ±10%	1.88	+5.6%	56.7 ±5%	57.27	+1.0%	0.94 ±5%	0.92	-2.1%	1000	21.0	23.0	≥ 15	35	101.1
Aug 11	Body 450	1.78 ±10%	1.9	+6.7%	56.7 ±5%	55.7	-1.8%	0.94 ±5%	0.92	-2.1%	1000	20.0	22.5	≥ 15	35	101.1
Aug 12	Body 450	1.78 ±10%	1.82	+2.2%	56.7 ±5%	58.0	+2.3%	0.94 ±5%	0.90	-4.3%	1000	22.0	23.0	≥ 15	35	101.1
Aug 13	Body 450	1.78 ±10%	1.77	-0.6%	56.7 ±5%	55.1	-2.8%	0.94 ±5%	0.90	-4.3%	1000	22.0	23.5	≥ 15	35	101.1
Aug 16	Body 450	1.78 ±10%	1.88	+5.6%	56.7 ±5%	56.0	-1.2%	0.94 ±5%	0.93	-1.1%	1000	22.0	23.0	≥ 15	35	101.1
Aug 17	Head 450	1.87 ±10%	1.86	-0.5%	43.5 ±5%	43.0	-1.1%	0.87 ±5%	0.83	-4.6%	1000	23.0	23.5	≥ 15	35	101.1
Aug 31	Body 450	1.78 ±10%	1.85	+3.9%	56.7 ±5%	56.8	+0.2%	0.94 ±5%	0.90	-4.3%	1000	20.0	22.5	≥ 15	35	101.1
Sep 01	Body 450	1.78 ±10%	1.82	+2.2%	56.7 ±5%	56.9	+0.4%	0.94 ±5%	0.91	-3.2%	1000	21.0	23.0	≥ 15	35	101.1
Sep 02	Body 450	1.78 ±10%	1.87	+5.1%	56.7 ±5%	57.4	+1.2%	0.94 ±5%	0.91	-3.2%	1000	22.0	22.0	≥ 15	35	101.1
Sep 03	Body 450	1.78 ±10%	1.86	+4.5%	56.7 ±5%	56.3	-0.7%	0.94 ±5%	0.92	-2.1%	1000	23.0	23.0	≥ 15	35	101.1
Sep 07	Body 450	1.78 ±10%	1.85	+3.9%	56.7 ±5%	57.0	+0.5%	0.94 ±5%	0.90	-4.3%	1000	21.5	22.0	≥ 15	35	101.1
	1.	The targ	et SAR v	alues a	re the mea	sured v	alues fro	om the SA	R systen	n manufa	cturer's	dipole ca	alibration	(see Ap	pendix E	
	2.	The targe	et dielect	ric parar	neters are	the nom	ninal valu	ues from th	e SAR s	system ma	anufactu	rer's dipo	ole calibr	ation (se	e Append	lix E).
Notes	3.				as measur temperatu								ure the	tempera	ture rema	ained
	4.				s of the s Network					asured p	rior to th	ne syster	m perfor	mance	check us	ing a

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Porta	ole FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 28 of 309		

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Test Lab Certificate No. 2470.01

14.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [9] and [10]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [3]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

	SIMULATED TISSUE MIXTURES	
INGREDIENT	450 MHz HEAD	450 MHz BODY
Water	38.56 %	52.00 %
Sugar	56.32 %	45.65 %
Salt	3.95 %	1.75 %
HEC	0.98 %	0.50 %
Bactericide	0.19 %	0.10 %

15.0 SAR LIMITS

SAR RF EXP	OSURE LIMITS	
FCC 47 CFR 2.1093	General Population	Occupational
Spatial Average (averaged over the whole body)	0.08 W/kg	0.4 W/kg
Spatial Peak (averaged over any 1 g of tissue)	1.6 W/kg	8.0 W/kg
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Porta	ole FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in who				ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 29 of 309	

<u>Test Report Issue Date</u> October 26, 2010 Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

16.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>					
Positioner	Stäubli Unimation Corp. Robot Model: RX60L				
Positioner Staubli Unimation Corp. Robot Model: RX60L					
No. of axis	6				
Data Acquisition Electronic (DAE) System				
Cell Controller					
Processor	AMD Athlon XP 2400+				
Clock Speed	2.0 GHz				
Operating System	Windows XP Professional				
<u>Data Converter</u>					
Features	Signal Amplifier, multiplexer, A/D converter, and control logic				
Software	Measurement Software: DASY4, V4.7 Build 44				
Contware	Postprocessing Software: SEMCAD, V1.8 Build 171				
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock				
DASY4 Measurement Server					
Function	Real-time data evaluation for field measurements and surface detection				
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM				
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface				
E-Field Probe					
Model	ET3DV6				
Serial No.	1590				
Construction	Triangular core fiber optic detection system				
E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Evaluation Phantom					
Linearity	± 0.2 dB (30 MHz to 3 GHz)				
Evaluation Phantom					
Туре	Barski Planar Phantom				
Shell Material	Fiberglass				
Thickness	2.0 ±0.1 mm				
Volume	Approx. 70 liters				
Validation Phantom					
Туре	Barski Planar Phantom				
Shell Material	Fiberglass				
Thickness	2.0 ±0.1 mm				
Volume	Approx. 70 liters				

Applicant:	Kenv	wood USA Corporation	JSA Corporation FCC ID: ALH413800		Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Porta	ble FM UHF PTT Radio T	FM UHF PTT Radio Transceiver		TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in wh			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 30 of 309		

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

17.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core;

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In head simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy \pm 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)

Directivity: \pm 0.2 dB in head tissue (rotation around probe axis)

 \pm 0.4 dB in head tissue (rotation normal to probe axis) Dynamic Range: 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm; Tip length: 16 mm;

Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone

ET3DV6 E-Field Probe

18.0 BARSKI PLANAR PHANTOM

The Barski Planar Phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table. The planar phantom was used for the DUT SAR evaluations and the system performance check evaluations. See Appendix G for dimensions and specifications of the Barski Planar Phantom.

Barski Planar Phantom

19.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. For evaluations of larger devices a Plexiglas platform is attached to the device holder.

Device Holder

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800 Freq. Range:		450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio T	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 31 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Test Lab Certificate No. 2470.01

ilac-MRA

20.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	ACCET NO.	OLITIME ITO.	CALIBRATED	INTERVAL
х	Schmid & Partner DASY4 System	-	-	-	-
х	-DASY4 Measurement Server	00158	1078	CNR	CNR
х	-Robot	00046	599396-01	CNR	CNR
х	-DAE4	00019	353	27Apr10	Annual
х	-ET3DV6 E-Field Probe	00017	1590	15Jul10	Annual
х	-SPEAG D450V3 Validation Dipole	00217	1068	18Jan10	Biennial
х	-Barski Planar Phantom	00155	03-01	CNR	CNR
х	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
х	Gigatronics 8652A Power Meter	00007	1835272	04May10	Biennial
х	Gigatronics 80701A Power Sensor	00014	1833699	04May10	Biennial
х	HP 8753ET Network Analyzer	00134	US39170292	04May10	Biennial
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	CNR	CNR
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required				

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Porta	ole FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in wh				ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 32 of 309	

<u>Test Report Issue Date</u> October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

21.0 MEASUREMENT UNCERTAINTIES

	UNCERT	AINTY BUD	GET FOR D	EVICE EVAL	UATIO	ON			
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (450 MHz)	E.2.1	6.65	Normal	1	1	1	6.65	6.65	∞
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	∞
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	8
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	8
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	8
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	× ×
Liquid Conductivity (measured)	E.3.3	4.6	Normal	1	0.64	0.43	2.9	2.0	× ×
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	oc
Liquid Permittivity (measured)	E.3.3	4.8	Normal	1	0.6	0.49	2.9	2.4	00
Combined Standard Uncertainty			RSS				11.75	11.30	
Expanded Uncertainty (95% Confidence	e Interval)		k=2				23.50	22.60	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Applicant:	Kenwood USA Corporation FCC ID:		FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver			DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 33 of 309	

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

22.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [3] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [4] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures."
- [5] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01 v04: November 2009.
- [6] Federal Communications Commission "Occupational PTT Test Reduction Draft Considerations": Version 07 15 10.
- [7] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz"; KDB 450824 D01 v01r01: January 2007.
- [8] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 21 Application Note, SAR Sensitivities: Sept. 2005.
- [9] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.
- [10] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [11] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- [12] Federal Communications Commission "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.

Applicant:	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 34 of 309	

<u>Test Report Issue Date</u> October 26, 2010 Test Report Serial No. 080310ALH-T1037-S90U

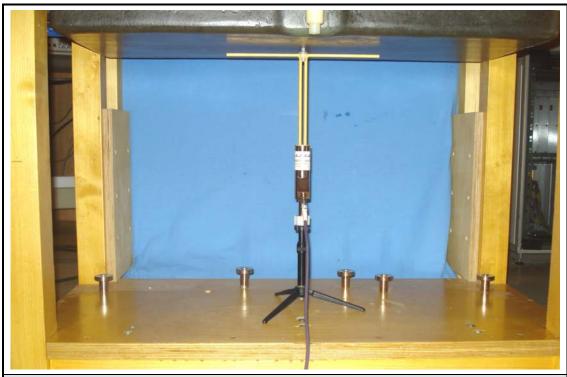
<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

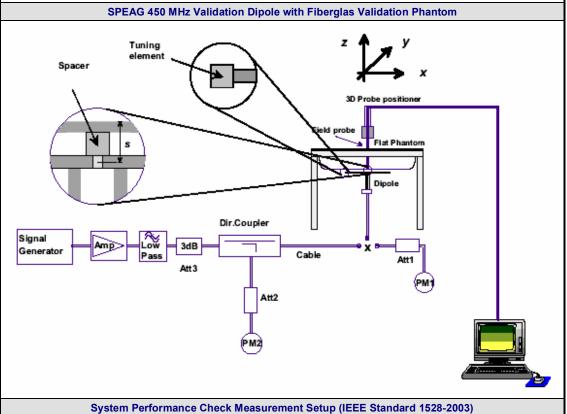
RF Exposure Category
Occupational (Controlled)

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD	
DUT Type:	Portable FM UHF PTT Radio Transceiver			DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 228 of 309	

Test Report Issue Date
October 26, 2010


Test Report Serial No. 080310ALH-T1037-S90U


<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

SYSTEM PERFORMANCE CHECK MEASUREMENT SETUP

Applicant:	Kenwood USA Corporation FCC ID		FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver			DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 229 of 309		

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/05/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

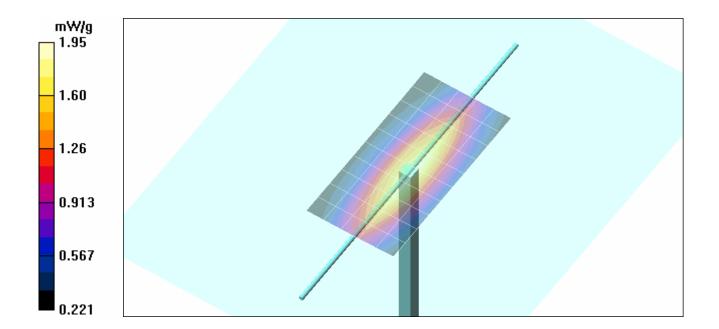
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.92 mho/m; ϵ_r = 56.3; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.91 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 44.9 V/m; Power Drift = 0.087dB

Peak SAR (extrapolated) = 2.95 W/kg

SAR(1 g) = 1.84 mW/g; SAR(10 g) = 1.22 mW/g Maximum value of SAR (measured) = 1.95 mW/g

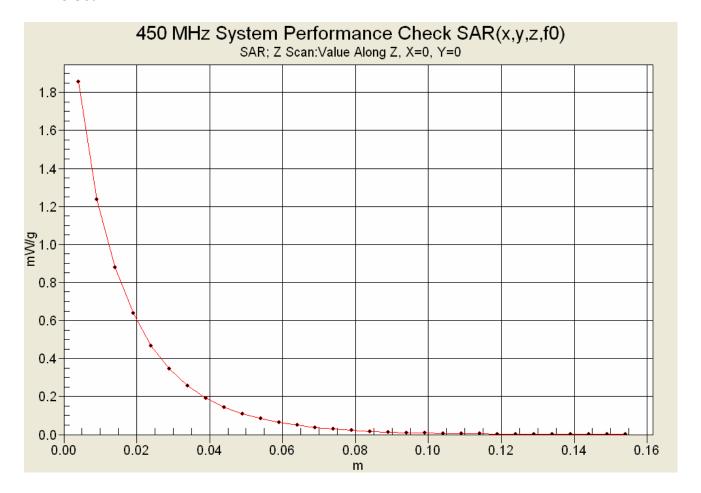
Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 230 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)

Specific Absorption Rate


Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 231 of 309

<u>Test Report Issue Date</u> October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/06/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

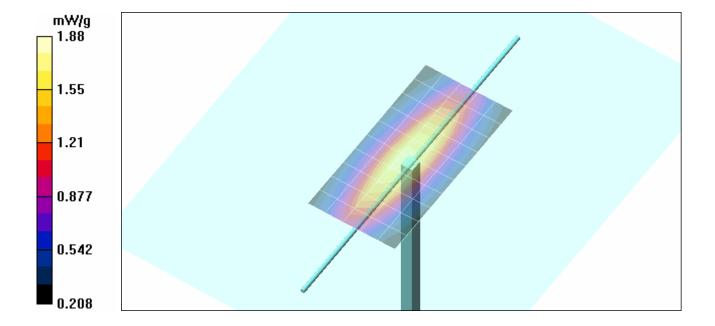
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ε_r = 57.7; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.71 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.7 V/m; Power Drift = 0.069 dB

Peak SAR (extrapolated) = 2.84 W/kg

SAR(1 g) = 1.78 mW/g; SAR(10 g) = 1.18 mW/g Maximum value of SAR (measured) = 1.88 mW/g

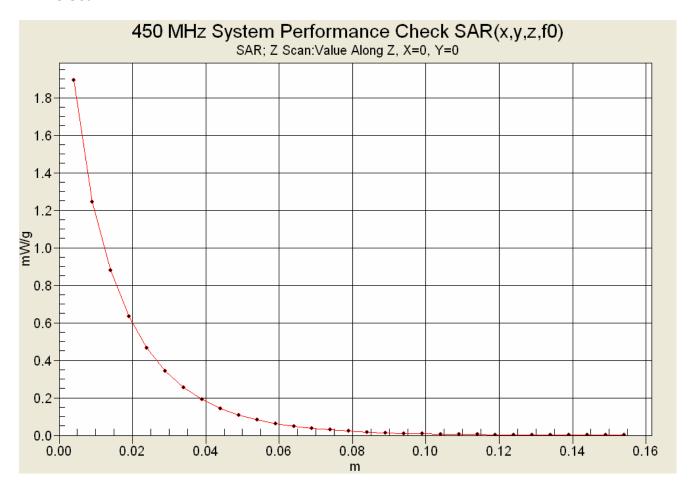
Applicant:	Kenv	Kenwood USA Corporation		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	oroduced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 232 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)

Specific Absorption Rate


Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 233 of 309

Test Report Issue Date

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)

Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category October 26, 2010 Specific Absorption Rate Occupational (Controlled)

Date Tested: 08/09/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 21.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

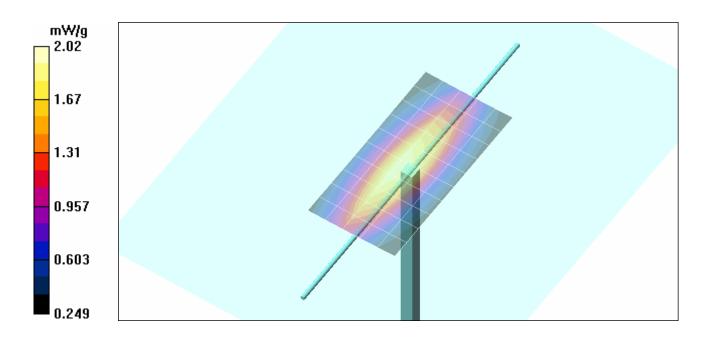
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; $\sigma = 0.94 \text{ mho/m}$; $\epsilon_r = 55.5$; $\rho = 1000 \text{ kg/m}^3$

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.91 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 46.4 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 3.03 W/kg

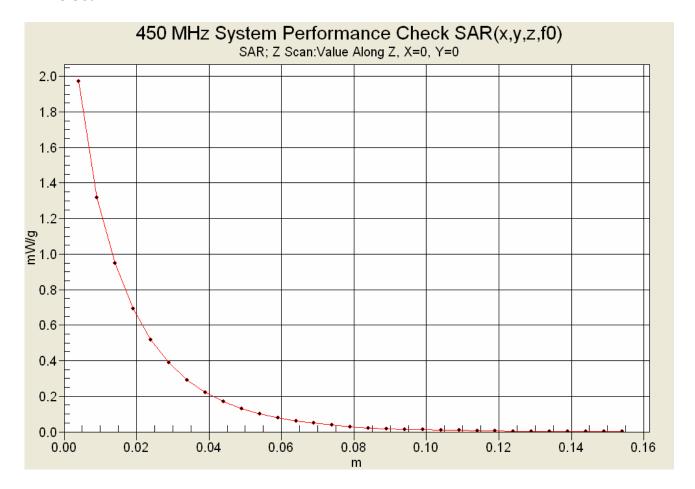
SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.28 mW/gMaximum value of SAR (measured) = 2.02 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 234 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)


Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	rtable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in wh	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 235 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)
Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/10/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 21.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

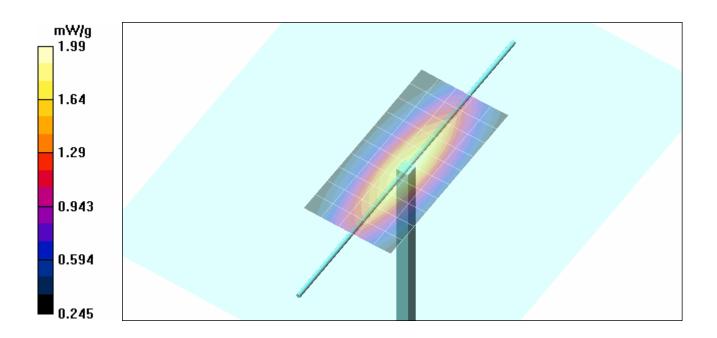
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.92 mho/m; ε_r = 57.3; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.92 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.7 V/m; Power Drift = 0.070 dB

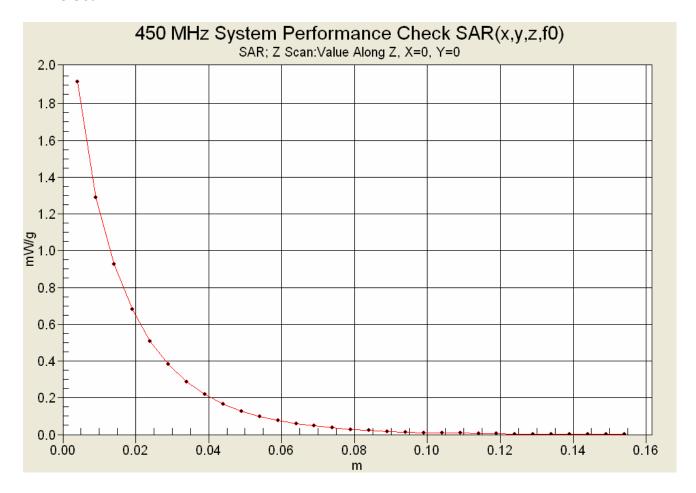
Peak SAR (extrapolated) = 3.01 W/kg

SAR(1 g) = 1.88 mW/g; SAR(10 g) = 1.26 mW/g Maximum value of SAR (measured) = 1.99 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 236 of 309

 Aug. 05 - Sept. 07, 2010
 080310ALH-T1037-S90U

 Test Report Issue Date October 26, 2010
 Description of Test(s)


 Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Test Report Serial No.

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 237 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/11/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 20.0°C; Fluid Temp: 22.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

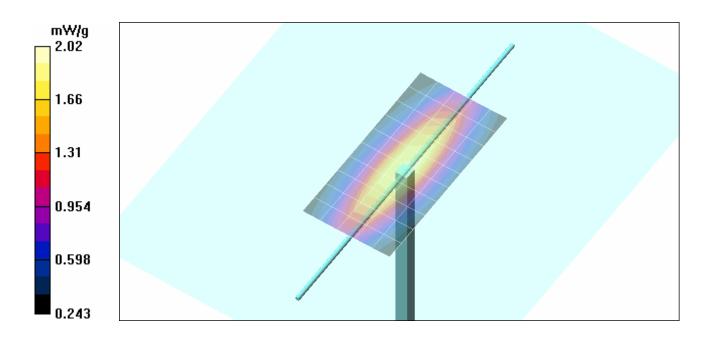
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.92 mho/m; ε_r = 55.7; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.85 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.1 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 3.01 W/kg

SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.28 mW/g Maximum value of SAR (measured) = 2.02 mW/g

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in wh	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 238 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 239 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)
Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/12/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 20.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

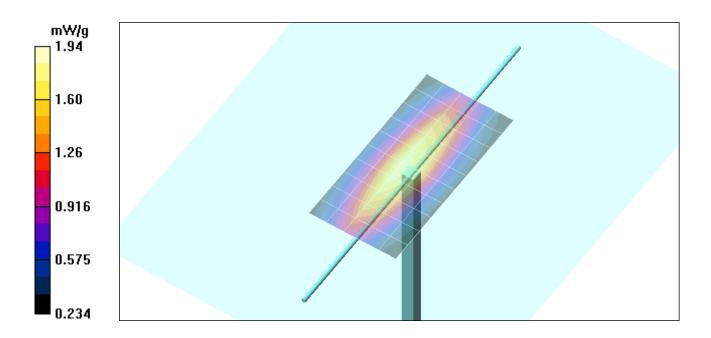
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.90 mho/m; ϵ_r = 58; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.82 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

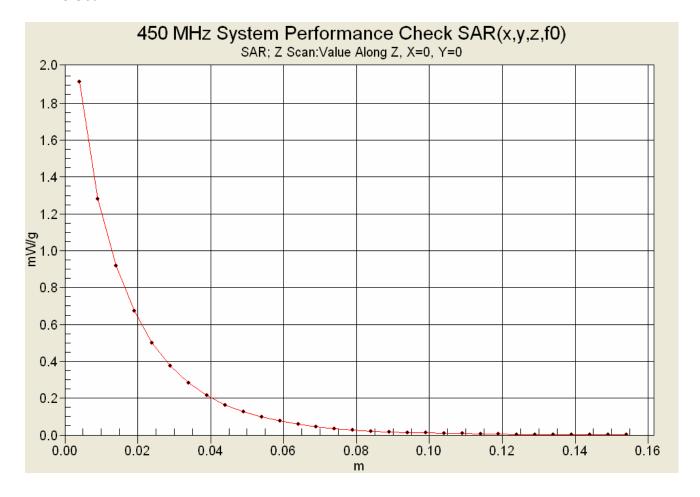
Reference Value = 46.5 V/m; Power Drift = 0.002 dB

Peak SAR (extrapolated) = 2.90 W/kg

SAR(1 g) = 1.82 mW/g; SAR(10 g) = 1.23 mW/g Maximum value of SAR (measured) = 1.94 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ortable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in wh	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 240 of 309

Test Report Issue Date
October 26, 2010


Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 241 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

Date Tested: 08/13/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.0°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

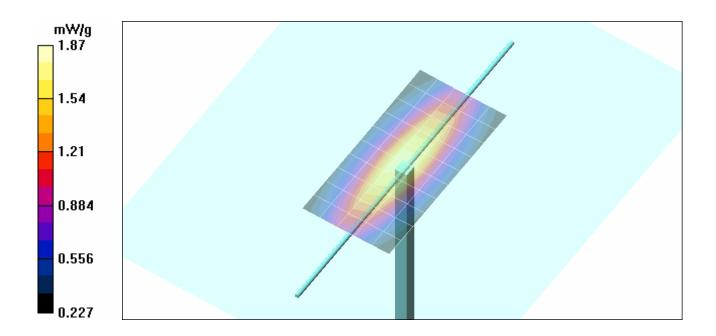
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.90 mho/m; ε_r = 55.1; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.71 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.8 V/m; Power Drift = 0.105 dB

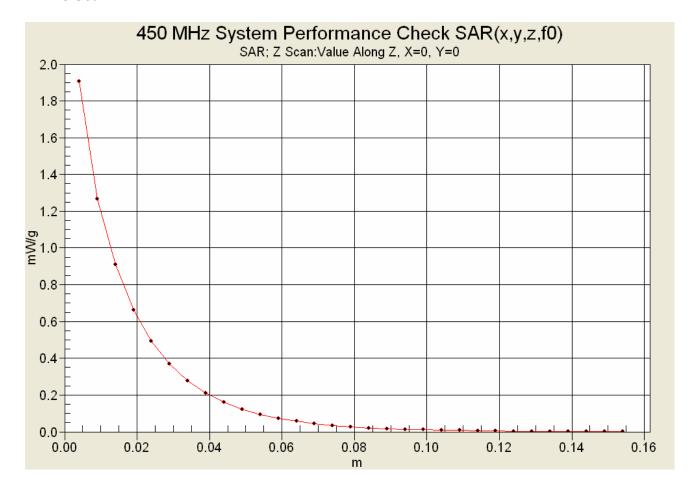
Peak SAR (extrapolated) = 2.83 W/kg

SAR(1 g) = 1.77 mW/g; SAR(10 g) = 1.2 mW/g Maximum value of SAR (measured) = 1.87 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 242 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

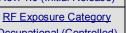

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	rtable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 243 of 309



Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

Occupational (Controlled) Test Lab Certificate No. 2470.01

Date Tested: 08/16/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

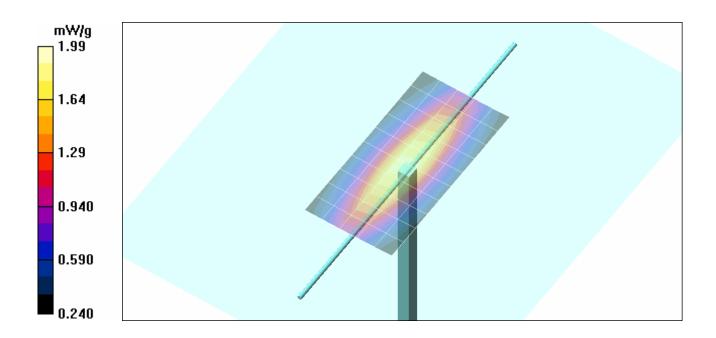
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.93 mho/m; ε_{r} = 56; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.81 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

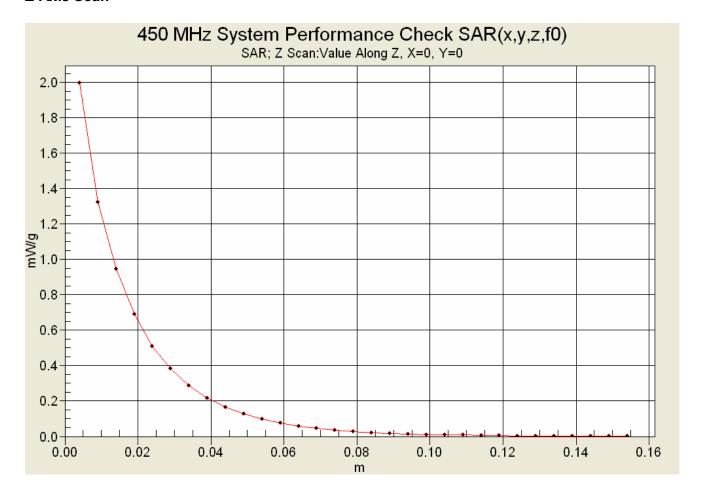
Reference Value = 46.6 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 2.83 W/kg

SAR(1 g) = 1.88 mW/g; SAR(10 g) = 1.26 mW/g Maximum value of SAR (measured) = 1.99 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 244 of 309

Test Report Issue Date
October 26, 2010


Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	rtable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 245 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/17/2010

System Performance Check - 450 MHz Dipole - Head

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 23.0°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

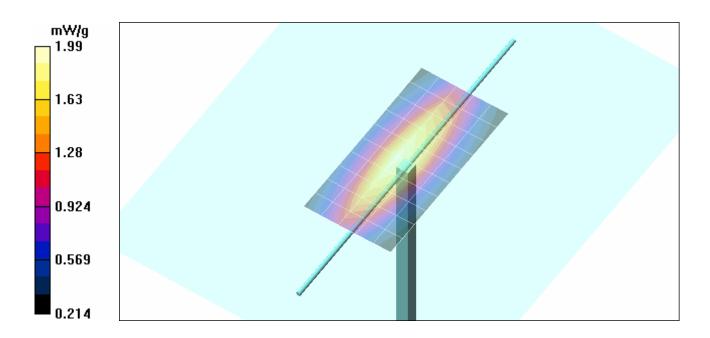
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.83 mho/m; ε_r = 43; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.25, 7.25, 7.25); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.93 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.2 V/m; Power Drift = -0.022 dB

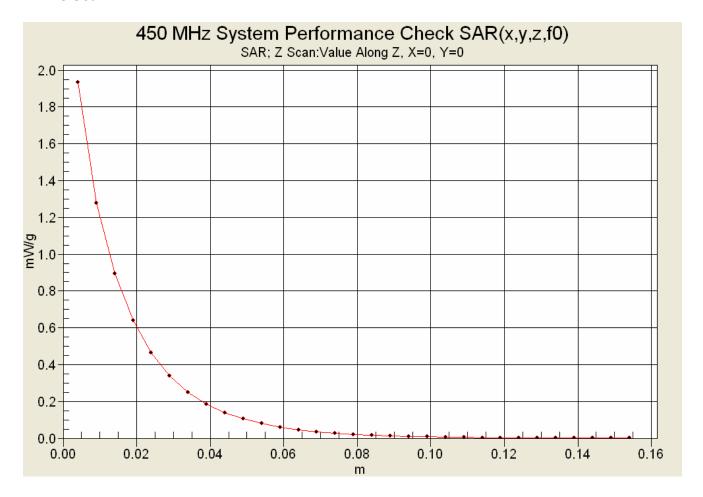
Peak SAR (extrapolated) = 2.95 W/kg

SAR(1 g) = 1.86 mW/g; SAR(10 g) = 1.23 mW/g Maximum value of SAR (measured) = 1.99 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	. This document is not to be reproduced in who		ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 246 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U


Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ortable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	bs Inc.	This document is not to be re	produced in wh	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 247 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/31/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 20.0°C; Fluid Temp: 22.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

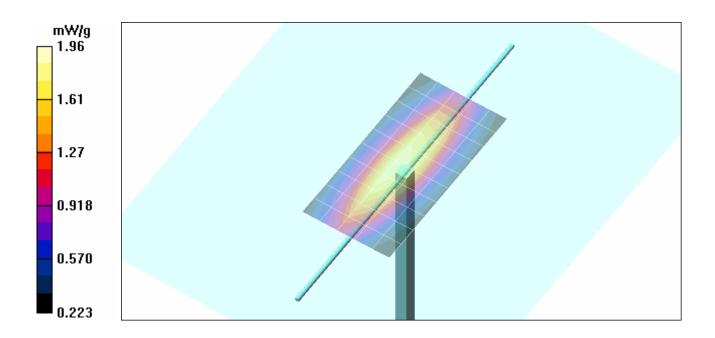
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.9 mho/m; $\varepsilon_{\rm f}$ = 56.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.87 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.0 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 2.94 W/kg

SAR(1 g) = 1.85 mW/g; SAR(10 g) = 1.23 mW/g Maximum value of SAR (measured) = 1.96 mW/g

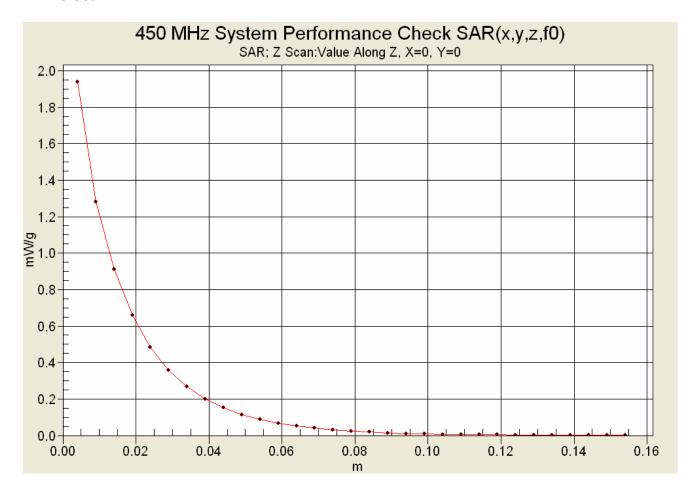
Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 248 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)

Specific Absorption Rate

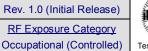

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (Initial Release)

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	rtable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 249 of 309



Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)

Date Tested: 09/01/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 21.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

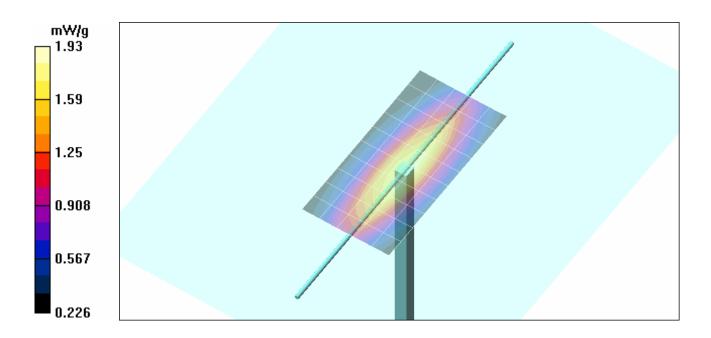
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ε_r = 56.9; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.85 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

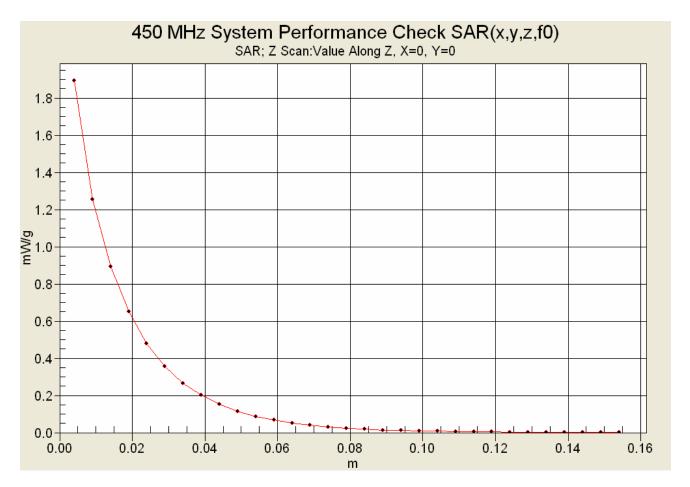
Reference Value = 45.6 V/m; Power Drift = 0.064 dB

Peak SAR (extrapolated) = 2.94 W/kg

SAR(1 g) = 1.82 mW/g; SAR(10 g) = 1.21 mW/gMaximum value of SAR (measured) = 1.93 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in wh	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 250 of 309

Test Report Issue Date
October 26, 2010


Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (Initial Release)

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	rtable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 251 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 09/02/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 22.0°C; Fluid Temp: 22.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

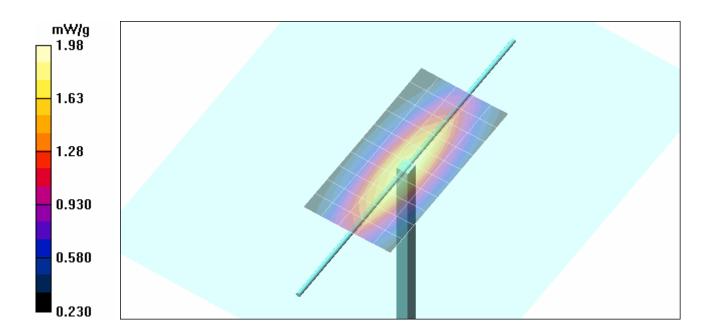
Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ε_r = 57.4; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.89 mW/g


Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.7 V/m; Power Drift = 0.103 dB

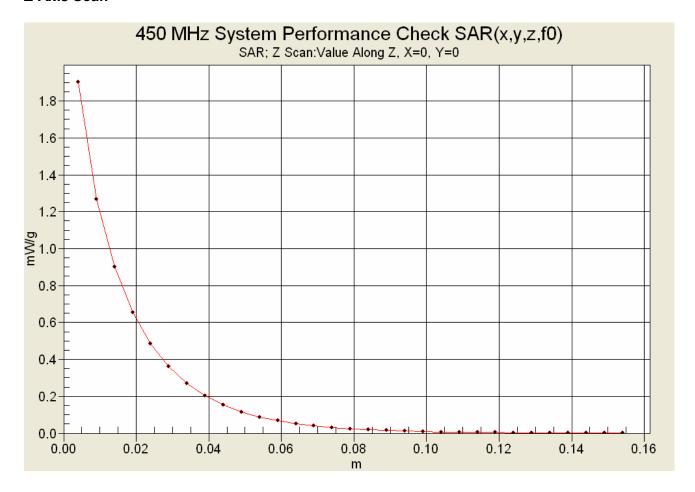
Peak SAR (extrapolated) = 3.01 W/kg

SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.24 mW/g

Maximum value of SAR (measured) = 1.98 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	c. This document is not to be reproduced in who		ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 252 of 309

Test Report Issue Date
October 26, 2010


Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	rtable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 253 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled

Test Report Revision No.
Rev. 1.0 (Initial Release)

Occupational (Controlled) Test Lab Certificate No. 2470.01

Date Tested: 09/03/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 23.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

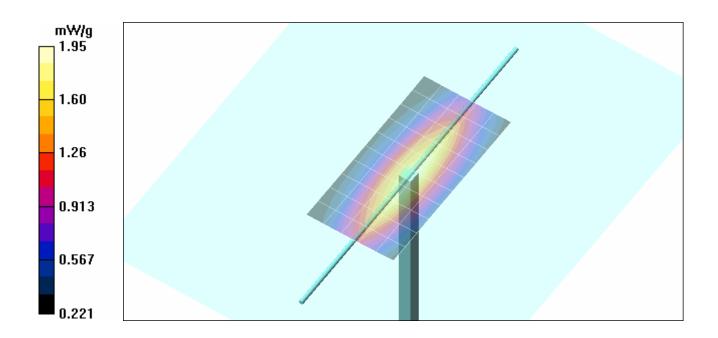
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.92 mho/m; ε_r = 56.3; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.91 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 44.9 V/m; Power Drift = 0.087 dB

Peak SAR (extrapolated) = 2.95 W/kg

SAR(1 g) = 1.86 mW/g; SAR(10 g) = 1.23 mW/g Maximum value of SAR (measured) = 1.95 mW/g

Applicant:	Kenv	enwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	Iltech Labs Inc. This document is not to be reproduced in wh			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 254 of 309

October 26, 2010

080310ALH-T1037-S90U Test Report Issue Date Description of Test(s)

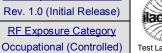
Test Report Revision No. Rev. 1.0 (Initial Release) RF Exposure Category

Z-Axis Scan

Test Report Serial No.

Specific Absorption Rate

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ortable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	bs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				n of Celltech Labs Inc.	Page 255 of 309	



Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)

Date Tested: 09/07/2010

System Performance Check - 450 MHz Dipole - Body

DUT: Dipole D450V3; Asset: 00217; Serial: 1068; Calibration: 01/18/2010

Ambient Temp: 21.5°C; Fluid Temp: 22.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

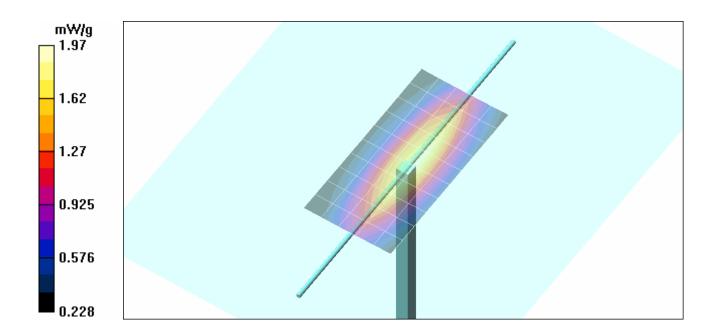
Forward Conducted Power: 398 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 450 MHz; σ = 0.9 mho/m; ε_f = 57; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.73, 7.73, 7.73); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Head d=15mm Pin=398mW 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.93 mW/g

Head d=15mm Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.7 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 2.98 W/kg

SAR(1 g) = 1.85 mW/g; SAR(10 g) = 1.23 mW/gMaximum value of SAR (measured) = 1.97 mW/g

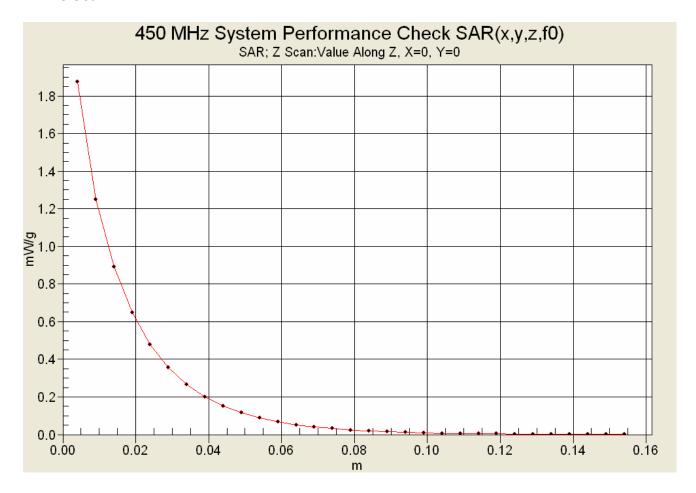
Applicant:	Kenv	enwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ansceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	0 Celltech Labs Inc. This document is not to be reproduced in wh			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 256 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)

Specific Absorption Rate


Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ortable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 257 of 309		

<u>Test Report Issue Date</u> October 26, 2010 Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Kenv	nwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	Labs Inc. This document is not to be reproduced in wh			ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 258 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

ilac-MR/

Occupational (Controlled)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 05/Aug/2010

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

*******	*****	******	******	******
Freq	_	FCC_sE	_	Test_s
0.3500	57.70	0.93	57.37	0.83
0.3600	57.60	0.93	57.12	0.84
0.3700	57.50	0.93	57.09	0.85
0.3800	57.40	0.93	57.14	0.86
0.3900	57.30	0.93	56.98	0.86
0.4000	57.20	0.93	57.05	0.88
0.4100	57.10	0.93	57.14	0.88
0.4200	57.00	0.94	56.38	0.89
0.4300	56.90	0.94	56.17	0.91
0.4400	56.80	0.94	56.34	0.90
0.4500	56.70	0.94	56.31	0.92
0.4600	56.66	0.94	55.66	0.92
0.4700	56.62	0.94	55.59	0.92
0.4800	56.58	0.94	56.44	0.94
0.4900	56.54	0.94	55.79	0.95
0.5000	56.51	0.94	55.81	0.97
0.5100	56.47	0.94	55.73	0.96
0.5200	56.43	0.95	55.31	0.97
0.5300	56.39	0.95	54.94	0.97
0.5400	56.35	0.95	55.28	1.00
0.5500	56.31	0.95	54.82	1.00

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	s Inc. This document is not to be reproduced in whole or in			prior written permission	n of Celltech Labs Inc.	Page 259 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Specific Absorption Rate

Description of Test(s)

Test Report Revision No. Rev. 1.0 (Initial Release) RF Exposure Category

Occupational (Controlled)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 06/Aug/2010

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

Freq	FCC_eB	FCC_sE	Test_e	Test_s						
0.3500	57.70	0.93	59.18	$0.8\overline{2}$						
0.3600	57.60	0.93	59.70	0.84						
0.3700	57.50	0.93	58.46	0.85						
0.3800	57.40	0.93	58.29	0.85						
0.3900	57.30	0.93	59.05	0.86						
0.4000	57.20	0.93	58.67	0.87						
0.4100	57.10	0.93	58.33	0.87						
0.4200	57.00	0.94	57.77	0.88						
0.4300	56.90	0.94	57.80	0.91						
0.4400	56.80	0.94	58.11	0.90						
0.4500	56.70	0.94	57.73	0.91						
0.4600	56.66	0.94	57.33	0.92						
0.4700	56.62	0.94	57.02	0.94						
0.4800	56.58	0.94	57.56	0.95						
0.4900	56.54	0.94	57.07	0.95						
0.5000	56.51	0.94	56.88	0.96						
0.5100	56.47	0.94	56.73	0.97						
0.5200	56.43	0.95	56.87	0.97						
0.5300	56.39	0.95	56.95	0.98						
0.5400	56.35	0.95	56.79	1.01						
0.5500	56.31	0.95	56.44	1.02						

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	able FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	ibs Inc.	nc. This document is not to be reproduced in whole or in			prior written permission	n of Celltech Labs Inc.	Page 260 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category Occupational (Controlled)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter

09/Aug/2010

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon

******	******	*****	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.3500	57.70	0.93	58.04	0.86
0.3600	57.60	0.93	56.88	0.85
0.3700	57.50	0.93	57.50	0.85
0.3800	57.40	0.93	57.31	0.87
0.3900	57.30	0.93	57.16	0.88
0.4000	57.20	0.93	57.39	0.90
0.4100	57.10	0.93	56.62	0.91
0.4200	57.00	0.94	56.93	0.92
0.4300	56.90	0.94	56.39	0.91
0.4400	56.80	0.94	55.92	0.92
0.4500	56.70	0.94	55.54	0.94
0.4600	56.66	0.94	56.30	0.93
0.4700	56.62	0.94	56.12	0.95
0.4800	56.58	0.94	55.67	0.95
0.4900	56.54	0.94	56.05	0.98
0.5000	56.51	0.94	56.50	0.97
0.5100	56.47	0.94	55.49	0.98
0.5200	56.43	0.95	55.29	0.97
0.5300	56.39	0.95	55.02	1.00
0.5400	56.35	0.95	54.92	1.01
0.5500	56.31	0.95	55.46	1.01

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	Portable FM UHF PTT Radio Transceiver		DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	0 Celltech Labs Inc. This document is not to be reproduced in who			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 261 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Rev. 1.0 (Initial Release) Description of Test(s)

RF Exposure Category Occupational (Controlled)

Test Report Revision No.

450 MHz Body

Specific Absorption Rate

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter 10/Aug/2010

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon

*********	******	******	*******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.3500	57.70	0.93	58.03	0.83
0.3600	57.60	0.93	58.46	0.83
0.3700	57.50	0.93	57.76	0.83
0.3800	57.40	0.93	58.08	0.86
0.3900	57.30	0.93	57.83	0.87
0.4000	57.20	0.93	57.48	0.86
0.4100	57.10	0.93	57.48	0.88
0.4200	57.00	0.94	57.26	0.89
0.4300	56.90	0.94	57.36	0.89
0.4400	56.80	0.94	57.31	0.90
0.4500	56.70	0.94	57.27	0.92
0.4600	56.66	0.94	56.37	0.93
0.4700	56.62	0.94	56.57	0.92
0.4800	56.58	0.94	56.33	0.93
0.4900	56.54	0.94	56.23	0.94
0.5000	56.51	0.94	56.40	0.95
0.5100	56.47	0.94	55.95	0.96
0.5200	56.43	0.95	55.89	0.97
0.5300	56.39	0.95	55.52	0.98
0.5400	56.35	0.95	55.41	0.99
0.5500	56.31	0.95	55.80	1.00

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	Labs Inc. This document is not to be reproduced in wh			ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 262 of 309

<u>Test Report Issue Date</u> October 26, 2010 Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
11/Aug/2010
Frequency (GHz)

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon

******	*****	*****	******	******
Freq	FCC eB	FCC sE	3 Test e	Test s
0.3500	57. 7 0	$0.9\overline{3}$	57. 3 3	$0.8\overline{3}$
0.3600	57.60	0.93	57.30	0.85
0.3700	57.50	0.93	57.27	0.86
0.3800	57.40	0.93	57.40	0.88
0.3900	57.30	0.93	56.97	0.86
0.4000	57.20	0.93	56.90	0.86
0.4100	57.10	0.93	56.09	0.89
0.4200	57.00	0.94	56.51	0.89
0.4300	56.90	0.94	55.80	0.91
0.4400	56.80	0.94	55.88	0.91
0.4500	56.70	0.94	55.74	0.92
0.4600	56.66	0.94	55.41	0.94
0.4700	56.62	0.94	56.34	0.94
0.4800	56.58	0.94	55.24	0.93
0.4900	56.54	0.94	55.12	0.95
0.5000	56.51	0.94	55.88	0.97
0.5100	56.47	0.94	55.30	0.98
0.5200	56.43	0.95	54.77	0.98
0.5300	56.39	0.95	54.72	0.99
0.5400	56.35	0.95	55.59	1.00
0.5500	56.31	0.95	54.93	1.01

Applicant:	Kenwood USA Corporation		FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in who			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 263 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category Occupational (Controlled)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter

12/Aug/2010

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM Test_s Sigma of UIM

******	*****	*****	******	******
Freq	FCC eB	FCC sE	3 Test e	Test s
0.3500	57. 7 0	$0.9\overline{3}$	59. 9 9	$0.8\overline{0}$
0.3600	57.60	0.93	60.10	0.81
0.3700	57.50	0.93	59.57	0.81
0.3800	57.40	0.93	58.67	0.82
0.3900	57.30	0.93	60.20	0.86
0.4000	57.20	0.93	58.41	0.84
0.4100	57.10	0.93	58.55	0.86
0.4200	57.00	0.94	59.06	0.87
0.4300	56.90	0.94	58.04	0.86
0.4400	56.80	0.94	58.56	0.88
0.4500	56.70	0.94	57.99	0.90
0.4600	56.66	0.94	58.29	0.90
0.4700	56.62	0.94	57.34	0.93
0.4800	56.58	0.94	57.46	0.93
0.4900	56.54	0.94	58.17	0.94
0.5000	56.51	0.94	57.46	0.95
0.5100	56.47	0.94	57.28	0.96
0.5200	56.43	0.95	56.96	0.96
0.5300	56.39	0.95	56.85	0.98
0.5400	56.35	0.95	57.12	0.98
0.5500	56.31	0.95	56.48	1.00

Applicant:	Kenwood USA Corporation		FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Tr		ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in who			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 264 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category Occupational (Controlled)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 13/Aug/2010

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon

******	******	******	*******	*******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.3500	57.70	0.93	56.76	0.81
0.3600	57.60	0.93	56.27	0.83
0.3700	57.50	0.93	55.94	0.84
0.3800	57.40	0.93	55.70	0.83
0.3900	57.30	0.93	55.74	0.86
0.4000	57.20	0.93	55.57	0.86
0.4100	57.10	0.93	55.88	0.87
0.4200	57.00	0.94	55.16	0.88
0.4300	56.90	0.94	55.42	0.89
0.4400	56.80	0.94	54.96	0.90
0.4500	56.70	0.94	55.12	0.90
0.4600	56.66	0.94	55.36	0.90
0.4700	56.62	0.94	55.23	0.92
0.4800	56.58	0.94	55.27	0.93
0.4900	56.54	0.94	54.75	0.94
0.5000	56.51	0.94	54.68	0.94
0.5100	56.47	0.94	54.20	0.97
0.5200	56.43	0.95	54.40	0.96
0.5300	56.39	0.95	54.45	0.99
0.5400	56.35	0.95	54.09	0.99
0.5500	56.31	0.95	53.75	1.00

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio T	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	110 Celltech Labs Inc. This document is not to be reproduced in who			ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 265 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category Occupational (Controlled)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter

16/Aug/2010

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM
Test_s Sigma of UIM

**********	******	******	*******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.3500	57.70	0.93	57.41	0.85
0.3600	57.60	0.93	57.00	0.85
0.3700	57.50	0.93	56.78	0.85
0.3800	57.40	0.93	56.51	0.86
0.3900	57.30	0.93	57.43	0.86
0.4000	57.20	0.93	56.06	0.88
0.4100	57.10	0.93	56.90	0.90
0.4200	57.00	0.94	55.77	0.88
0.4300	56.90	0.94	55.86	0.90
0.4400	56.80	0.94	55.85	0.91
0.4500	56.70	0.94	56.03	0.93
0.4600	56.66	0.94	55.84	0.92
0.4700	56.62	0.94	56.11	0.93
0.4800	56.58	0.94	55.08	0.94
0.4900	56.54	0.94	54.93	0.95
0.5000	56.51	0.94	55.39	0.96
0.5100	56.47	0.94	54.90	0.97
0.5200	56.43	0.95	55.00	0.98
0.5300	56.39	0.95	54.27	0.99
0.5400	56.35	0.95	54.67	0.98
0.5500	56.31	0.95	54.48	1.01

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	elltech Labs Inc. This document is not to be reproduced in wh			ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 266 of 309

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Head

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
17/Aug/2010
Frequency (GHz)

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	*****	******	*******	******
Freq	FCC_eH	FCC_sl	HTest_e	Test_s
0.3500	44.70	0.87	45.07	0.75
0.3600	44.58	0.87	45.08	0.75
0.3700	44.46	0.87	44.94	0.76
0.3800	44.34	0.87	44.41	0.78
0.3900	44.22	0.87	43.98	0.78
0.4000	44.10	0.87	44.28	0.80
0.4100	43.98	0.87	43.53	0.80
0.4200	43.86	0.87	43.96	0.82
0.4300	43.74	0.87	43.53	0.82
0.4400	43.62	0.87	43.90	0.83
0.4500	43.50	0.87	43.03	0.83
0.4600	43.45	0.87	43.01	0.84
0.4700	43.40	0.87	43.15	0.86
0.4800	43.34	0.87	42.62	0.87
0.4900	43.29	0.87	42.36	0.87
0.5000	43.24	0.87	42.51	0.88
0.5100	43.19	0.87	42.70	0.89
0.5200	43.14	0.88	41.81	0.90
0.5300	43.08	0.88	42.29	0.91
0.5400	43.03	0.88	41.81	0.92
0.5500	42.98	0.88	41.86	0.93

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in who			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 267 of 309	

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

RF Exposure Category Description of Test(s) Occupational (Controlled) Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)

450 MHz Body

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter 31/Aug/2010

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test's Sigma of UIM

*****	*****		******	******
Freq	FCC_eH	FCC_sl	HTest_e	Test_s
0.3500	57. 7 0	$0.9\overline{3}$	57. 3 8	$0.8\overline{3}$
0.3600	57.60	0.93	56.96	0.82
0.3700	57.50	0.93	58.33	0.85
0.3800	57.40	0.93	56.33	0.84
0.3900	57.30	0.93	56.70	0.87
0.4000	57.20	0.93	56.97	0.86
0.4100	57.10	0.93	56.29	0.86
0.4200	57.00	0.94	55.79	0.87
0.4300	56.90	0.94	56.04	0.90
0.4400	56.80	0.94	56.38	0.90
0.4500	56.70	0.94	56.80	0.90
0.4600	56.66	0.94	55.74	0.92
0.4700	56.62	0.94	55.91	0.92
0.4800	56.58	0.94	55.42	0.94
0.4900	56.54	0.94	55.51	0.94
0.5000	56.51	0.94	55.63	0.95
0.5100	56.47	0.94	55.79	0.94
0.5200	56.43	0.95	55.16	0.98
0.5300	56.39	0.95	54.83	0.99
0.5400	56.35	0.95	54.75	0.98
0.5500	56.31	0.95	54.64	0.99

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in who			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 268 of 309	

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category Occupational (Controlled)

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter

1/Sept/2010

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM
Test_s Sigma of UIM

***********	******	*****	*******	******
Freq	FCC_eH	FCC_sl	Test_e	Test_s
0.3500	57.70	0.93	57.53	0.82
0.3600	57.60	0.93	57.57	0.83
0.3700	57.50	0.93	57.88	0.85
0.3800	57.40	0.93	56.99	0.85
0.3900	57.30	0.93	56.75	0.86
0.4000	57.20	0.93	57.25	0.87
0.4100	57.10	0.93	56.71	0.86
0.4200	57.00	0.94	56.88	0.88
0.4300	56.90	0.94	56.49	0.90
0.4400	56.80	0.94	56.34	0.89
0.4500	56.70	0.94	56.87	0.91
0.4600	56.66	0.94	56.72	0.91
0.4700	56.62	0.94	56.11	0.92
0.4800	56.58	0.94	56.40	0.93
0.4900	56.54	0.94	56.18	0.93
0.5000	56.51	0.94	55.54	0.95
0.5100	56.47	0.94	56.04	0.94
0.5200	56.43	0.95	55.71	0.96
0.5300	56.39	0.95	55.43	0.97
0.5400	56.35	0.95	55.43	0.97
0.5500	56.31	0.95	55.47	0.98

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio T	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	10 Celltech Labs Inc. This document is not to be reproduced in wh			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 269 of 309

Test Report Issue Date October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

RF Exposure Category Description of Test(s) Occupational (Controlled) Specific Absorption Rate

450 MHz Body

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 2/Sept/2010

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test's Sigma of UIM

******	*****			******
Freq	FCC eH	FCC sh	Test e	Test s
0.3500	57. 7 0	$0.9\overline{3}$	59. 6 4	$0.8\overline{3}$
0.3600	57.60	0.93	58.57	0.84
0.3700	57.50	0.93	58.50	0.84
0.3800	57.40	0.93	58.53	0.83
0.3900	57.30	0.93	58.11	0.85
0.4000	57.20	0.93	57.39	0.86
0.4100	57.10	0.93	57.85	0.85
0.4200	57.00	0.94	57.59	0.87
0.4300	56.90	0.94	57.73	0.88
0.4400	56.80	0.94	57.60	0.88
0.4500	56.70	0.94	57.42	0.91
0.4600	56.66	0.94	57.03	0.90
0.4700	56.62	0.94	56.91	0.92
0.4800	56.58	0.94	56.95	0.95
0.4900	56.54	0.94	56.96	0.95
0.5000	56.51	0.94	57.04	0.93
0.5100	56.47	0.94	56.50	0.93
0.5200	56.43	0.95	55.95	0.97
0.5300	56.39	0.95	56.28	0.96
0.5400	56.35	0.95	56.11	0.97
0.5500	56.31	0.95	56.30	0.97

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in who			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 270 of 309	

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
3/Sept/2010
Frequency (GHz)

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon

FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

******	*******	*****	*******	******
Freq	FCC eH	FCC sh	Test e	Test s
0.3500	57. 7 0	$0.9\overline{3}$	58. 1 6	$0.8\overline{6}$
0.3600	57.60	0.93	57.96	0.85
0.3700	57.50	0.93	57.37	0.85
0.3800	57.40	0.93	57.71	0.87
0.3900	57.30	0.93	57.91	0.87
0.4000	57.20	0.93	57.40	0.88
0.4100	57.10	0.93	57.45	0.88
0.4200	57.00	0.94	57.00	0.89
0.4300	56.90	0.94	56.28	0.90
0.4400	56.80	0.94	57.01	0.91
0.4500	56.70	0.94	56.78	0.93
0.4600	56.66	0.94	56.68	0.93
0.4700	56.62	0.94	56.23	0.95
0.4800	56.58	0.94	56.17	0.93
0.4900	56.54	0.94	56.59	0.95
0.5000	56.51	0.94	56.75	0.97
0.5100	56.47	0.94	55.96	0.97
0.5200	56.43	0.95	56.02	0.98
0.5300	56.39	0.95	55.75	0.99
0.5400	56.35	0.95	55.07	0.98
0.5500	56.31	0.95	55.62	0.99

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio T	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	010 Celltech Labs Inc. This document is not to be reproduced in wh			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 271 of 309

<u>Test Report Issue Date</u> October 26, 2010 Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

450 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
7/Sept/2010

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

******	*****	*****	*******	******
Freq	FCC_eH	FCC_sl	Test_e	Test_s
0.3500	57.70	0.93	59.01	0.83
0.3600	57.60	0.93	58.57	0.83
0.3700	57.50	0.93	58.48	0.84
0.3800	57.40	0.93	58.14	0.83
0.3900	57.30	0.93	58.17	0.85
0.4000	57.20	0.93	57.98	0.86
0.4100	57.10	0.93	57.66	0.85
0.4200	57.00	0.94	57.87	0.86
0.4300	56.90	0.94	56.93	0.88
0.4400	56.80	0.94	57.67	0.89
0.4500	56.70	0.94	57.02	0.90
0.4600	56.66	0.94	57.15	0.91
0.4700	56.62	0.94	57.26	0.92
0.4800	56.58	0.94	56.81	0.91
0.4900	56.54	0.94	56.80	0.93
0.5000	56.51	0.94	56.37	0.94
0.5100	56.47	0.94	56.71	0.94
0.5200	56.43	0.95	56.17	0.96
0.5300	56.39	0.95	56.12	0.95
0.5400	56.35	0.95	55.67	0.98
0.5500	56.31	0.95	55.76	0.98

Applicant:	Kenv	vood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in who			ole or in part without the	prior written permission	n of Celltech Labs Inc.	Page 272 of 309	

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX E - DIPOLE CALIBRATION

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in who			ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 306 of 309	

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Accreditation No.: SCS 108

Certificate No: D450V3-1068_Jan10

CALIBRATION CERTIFICATE

Object

D450V3 - SN: 1068

Calibration procedure(s)

QA CAL-15.V5

Calibration Procedure for dipole validation kits below 800 MHz

Calibration date:

January 18, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ET3DV6 (LF)	SN: 1507	03-Jul-09 (No. ET3-1507_Jul09)	Jul-10
DAE4	SN: 654	04-May-09 (No. DAE4-654_May09)	May-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician ·	iv Upl
Approved by:	Katja Pokovic	Technical Manager	

Issued: January 20, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D450V3-1068_Jan10

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL_

tissue simulating liquid

ConF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.2 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.87 mW / g
SAR normalized	normalized to 1W	4.70 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.76 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.25 mW / g
SAR normalized	normalized to 1W	3.14 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.17 mW / g ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	0.90 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	<u> </u>
SAR measured	398 mW input power	1.78 mW / g
SAR normalized	normalized to 1W	4.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.58 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.19 mW / g
SAR normalized	normalized to 1W	2.99 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	3.06 mW / g ± 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.5 Ω - 5.9 jΩ
Return Loss	- 21.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	54.8 Ω - 9.3 jΩ
Return Loss	- 20.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,350 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 16, 2009

Certificate No: D450V3-1068_Jan10

DASY5 Validation Report for Head TSL

Date/Time: 1/18/2010 10:59:37 AM

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1068

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.86 \text{ mho/m}$; $\varepsilon_r = 44.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(6.66, 6.66, 6.66); Calibrated: 7/3/2009

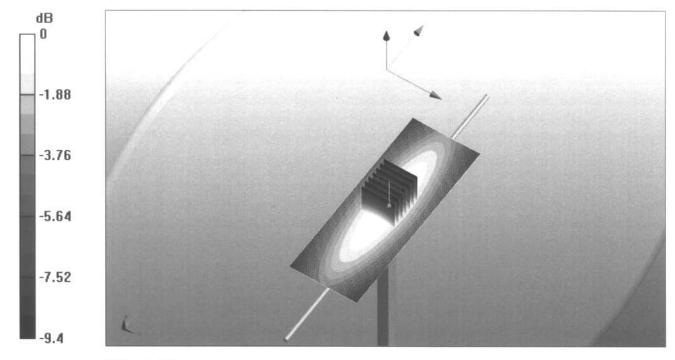
Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn654; Calibrated: 5/4/2009

Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

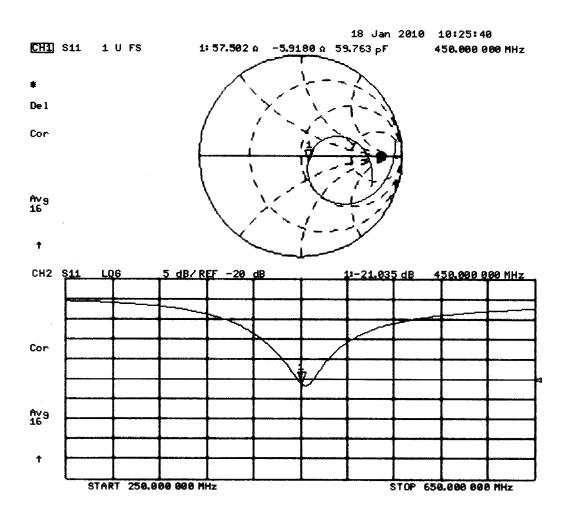
Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57

Head/d=15mm, Pin=398mW/Area Scan (41x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.99 mW/g


Head/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.2 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 2.78 W/kg


SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.25 mW/g

Maximum value of SAR (measured) = 2 mW/g

0 dB = 2mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 1/18/2010 1:24:11 PM

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1068

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: MSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.9 \text{ mho/m}$; $\varepsilon_r = 54.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

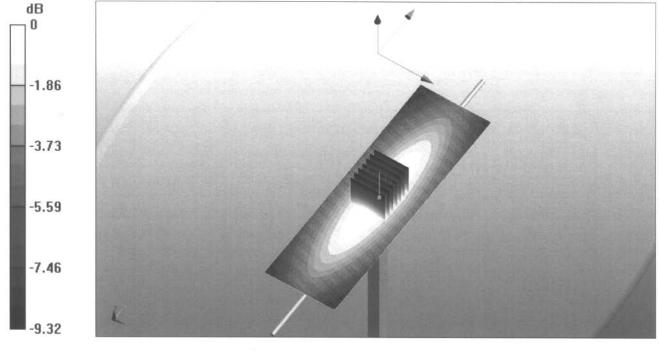
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(7.11, 7.11, 7.11); Calibrated: 7/3/2009

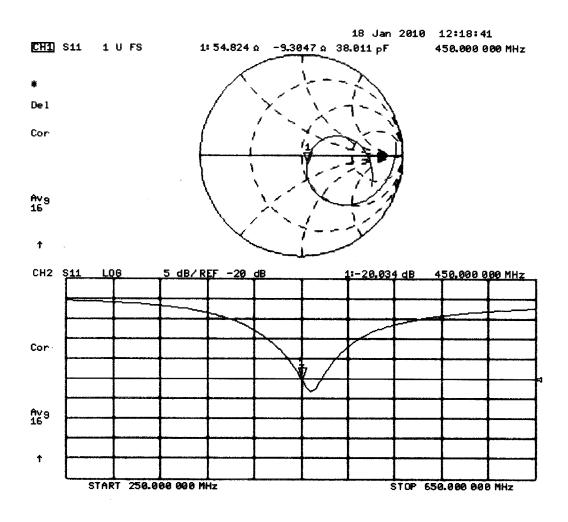
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 5/4/2009
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57

Body/d=15mm, Pin=398mW/Area Scan (61x201x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.9 mW/g


Body/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.4 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 2.71 W/kg


SAR(1 g) = 1.78 mW/g; SAR(10 g) = 1.19 mW/g

Maximum value of SAR (measured) = 1.9 mW/g

0 dB = 1.9 mW/g

Impedance Measurement Plot for Body TSL

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX F - PROBE CALIBRATION

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 307 of 309

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Celltech

Accreditation No.: SCS 108

Certificate No: ET3-1590 Jul10

CALIBRATION CERTIFICATE

Object **ET3DV6 - SN:1590**

Calibration procedure(s) QA CAL-01.v6, QA CAL-12.v8, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

at water than and

1967年1964年1966年1966年

Calibration date: July 15, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10
DAE4	SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11
:			
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10

Name Function
Calibrated by Jeton Kastrati Laboratory Technician

Katja Pokovic

Technical Manager

Issued: July 15, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Approved by:

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx.y.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ET3DV6 SN:1590

Probe ET3DV6

SN:1590

Manufactured:

March 19, 2001

Last calibrated:

July 16, 2009

Recalibrated:

July 15, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1590 July 15, 2010

DASY/EASY - Parameters of Probe: ET3DV6 SN:1590

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.86	2.06	1.77	± 10.1%
DCP (mV) ³	91,4	92.4	83.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6)

Numerical linearization parameter: uncertainty not required.

¹ Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ET3DV6 SN:1590

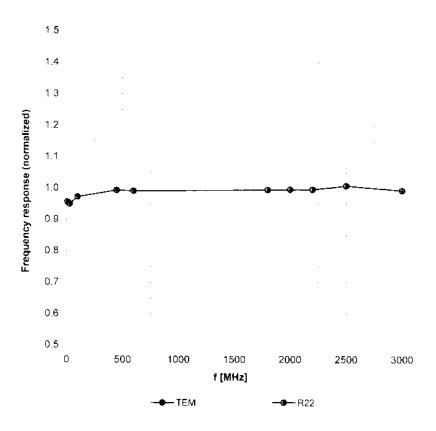
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Cor	nvF Y Co	onvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	4 3.5 ± 5%	0.87 ± 5%	7.25	7.25	7.25	0.20	2.19 ± 13.3%
835	± 50 / ± 100	41.5 ± 5%	$0.90 \pm 5\%$	6.27	6.27	6.27	0.32	2.49 ± 11.0%
900	± 50 / ± 100	41.5 ± 5%	$0.97 \pm 5\%$	6.12	6.12	6.12	0.27	2.86 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4 4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

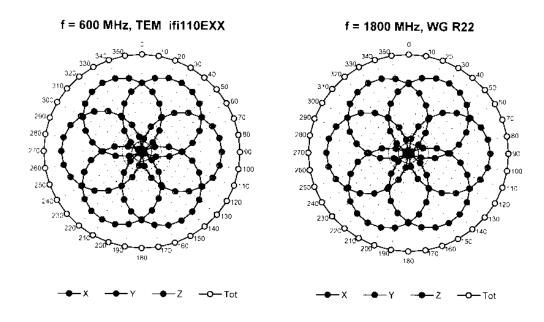
ET3DV6 SN:1590 July 15, 2010

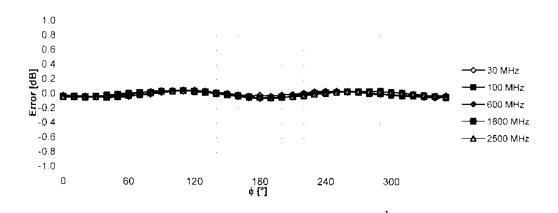
DASY/EASY - Parameters of Probe: ET3DV6 SN:1590


Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Cor	vFY Co	nvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	56.7 ± 5%	0.94 ± 5%	7.73	7.73	7.73	0.13	2.06 ± 13.3%
835	± 50 / ± 100	55.2 ± 5%	$0.97 \pm 5\%$	6.33	6.33	6.33	0.22	3.60 ± 11.0%
900	± 50 / ± 100	55.0 ± 5%	$1.05 \pm 5\%$	6.15	6.15	6.15	0.28	2.94 ± 11.0%

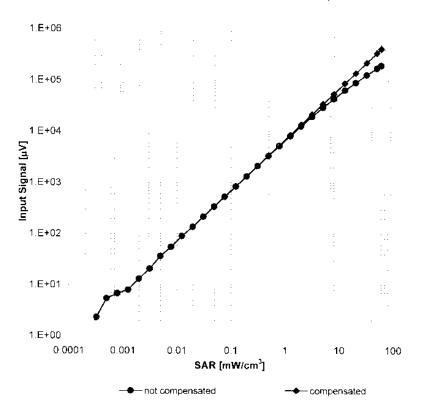
The validity of ± 100 MHz only applies for DASY v4 4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

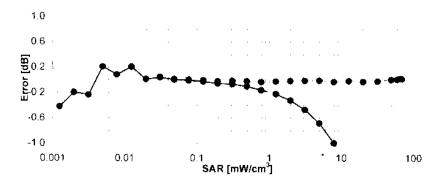

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

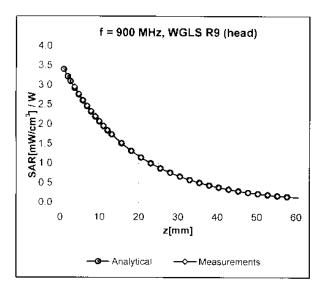


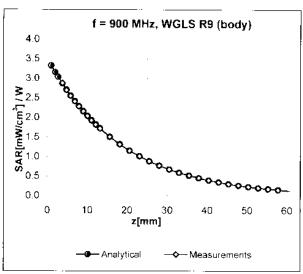


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

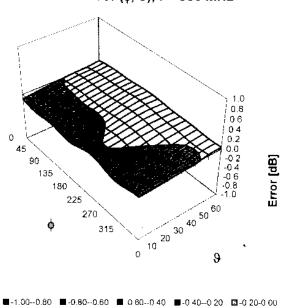
(Waveguide R22, f = 1800 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ET3DV6 SN:1590


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

□ 0.00-0.20 ■ 0 20-0.40 □ 0.40-0.60 ■ 0.60-0.80 ■ 0.80 1.00

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

ET3DV6 SN:1590 July 15, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX G - BARSKI PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH413800	Freq. Range:	450 - 512 MHz	KENWOOD
DUT Type:	Porta	ble FM UHF PTT Radio Ti	ransceiver	DUT Models:	TK-3312-1	TK-3317-1	KENWOOD
2010 Celltech La	abs Inc.	This document is not to be re	produced in who	ole or in part without the	prior written permissio	n of Celltech Labs Inc.	Page 308 of 309

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334

E-mail: <u>barskiind@shaw.ca</u>
Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item: Flat Planar Phantom Unit # 03-01

Date: June 16, 2003

Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

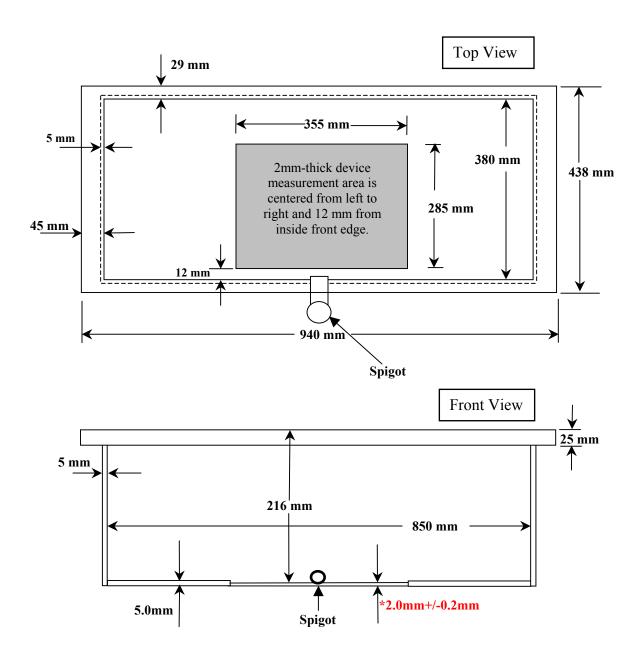
Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

Note: Measurements that aren't repeated for the opposite sides are the same as the side measured.

This drawing is not to scale.

Test Report Issue Date
October 26, 2010

Test Report Serial No. 080310ALH-T1037-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX H - OCCUPATIONAL PTT TEST REDUCTION DRAFT CONSIDERATIONS

Applicant:	Kenwood USA Corporation FCC ID:		Kenwood USA Corporation FCC ID:		ALH413800 Freq. Range:		KENWOOD	
DUT Type:	Portable FM UHF PTT Radio Transceiver			DUT Models:	TK-3312-1	TK-3317-1	KENWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permis						n of Celltech Labs Inc.	Page 309 of 309	

Occupational PTT Test Reduction *Draft* Considerations

Head SAR Test Considerations

Passive body-worn and audio accessories generally do not apply to the head SAR of PTT devices. Head SAR is measured with the front of the device at 2.5 cm parallel to a flat phantom. When the front of the device has a contour or non-uniform surface with > 1.0 cm variation, the average distance of such variations is used to establish the 2.5 cm test separation from the phantom.

- A) Start with a standard battery supplied with the device by default to measure the head SAR of each antenna on the highest output power channel, according to the test channels required by KDB 447498 (6)(c) and in the frequency range covered by the antenna within each device operating frequency band.¹
 - 1) When multiple standard batteries are supplied with a device, the battery with the highest capacity is considered the default battery for making head SAR measurements.
- B) When the head SAR of an antenna tested on the highest output power channel using the default battery is ≤ 4.0 W/kg, testing of the required immediately adjacent channel(s) is not necessary. When the head SAR of an antenna tested on the highest output power channel using the default battery is ≤ 3.5 W/kg, testing of all other required channels is not necessary. For the remaining channels that require testing, the exclusion of 4.0 W/kg for the required immediately adjacent channels and 3.5 W/kg for subsequent remaining channels may be applied recursively with respect to the highest output power channel among the remaining channels. When the head SAR of an antenna tested on the highest output power channel using the default battery is ≥ 4.0 W/kg, head SAR should be measured for that antenna on the required immediately adjacent channels and on all required channels if the highest SAR channel or an adjacent channel is ≥ 6.0 W/kg.
- C) For antennas of the same type and construction, with similar SAR distributions, operating within the same device operating frequency band, if the frequency range of an antenna (A) is fully within the frequency range of another antenna (B) and the highest SAR for antenna (A) is ≤ 4.0 W/kg or ≤ 6.0 W/kg and at least 25% lower than the highest SAR measured for antenna (B) within the device operating frequency band, further head SAR tests are not necessary for antenna (A).²
- D) When the highest SAR for <u>all antennas</u> tested using the default battery is ≤ 4.0 W/kg, according to the above test sequences, test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas tested with the default battery. Testing of additional batteries for other antennas is unnecessary.
 - 1) When the SAR tested with an additional battery using the antenna and channel configuration that resulted in the highest SAR from the default battery is > 6.0 W/kg, test that battery on the highest SAR channel of each antenna.
 - a) If the SAR measured on the highest SAR channel of an antenna using an additional battery is > 6.0 W/kg, test that additional battery and antenna combination on the required immediately adjacent channels and on all required channels if the highest SAR channel or an adjacent channel is > 7.0 W/kg.
- E) When the highest SAR of an antenna tested using the default battery is > 4.0 W/kg,³ test additional batteries on the channel that resulted in the highest SAR for that antenna when tested with the standard default battery.
 - 1) If the SAR of an antenna tested with the default battery or an additional battery using the highest SAR channel is > 6.0 W/kg, test that battery and antenna combination on the required immediately adjacent channels and on all required channels if the highest SAR channel or an adjacent channel is > 7.0 W/kg.
 - 2) An antenna tested using the default battery with highest $SAR \le 4.0 \text{ W/kg}^4$ does not need to be tested using additional batteries.
- F) Report the measured head SAR in formats similar to the following:

_

¹ The test channel selection criteria in IEEE 1528-2003 may be considered when the number of channels required is greater than or equal to that required by KDB 447498 and the measured maximum output power for the closest channels between the channel selection schemes are within ½ dB.

² The highest SAR is determined according to the SAR measured on the highest output power channel and all required adjacent and remaining channels. Also note that the procedures must be applied in sequence, from A) – F).

³ D) and E) are mutually exclusive. For item D), all SAR must be ≤ 4.0 W/kg. For Item E), the SAR for some antennas could be ≤ 4.0 W/kg when others are > 4.0 W/kg.

⁴ See footnote 3.

		Example for	or Illustration Or	nly				
		Head SAR -	in front of the	face				
Antenna	Managari	Ch. Freq.	Battery					
(MHz)	Measured	(MHz)	Default	I: Model #	II: Model #			
	Power	470.5						
	(W)	480.0						
A	(W)	489.5						
(470 - 490)	SAR	470.5						
	(W/kg)	480.0						
	(W/Kg)	489.5						
		420.5						
	Power (W)	430.0						
		440.0						
В		449.5		_				
(420 - 450)	SAR (W/kg)	420.5						
		430.0						
		440.0						
	(11/148)	449.5						
	Power	450.5						
C	(W)	464.5		1	T			
(450 - 465)	SAR	450.5						
	(W/kg)	464.5						
D	Power (W)	467.5		1	T			
(465 - 470)	SAR (W/kg)	467.5		1 1 1 1 1				

Reported SAR values have already been scaled by the applicable duty factor

Antenna, battery and accessory specifications are explained in the product descriptions section

When test reduction applies, the slots for such configurations are left blank

(Need to confirm this table layout works)

Body SAR Test Considerations for Body-worn Accessories

Body SAR is measured with the device placed in a body-worn accessory, positioned against a flat phantom, representative of the normal operating conditions expected by users, without any audio accessory. Since audio accessories, including any default audio accessories supplied with the device, may be designed to operate with a subset of the combination of antennas, batteries and body-worn accessories, to simplify the test selection sequences for audio accessories, body-worn accessories are tested without audio accessory. All sides of the device that may be positioned using a body-worn accessory facing the user must be considered for SAR compliance.

- A) Start with a standard battery supplied with the device by default and a standard body-worn accessory, also supplied with the device by default, to measure the body SAR of each antenna on the highest output power channel, according to the test channels required by KDB 447498 (6)(c) and in the frequency range covered within each device operating frequency band.⁵
 - 1) When multiple default batteries and/or default body-worn accessories are supplied with a device, for testing purposes, the thinnest standard battery with the highest capacity and the standard body-worn accessory expected to result in the highest SAR based on its construction and exposure conditions are considered the default battery and default body-worn accessory for body SAR measurements.
- B) When the body SAR of an antenna tested on the highest output power channel using the default battery and default body-worn accessory is ≤ 4.0 W/kg, testing of the required immediately adjacent channel(s) is not necessary. When the body SAR of an antenna tested on the highest output power channel using the default battery and default body-worn accessory is ≤ 3.5 W/kg, testing of all other required channels is not necessary. For the remaining channels that require testing, the exclusion of 4.0 W/kg for the required immediately adjacent channels and 3.5 W/kg for subsequent remaining channels may be applied recursively with respect to the highest output power channel among the remaining channels. When the body SAR of an antenna tested on the highest output power channel using the default battery and default body-worn accessory is ≥ 4.0 W/kg, body SAR should be measured for that antenna on the required immediately adjacent channels and on all required channels if the highest SAR channel or an adjacent channel is ≥ 6.0 W/kg using the default battery and default body-worn accessory.
- C) For antennas of the same type and construction, with similar SAR distributions, operating within the same device operating frequency band, if the frequency range of an antenna (A) is fully within the frequency range of another antenna (B) and the highest SAR for antenna (A) is ≤ 4.0 W/kg or ≤ 6.0 W/kg and at least 25% lower than the highest SAR measured for antenna (B) within the device operating frequency band, further body SAR tests are not necessary for antenna (A).
- D) When the highest SAR for <u>all antennas</u> tested using the default battery and default body-worn accessory is ≤ 4.0 W/kg, according to the above test sequences, test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas tested with the default battery and default body-worn accessory. Testing of additional batteries with the default body-worn accessory for other antennas is unnecessary.
 - 1) For batteries with similar construction, test only the battery that is expected to result in the highest SAR. This is generally determined by the smallest antenna separation distance provided by the body-worn accessory, between the device and the user, with the applicable side(s) of the device facing the user.
 - 2) When the SAR tested with an additional battery using the antenna, default body-worn accessory and channel configuration that resulted in the highest SAR is > 6.0 W/kg, test that battery with the default body-worn accessory on the highest SAR channel of each applicable antenna.
 - a) If the SAR measured on the highest SAR channel of an antenna tested using an additional battery and the default body-worn accessory is > 6.0 W/kg, test that additional battery, antenna and default body-worn accessory combination on the required immediately adjacent channels and on all required channels if the highest SAR channel or an adjacent channel is > 7.0 W/kg.
- E) When the highest SAR of an antenna tested using the default battery and default body-worn accessory is > 4.0 W/kg, test additional batteries on the channel that resulted in the highest SAR for that antenna when tested using the default battery and default body-worn accessory.
 - 1) For batteries with similar construction, test only the battery that is expected to result in the highest SAR. This is generally determined by the smallest antenna separation distance provided by the body-worn accessory, between the device and the user, with the applicable side(s) of the device facing the user.

⁶ See footnote 2.

⁵ See footnote 1.

⁷ See footnote 3.

- 2) If the SAR of an antenna tested with the default battery or an additional battery and the default body-worn accessory using the highest SAR channel is > 6.0 W/kg, test that battery, antenna and default body-worn accessory on the required immediately adjacent channels and on all required channels if the highest SAR channel or an adjacent channel is > 7.0 W/kg.
- 3) An antenna tested using the default battery and default body-worn accessory with highest $SAR \le 4.0 \text{ W/kg}^8$ does not need to be tested using additional batteries when such batteries provide a minimum separation distance, between the device and the user, greater than or equal to that established by the default battery.
- F) Report the measured body SAR in formats similar to the following for the default body-worn accessory:

		Exam	ple for Illustration On	ly			
В	ody-worn Acces	sory 1: <i>Model 1</i>	Number Default Audio	o Accessory I: Model Nu	mber		
Antenna	3.6	Ch. Freq.	Battery				
(MHz)	Measured	(MHz)	Standard	I	II		
	Power	470.5					
	(W)	480.0					
A	(W)	489.5					
(470 - 490)	SAR	470.5					
	(W/kg)	480.0					
	(W/Kg)	489.5					
	Power	420.5					
		430.0					
	(W)	440.0					
В		449.5					
(420 - 450)		420.5					
	SAR	430.0					
	(W/kg)	440.0					
	(W/Kg)	449.5					
	Power	450.5					
C	(W)	464.5					
(450 - 465)	SAR	450.5					
	(W/kg)	464.5					
D	Power (W)	467.5					
(465 - 470)	SAR (W/kg)	467.5					

Reported SAR values have already been scaled by the applicable duty factor
Antenna, battery and accessory specifications are explained in the product descriptions section
When test reduction applies, the slots for such configurations are left blank
(Need to confirm this table layout works)

- G) Repeat the above test sequence for the additional body-worn accessories by replacing the "default body-worn" accessory with each "additional body-worn accessory".
 - 1) For body-worn accessories with similar construction and operating configurations, test only the body-worn accessory within the group that is expected to result in the highest SAR. This is typically determined by the smallest antenna separation distance provided by the body-worn accessory, between the device and the user, with the applicable side(s) of the device facing the user. Similarities in construction and operating configurations for batteries and body-worn accessories must be clearly explained in the SAR report.

_

⁸ See footnote 3.

Body SAR Test Considerations for Audio Accessories with Integral Antenna

Audio accessories with an integral radiating element (antenna) must be tested separately from those without any primary radiating element. An audio accessory with a built-in antenna that enables the (main) antenna on the (PTT) device to be disconnected from its output while the audio accessory is in use should be tested using the highest capacity default battery. When transmission from the (main) antenna on the (PTT) device is disabled while the audio accessory is transmitting using its integral antenna, body-worn accessories for the device are not expected to influence the SAR of the audio accessory. In addition, different body-worn accessories or attachments are generally used for audio accessories with an integral antenna, which must be tested according to the way these are attached to the user during normal operation. Body SAR is measured with the audio accessory positioned against a flat phantom representative of the normal operating and exposure conditions expected by users. All sides of the device that may be positioned against the user must be considered for SAR compliance.

- A) The audio accessory is tested on the highest output power channel, according to the test channels required by KDB 447498 (6)(c) and in the frequency range covered by the antenna on the audio accessory within each device operating frequency band to measure body SAR.⁹
- B) When the body SAR of an audio accessory tested on the highest output power channel is ≤ 4.0 W/kg, testing of the required immediately adjacent channel(s) is not necessary. When the body SAR of an audio accessory tested on the highest output power channel using the default battery is ≤ 3.5 W/kg, testing of all other required channels is not necessary. For the remaining channels that require testing, the exclusion of 4.0 W/kg for the required immediately adjacent channels and 3.5 W/kg for subsequent remaining channels may be applied recursively with respect to the highest output power channel among the remaining channels. When the body SAR of an audio accessory tested on the highest output power channel is ≥ 4.0 W/kg, body SAR should be measured on the required immediately adjacent channels and on all required channels if the highest SAR channel or an adjacent channel is ≥ 7.0 W/kg.
- C) For audio accessories of the same type and construction, including the antenna, with similar SAR distributions, operating within the same device operating frequency band, if the (antenna) frequency range of an audio accessory (A) is fully within the (antenna) frequency range of another audio accessory (B) and the highest SAR for accessory (A) is ≤ 4.0 W/kg or ≤ 6.0 W/kg and at least 25% lower than the highest SAR measured for accessory (B) within the device operating frequency band, further body SAR tests are not necessary for audio accessory (A)
- D) Report the measured body SAR in formats similar to the following for the audio accessory:

	Example for II	lustration Only	
В	Sody SAR – audio access	ories with integral antenna	
Audio Accessory (MHz)	Measured	Ch. Freq. (MHz)	SAR (W/kg)
A: <i>Model #</i> (470 – 490)	Power (W) SAR	470.5 480.0 489.5 470.5 480.0	
	(W/kg) Power	489.5 450.5	
B: <i>Model #</i> (450 – 465)	(W) SAR (W/kg)	464.5 450.5 464.5	

Reported SAR values have already been scaled by the applicable duty factor

Antenna, battery and accessory specifications are explained in the product descriptions section

When test reduction applies, the slots for such configurations are left blank

(Need to confirm this table layout works)

⁹ See footnote 1.

Body SAR Test Considerations for Audio Accessories without Built-in Antenna

For audio accessories that do not have any built-in radiating element, the antenna, battery and body-worn accessory combinations that are applicable to each audio accessory must be clearly identified in a format similar to the following, with the applicable combinations requiring testing highlighted to facilitate reviewing the results.

	Example for Illustration Only											
Antenna		Battery										
(1-5)		a				b				c		
(1-3)		Body-worn			Body-worn				Body-worn			
Audio Accessory	A	В	С	D	A	В	C	D	A	В	С	D
I	1, 2, 3, 4, 5	N/A	1, 3, 4, 5	N/A	3, 4, 5	1, 2, 3, 4, 5	2, 3	N/A	N/A	2, 4	1, 2, 3, 4, 5	1, 4
II	1, 2, 3, 4	1, 2, 3, 4, 5	N/A	1, 2, 3, 4, 5	N/A	N/A	1, 2, 3, 4, 5	2, 5	3, 5	1, 2, 3, 4, 5	N/A	N/A
III	2, 3, 4, 5	N/A	2, 3, 4, 5	2, 5	1, 3, 4, 5	1, 3, 5	N/A	1, 2, 3, 4, 5	1, 2, 3, 4, 5	N/A	2, 3, 4	1, 2, 3, 4, 5

In this example, audio accessories only work with the subset of antenna, battery and body-worn accessory combinations identified in the table, where N/A indicates the audio accessory (I, II or III) and/or the battery (a, b, or c) is not supported or applicable for the body-worn accessory. The antenna numbers listed for each body-worn accessory and battery combination identify the antennas supported or applicable for that body-worn accessory.

The possible combinations are highly dependent on the design and implementation of an individual device and the applicable antenna and accessory combinations. The above table must be adapted accordingly for the specific product and accessory combinations in use. The combinations require testing should be highlighted.

(Need to confirm this table layout works)

- A) For audio accessories with similar construction and operating requirements, test only the audio accessory within the group that is expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions for the combination. If it is unclear which audio accessory within a group of similar accessories is expected to result in the highest SAR, good engineering judgment or preliminary testing should be applied to select the accessory that is expected to result in the highest SAR. Similarities in construction and operating configurations must be clearly explained in the SAR report.
- B) Based on the SAR measured in the body-worn test sequence, without audio accessory, if the SAR for the antenna, body-worn accessory and battery combination(s) applicable to an audio accessory are all ≤ 4.0 W/kg, SAR tests for that audio accessory is not necessary.
- C) Based on the SAR measured in the body-worn test sequence, without audio accessory, if the SAR for the antenna, body-worn accessory and battery combination(s) applicable to an audio accessory is/are > 4.0 W/kg, test that audio accessory using the highest body-worn SAR combination and channel configuration applicable to the audio accessory.
- D) If the SAR measured for an audio accessory combination is > 6.0 W/kg, test that audio accessory on the required immediately adjacent channels and on all required channels if the highest SAR channel or an adjacent channel is > 7.0 W/kg, using the highest body-worn SAR combination applicable to that audio accessory.
- E) If the SAR measured for an audio accessory is > 7.0 W/kg and it is one of the accessories within a group of similar audio accessories, test all other audio accessories within that group of similar audio accessories using the 7.0 W/kg audio accessory test combination.
 - 1) If the highest SAR for a similar audio accessory is > 7.0 W/kg, test that audio accessory on all required channels using that combination of antenna, battery and body-worn accessory.
- F) Report the measured body SAR for audio accessories in formats similar to the following

		Example 1	for Illustration	n Only				
		Audio Acces	sory I: Mode	l Number				
Antenna	3.6 1	Ch. Freq. (MHz)	Battery (a – c) & Body-Worn (1 – 5) Combinations					
(MHz)	Measured		c/1	c/2	c/3	b/4	b/5	
	Power	470.5						
	(W)	480.0						
A	(W)	489.5						
(470 - 490)	SAR	470.5						
	(W/kg)	480.0						
		489.5						
	Power (W)	420.5						
		430.0						
		440.0						
В		449.5		•				
(420 - 450)		420.5						
	SAR	430.0						
	(W/kg)	440.0						
	(11/11/8)	449.5						
	Power	450.5						
С	(W)	464.5		1	T	T		
(450 - 465)	SAR	450.5						
	(W/kg)	464.5						
D	Power (W)	467.5		T	ı	1		
(465 - 470)	SAR (W/kg)	467.5						

Reported SAR values have already been scaled by the applicable duty factor

Antenna, battery and accessory specifications are explained in the product descriptions section

When test reduction applies, the slots for such configurations are left blank

(Need to confirm this table layout works)

General Reporting Procedures

All SAR values should be reported as measured, with the applicable duty factor taken into consideration. Adjustments made to account for tune-up tolerances should be considered separately, apart from the reported SAR summary results. SAR adjustments for tune-up tolerances are only needed for the highest reported SAR and SAR results that are within the tune-up tolerance range from the SAR limit, with respect to the power applied during testing for the individual channels, to determine compliance.