

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (1st Release)

DECLARATION OF COMPI	LIANCE	SAF	RF	EXPO	SURE	EVALU	ATION	FCC & IC	
Test Lab Information	Name	CELLTEC	H LABS	S INC.					
Test Lab Illiorniation	Address	21-364 Lo	ugheed	Road,	Kelowna,	B.C. V1X	7R8 Canac	la	
Test Lab Accreditation(s)	A2LA	ISO/IEC 17025:2005 (A2LA Test Lab Certificate No. 2470.01)							
Applicant Information	Name	KENWOOD USA CORPORATION							
Applicant information	Address	ress 3970 Johns Creek Court, Suite 100, Suwanee, GA 30024 United States							
Standard(s) Applied	FCC	47 CFR §2.1093 IC Health Canada Safety Code 6							
	FCC	OET Bullet	tin 65, S	Supple	ment C	FCC	KDB 447	498 D01v04	
	FCC	KDB 64364	46 D01v	01r01	(SAR Tes	t Reduction	Considera	tions for Occ. PTT Radios)	
Procedure(s) Applied	IC	RSS-102 I	ssue 4						
	IEEE	1528-2003	}						
	IEC	62209-2:20	010						
Davisa Classification(s)	FCC	Licensed N	Non-Bro	adcas	t Transmit	ter Held to	Face (TNF) - FCC Part 90, 24D	
Device Classification(s)	IC	Land Mobi	le Radi	o Tran	smitter/Re	ceiver (27.	41-960 MH	z) - RSS-119, RSS-134	
Davisa Identifica(a)	FCC ID:	ALH40900	1			FCC App	. Type T	CB New Certification	
Device Identifier(s)	IC:	282D-409001 IC App. Type CB New Certification							
Date of Sample Receipt	September 28, 2011								
Date(s) of Evaluation	October 06-07, 2011								
Device Description	Portable 90	0-Band Pus	sh-To-T	alk (P	ΓΤ) Digital	Radio Trai	nsceiver		
Device Model(s)	NX-411-K2								
Test Sample Serial No.	00232058 (Identical Pro	ototype)					
Test Sample Revision No.s	Hardware	Revision 0)			Firmv	vare Rev	ision 0	
DUT Transmit Frequency Range(s)	FCC/IC	896-901 N	1Hz (Pa	rt 90, I	RSS-119)	901-90)2 MHz (Pa	rt 24D, RSS-134)	
Dor Transmit Frequency Kange(s)	1 00/10	935-940 M	1Hz (Pa	rt 90, I	RSS-119)	940-94	11 MHz (Pa	rt 24D, RSS-134)	
Manufacturer's Rated Output Power	2.5 Watts (Conducted)			Manu	f. Toleran	ce Spec.	+/- 0 dB	
RF Output Power Levels Measured	33.98 dBm		2.5 W	atts		896.05 M	Hz	Average Conducted	
The Output I ower Ecreis incusured	33.98 dBm		2.5 W	atts		935.05 M	Hz	Average Conducted	
Antenna Type(s) Tested	Whip Anter	ına	P/N: ł	(RA-3	8	896-940 I	MHz	Length: 182 mm	
	Li-lon		7.4V			1700 mAl	า	P/N: KNB-33L	
Battery Type(s) Tested	Ni-MH		7.2V			2500 mAl	า	P/N: KNB-32N	
	Alkaline Ba	e Battery Case 9 V 6x AA P/N: KBP-6							
Body-worn Accessories Tested		ontains met	al)					P/N: KBH-11	
Audio Accessories Tested	Speaker-M	crophone						P/N: KMC-41	
Max. SAR Level(s) Evaluated	Face-held	0.560 V	N/kg	1g	50% PT	T duty fact	or Occ	upational / Controlled Exp.	
Musi Onit Level(5) Evaluated	Body-worn	1.35 V	V/kg	1g	50% PT	T duty fact	or Occ	upational / Controlled Exp.	
FCC/IC Spatial Peak SAR Limit	Head/Body	8.0 W	//kg	1g	50% PT	T duty fact	or Occ	upational / Controlled Exp.	

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada Safety Code 6 for the Occupational / Controlled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 4, IEEE Standard 1528-2003 and International Standard IEC 62209-2:2010. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By Sean Johnston Lab Manager Celltech La

Applicant:	Kenv	nwood USA Corporation FCC ID:		ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	rtable Digital PTT Radio Transceiver		DUT Model:	NX-	411-K2	896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be re	hole or in part withou	it the pri	rior written p	permission of Celltech Labs Inc.	Page 1 of 60	

Date(s) of Evaluation

Test Report Issue Date October 20, 2011

Test Report Serial No. October 06-07, 2011 092811ALH-T1125-S90P

Description of Test(s)

Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category

Specific Absorption Rate | Occupational (Controlled)

TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 SAR MEASUREMENT SYSTEM ____ 3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS 4.0 FCC POWER THRESHOLDS FOR PTT DEVICES (F < 0.5 GHZ) 5.0 NO. OF TEST CHANNELS (N_c) 6.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES 7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING 8.0 FLUID DIELECTRIC PARAMETERS 9.0 TEST REDUCTION PROCEDURES (FCC KDB 643646 D01V01R01) 10.0 SAR MEASUREMENT SUMMARY 11.0 SAR SCALING (TUNE-UP TOLERANCE) 12.0 DETAILS OF SAR EVALUATION ___ 13.0 SAR EVALUATION PROCEDURES _____ 14.0 SYSTEM PERFORMANCE CHECK ____ 15.0 SIMULATED EQUIVALENT TISSUES _ 16 16.0 SAR LIMITS 17.0 ROBOT SYSTEM SPECIFICATIONS 18.0 PROBE SPECIFICATION (ET3DV6) ____ 18 19.0 PHANTOM(S)___ _ 18 20.0 DEVICE HOLDER _____ 21.0 TEST EQUIPMENT LIST 22.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION_____ 23.0 MEASUREMENT UNCERTAINTIES _____ 20 24.0 REFERENCES___ __ 21 APPENDIX A - SAR MEASUREMENT DATA ___ _ 22 APPENDIX B - SYSTEM PERFORMANCE CHECK APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS ____ APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS 43 APPENDIX E - DIPOLE CALIBRATION 57 APPENDIX F - PROBE CALIBRATION _____ _____ 58 APPENDIX G - SAM TWIN PHANTOM CERTIFICATE OF CONFORMITY_____ __ 59 APPENDIX H - AUDIO ACCESSORY COMBINATIONS (FCC KDB 643646 D01V01R01)

Applicant:	Kenv	nwood USA Corporation FCC ID:		ALH409001	IC:	282D-409001	KENWOOD
DUT Type:	Porta	rtable Digital PTT Radio Transceiver		DUT Model:	NX-411-K	896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be rep	produced in w	hole or in part withou	t the prior writte	n permission of Celltech Labs Inc.	Page 2 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

	REVISION HISTORY									
REVISION NO. DESCRIPTION IMPLEMENTED BY RELEASE DATE										
1.0	1.0 1st Release Jon Hughes October 20, 2011									

	TEST REPORT SIGN-OFF									
DEVICE TESTED BY REPORT PREPARED BY QA REVIEW BY REPORT APPROVED BY										
Sean Johnston	Sean Johnston Cheri Frangiadakis Jon Hughes Sean Johnston									

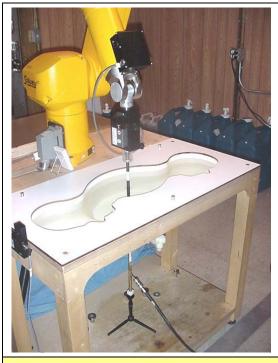
Applicant:	Kenv	wood USA Corporation FCC ID:	ALH409001	IC:	282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Transceiver	DUT Model:	NX-411-K2	896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be reproduced in w	hole or in part withou	t the prior written p	permission of Celltech Labs Inc.	Page 3 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)



1.0 INTRODUCTION

This measurement report demonstrates that the Kenwood USA Corporation Model: NX-411-K2 Portable 900-Band PTT Digital Radio Transceiver complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [3]), IC RSS-102 Issue 4 (see reference [4]), IEEE Standard 1528-2003 (see reference [5]) and International Standard IEC 62209-2:2010 (see reference [6]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

DASY4 Measurement Server

Applicant:	Kenv	enwood USA Corporation FCC ID:		ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	ortable Digital PTT Radio Transceiver		DUT Model:	del: NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in what is not to be reproduced in the produced				hole or in part withou	it the p	rior written p	permission of Celltech Labs Inc.	Page 4 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

MEASURED RF CONDUCTED OUTPUT POWER LEVELS											
Test Frequency Freq. Range Mode dBm Watts Method											
896.05 MHz	896-902 MHz	CW	33.98	2.5	Average Conducted						
935.05 MHz 935-941 MHz CW 33.98 2.5 Averag											

Notes

- 1. The test channels were selected in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [7]).
- 2. The RF conducted output power levels of the DUT were measured by Celltech prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector of the radio in accordance with FCC 47 CFR §2.1046 (see reference [14]) and IC RSS-Gen (see reference [15]).

4.0 FCC POWER THRESHOLDS FOR PTT DEVICES ($f \le 0.5 \text{ GHz}$)

FCC SAR Evalua	FCC SAR Evaluation Power Thresholds for PTT Devices, $f \leq 0.5 \text{ GHz}^*$									
Exposure Conditions										
Held to face, d ≥ 2.5 cm	250	1250								
Body-worn, d ≥ 1.5 cm	200	1000								
Body-worn, <i>d</i> ≥ 1.0 cm	150	750								

- 1. The time-averaged output power, corresponding to the required PTT duty factor, is compared with these thresholds.
- 2. The closest distance between the user and the device or its antenna is used to determine the power thresholds.
- * Per FCC KDB 447498 D01v04 Section 5)b)i) (see reference [8]).

Note: The thresholds specified in the above table do not apply to this 900 MHz band PTT radio transceiver ($f \ge 0.5$ GHz). The output power threshold of $\ge 60/f_{\text{(GHz)}}$ mW specified in FCC KDB 447498 was applied (see reference [7]).

5.0 NO. OF TEST CHANNELS (N_c)

Antenna Part No.	Antenna Freq. Range	Test Freq. Range	Band	N _c	Test Frequencies
KRA-38	896 -940 MHz	896 - 902 MHz	FCC/IC	1	896.05 MHz
NIVA-50	030 -340 WH 12	935 - 941 MHz	FCC/IC	1	935.05 MHz

Note: The number of test channels (Nc) were calculated in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [7]).

Applicant:	Kenv	nwood USA Corporation FCC ID:		ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	rtable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in whether the control of the cont				it the p	orior written p	permission of Celltech Labs Inc.	Page 5 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

6.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within ±50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ±100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, ±25 MHz < 300 MHz and ±50 MHz ≥300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [9]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	<u>+50</u> MHz ≥ 300 MHz
835 MHz	896.05 MHz	61 MHz	> 50 MHz ¹
033 MH2	935.05 MHz	100 MHz	> 50 MHz ¹

1. The probe calibration and measurement frequency interval is > 50 MHz; therefore the following additional steps were implemented (per FCC KDB 450824 D01 v01r01): The measured 1-g SAR may be compensated with respect to +5% tolerances in ε_r and -5% tolerances in σ_r computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness. SAR sensitivity data is per SPEAG DASY4 Manual (see reference [10]).

Probe	Calibrat	ion Frequ	ency = 83	5 MHz	Target	Parameters:	Head 41.5 a	c _r / 0.9 σ	Body 5	5.2 ε _r / 0.97 σ	
Test Freq. (MHz)	Date	Tissue	σ	Sensitivity	ε _r	Sensitivity	% Change	Comper	ensated SAR Level W/		
896.05	Oct 7	Head	3.33%	n/a²	1.69%	-0.57	0.96%	0.565	1g	50% ptt d/f	
935.05	Oct 7	Head	5.56% ³	n/a²	0.72%	-0.57	0.41%	0.419	1g	50% ptt d/f	
896.05	Oct 6	Body	1.24%	n/a²	0.54%	-0.57	0.31%	1.15	1g	50% ptt d/f	
935.05	Oct 6	Body	4.12%	n/a²	0.36%	-0.57	0.21%	1.35	1g	50% ptt d/f	
	Para	neter				ϵ	σ	ρ			
	f=8	$800\mathrm{MHz}$, d=15 m	ım							
	$(\epsilon_r =$	=41.5, σ :	=0.90 S/1	m)							
		5	SAR Pea	k		- 0.70	+ 0.86	-			
		5	SAR 1g			- 0.57	+ 0.59	0.10			
		5	SAR 10 g			- 0.45	+ 0.35	0.18			

Notes

- 1. The above sensitivity formula (Head) from the DASY4 manual (see reference [10]) can be applied to Body tissue parameters (per SPEAG).
- 2. SAR sensitivity to positive tolerances in σ are not considered as the SAR measurement is already overcompensated.
- 3. FCC KDB 450824 refers to probe calibrations with fluid parameter tolerances +/- 5%; SPEAG's current probe calibration is valid for fluid parameter tolerances of +/- 10% (See Appendix F). We have accounted for the > 5% measured fluid parameter tolerance in the measurement uncertainty table (see Section 23) and have still applied the same sensitivity calculation adjustment to the SAR levels as shown in the above table.

Applicant:	Kenv	enwood USA Corporation FCC ID:		ALH409001 IC:		IC:	282D-409001	KENWOOD
DUT Type:	Porta	ortable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	ibs Inc.	nc. This document is not to be reproduced in whole or in part without the prior written permi					ermission of Celltech Labs Inc.	Page 6 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

Description of Test(s)
Specific Absorption Rate
O

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING

Accessory ID #	ACCESSORY CATEGORY: A	ANTENNA	
for Test Report	Part Number	Description	Evaluated for SAR
1	KRA-38	900 MHz Band Whip Antenna	Yes
Accessory ID #	ACCESSORY CATEGORY: E	BATTERY	
for Test Report	Part Number	Description	Evaluated for SAR
а	KNB-33L	Li-Ion, 7.4V, 1700mAh	Yes
b	KNB-32N	Ni-MH, 7.2V, 2500mAh	Yes
С	KBP-6	Alkaline battery case, 9V (6 x AA)	Yes
Accessory ID #	ACCESSORY CATEGORY: E	BODY-WORN	
for Test Report	Part Number	Description	Evaluated for SAR
1	KBH-11	Belt-Clip (contains metal)	Yes
Accessory ID #	ACCESSORY CATEGORY: A	AUDIO	
for Test Report	Part Number	Description	Evaluated for SAR
1	KMC-41	Heavy Duty Speaker Microphone	Yes
2	KMC-47GPS	Heavy Duty GPS Speaker Microphone	No

Applicant:	Kenv	nwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	table Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KEINWOOD
2011 Celltech La	ibs Inc.	This document is not to be re	hole or in part withou	t the prior	or written p	ermission of Celltech Labs Inc.	Page 7 of 60	

<u>Test Report Issue Date</u> October 20, 2011 Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

8.0 FLUID DIELECTRIC PARAMETERS

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 10/	06/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.800	56.59	0.9	55.2	0.97	2.52%	-7.22%
0.810	56.34	0.89	55.2	0.97	2.07%	-8.25%
0.820	56.46	0.9	55.2	0.97	2.28%	-7.22%
0.830	56.21	0.93	55.2	0.97	1.83%	-4.12%
0.835*	56.2	0.935	55.2	0.97	1.81%	-3.61%
0.840	56.15	0.93	55.2	0.97	1.72%	-4.12%
0.850	55.77	0.94	55.2	0.97	1.03%	-3.09%
0.860	55.9	0.95	55.2	0.97	1.27%	-2.06%
0.870	55.69	0.97	55.2	0.97	0.89%	0.00%
0.880	55.57	0.97	55.2	0.97	0.67%	0.00%
0.890	55.52	0.97	55.2	0.97	0.58%	0.00%
0.896*	55.5	0.982	55.2	0.97	0.54%	1.24%
0.900	55.52	0.99	55.2	0.97	0.58%	2.06%
0.910	55.35	1	55.2	0.97	0.27%	3.09%
0.920	55.45	1	55.2	0.97	0.45%	3.09%
0.930	55.47	1	55.2	0.97	0.49%	3.09%
0.935*	55.4	1.01	55.2	0.97	0.36%	4.12%
0.940	55.15	1.01	55.2	0.97	-0.09%	4.12%
0.950	55.3	1.03	55.2	0.97	0.18%	6.19%
0.960	55.16	1.04	55.2	0.97	-0.07%	7.22%
0.970	55.05	1.05	55.2	0.97	-0.27%	8.25%
0.980	54.9	1.07	55.2	0.97	-0.54%	10.31%
0.990	54.94	1.07	55.2	0.97	-0.47%	10.31%
1.000	54.75	1.09	55.2	0.97	-0.82%	12.37%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Oct 6	835 Body	23.5°C	22.7°C	≥ 15 cm	101.1 kPa	37%	1000

Applicant:	Kenv	nwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	rtable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be re	hole or in part withou	it the prio	ior written p	ermission of Celltech Labs Inc.	Page 8 of 60	

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 10/	07/2011	Freq	uency: 835	MHz	Tissu	e: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.800	43.42	0.84	41.5	0.9	4.63%	-6.67%
0.810	43.15	0.86	41.5	0.9	3.98%	-4.44%
0.820	43.16	0.86	41.5	0.9	4.00%	-4.44%
0.830	42.88	0.86	41.5	0.9	3.33%	-4.44%
0.835*	42.7	0.865	41.5	0.9	2.89%	-3.89%
0.840	42.46	0.87	41.5	0.9	2.31%	-3.33%
0.850	42.74	0.88	41.5	0.9	2.99%	-2.22%
0.860	42.28	0.9	41.5	0.9	1.88%	0.00%
0.870	42.24	0.91	41.5	0.9	1.78%	1.11%
0.880	42.19	0.92	41.5	0.9	1.66%	2.22%
0.890	42.26	0.93	41.5	0.9	1.83%	3.33%
0.896*	42.2	0.93	41.5	0.9	1.69%	3.33%
0.900	42.19	0.93	41.5	0.9	1.66%	3.33%
0.910	42.28	0.94	41.5	0.9	1.88%	4.44%
0.920	41.85	0.94	41.5	0.9	0.84%	4.44%
0.930	42.06	0.95	41.5	0.9	1.35%	5.56%
0.935*	41.8	0.95	41.5	0.9	0.72%	5.56%
0.940	41.45	0.95	41.5	0.9	-0.12%	5.56%
0.950	41.62	0.97	41.5	0.9	0.29%	7.78%
0.960	41.36	0.99	41.5	0.9	-0.34%	10.00%
0.970	41.36	1	41.5	0.9	-0.34%	11.11%
0.980	41.22	1.02	41.5	0.9	-0.67%	13.33%
0.990	41.02	1.04	41.5	0.9	-1.16%	15.56%
1.000	41.01	1.07	41.5	0.9	-1.18%	18.89%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Oct 7	835 Head	22.0°C	21.4°C	≥ 15 cm	101.1 kPa	37%	1000

Applicant:	Kenv	enwood USA Corporation FCC ID:		ALH409001 IC:		IC:	282D-409001	KENWOOD
DUT Type:	Porta	ortable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written					ermission of Celltech Labs Inc.	Page 9 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

9.0 TEST REDUCTION PROCEDURES (FCC KDB 643646 D01v01r01)

- a. Face-held Configuration Default Battery Selection per FCC KDB 643646, Page 2, Section 1) A): "When multiple standard batteries are supplied with a radio, the battery with the highest capacity is considered the default battery for making head SAR measurements."
- b. Body-worn Configuration Default Battery Selection per FCC KDB 643646, Page 5, Section 1) A): "Start by testing a PTT radio with the thinnest battery and a standard (default) Body-worn accessory that are both supplied with the radio and, if applicable, a default audio accessory......."
- c. Body-worn Configuration Default Body-worn Accessory Selection the belt-clip was selected as the default Body-worn accessory based on the smaller separation distance it provides between the radio and the user in comparison to the remaining accessories. Per FCC KDB 643646, Page 5, Section 1) A): "When multiple default Body-worn accessories are supplied with a radio, the standard Body-worn accessory expected to result in the highest SAR based on its construction and exposure conditions is considered the default Body-worn accessory for making Body-worn measurements."
- d. Body-worn Configuration Additional Body-worn Accessories the remaining Body-worn accessories were evaluated based on the "additional Body-worn accessory" guidance provided in FCC KDB 643646, Page 7, Section 4). The remaining Body-worn accessories can be utilized with all the audio accessory options.
- e. Body-worn Configuration Default Audio Accessory Selection According to the manufacturer, the radio is not supplied to the end user with a standard default audio accessory (as referenced in FCC KDB 643646, Page 4, Section "Body SAR Test Considerations for Body-worn Accessories"); therefore the procedures described in note (j) below were applied in order to establish the default audio accessory.
- f. Body-worn Configuration Selection of Remaining Default Audio Accessories by Category the Remaining Default Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10: "For audio accessories with similar construction and operating requirements, test only the audio accessory within the group that is expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions for the combination. If it is unclear which audio accessory within a group of similar accessories is expected to result in the highest SAR, good engineering judgment and preliminary testing should be applied to select the accessory that is expected to result in the highest SAR." Please refer to note (i) below for the procedure implemented to establish the Default Audio Accessory by Category (Grouping). The Remaining Default Audio Accessories by Category were evaluated on the highest SAR channel and antenna combination from the Default Audio Accessory evaluations (see note e.) based on the guidance provided in FCC KDB 643646, Page 10, Section 1) A) thru D).
- g. Body-worn Configuration Selection of Additional Audio Accessories by Category the Additional Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10.
- h. According to the manufacturer, all the optional audio accessories can be used with any accessory combination (antenna, battery & Body-worn accessory) see Appendix H (Audio Accessory Combinations). Therefore, in order to establish the overall default audio accessory, preliminary SAR evaluations were performed with all optional audio accessories connected to the radio consecutively.

Applicant:	Kenv	nwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	table Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be re	hole or in part withou	t the pric	or written p	ermission of Celltech Labs Inc.	Page 10 of 60	

Test Report Issue Date October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category Occupational (Controlled)

10.0 SAR MEASUREMENT SUMMARY

					SAR EV	/ALUAT	ION R	ESULT	S					
Test Type	Freq. Band	Test Freq.	Antenna	Battery	Access	ccessories		vice tance Planar Intom	nce Power Before		red SAR W/kg) ty Factor	SAR Drift During Test	Scaled with d 1g (W	lroop //kg)
Test Plot #		MHz	Acc. ID#	Acc. ID#	Body-worn Acc. ID #	Audio Acc. ID #	DUT	Antenna	Watts	100%	50%	dB	100%	50%
Face F1	1	896.05	1	b	n/a	n/a	2.5 cm	4.3 cm	2.5	1.12	0.560	-0.328	1.21	0.604
Face F2	2	935.05	1	5	n/a	n/a	2.5 cm	4.3 cm	2.5	0.834	0.417	-0.406	0.916	0.458
Face F3	1	896.05	1	а	n/a	n/a	2.5 cm	4.3 cm	2.5	1.08	0.540	0.534	1.08	0.540
Face F4	1	896.05	1	С	n/a	n/a	2.5 cm	4.3 cm	2.5	1.01	0.505	-0.084	1.03	0.515
Body B1	- 1	896.05	1	а	1	1	1.9 cm	2.9 cm	2.5	2.30	1.15	0.001	2.30	1.15
Body B2	2	935.05		a	1	1	1.9 cm	2.9 cm	2.5	2.26	1.13	-0.520	2.55	1.27
Body B3	- 2	935.05	1	b	1	1	1.9 cm	2.9 cm	2.5	2.70	1.35	-0.699	3.17	1.59
Body B4	- 2	935.05	1	С	1	1	1.9 cm	2.9 cm	2.5	2.38	1.19	-0.320	2.56	1.28
		SAF	R LIMIT(S)		I	HEAD & B	ODY	SPA	TIAL PE	AK	RF E	XPOSUR	E CATEG	ORY
FCC 47	CFR 2.	1093	Health Cana	da Safety C	ode 6	8.0 W/k	g	averag	ed over 1	l gram	Occ	upationa	I / Contro	olled
Notes														

- 1. Device Test Mode = CW (Continuous Wave)
- 2. Phantom(s) used = SAM Planar Section (SAR evaluations); Side Planar (preliminary area scans)
- 3. n/a = not applicable
- 4. Test Date(s): Face = Oct. 07, 2011; Body = Oct. 06, 2011
- 5. Freq. Band 1 = 896-902 MHz; Freq. Band 2 = 935-941 MHz

Applicant:	Kenwood USA Corporation FCC ID:			ALH409001 IC:		IC:	282D-409001	KENWOOD	
DUT Type:	Porta	ble Digital PTT Radio Tra	DUT Model:	DUT Model: NX-411-K2		NX-411-K2 896-902 / 935-941 MHz			
2011 Celltech La	produced in w	hole or in part withou	ut the p	orior written p	permission of Celltech Labs Inc.	Page 11 of 60			

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [8])

- 1. For face-held configuration, battery "b" was selected as the default battery (highest mAh).
- 2. When the head SAR of an antenna tested on the highest output power channel with the default battery is \leq 3.5 W/kg (F1-F2), testing of all other required channels is not necessary.
- 3. When the head SAR for all antennas tested using the default battery is ≤ 4.0 W/kg (F1-F2), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (F3-F4).
- 4. For body-worn configuration, battery "a" was selected as the default battery (thinnest battery).
- 5. When the body SAR of an antenna tested on the highest output power channel with the default battery is \leq 3.5 W/kg (B1-B2), testing of all other required channels is not necessary for that antenna.
- 6. When the body SAR for all antennas tested using the thinnest battery is ≤ 4.0 W/kg (B1-B2), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B3-B4).
- 7. Audio accessory #1 was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 8. Audio accessory #2 was not required to be evaluated for SAR based on the following provision:
- 1) For the audio accessories that have not been tested in the body-worn accessories test sequences in the previous section, , the highest SAR for an antenna, body-worn accessory and battery combination tested in the body-worn accessories sequences applicable to an audio accessory is used to determine SAR test requirements according to the following:
- A) ≤ 4.0 W/kg, SAR tests for that audio accessory is not necessary

Applicant:	Kenv	wood USA Corporation	ALH409001		IC:	282D-409001	KENWOOD	
DUT Type:	Porta	ble Digital PTT Radio Tra	DUT Model:	Model: NX-411-K2		NX-411-K2 896-902 / 935-941 MHz		
2011 Celltech Labs Inc. This document is not to be reproduced in				hole or in part withou	it the pri	rior written p	ermission of Celltech Labs Inc.	Page 12 of 60

Test Report Issue Date
October 20, 2011

<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

11.0 SAR SCALING (TUNE-UP TOLERANCE)

SAR scaling is not required based on testing was performed at the manufacturer's maximum rated power of 2.5 W +/- 0 dB.

Applicant:	Kenv	wood USA Corporation	ALH409001		IC:	282D-409001	KENWOOD	
DUT Type:	Porta	ble Digital PTT Radio Tra	DUT Model:	odel: NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in				hole or in part withou	it the p	rior written p	permission of Celltech Labs Inc.	Page 13 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

12.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels evaluated for SAR were selected in accordance with the procedures described in FCC KDB 447498 Section 6) c) (see reference [7]).
- 2. The DUT was evaluated for SAR in accordance with the procedures described in FCC KDB 643646 (see reference [8]).
- 3. A preliminary area scan (face-held and body-worn) was performed in the side planar phantom in order to show there were no peak SAR locations outside of the measurement area of the SAM phantom planar section. The preliminary area scans are shown in Appendix A.
- 4. The SAR droop of the DUT was measured by the DASY4 system for the duration of the SAR evaluations. The measured SAR droop was added to the measured SAR levels to report scaled SAR levels as shown in the SAR test data tables. A SAR-versus-Time power droop evaluation was also performed (see Appendix A).
- 5. The fluid temperature remained within +/-2°C from the dielectric parameter measurement to the completion of each SAR test.
- 6. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 7. The DUT was tested at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty factor) with the transmit key constantly depressed. For a push-to-talk device the 50% duty factor compensation reported assumes a transmit/receive cycle of equal time base.
- 8. The SAR evaluations were performed with a fully charged DUT battery.

13.0 SAR EVALUATION PROCEDURES

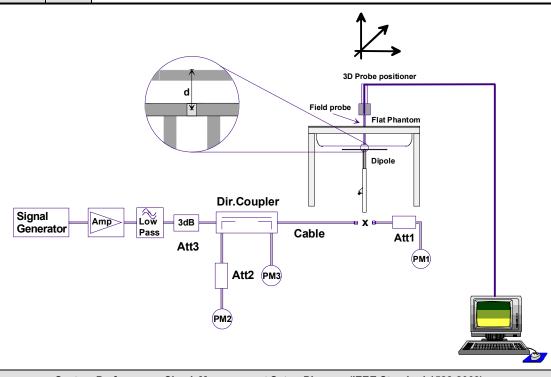
- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 30 mm x 30 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Kenv	wood USA Corporation	ALH409001	ALH409001 IC:		282D-409001	KENWOOD	
DUT Type:	Porta	ble Digital PTT Radio Tra	DUT Model:	NX-411-K2		NX-411-K2 896-902 / 935-941 MHz		
2011 Celltech Labs Inc. This document is not to be reproduced in			produced in w	hole or in part withou	it the p	orior written p	permission of Celltech Labs Inc.	Page 14 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (1st Release)


RF Exposure Category
Occupational (Controlled)

14.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a daily system check was performed with a planar phantom and 835 MHz SPEAG dipole (see Appendix B for system performance check test plots) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ from the system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

				SY	STEM F	PERFO	RMAN	ICE CHE	CK E	/ALU/	ATIONS	3				
Test	Equiv. Tissue		AR 1g W/kg)		Dielectric Constant ε _r		Conductivity σ (mho/m)			ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.	
Date	Freq. (MHz)	Target	Meas.	Dev.	Target	Meas.	Dev.	Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
Oct 6	Body 835	2.49 ±10%	2.25	-9.6%	55.2 ±5%	56.2	+1.8%	0.97 ±5%	0.935	-3.6%	1000	23.5	22.7	≥ 15	37	101.1
Oct 7	Head 835	2.35 ±10%	2.20	-6.4%	41.5 ±5%	42.7	+2.9%	0.90 ±5%	0.865	-3.9%	1000	22.0	21.4	≥ 15	37	101.1
	1.	The targe	t SAR va	alues are	e the meas	sured va	lues fro	m the dipol	e calibra	ation pe	rformed l	by SPEA	G (see A	Appendi:	x E).	
	2.	The targe	t dielectr	ic parar	neters are	the nom	ninal val	ues from th	e dipole	calibra	tion perfe	ormed by	y SPEAC	see A	ppendix F	Ξ).
Notes	The fluid temperature remained within +/-2°C from the fluid dielectric parameter measurement to the completion of the syst performance check.										⁄stem					
	4.		•					mixture we	ere mea	sured p	rior to th	ne syste	m perfor	mance	check us	ing a

System Performance Check Measurement Setup Diagram (IEEE Standard 1528-2003)

835 MHz SPEAG Validation Dipole Setup

Applicant:	Kenwood USA Corporation FCC ID:		FCC ID:	ALH409001	ALH409001 IC:		282D-409001	KENWOOD	
DUT Type:	Porta	ble Digital PTT Radio Tra	DUT Model:	DUT Model: NX-411-K2		896-902 / 935-941 MHz			
2011 Celltech Labs Inc. This document is not to be reproduced in				hole or in part withou	it the p	orior written p	permission of Celltech Labs Inc.	Page 15 of 60	

Test Report Issue Date
October 20, 2011

<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (1st Release)

15.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [11] and [12]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [5]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

		SIMULATED TI	SSUE MIXTURES		
	Water		40.71 %		53.79 %
	Sugar		56.63 %		45.13 %
INGREDIENT	Salt	835 MHz Head Tissue Mixture	1.48 %	835 MHz Body Tissue Mixture	0.98 %
	HEC		0.99 %		
	Bactericide		0.19 %		0.10 %

16.0 SAR LIMITS

	SAR RF EXPOSU	RE LIMITS		
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)	
	tial Average ver the whole body)	0.08 W/kg	0.4 W/kg	
	atial Peak er any 1 g of tissue)	1.6 W/kg	8.0 W/kg	
	atial Peak ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg	

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	Kenv	wood USA Corporation	ALH409001	ALH409001 IC:		282D-409001	KENWOOD	
DUT Type:	Porta	ible Digital PTT Radio Tra	DUT Model:	lel: NX-411-K2		NX-411-K2 896-902 / 935-941 MHz		
2011 Celltech Labs Inc. This document is not to be reproduced in			produced in w	hole or in part withou	it the p	orior written p	permission of Celltech Labs Inc.	Page 16 of 60

Test Report Issue Date
October 20, 2011

<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

17.0 ROBOT SYSTEM SPECIFICATIONS

0 15 11	
<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
<u>Cell Controller</u>	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
Joilwale	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1590
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Phantom	
Туре	SAM V4.0C
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 25 liters
Validation Phantom	
Туре	Side Planar Phantom
Shell Material	Plexiglass
Bottom Thickness	2.0 mm ± 0.1 mm
Inner Dimensions	72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H)

Applicant:	Kenv	wood USA Corporation FCC ID:	ALH409001	IC:	282D-409001	KENWOOD	
DUT Type:	Porta	ble Digital PTT Radio Transceiver	DUT Model:	NX-411-K2 896-902 / 935-941 MHz		KENWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in			hole or in part withou	t the prior written p	permission of Celltech Labs Inc.	Page 17 of 60	

Test Report Issue Date
October 20, 2011

<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

Description of Test(s)

Specific Absorption Rate

Rev. 1.0 (1st Release)

RF Exposure Category

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

18.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core;

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In head simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity: \pm 0.2 dB in head tissue (rotation around probe axis)

± 0.4 dB in head tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB

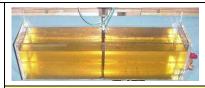
Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm; Tip length: 16 mm;

Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone

ET3DV6 E-Field Probe


19.0 PHANTOM(S)

The SAM Twin Phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix G for specifications of the SAM Twin Phantom V4.0C).

SAM Twin Phantom V4.0C

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

Plexiglas Side Planar Phantom

20.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	Portable Digital PTT Radio Transceiver		DUT Model:	odel: NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be rep	hole or in part withou	it the p	orior written p	permission of Celltech Labs Inc.	Page 18 of 60	

Test Report Issue Date October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category Occupational (Controlled)

ilac-MR/

21.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	AUULI NO.	OLIVIAL NO.	CALIBRATED	INTERVAL
х	Schmid & Partner DASY4 System	-	-	-	-
х	-DASY4 Measurement Server	00158	1078	CNR	CNR
х	-Robot	00046	599396-01	CNR	CNR
х	-DAE4	00019	353	27Apr10	Biennial
х	-ET3DV6 E-Field Probe	00017	1590	22Jun11	Annual
х	-D835V2 Validation Dipole	00217	4d075	20Apr09	Triennial
х	SPEAG SAM Twin Phantom V4.0C	00154	1033	CNR	CNR
х	Side Planar Phantom	00156	161	CNR	CNR
х	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
х	Gigatronics 8652A Power Meter	00007	1835272	04May10	Biennial
х	Gigatronics 80701A Power Sensor	00014	1833699	04May10	Biennial
х	HP 8753ET Network Analyzer	00134	US39170292	04May10	Biennial
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	CNR	CNR
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required				

22.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION

SAR dipoles calibrated less than two years ago but more than one year ago were confirmed by maintaining return loss (< -20dB, within 20% of prior calibration) and impedance (within 5Ω from prior calibration) requirements per extended calibrations in FCC KDB 450824 (see reference [10]).

		SPEAG D	335V3 SN: 4d07	'5		
Date of Measurement	Frequency	Fluid Type	Return Loss (dB)	Δ %	Impedance (Ω)	ΔΩ
Apr. 20, 2009	835 MHz	Head	-29.1	-	51.8	-
Jun. 29, 2011	033 1011 12	ricad	-27.3	-6.2%	48.6	-3.2
Apr. 20, 2009	925 MU-	Dody	-26.7	-	48.0	-
Apr. 20, 2011	835 MHz	Body	-24.0	10.1%	51.3	3.3

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	Portable Digital PTT Radio Transceiver		DUT Model:	DUT Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be re	hole or in part withou	it the pi	rior written p	ermission of Celltech Labs Inc.	Page 19 of 60	

<u>Test Report Issue Date</u> October 20, 2011 <u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

23.0 MEASUREMENT UNCERTAINTIES

	UNCERT	AINTY BUD	GET FOR D	EVICE EVAL	UATI	ON			
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (835 MHz)	E.2.1	6.0	Normal	1	1	1	6.0	6.0	8
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	8
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	oc
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	8
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	8
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	8
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	8
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	80
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measured)	E.3.3	5.56	Normal	1	0.64	0.43	3.6	2.4	8
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measured)	E.3.3	1.69	Normal	1	0.6	0.49	1.0	0.8	∞
Combined Standard Uncertainty			RSS				11.25	10.79	
Expanded Uncertainty (95% Confidence	e Interval)		k=2				22.50	21.58	
Measi	urement Ur	ncertainty Table	e in accordanc	e with IEEE Sta	ndard 1	528-20	03		

Applicant:	Kenv			FCC ID: ALH409001		IC:	282D-409001	KENI MOOD
DUT Type:	Porta	ble Digital PTT Radio Tra	DUT Model:	NX	-411-K2	896-902 / 935-941 MHz	KENWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 20 of 60	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

24.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 4: March 2010.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] International Standard IEC 62209-2 Edition 1.0 2010-03 "Human exposure to radio frequency fields from hand-held & body-mounted wireless communication devices Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)".
- [7] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v04: November 2009.
- [8] Federal Communications Commission, Office of Engineering and Technology "SAR Test Reduction Considerations for Occupational PTT Radios", KDB 643646 D01v01r01: April 2011.
- [9] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz"; KDB 450824 D01 v01r01: January 2007.
- [10] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 22 Application Note, SAR Sensitivities: Sept. 2005.
- [11] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.
- [12] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [13] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- [14] Federal Communications Commission "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.
- [15] Industry Canada "General Requirements and Information for the Certification of Radiocommunication Equipment", Radio Standards Specification RSS-Gen Issue 2: June 2007.

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX A - SAR MEASUREMENT PLOTS

Applicant:	Kenv	wood USA Corporation FCC ID:	ALH409001	IC:	282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Transceiver	DUT Model:	NX-411-K2	896-902 / 935-941 MHz	KEINWOOD
2011 Celltech La	ibs Inc.	This document is not to be reproduced in w	hole or in part withou	t the prior written p	permission of Celltech Labs Inc.	Page 22 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

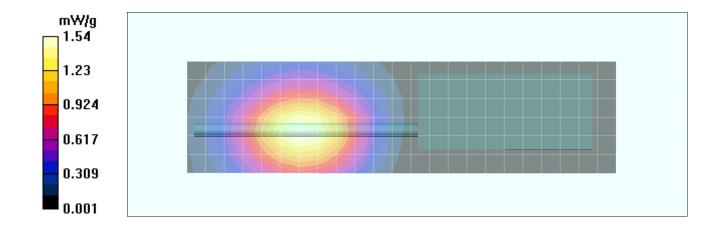
RF Exposure Category

Occupational (Controlled) Test Lab Certificate No. 2470.01

Preliminary Area Scan - Face (Side Planar Phantom)

DUT: Kenwood NX-411-K2; Type: 800 PTT Radio Transceiver; Serial: 00232058

The area scan shows that the only peak SAR location is over the antenna of the DUT


Communication System: CW

Frequency: 896.05 MHz; Duty factor: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 896.05 MHz; $\sigma = 0.93$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.5, 6.5, 6.5); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Tra	DUT Model:	NX-41	11-K2	896-902 / 935-941 MHz	KEINWOOD	
2011 Celltech La	ibs Inc.	This document is not to be re	oroduced in w	hole or in part withou	t the prior	or written p	ermission of Celltech Labs Inc.	Page 23 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F1

Date Tested: 10/07/2011

DUT: Kenwood NX-411-K2; Type: Portable 900-Band PTT Radio Transceiver; Serial: 00232058

Ambient Temp: 22C; Fluid Temp: 21.4C; Barometric Pressure: 101.1 kPa; Humidity: 37%

Communication System: CW

Frequency: 896.05 MHz; Duty factor: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 896.05 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 42.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.5, 6.5, 6.5); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.06 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 12.2 V/m; Power Drift = -0.328 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.815 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.19 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	ortable Digital PTT Radio Transceiver		DUT Model:	Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	abs Inc.	This document is not to be re	hole or in part withou	it the p	orior written p	permission of Celltech Labs Inc.	Page 24 of 60	

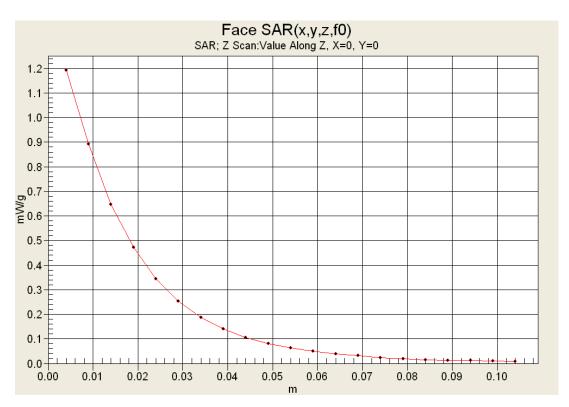
Test Report Issue Date
October 20, 2011

<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

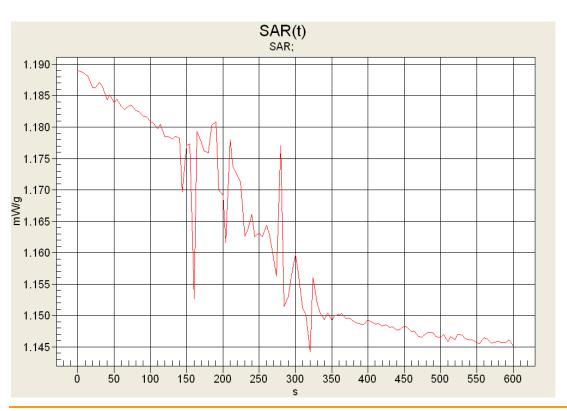
Description of Test(s)

Specific Absorption Rate

Rev. 1.0 (1st Release)


RF Exposure Category

Occupational (Controlled)


Test Report Revision No.

Z-Axis Scan

SAR-Versus-Time

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Tra	DUT Model:	NX-41	11-K2	896-902 / 935-941 MHz	KEINWOOD	
2011 Celltech La	ibs Inc.	This document is not to be re	oroduced in w	hole or in part withou	t the prior	r written p	ermission of Celltech Labs Inc.	Page 25 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

Face SAR Plot F2

Date Tested: 10/07/2011

DUT: Kenwood NX-411-K2; Type: Portable 900-Band PTT Radio Transceiver; Serial: 00232058

Ambient Temp: 22C; Fluid Temp: 21.4C; Barometric Pressure: 101.1 kPa; Humidity: 37%

Communication System: CW

Frequency: 935 MHz; Duty factor: 1:1

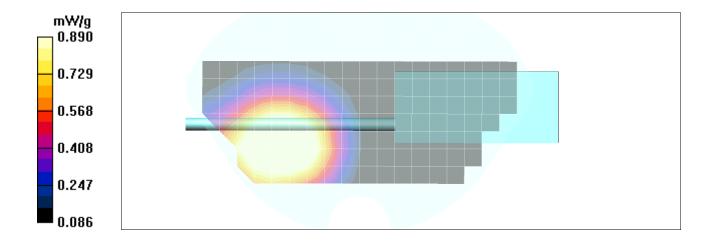
Medium: HSL835 Medium parameters used (interpolated): f = 935 MHz; $\sigma = 0.95$ mho/m; $\epsilon_r = 41.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.5, 6.5, 6.5); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.27 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 12.9 V/m; Power Drift = -0.406 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.834 mW/g; SAR(10 g) = 0.590 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.890 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	Portable Digital PTT Radio Transceiver		DUT Model:	DUT Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	ibs Inc.	This document is not to be re	hole or in part withou	it the p	rior written p	ermission of Celltech Labs Inc.	Page 26 of 60	

Test Report Issue Date
October 20, 2011

<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F3

Date Tested: 10/07/2011

DUT: Kenwood NX-411-K2; Type: Portable 900-Band PTT Radio Transceiver; Serial: 00232058

Ambient Temp: 22C; Fluid Temp: 21.4C; Barometric Pressure: 101.1 kPa; Humidity: 37%

Communication System: CW

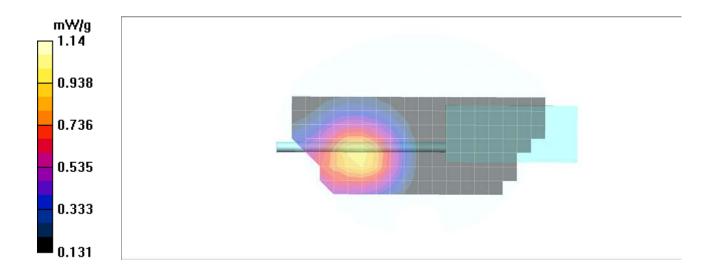
Frequency: 896.05 MHz; Duty factor: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 896.05 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 42.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.5, 6.5, 6.5); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.986 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 13.6 V/m; Power Drift = 0.534 dB

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.778 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.14 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	Portable Digital PTT Radio Transceiver		DUT Model:	UT Model: NX-411-K2		896-902 / 935-941 MHz	KEINWOOD
2011 Celltech La	ibs Inc.	This document is not to be re	produced in w	hole or in part withou	it the pi	rior written p	permission of Celltech Labs Inc.	Page 27 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F4

Date Tested: 10/07/2011

DUT: Kenwood NX-411-K2; Type: Portable 900-Band PTT Radio Transceiver; Serial: 00232058

Ambient Temp: 22C; Fluid Temp: 21.4C; Barometric Pressure: 101.1 kPa; Humidity: 37%

Communication System: CW

Frequency: 896.05 MHz; Duty factor: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 896.05 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 42.2$; $\rho = 1000$ kg/m³

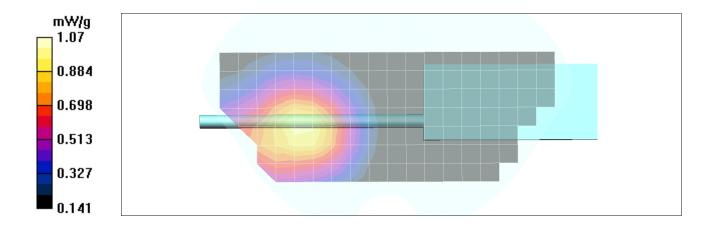
- Probe: ET3DV6 SN1590; ConvF(6.5, 6.5, 6.5); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.976 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.2 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.733 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.07 mW/g

Applicant:	Kenv	Kenwood USA Corporation FO		ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	Portable Digital PTT Radio Transceiver		DUT Model:	: NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 28 of 60			

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

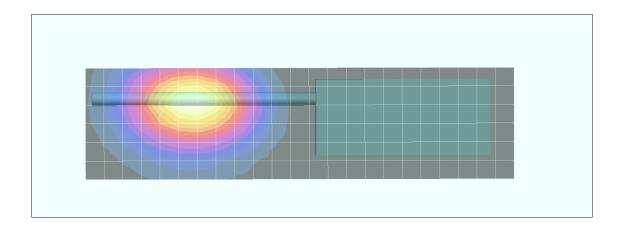
<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Preliminary Area Scan - Body (Side Planar Phantom)

DUT: Kenwood NX-411-K2; Type: 800 PTT Radio Transceiver; Serial: 00232058

The area scan shows that the only peak SAR location is over the antenna of the DUT


Communication System: CW

Frequency: 896.05 MHz; Duty factor: 1:1

Medium: M835 Medium parameters used (interpolated): f = 896.05 MHz; $\sigma = 0.982$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B1

Date Tested: 10/06/2011

DUT: Kenwood NX-411-K2; Type: Portable 900-Band PTT Radio Transceiver; Serial: 00232058

Ambient Temp: 23.5C; Fluid Temp: 22.7C; Barometric Pressure: 101.1 kPa; Humidity: 37%

Communication System: CW

Frequency: 896.05 MHz; Duty factor: 1:1

Medium: M835 Medium parameters used (interpolated): f = 896.05 MHz; σ = 0.982 mho/m; ϵ_r = 55.5; ρ = 1000 kg/m³

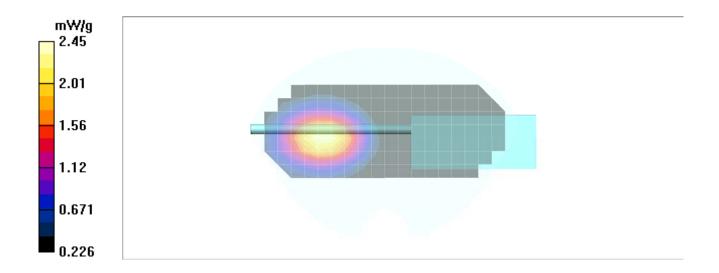
- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.37 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 15.8 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 2.98 W/kg

SAR(1 g) = 2.3 mW/g; SAR(10 g) = 1.57 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.45 mW/g

Applicant:	Kenv	Kenwood USA Corporation FCC ID		ALH409001 IC:		282D-409001	KENWOOD	
DUT Type:	Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in wh				hole or in part withou	it the p	rior written p	permission of Celltech Labs Inc.	Page 30 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

Description of Test(s) RF Exposure Category

Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

Body SAR Plot B2

Date Tested: 10/06/2011

DUT: Kenwood NX-411-K2; Type: Portable 900-Band PTT Radio Transceiver; Serial: 00232058

Ambient Temp: 23.5C; Fluid Temp: 22.7C; Barometric Pressure: 101.1 kPa; Humidity: 37%

Communication System: CW

Frequency: 935 MHz; Duty factor: 1:1

Medium: M835 Medium parameters used (interpolated): f = 935 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

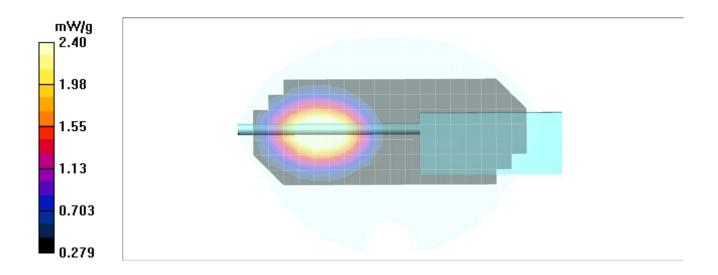
- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.82 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 15.7 V/m; Power Drift = -0.52 dB

Peak SAR (extrapolated) = 2.90 W/kg

SAR(1 g) = 2.26 mW/g; SAR(10 g) = 1.63 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.40 mW/g

Applicant:	Kenv	Kenwood USA Corporation		ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					ermission of Celltech Labs Inc.	Page 31 of 60		

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B3

Date Tested: 10/06/2011

DUT: Kenwood NX-411-K2; Type: Portable 900-Band PTT Radio Transceiver; Serial: 00232058

Ambient Temp: 23.5C; Fluid Temp: 22.7C; Barometric Pressure: 101.1 kPa; Humidity: 37%

Communication System: CW

Frequency: 935 MHz; Duty factor: 1:1

Medium: M835 Medium parameters used (interpolated): f = 935 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

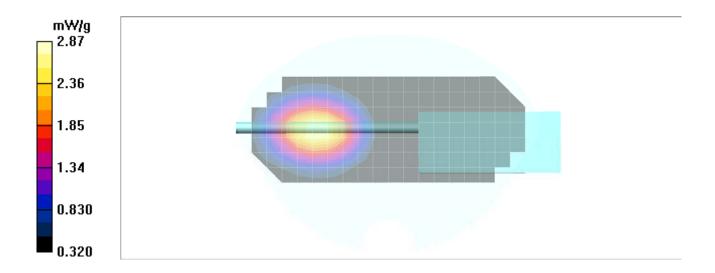
- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.68 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 14.0 V/m; Power Drift = -0.699 dB

Peak SAR (extrapolated) = 3.47 W/kg

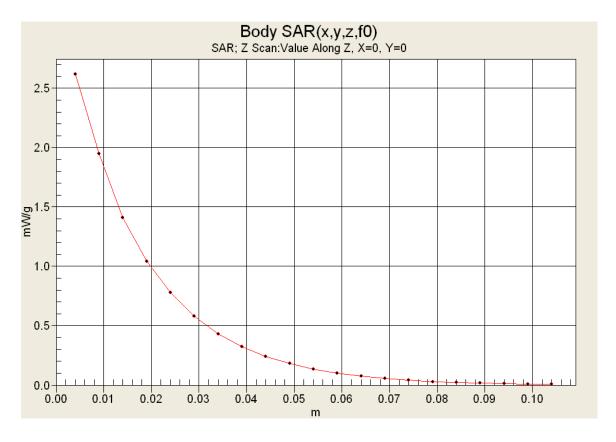
SAR(1 g) = 2.7 mW/g; SAR(10 g) = 1.94 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.87 mW/g

Applicant:	Kenv	Kenwood USA Corporation		ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech L					permission of Celltech Labs Inc.	Page 32 of 60		

Test Report Issue Date
October 20, 2011


Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	Kenv	enwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	ortable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in				hole or in part withou	it the pri	ior written p	ermission of Celltech Labs Inc.	Page 33 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B4

Date Tested: 10/06/2011

DUT: Kenwood NX-411-K2; Type: Portable 900-Band PTT Radio Transceiver; Serial: 00232058

Ambient Temp: 23.5C; Fluid Temp: 22.7C; Barometric Pressure: 101.1 kPa; Humidity: 37%

Communication System: CW

Frequency: 935 MHz; Duty factor: 1:1

Medium: M835 Medium parameters used (interpolated): f = 935 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

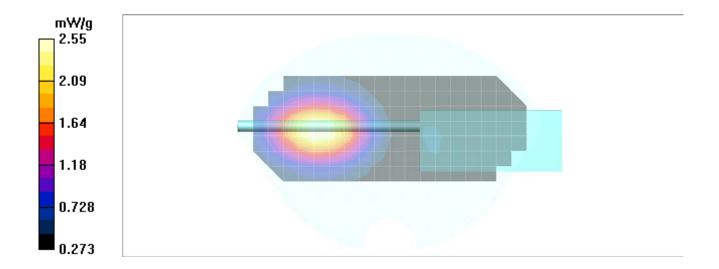
- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.38 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 16.6 V/m; Power Drift = -0.32 dB

Peak SAR (extrapolated) = 3.06 W/kg

SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.71 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.55 mW/g

Applicant:	Kenv	Kenwood USA Corporation F		ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Cellte					ermission of Celltech Labs Inc.	Page 34 of 60		

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS

Applicant:	Kenv	enwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Tra	ansceiver	DUT Model:	DUT Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 35 of 60		

Test Report Issue Date
October 20, 2011

<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 10/06/2011

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2009

Ambient Temp: 23.5C; Fluid Temp: 22.7C; Barometric Pressure: 101.1 kPa; Humidity: 37%

Communication System: CW

Frequency: 835 MHz; Duty factor: 1:1

Medium: M835 Medium parameters used (interpolated): f = 835 MHz; σ = 0.935 mho/m; ϵ_r = 56.2; ρ = 1000 kg/m³

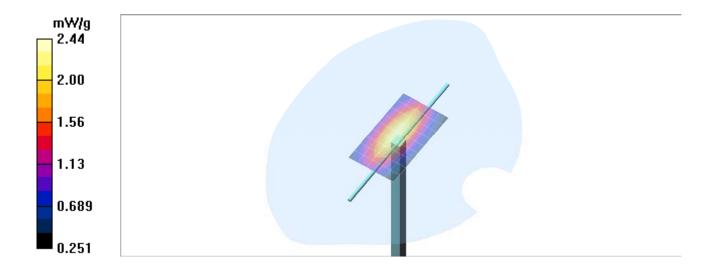
- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.34 mW/g

Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 52.6 V/m; Power Drift = 0.000 dB

Peak SAR (extrapolated) = 3.18 W/kg

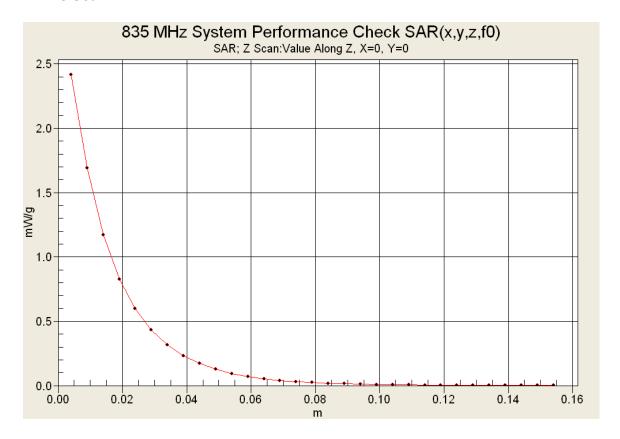
SAR(1 g) = 2.25 mW/g; SAR(10 g) = 1.5 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.44 mW/g

Applicant:	Kenv	Kenwood USA Corporation FCC		ALH409001 IC:		282D-409001	KENWOOD	
DUT Type:	Porta	ble Digital PTT Radio Tra	nsceiver	DUT Model:	UT Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part with					it the pric	or written p	ermission of Celltech Labs Inc.	Page 36 of 60

<u>Test Report Issue Date</u> October 20, 2011 Test Report Serial No. 092811ALH-T1125-S90P


Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (1st Release)

Z-Axis Scan

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Tra	ansceiver	DUT Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech La	tech Labs Inc. This document is not to be reproduced in w			hole or in part withou	it the pri	rior written p	ermission of Celltech Labs Inc.	Page 37 of 60

Test Report Issue Date
October 20, 2011

<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 10/07/2011

System Performance Check - 835 MHz Dipole - Head

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2009

Ambient Temp: 22C; Fluid Temp: 21.4C; Barometric Pressure: 101.1 kPa; Humidity: 37%

Communication System: CW

Frequency: 835 MHz; Duty factor: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.865$ mho/m; $\epsilon_r = 42.7$; $\rho = 1000$ kg/m³

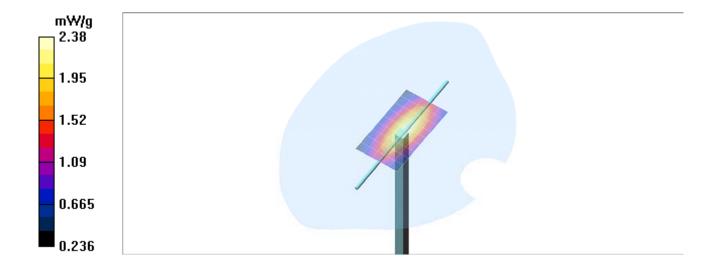
- Probe: ET3DV6 SN1590; ConvF(6.5, 6.5, 6.5); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.36 mW/g

Face d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 53.9 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 3.07 W/kg

SAR(1 g) = 2.2 mW/g; SAR(10 g) = 1.46 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

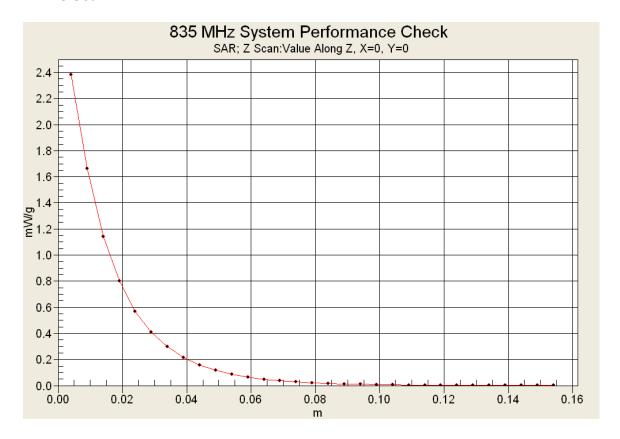
Maximum value of SAR (measured) = 2.38 mW/g

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	Portable Digital PTT Radio Transceiver		DUT Model:	NX-	-411-K2	896-902 / 935-941 MHz	KENWOOD
2011 Celltech La	bs Inc. This document is not to be reproduced in v			hole or in part withou	it the p	rior written p	ermission of Celltech Labs Inc.	Page 38 of 60

Test Report Issue Date October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

Description of Test(s)


Specific Absorption Rate

RF Exposure Category Occupational (Controlled)

Rev. 1.0 (1st Release)

Z-Axis Scan

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Tra	nsceiver	DUT Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech La	ch Labs Inc. This document is not to be reproduced in w			hole or in part withou	it the pric	or written p	ermission of Celltech Labs Inc.	Page 39 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Kenv	wood USA Corporation FCC ID:	ALH409001	IC:	282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Transceiver	DUT Model: NX-411-K2		896-902 / 935-941 MHz	KEINWOOD
2011 Celltech La	ibs Inc.	This document is not to be reproduced in w	hole or in part withou	t the prior written p	permission of Celltech Labs Inc.	Page 40 of 60

<u>Test Report Issue Date</u> October 20, 2011 <u>Test Report Serial No.</u> 092811ALH-T1125-S90P

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
06/Oct/2011

Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

*******	*****	*****	******	******
Freq	FCC_eB	FCC_sE	B Test_e	Test_s
0.8000	55.34	0.97	56.59	$0.9\overline{0}$
0.8100	55.30	0.97	56.34	0.89
0.8200	55.26	0.97	56.46	0.90
0.8300	55.22	0.97	56.21	0.93
0.8400	55.18	0.98	56.15	0.93
0.8500	55.15	0.99	55.77	0.94
0.8600	55.12	1.00	55.90	0.95
0.8700	55.09	1.01	55.69	0.97
0.8800	55.06	1.03	55.57	0.97
0.8900	55.03	1.04	55.52	0.97
0.9000	55.00	1.05	55.52	0.99
0.9100	55.00	1.06	55.35	1.00
0.9200	54.99	1.06	55.45	1.00
0.9300	54.97	1.07	55.47	1.00
0.9400	54.95	1.07	55.15	1.01
0.9500	54.93	1.08	55.30	1.03
0.9600	54.92	1.08	55.16	1.04
0.9700	54.90	1.08	55.05	1.05
0.9800	54.88	1.09	54.90	1.07
0.9900	54.86	1.09	54.94	1.07
1.0000	54.84	1.10	54.75	1.09

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Tra	nsceiver	DUT Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech La	tech Labs Inc. This document is not to be reproduced in w			hole or in part withou	it the pric	or written p	ermission of Celltech Labs Inc.	Page 41 of 60

<u>Test Report Issue Date</u> October 20, 2011 <u>Test Report Serial No.</u> 092811ALH-T1125-S90P

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Head

Celltech Labs
Test Result for UIM Dielectric Parameter

07/Oct/2011 Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	******	******	******
Freq	FCC_eH	IFCC_sl	Test_e	Test_s
0.8000	41.68	0.90	43.42	0.84
0.8100	41.63	0.90	43.15	0.86
0.8200	41.58	0.90	43.16	0.86
0.8300	41.53	0.90	42.88	0.86
0.8400	41.50	0.91	42.46	0.87
0.8500	41.50	0.92	42.74	0.88
0.8600	41.50	0.93	42.28	0.90
0.8700	41.50	0.94	42.24	0.91
0.8800	41.50	0.95	42.19	0.92
0.8900	41.50	0.96	42.26	0.93
0.9000	41.50	0.97	42.19	0.93
0.9100	41.50	0.98	42.28	0.94
0.9200	41.49	0.98	41.85	0.94
0.9300	41.47	0.99	42.06	0.95
0.9400	41.45	0.99	41.45	0.95
0.9500	41.43	0.99	41.62	0.97
0.9600	41.42	1.00	41.36	0.99
0.9700	41.40	1.00	41.36	1.00
0.9800	41.38	1.01	41.22	1.02
0.9900	41.36	1.01	41.02	1.04
1.0000	41.34	1.01	41.01	1.07

Applicant:	Kenv	Cenwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Tra	nsceiver	DUT Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech La	tech Labs Inc. This document is not to be reproduced in w			hole or in part withou	it the pri	ior written p	ermission of Celltech Labs Inc.	Page 42 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Tra	ansceiver	DUT Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech La	tech Labs Inc. This document is not to be reproduced in w			hole or in part withou	it the pri	ior written p	ermission of Celltech Labs Inc.	Page 43 of 60

<u>Test Report Issue Date</u> October 20, 2011 <u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

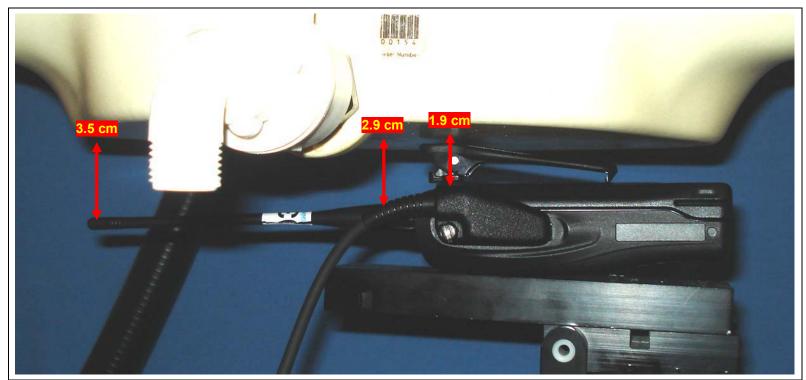
RF Exposure Category
Occupational (Controlled)

BODY-WORN SAR TEST SETUP PHOTOGRAPHS

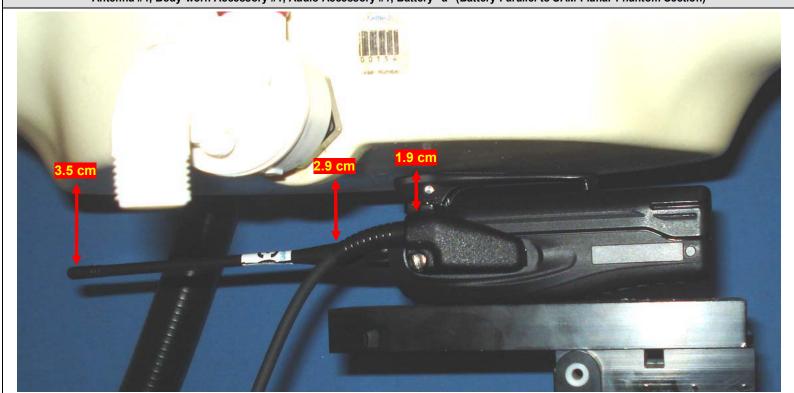
Preliminary Area Scan evaluation – Side Planar Phantom

Applicant:	Kenv	nwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	Porta	table Digital PTT Radio Transceiver		DUT Model:	NX-	411-K2	896-902 / 935-941 MHz	KEINWOOD
2011 Celltech La	ibs Inc.	This document is not to be re	hole or in part withou	it the pri	rior written p	permission of Celltech Labs Inc.	Page 44 of 60	

Test Report Issue Date
October 20, 2011


<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)


RF Exposure Category
Occupational (Controlled)

BODY-WORN SAR TEST SETUP PHOTOGRAPHS

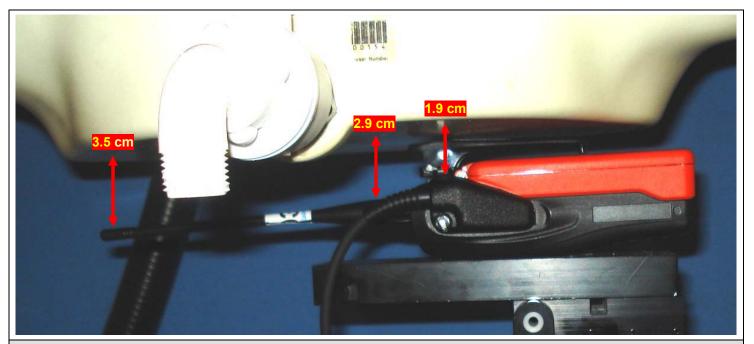
Antenna #1, Body-worn Accessory #1, Audio Accessory #1, Battery "a" (Battery Parallel to SAM Planar Phantom Section)

Antenna #1, Body-worn Accessory #1, Audio Accessory #1, Battery "b" (Battery Parallel to SAM Planar Phantom Section)

Applicant:	Kenv	Kenwood USA Corporation F		ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	Portable Digital PTT Radio Transceiver		DUT Model:	NX	-411-K2	896-902 / 935-941 MHz	KEINWOOD
2011 Celltech La	ibs Inc.	This document is not to be re	hole or in part withou	it the p	orior written p	permission of Celltech Labs Inc.	Page 45 of 60	

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P


<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

BODY-WORN SAR TEST SETUP PHOTOGRAPHS

Antenna #1, Body-worn Accessory #1, Audio Accessory #1, Battery "c" (Battery Parallel to SAM Planar Phantom Section)

Applicant:	Kenv	wood USA Corporation FCC ID:	ALH409001	IC:	282D-409001	KENWOOD
DUT Type:	Porta	ble Digital PTT Radio Transceiver	DUT Model: NX-411-K2		896-902 / 935-941 MHz	KEINWOOD
2011 Celltech La	ibs Inc.	This document is not to be reproduced in w	hole or in part withou	t the prior written p	permission of Celltech Labs Inc.	Page 46 of 60

<u>Test Report Issue Date</u> October 20, 2011 <u>Test Report Serial No.</u> 092811ALH-T1125-S90P

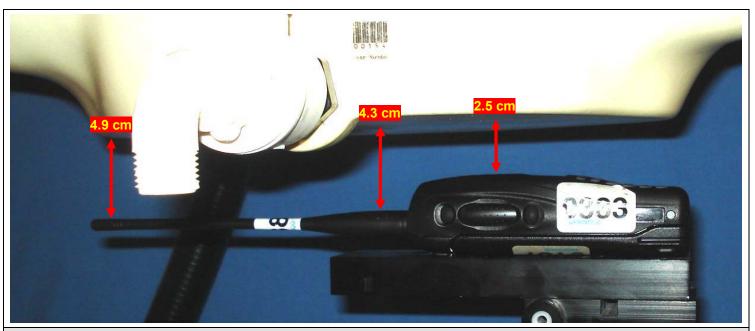
<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

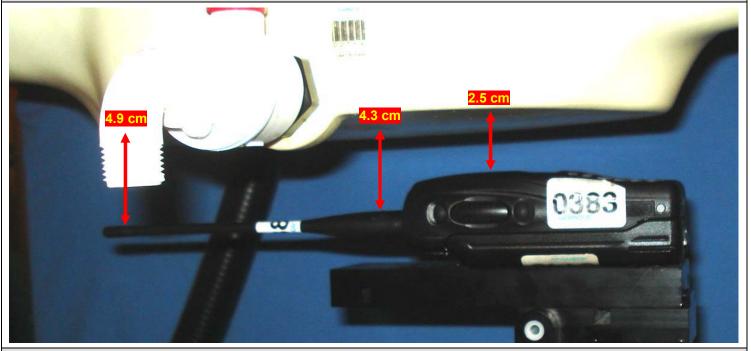
FACE-HELD SAR TEST SETUP PHOTOGRAPHS

Preliminary Area Scan evaluation - Side Planar Phantom

Applicant:	Kenwood USA Corporation FCC		FCC ID:	ID: ALH409001 IC:		282D-409001	KENWOOD
DUT Type: Portable Digital PTT Radio Transceiver		DUT Model:	del: NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in v			hole or in part withou	it the pr	rior written p	ermission of Celltech Labs Inc.	Page 47 of 60


<u>Test Report Issue Date</u> October 20, 2011 <u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)


RF Exposure Category
Occupational (Controlled)

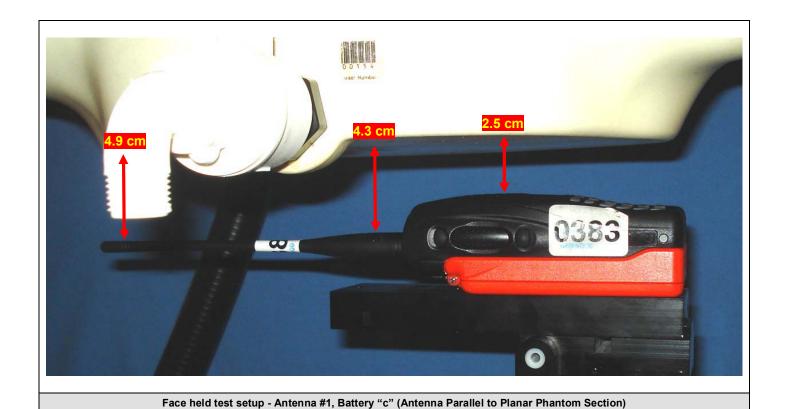
FACE-HELD SAR TEST SETUP PHOTOGRAPHS

Face held test setup - Antenna #1, Battery "a" (Antenna Parallel to Planar Phantom Section)

Face held test setup - Antenna #1, Battery "b" (Antenna Parallel to Planar Phantom Section)

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH409001 IC:		282D-409001	KENWOOD
DUT Type: Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 48 of 60	

Test Report Issue Date
October 20, 2011


<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

FACE-HELD SAR TEST SETUP PHOTOGRAPHS

Applicant: Kenwood USA Corporation FCC ID: ALH409001 IC: 282D-409001

DUT Type: Portable Digital PTT Radio Transceiver DUT Model: NX-411-K2 896-902 / 935-941 MHz

2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 49 of 60

<u>Test Report Issue Date</u> October 20, 2011 Test Report Serial No.
092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

DUT PHOTOGRAPHS

Front of DUT

Left Side of DUT

Back of DUT

Bottom end of DUT

Applicant:	: Kenwood USA Corporation F		FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type: Portable Digital PTT Radio Transceiver		DUT Model: NX-411-K2		896-902 / 935-941 MHz	KENWOOD			
2011 Celltech Labs Inc. This document is not to be reproduced in v				hole or in part withou	ut the p	orior written p	permission of Celltech Labs Inc.	Page 50 of 60

<u>Test Report Issue Date</u> October 20, 2011 <u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (1st Release)

Applicant:	Kenv	Kenwood USA Corporation		ALH409001		IC:	282D-409001	KENWOOD
DUT Type: Portable Digital PTT Radio Trans		nsceiver	DUT Model:	: NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 51 of 60			

Test Report Issue Date
October 20, 2011

<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (1st Release)

Back of DUT with battery "b" and Body-worn Accessory #1

Side of DUT with battery "b" and Body-worn Accessory #1

Side of DUT with battery "a" and Body-worn Accessory #1

Side of DUT with battery "c" and Body-worn Accessory #1

Applicant:	Kenwood USA Corporation FCC		FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type: Portable Digital PTT Radio Transceiver		nsceiver	DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in wh				hole or in part withou	ıt the p	orior written p	ermission of Celltech Labs Inc.	Page 52 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No.
092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

Front of Li-Ion Battery "a"

Front of Ni-MH Battery "b"

Front of Alkaline Battery Case "c"

Back of Li-Ion Battery "a"

Back of Ni-MH Battery "b"

Back of Alkaline Battery Case "c"

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH409001 IC:		IC:	282D-409001	KENWOOD
DUT Type:	DUT Type: Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD	
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in			hole or in part withou	it the p	rior written p	permission of Celltech Labs Inc.	Page 53 of 60

<u>Test Report Issue Date</u> October 20, 2011 <u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

Body-worn Accessory #1 (Belt-Clip P/N: KBH-11)

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH409001	ALH409001 IC:		282D-409001	KENWOOD
DUT Type: Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD		
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the price				ior written p	ermission of Celltech Labs Inc.	Page 54 of 60		

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Audio Accessory #1 (Tested)

Applicant:	Kenv	wood USA Corporation FCC ID:	ALH409001	IC:	282D-409001	KENWOOD
DUT Type:	Type: Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2	896-902 / 935-941 MHz	KEINWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in v			hole or in part withou	t the prior written p	permission of Celltech Labs Inc.	Page 55 of 60

Test Report Issue Date October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (1st Release) RF Exposure Category

Occupational (Controlled)

Audio Accessory #2 (Not Tested)

Applicant:	Kenv	wood USA Corporation FCC ID:	ALH409001	IC:	282D-409001	KENWOOD
DUT Type:	Type: Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2	896-902 / 935-941 MHz	KEINWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in v			hole or in part withou	t the prior written p	permission of Celltech Labs Inc.	Page 56 of 60

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

Description of Test(s)

Specific Absorption Rate

Occupatio

Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

APPENDIX E - DIPOLE CALIBRATION

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH409001 IC:		282D-409001	KENWOOD
DUT Type:	DUT Type: Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KEINWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in w			hole or in part withou	it the prid	ior written p	ermission of Celltech Labs Inc.	Page 57 of 60

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

Client

Celltech

Certificate No: D835V2-4d075_Apr09

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d075

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

April 20, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	=+21
Approved by:	Katja Pokovic	Technical Manager	Hi let
		rang kulabi sekeri semiti samembah babah bilan di sebia berada.	

Issued: April 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d075_Apr09

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR normalized	normalized to 1W	9.40 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.46 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.19 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-4d075_Apr09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	9.96 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.61 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.64 mW / g
SAR normalized	normalized to 1W	6.56 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.39 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d075_Apr09

 $^{^{\}rm 2}$ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 3.1 jΩ		
Return Loss	- 29.1 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 4.1 jΩ
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.401 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 09, 2007

DASY5 Validation Report for Head TSL

Date/Time: 14.04.2009 11:20:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

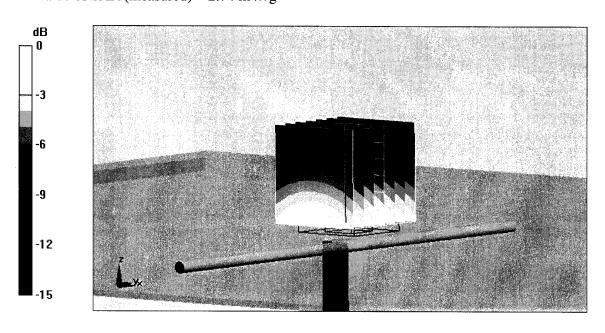
Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

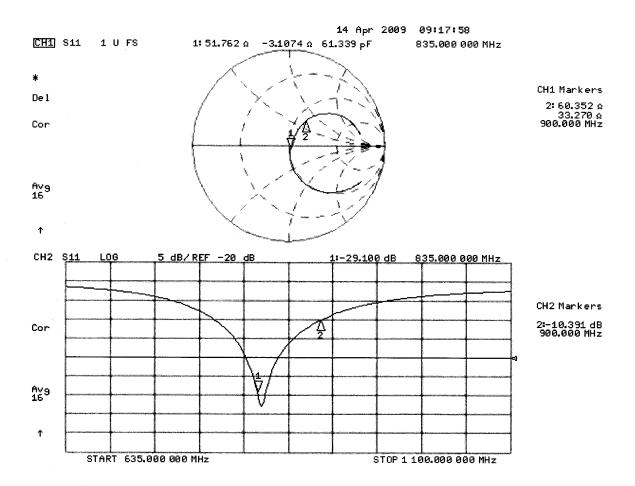
Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 3.47 W/kg


SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g

Maximum value of SAR (measured) = 2.74 mW/g

0 dB = 2.74 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 20.04,2009 09:57:39

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008

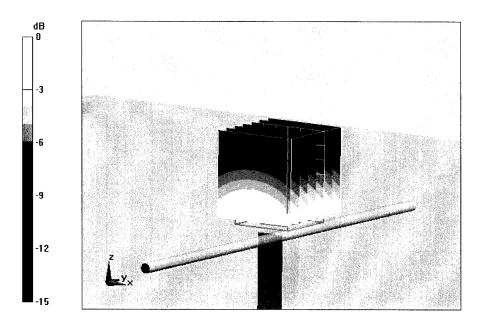
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

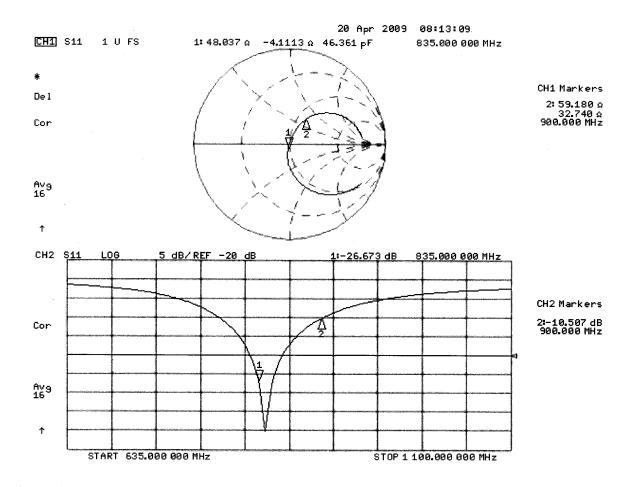
Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 55.4 V/m; Power Drift = -0.00173 dB

Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.64 mW/g


Maximum value of SAR (measured) = 2.9 mW/g

0 dB = 2.9 mW/g

Certificate No: D835V2-4d075 Apr09

Impedance Measurement Plot for Body TSL

Test Report Issue Date
October 20, 2011

Test Report Serial No. 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX F - PROBE CALIBRATION

Applicant:	Kenv	wood USA Corporation	FCC ID:	ALH409001		IC:	282D-409001	KENWOOD
DUT Type:	Porta	ible Digital PTT Radio Tra	ansceiver	DUT Model:	NX-4	411-K2	896-902 / 935-941 MHz	KEINWOOD
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.		Page 58 of 60						

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Accreditation No.: SCS 108

S

C

S

Certificate No: ET3-1590_Jun11

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1590

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

June 22, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10) In house check: Oc	

Calibrated by:

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: June 23, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal
A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1590_Jun11 Page 2 of 11

ET3DV6 - SN:1590 June 22, 2011

Probe ET3DV6

SN:1590

Manufactured: Calibrated:

March 19, 2001 June 22, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.93	2.00	1.66	± 10.1 %
DCP (mV) ^B	96.0	98.7	88.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	104.2	±2.7 %
			Υ	0.00	0.00	1.00	117.7	
			Z	0.00	0.00	1.00	129.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Calibration Parameter Determined in Head Tissue Simulating Media

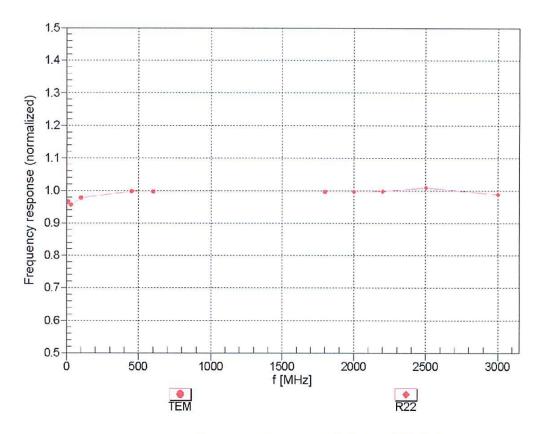
					•			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.30	7.30	7.30	0.18	2.10	± 13.4 %
835	41.5	0.90	6.50	6.50	6.50	0.38	2.55	± 12.0 %
900	41.5	0.97	6.39	6.39	6.39	0.39	2.47	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ET3DV6- SN:1590

Calibration Parameter Determined in Body Tissue Simulating Media

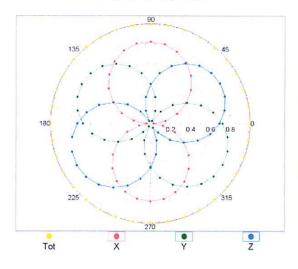

			•		_			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.82	7.82	7.82	0.12	2.04	± 13.4 %
835	55.2	0.97	6.37	6.37	6.37	0.42	2.33	± 12.0 %
900	55.0	1.05	6.27	6.27	6.27	0.40	2.45	± 12.0 %

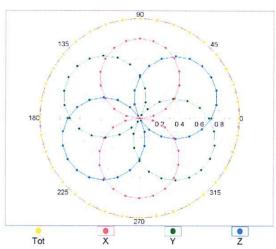
c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

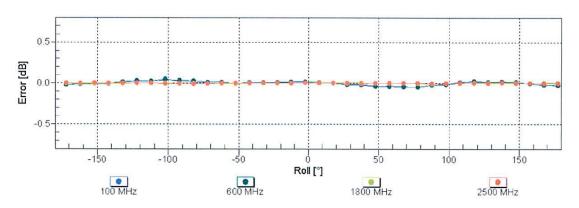
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

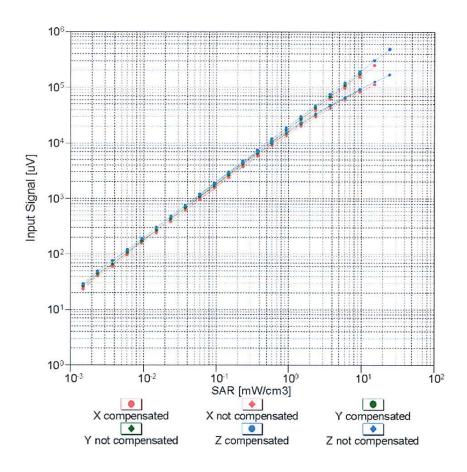


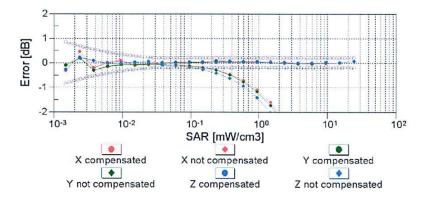

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

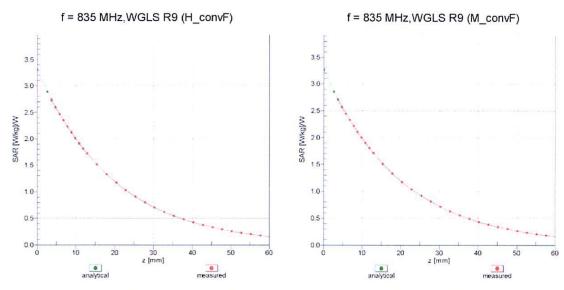
f=600 MHz,TEM

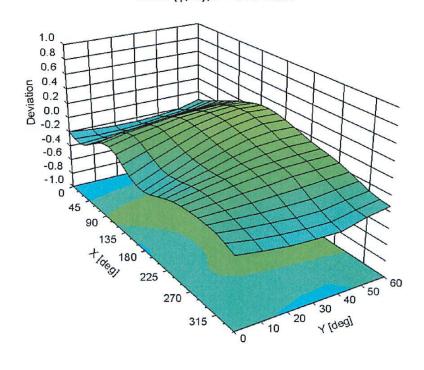
f=1800 MHz,R22

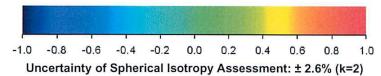




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz

ET3DV6-SN:1590

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Test Report Issue Date
October 20, 2011

<u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX G - SAM TWIN PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Kenv	Kenwood USA Corporation FCC ID:		ALH409001 IC:		IC: 282D-409001		KENWOOD	
DUT Type:	T Type: Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2		896-902 / 935-941 MHz	KENWOOD		
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 59 of 60			

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0			
Type No	QD 000 P40 BA			
Series No	TP-1002 and higher			
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland			

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp

Schmid & Partner Fin Brubolt
Engineering AG

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

<u>Test Report Issue Date</u> October 20, 2011 <u>Test Report Serial No.</u> 092811ALH-T1125-S90P

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX H - AUDIO ACCESSORY COMBINATIONS (FCC KDB 643646 D01v01r01)

Applicant:	Kenv	wood USA Corporation FCC ID:	ALH409001	IC:	282D-409001	KENWOOD	
DUT Type:	Portable Digital PTT Radio Transceiver		DUT Model:	NX-411-K2	896-902 / 935-941 MHz	KEINWOOD	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 60 of 60	

KENWOOD USA CORPORATION FCC ID: ALH409001 NX-411-K2 PTT Digital Radio Transceiver (900 Band)

Body SAR Test Considerations for Audio Accessories without Built-in Antenna - Audio Accessory Combinations (FCC KDB 643646 D01v01r01 Page 9)							
	Battery a	Battery b	Battery c				
Audio Accessory ID #	Antenna #1	Antenna #1	Antenna #1				
.5	Body-worn #1	Body-worn #1	Body-worn #1				
1	1	1	1				
2	1	1	1				

Notes:

- 1. All audio accessory options can be utilized with an antenna, battery and body-worn combination.
- 2. The accessory combinations evaluated for SAR are highlighted in yellow.
- 3. Please refer to Section 7.0 of the SAR report for description of accessory ID #.

10/20/2011 Rev. 1.0 Page 1 of 1