

<u>Test Report Issue Date</u> June 20, 2007 <u>Test Report Serial No.</u> 061207ALH-T836-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational (Controlled)

RF EXPOSURE EVALUATION SPECIFIC ABSORPTION RATE

SAR TEST REPORT

FOR

KENWOOD USA CORPORATION

PORTABLE FM UHF PTT RADIO TRANSCEIVER

MODEL(S): TK-3230-K

IDENTIFIER(S):	FCC ID: ALH383200
Test Procedure:	FCC OET Bulletin 65, Supplement C (01-01)

Test Report Serial No. 061207ALH-T836-S90U

<u>Test Report Revision No.</u>
Revision 1.0 (Initial Release)

Test Lab and Location

Celltech Compliance Testing & Engineering Lab (Celltech Labs Inc.) 21-364 Lougheed Rd, Kelowna, B.C. V1X 7R8 Canada

Testing and Report By:
Cheri Frangiadakis
Celltech Labs Inc.

Test Report Reviewed By:

Jonathan Hughes Celltech Labs Inc.

Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD	
DUT Type:	Po	rtable FM UHF PTT Radio T	ransceiver	Transmit Frequency Range: 460 - 470 MHz			VEI 4WOOD	
2007 Celltech Labs	Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

Revision 1.0

RF Exposure Category

Occupational (Controlled)

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Test Lab and Location

CELLTECH LABS INCORPORATED

Testing and Engineering Services 21-364 Lougheed Road Kelowna, B.C. V1X 7R8 Canada

e-mail: info@celltechlabs.com web site: www.celltechlabs.com Phone: 250-765-7650 Fax: 250-765-7645

Company Information

KENWOOD USA CORPORATION

3975 John Creek Court, Suite 300 Suwanee, GA 30024 United States

FCC IDENTIFIER: ALH383200 Model No.(s): TK-3230-K

Standard(s) Applied: FCC 47 CFR §2.1093

Procedure(s) Applied: FCC OET Bulletin 65, Supplement C (Edition 01-01)
FCC Device Classification: Licensed Non-Broadcast Transmitter Held to Face (TNF)

RF Exposure Category: Occupational / Controlled Environment

Device Description: Portable FM UHF PTT Radio Transceiver

Transmit Frequency Range(s): 460 - 470 MHz

Max. RF Output Power Tested: 2.29 Watts (33.6 dBm) ERP (460 MHz)

2.29 Watts (33.6 dBm) ERP (465 MHz) 2.24 Watts (33.5 dBm) ERP (469 MHz)

Antenna Type(s) Tested: Fixed Stubby

Battery Type(s) Tested: Lithium-ion 3.8 V (P/N: KNB-46L)

Body-worn Accessories Tested: Plastic Belt-Clip with Metal Spring (P/N: J29-0736-XX)

Nylon Belt-Pouch (P/N: KLH-113)
Audio Accessories Tested: Speaker-Microphone (P/N: KMC-17)

Max. SAR Level(s) Evaluated: Face-held: 1.17 W/kg (1g average) - 50% Duty Cycle

Body-worn: 1.54 W/kg (1g average) - 50% Duty Cycle

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) for the Occupational/Controlled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By:
Jonathan Hughes
Celltech Labs Inc.

Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Po	rtable FM UHF PTT Radio Ti	ransceiver	Transmit Freque	460 - 470 MHz	KEIWWOOD	
2007 Celltech Labs	s Inc.	This document is not to be repro	oduced in whole o	or in part without the price	or written permission	on of Celltech Labs Inc.	Page 2 of 43

Test Report Issue Date June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s) Specific Absorption Rate Report Revision No. Revision 1.0

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)	4
3.0 SAR MEASUREMENT SYSTEM	5
4.0 SAR MEASUREMENT SUMMARY	
SAR MEASUREMENT SUMMARY (Cont.)	7
5.0 DETAILS OF SAR EVALUATION	8
6.0 EVALUATION PROCEDURES	
7.0 SYSTEM PERFORMANCE CHECK	9
8.0 SIMULATED EQUIVALENT TISSUES	10
9.0 SAR SAFETY LIMITS	10
10.0 ROBOT SYSTEM SPECIFICATIONS	11
11.0 PROBE SPECIFICATION (ET3DV6)	12
12.0 SIDE PLANAR PHANTOM	12
13.0 VALIDATION PLANAR PHANTOM	12
14.0 DEVICE HOLDER	12
15.0 TEST EQUIPMENT LIST	
16.0 MEASUREMENT UNCERTAINTIES	14
MEASUREMENT UNCERTAINTIES (Cont.)	15
17.0 REFERENCES	16
APPENDIX A - SAR MEASUREMENT DATA	17
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	31
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	34
APPENDIX E - SYSTEM VALIDATION	
APPENDIX F - PROBE CALIBRATION	43

Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD	
DUT Type:	Po	rtable FM UHF PTT Radio T	ransceiver	Transmit Freque	VEI 4WOOD			
2007 Celltech Labs	Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational (Controlled)

1.0 INTRODUCTION

This measurement report demonstrates that the KENWOOD USA CORPORATION Model(s): TK-3230-K Portable FM UHF PTT Radio Transceiver complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

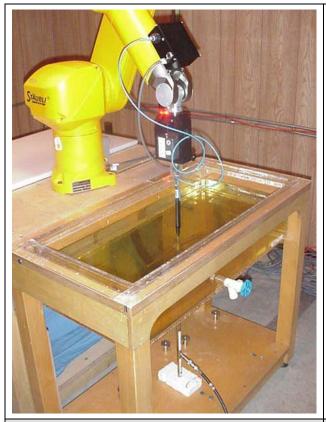
2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)

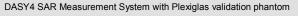
Standard(s) Applied		FCC Rule Part	47 CFR §2.1093								
Procedure(s) Applied)									
Device Classification(s)	FCC I	FCC OET Bulletin 65, Supplement C (01-01) FCC Licensed Non-Broadcast Transmitter Held to Face (
Device Description		Portable FM UHF PTT Radio Transceiver									
RF Exposure Category		Occupational / Controlled Environment									
FCC IDENTIFIER		ALH383200									
Device Model(s)		TK-3230-K									
Serial No. Tested	N	al Prototype									
Transmit Frequency Range(s)											
	460 MHz	2.29 Watts	33.6 dBm	ERP							
Max. RF Output Power Tested	465 MHz	2.29 Watts	33.6 dBm	ERP							
	469 MHz	2.24 Watts	33.5 dBm	ERP							
Antenna Type(s) Tested		Fixed	Stubby								
Battery Type(s) Tested	Lithium-ion 3.8 V		P/N: KNB-46L								
Body-Worn Accessories Tested	Plas	P/N: J29-0736-XX									
Body Holli Accessing Feeted		Nylon Belt-Pouch		P/N: KLH-113							
Audio Accessories Tested		Speaker-Microphone		P/N: KMC-17							
		Speaker-Microphone		P/N: KMC-21							
	Hea	dset with Boom Micropho	one	P/N: KHS-21							
	Behind-the-H	lead Headset with Boom	Microphone	P/N: KHS-22							
		2-wire Clip Microphone		P/N: KHS-23							
Additional Audio Accessories	D-Ring E	Earhanger with Boom Mic	rophone	P/N: KHS-25							
(Addit. SAR Evaluations Not Required)	D-Ring	Earhanger with Clip Micro	ophone	P/N: KHS-27							
		Headset		P/N: KHS-28F							
	Headse	et with Boom Microphone	& PTT	P/N: HMC-3							
	CI	ip Microphone with Earbu	nd	P/N: EMC-3							
	CI	ip Microphone with Earbu	ud	P/N: EMC-6							

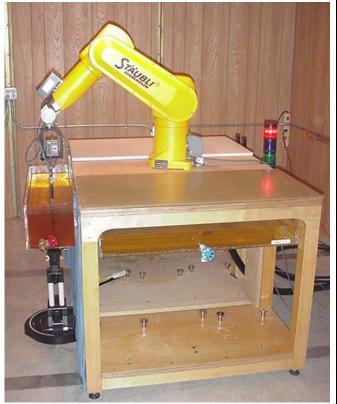
Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Po	rtable FM UHF PTT Radio T	ransceiver	Transmit Freque	KLIWOOD		
2007 Celltech Labs	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U


<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

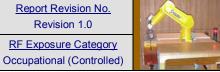

RF Exposure Category
Occupational (Controlled)



3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with Plexiglas side planar phantom


Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver Transmit Frequency Ra					460 - 470 MHz	KLIWOOD
2007 Celltech Labs	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s) Specific Absorption Rate Report Revision No. Revision 1.0

4.0 SAR MEASUREMENT SUMMARY

				F	ACE-HELD S	AR EVALUA	ATION RE	SULTS					
Freq.	Chan.		est	Battery		DUT Spacing to Planar	DUT Start Power		red SAR W/kg)	SAR Drift During	Scaled with of 1g (V		
		Mo	ode	Type	to Planar Phantom	Phantom	(ERP)	Duty	Cycle	Test	Duty	ty Cycle	
MHz						cm	dBm	100%	50%	dB	100%	50%	
460.25	Low	C'	W	Li-ion	Front Side	2.5	33.6	1.71	0.855	-0.910	2.11	1.05	
465.25	Mid	C	W	Li-ion	Front Side	2.5	33.6	1.89	0.945	-0.920	2.34	1.17	
469.75	High	C'	W	Li-ion	Front Side	2.5	33.5	1.81	0.905	-0.464	2.01	1.01	
ANSI / IEE	E C95.1: 20	005 - S	AFETY	LIMIT	BRAIN: 8.0 W/k	g (averaged ov	er 1 gram)	Spatial P	eak - Con	trolled Expo	sure / Occ	upational	
Test	Date(s)				June 13, 2007		Rela	tive Humid	lity	3′	1	%	
Measure	d Fluid Ty _l	pe			450 MHz Brain		Atmos	pheric Pres	ssure	96.9		kPa	
Dielectr	ic Constan	nt	IEEE Target Measured			Deviation	Ambie	Ambient Temperature			24.0		
	ε _r		43.	5 <u>+</u> 5	% 44.5	+2.3%	Fluid Temperature			21.9		°C	
	ductivity		IEE	E Target	Measured	Deviation	F	Fluid Depth			5	Cm	
σ (ι	mho/m)		0.87	7 <u>+</u> 5	% 0.91	+4.6%		ρ (Kg /m³)			1000		
		1.	Deta		ment results wer surement data a								
		2.			oops measured be red SAR levels to							added	
Note(s)	3.			n evaluation was e battery was repl							ion was	
		4.			perature was me nin +/-2°C of the f	•							
		5.			parameters of the property parameters of the pro								
		6.	The	SAR mea	asurements were	performed with	nin 24 hours	of the sys	tem perfo	ormance ch	eck.		

Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Po	rtable FM UHF PTT Radio T	ransceiver	Transmit Frequency Range: 460 - 470 MHz			KEIWWOOD
2007 Celltech Labs	Inc.	This document is not to be repre	oduced in whole o	or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 6 of 43

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s)

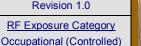
Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category
Occupational (Controlled)

SAR MEASUREMENT SUMMARY (Cont.)

						BOD	Y-WORN	SAR E	/ALUA	ΓΙΟΝ	RESUL	TS				
Freq.	Chan.	Test Mode		ttery	Pos	JT ition		Accessor	ies		DUT Start Power	1g (V	ed SAR V/kg)	SAR Drift During	with o	
		wode	"	ype		ntom				_	(ERP) Duty Cyc		<u> </u>	Test	Duty	•
MHz							Body-Worn	Spacing	Aud		dBm	100%	50%	dB	100%	50%
465.25	Mid	CW	Li	i-ion	Back	Side	Belt-Clip	1.5 cm	Speake	r-Mic	33.6	2.38	1.19	0.119	-	-
465.25	Mid	CW	Li	i-ion	Back	Side	Belt-Pouch	0.5 cm	Speake	r-Mic	33.6	2.79	1.40	-0.0544	2.82	1.41
460.25	Low	CW	Li	i-ion	Back	Side	Belt-Pouch	0.5 cm	Speake	r-Mic	33.6	2.77	1.39	-0.449	3.07	1.54
469.75	High	CW	Li	i-ion	Back	Side	Belt-Pouch	0.5 cm	Speake	r-Mic	33.5	2.38	1.19	-0.943	2.96	1.48
ANSI / I	IEEE C95	.1: 2005	- SAFI	ETY LI	MIT	BOI	OY: 8.0 W/kg	(averaged	over 1 gra	am)	Spatia	al Peak - C	ontrolled E	xposure /	Occupati	onal
	Test Dat	te(s)					June, 13, 200	7			Relative Hu	umidity		30		%
Me	asure Flu	ıid Type					450 MHz Bod	450 MHz Body Atı			Atmospheric Pressure			96.7		
Die	electric C	onstant		IEI	EE Tar	get	Measured	l Dev	Deviation Ar			Ambient Temperature				°C
	ε _r			56.7	7 :	<u>+</u> 5%	56.6	56.6 -0.1%		F	Fluid Temp	erature		21.9		°C
	Conduct			IEI	EE Tar	get	Measured	l De	Deviation			Fluid Depth				Cm
	σ (mho	/m)		0.94	4 :	<u>+</u> 5%	0.93 -1.0%			ρ (Kg /r	n³)		10	000		
			1.	Deta		neasui	ent results w rement data									
			2.				os measured AR levels to i								were ad	ded to
			3.				ime power See Appen									
	Note(s)						valuation wa attery was re									n was
		5.				rature was r +/-2°C of the										
			6.				rameters of Dielectric P									using
		-	7.	The	SAR r	neasu	rements wer	e perform	ed within	24 ho	urs of the	system pe	rformance	e check.		


Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Po	rtable FM UHF PTT Radio T	ransceiver	Transmit Freque	ency Range:	460 - 470 MHz	KLIKWOOD
2007 Celltech Labs	7 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s) Specific Absorption Rate Report Revision No. Revision 1.0

5.0 DETAILS OF SAR EVALUATION

The KENWOOD USA CORPORATION Model(s): TK-3230-K Portable FM UHF PTT Radio Transceiver described in this report was compliant for localized Specific Absorption Rate (Occupational / Controlled Exposure) based on the test provisions and conditions described below. Detailed photographs of the test setup are shown in Appendix D.

Test Configuration(s)

- The DUT was tested in a face-held configuration with the front side of the radio placed parallel to the outer surface of the planar phantom. A spacing of 2.5 cm was maintained between the front side of the DUT and the outer surface of the planar phantom.
- The DUT was tested in a body-worn configuration with the back side of the radio placed parallel to the outer surface of the planar phantom. The attached belt-clip accessory (P/N: J29-0736-XX) was touching the planar phantom and provided a 1.5 cm spacing from the back of the DUT to the planar phantom. The SAR evaluation was performed with the speaker-microphone audio accessory (P/N: KMC-17) connected to the DUT.
- 3. The DUT was tested in a body-worn configuration placed inside the nylon belt-pouch accessory (P/N: KLH-113), which provided a 0.5 cm spacing from the back of the DUT to the outer surface of the planar phantom. The SAR evaluation was performed with the speaker-microphone audio accessory (P/N: KMC-17) connected to the DUT.

Power Setting(s) and Test Mode(s)

- 4. The RF conducted output power of the DUT could not be measured due to a non-detachable antenna. The DUT was evaluated for SAR at the maximum conducted power level preset by the manufacturer.
- The maximum ERP reference power level(s) reported were measured by Flom Test Lab.
- The test channel and power setting were selected using the radio keypad.
- The DUT was tested in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.

6.0 EVALUATION PROCEDURES

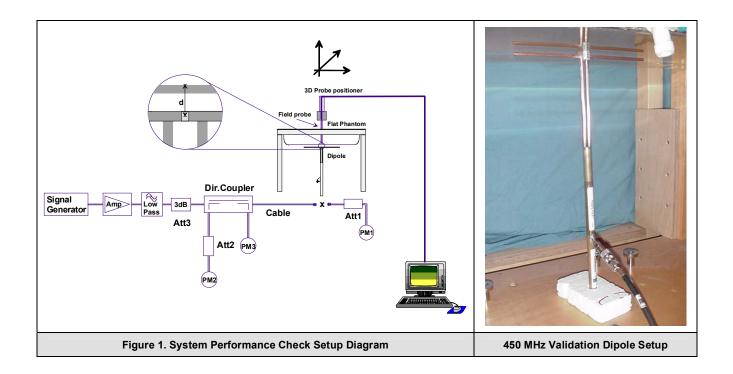
- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans. A 1 g and 10 g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- Interpolated data is used to calculate the average SAR over 1 g and 10 g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Depending on the device type under evaluation, zoom scans for frequencies ≥ 800 MHz are typically determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

	Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
	DUT Type:	Po	rtable FM UHF PTT Radio Ti	ransceiver	Transmit Freque	ency Range:	460 - 470 MHz	VEI 4WOOD
		This document is not to be repro	oduced in whole o	or in part without the price	or written permission	on of Celltech Labs Inc.	Page 8 of 43	

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

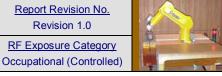

RF Exposure Category
Occupational (Controlled)

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed using a Plexiglas planar phantom and 450MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an ALS-PR-DIEL Dielectric Probe Kit and HP 8753ET Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±10% (see Appendix B for system performance check test plot).

	SYSTEM PERFORMANCE CHECK EVALUATION															
Test	Equiv. Tissue		SAR 1g (W/kg)		Dielectric Constant ε _r		Conductivity σ (mho/m)		ρ 3	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.		
Date	450 MHz	IEEE Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
Jun-13	Brain	1.23 ±10%	1.30	+5.7%	43.5±5%	44.5	+2.3%	0.87 ±5%	0.91	+4.6%	1000	24.2	23.0	≥ 15	31	97.0
Note(s)			1. The fluid temperature was measured prior to and after the system performance checks to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.													
			2. The S	SAR eval	uations were	e perform	ied within	24 hours c	f the syst	em perfo	ormance c	heck.				

Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Po	rtable FM UHF PTT Radio T	ransceiver	Transmit Freque	ency Range:	460 - 470 MHz	KEINWOOD
2007 Celltech Labs Inc. This document is not to be re		oduced in whole o	or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 9 of 43	



Test Report Issue Date June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s) Specific Absorption Rate

Report Revision No. Revision 1.0 RF Exposure Category

8.0 SIMULATED EQUIVALENT TISSUES

The simulated tissue mixtures consisted of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection made to ensure air bubbles were not trapped during the mixing process. The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

	SIMULATED TISSUE MIXTURES			
INGREDIENT	450 MHz Brain	450 MHz Body		
INGREDIENT	System Check & DUT Evaluation	DUT Evaluation		
Water	38.56 %	52.00 %		
Sugar	56.32 %	45.65 %		
Salt	3.95 %	1.75 %		
HEC	0.98 %	0.50 %		
Bactericide	0.19 %	0.10 %		

9.0 SAR SAFETY LIMITS

	SAR (V	N/kg)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Po	rtable FM UHF PTT Radio T	ransceiver	Transmit Freque	ency Range:	460 - 470 MHz	VEI 4WOOD
2007 Celltech Labs Inc. This		This document is not to be repro	oduced in whole o	or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 10 of 43

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s)

Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category
Occupational (Controlled)

10.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>						
Positioner	Stäubli Unimation Corp. Robot Model: RX60L					
Repeatability	0.02 mm					
No. of axis	6					
Data Acquisition Electronic (DAE	System System					
Cell Controller						
Processor	AMD Athlon XP 2400+					
Clock Speed	2.0 GHz					
Operating System	Windows XP Professional					
Data Converter						
Features	Signal Amplifier, multiplexer, A/D converter, and control logic					
Software	Measurement Software: DASY4, V4.7 Build 44					
Software	Postprocessing Software: SEMCAD, V1.8 Build 171					
Connecting Lines	Optical downlink for data and status info.; Optical uplink for commands and clock					
DASY4 Measurement Server						
Function	Real-time data evaluation for field measurements and surface detection					
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM					
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface					
E-Field Probe						
Model	ET3DV6					
Serial No.	1387					
Construction	Triangular core fiber optic detection system					
Frequency	10 MHz to 6 GHz					
Linearity	±0.2 dB (30 MHz to 3 GHz)					
Phantom(s)						
Evaluation Phantom						
Туре	Side Planar Phantom					
Shell Material	Plexiglas					
Bottom Thickness	2.0 mm ± 0.1 mm					
Outer Dimensions	75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)					
Validation Phantom (≤ 450MHz)						
Туре	Planar Phantom					
Shell Material	Plexiglas					
Bottom Thickness	6.2 mm ± 0.1 mm					
Outer Dimensions	86.0 cm (L) x 39.5 cm (W) x 21.8 cm (H)					

Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Po	rtable FM UHF PTT Radio T	ransceiver	Transmit Freque	ency Range:	460 - 470 MHz	VEI 4WOOD
2007 Celltech Labs Inc. This document is not to b		This document is not to be repro	oduced in whole o	or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 11 of 43

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

11.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB

(30 MHz to 3 GHz)

Directivity: \pm 0.2 dB in brain tissue (rotation around probe axis)

 \pm 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB

Surface Detect: ± 0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of mobile phone

ET3DV6 E-Field Probe

12.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

Plexiglas Side Planar Phantom

13.0 VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450 MHz and below. The validation planar phantom is mounted to the table of the DASY4 compact system.

Plexiglas Validation Planar Phantom

14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Po	rtable FM UHF PTT Radio Ti	ransceiver	Transmit Freque	ency Range:	460 - 470 MHz	KEIWWOOD
2007 Celltech Labs Inc. This document is not to be rep			oduced in whole o	or in part without the price	or written permission	on of Celltech Labs Inc.	Page 12 of 43

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

15.0 TEST EQUIPMENT LIST

	TEST EC	QUIPMENT	ACCET NO	CEDIAL NO	D	ATE	CALIBRATION
USED	D	ESCRIPTION	ASSET NO.	SERIAL NO.	CALIE	BRATED	DUE DATE
х	Schmid &	Partner DASY4 System	-	-		-	-
х	-DASY4	Measurement Server	00158	1078	ı	V/A	N/A
х		-Robot	00046	599396-01	ı	V/A	N/A
х		-DAE4	00019	353	21.	Jun06	21Jun07
		-DAE3	00018	370	131	Mar07	13Mar08
х	-ET3I	DV6 E-Field Probe	00016	1387	16Mar07		16Mar08
	-EX3I	DV4 E-Field Probe	00213	00213 3600		Jan07	24Jan08
	-300 M	Hz Validation Dipole	00023	135	08.	Jun07	08Jun08
х	-450 M	Hz Validation Dipole	00024	136	07.	Jun07	07Jun08
	025 M	II-Validation Dinala	00000	44.4	Brain	07Jun07	07Jun08
	-835 M	Hz Validation Dipole	00022	411	Body	07Jun07	07Jun08
	000 14	He Welfeleffere Die ele	00000	054	Brain	07Jun07	07Jun08
	-900 M	Hz Validation Dipole	00020	054	Body	07Jun07	07Jun08
	-1640 N	1Hz Validation Dipole	00212	0175	Brain	14Aug06	14Aug07
	1000				Brain	06Jun07	06Jun08
	-1800 N	IHz Validation Dipole	00021	247	Body	06Jun07	06Jun08
	4000	##	00000	151	Brain	06Jun07	06Jun08
	-1900 N	IHz Validation Dipole	00032	151	Body	06Jun07	06Jun08
			22225	450	Brain	08Jun07	08Jun08
	-2450 N	IHz Validation Dipole	00025	150	Body	08Jun07	08Jun08
		5200 MHz			Body	18May07	18May08
	5 GHz	5500 MHz	00400	4004	Body	22May07	22May08
	Validation Dipole	5800 MHz	00126	1031	Brain	09May07	09May08
	_ , , , , ,				Body	10May07	10May08
	-SAN	M Phantom V4.0C	00154	1033	1	V/A	N/A
	-Bars	ki Planar Phantom	00155	03-01	1	N/A	N/A
х	-Plexiglas	Side Planar Phantom	00156	161	1	V/A	N/A
х	-Plexiglas V	alidation Planar Phantom	00157	137	1	N/A	N/A
х	ALS-PR-D	IEL Dielectric Probe Kit	00160	260-00953	1	N/A	N/A
x	Gigatronio	cs 8652A Power Meter	00007	1835272	261	Mar07	26Mar08
	Gigatronio	cs 8652A Power Meter	80000	1835267	22.	Jan07	22Jan08
	Gigatronics	s 80701A Power Sensor	00012	1834350	22.	Jan07	22Jan08
х	Gigatronics	s 80701A Power Sensor	00014	1833699	22.	Jan07	22Jan08
х	Gigatronics	s 80701A Power Sensor	00109	1834366	261	Mar07	26Mar08
х	HP 8753	BET Network Analyzer	00134	US39170292	20/	Apr07	20Apr08
х	HP 864	8D Signal Generator	00005	3847A00611	N	ICR	NCR
	Rohde & Schwa	arz SMR20 Signal Generator	00006	100104	N	ICR	NCR
х	Amplifier Resea	arch 5S1G4 Power Amplifier	00106	26235	N	ICR	NCR
	Amplifier Researc	ch 10W1000C Power Amplifier	00041	27887	N	ICR	NCR
	HP E440	8B Spectrum Analyzer	00015	US39240170	05F	eb07	05Feb08

Company:	Ke	nwood USA Corporation	Model(s):	TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Po	rtable FM UHF PTT Radio T	ransceiver	Transmit Freque	ency Range:	460 - 470 MHz	VEI 4W COD
2007 Celltech Labs Inc. This document is not to be repre			oduced in whole o	or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 13 of 43

Test Report Issue Date
June 20, 2007

<u>Test Report Serial No.</u> 061207ALH-T836-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational (Controlled)

16.0 MEASUREMENT UNCERTAINTIES

UI	CERTAINT	Y BUDGET FOR	R DEVICE EVAL	.UATION		
Error Description	Uncertainty Value ±% Probability Distribution		Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (450 MHz)	8.0	Normal	1	1	8.0	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	∞
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	1	Rectangular	1.732050808	1	0.6	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0.8	Rectangular	1.732050808	1	0.5	∞
Integration time	2.6	Rectangular	1.732050808	1	1.5	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Device positioning	2.9	Normal	1	1	2.9	12
Device holder uncertainty	3.6	Normal	1	1	3.6	8
Power drift	5	Rectangular	1.732050808	1	2.9	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	5	Normal	1	0.6	3.0	∞
Combined Standard Uncertaint	v				12.65	
Expanded Uncertainty (k=2)	•				25.31	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [3])

Company:	Ke	Kenwood USA Corporation Model(s):		TK-3230-K	TK-3230-K FCC ID:		KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range:		460 - 470 MHz	KLIWOOD	
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in				or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 14 of 43

Test Report Issue Date
June 20, 2007

<u>Test Report Serial No.</u> 061207ALH-T836-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

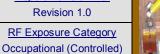
RF Exposure Category

Occupational (Controlled)

MEASUREMENT UNCERTAINTIES (Cont.)

UI	NCERTAINT'	Y BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (450 MHz)	8.0	Normal	1	1	8.0	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	8
Spatial resolution	0	Rectangular	1.732050808	1	0.0	8
Boundary effects	1	Rectangular	1.732050808	1	0.6	8
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	8
Detection limit	1	Rectangular	1.732050808	1	0.6	8
Readout electronics	0.3	Normal	1	1	0.3	8
Response time	0	Rectangular	1.732050808	1	0.0	8
Integration time	0	Rectangular	1.732050808	1	0.0	8
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	8
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Dipole Positioning	2	Normal	1.732050808	1	1.2	8
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	8
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	8
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	8
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	8
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	œ
Liquid permittivity (measured)	5	Normal	1	0.6	3.0	∞
Combined Standard Uncertaint	y				11.20	
Expanded Uncertainty (k=2)					22.39	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [3])


Company:	Ke	Kenwood USA Corporation Model(s):		TK-3230-K	FCC ID:	ALH383200	KENWOOD
DUT Type:	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range:		460 - 470 MHz	VEI 4WOOD	
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech					on of Celltech Labs Inc.	Page 15 of 43	

Test Report Issue Date June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s) Specific Absorption Rate Report Revision No. Revision 1.0

17.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [3] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [4] ANSI/IEEE C95.1-2005 "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz", New York: IEEE, April 2006.

Company:	Kenwood USA Corporation Model(s):		TK-3230-K FCC ID:		ALH383200	KENWOOD	
DUT Type:	DUT Type: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range:		460 - 470 MHz	KEIWWOOD	
2007 Celltech Labs Inc. This document is not to be reproduced in whole			or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 16 of 43	

Test Report Issue Date June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s) Specific Absorption Rate Report Revision No. Revision 1.0

RF Exposure Category

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Company:	Kenwood USA Corporation Model(s):		TK-3230-K FCC ID:		ALH383200	KENWOOD	
DUT Type:	DUT Type: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range:		460 - 470 MHz		
2007 Celltech Labs Inc. This document is not to be reproduced in whole			or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 28 of 43	

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational (Controlled)

Date Tested: 06/13/2007

System Performance Check - 450 MHz Dipole

DUT: Dipole 450 MHz; Asset: 00024; Serial: 136; Validation: 06/07/2007

Ambient Temp: 24.2°C; Fluid Temp: 23.0°C; Barometric Pressure: 97.0 kPa; Humidity: 31%

Communication System: CW

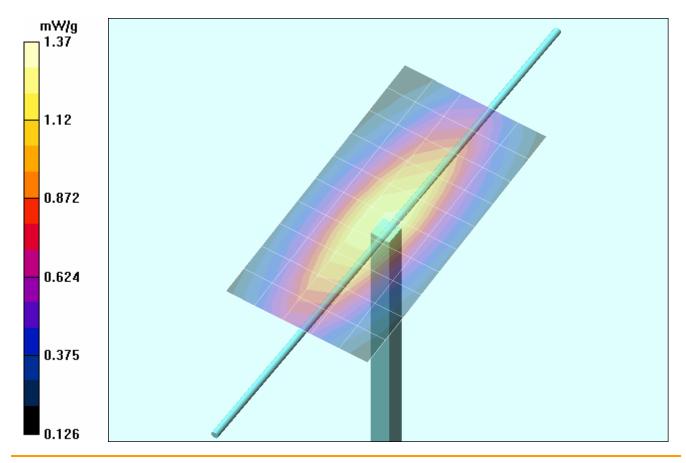
Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ϵ_r = 44.5; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1387; ConvF(7, 7, 7); Calibrated: 16/03/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

450 MHz Dipole - System Performance Check/Area Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm

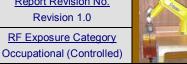

Maximum value of SAR (measured) = 1.25 mW/g

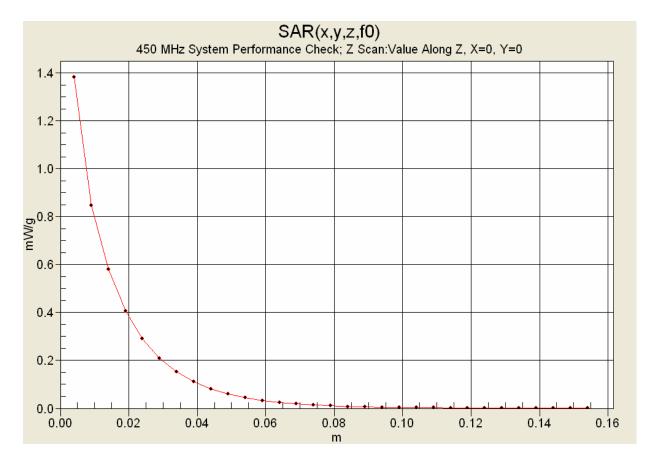
450 MHz Dipole - System Performance Check/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 38.6 V/m; Power Drift = 0.059 dB

Peak SAR (extrapolated) = 2.30 W/kg

SAR(1 g) = 1.30 mW/g; SAR(10 g) = 0.832 mW/g Maximum value of SAR (measured) = 1.37 mW/g


Company:	Kenwood USA Corporation Model(s):		TK-3230-K	FCC ID:	ALH383200	KENWOOD	
DUT Type:	ype: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range:		460 - 470 MHz	KLIWWOOD	
2007 Celltech Labs Inc. This document is not to be reproduced in whole				or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 29 of 43


Test Report Issue Date June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s) Specific Absorption Rate Report Revision No. Revision 1.0

Z-Axis Scan

Company:	Kenwood USA Corporation Model(s):		TK-3230-K	TK-3230-K FCC ID:		KENWOOD	
DUT Type:	e: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range:		460 - 470 MHz	KLIKWOOD	
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the				or in part without the price	or written permission	on of Celltech Labs Inc.	Page 30 of 43

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s)

Specific Absorption Rate

Revision 1.0

RF Exposure Category

Occupational (Controlled)

Report Revision No.

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Company:	Kenwood USA Corporation Model(s):		TK-3230-K FCC ID:		ALH383200	KENWOOD	
DUT Type:	Type: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range:		460 - 470 MHz	KLINWOOD	
2007 Celltech Labs Inc. This document is not to be reproduced in whole o				or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 31 of 43

Test Report Issue Date
June 20, 2007

Test Report Serial No. 061207ALH-T836-S90U

Description of Test(s)

Specific Absorption Rate

Occ

Revision 1.0

RF Exposure Category

Occupational (Controlled)

Report Revision No.

450 MHz System Performance Check & DUT Evaluation (Brain)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Wed 13/Jun/2007
Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

*******	*****	*****	******	******
Freq	FCC_eH	FCC_sl	-HTest_e	Test_s
0.3500	44.70	0.87	46.99	0.83
0.3600	44.58	0.87	46.64	0.83
0.3700	44.46	0.87	46.36	0.84
0.3800	44.34	0.87	45.86	0.85
0.3900	44.22	0.87	45.77	0.86
0.4000	44.10	0.87	45.78	0.87
0.4100	43.98	0.87	45.38	0.88
0.4200	43.86	0.87	45.19	0.88
0.4300	43.74	0.87	44.97	0.89
0.4400	43.62	0.87	44.83	0.90
<mark>0.4500</mark>	43.50	0.87	44.46	0.91
0.4600	43.45	0.87	44.35	0.92
0.4700	43.40	0.87	44.07	0.92
0.4800	43.34	0.87	43.95	0.93
0.4900	43.29	0.87	43.61	0.94
0.5000	43.24	0.87	43.54	0.95
0.5100	43.19	0.87	43.20	0.96
0.5200	43.14	0.88	43.09	0.97
0.5300	43.08	0.88	42.82	0.98
0.5400	43.03	0.88	42.82	0.98
0.5500	42.98	0.88	42.54	0.99

Company:	Kenwood USA Corporation Model(s):		TK-3230-K	TK-3230-K FCC ID:		KENWOOD	
DUT Type:	: Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range:		460 - 470 MHz	KDAWOOD	
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the p					or written permission	on of Celltech Labs Inc.	Page 32 of 43

<u>Test Report Issue Date</u> June 20, 2007 <u>Test Report Serial No.</u> 061207ALH-T836-S90U

Description of Test(s)

Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category
Occupational (Controlled)

450 MHz DUT Evaluation (Body)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Wed 13/Jun/2007
Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM

Test_s Sigma of UIM

******	*****	*****	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.3500	57.70	0.93	58.21	0.86
0.3600	57.60	0.93	57.95	0.87
0.3700	57.50	0.93	57.86	0.88
0.3800	57.40	0.93	57.58	0.88
0.3900	57.30	0.93	57.50	0.89
0.4000	57.20	0.93	57.52	0.89
0.4100	57.10	0.93	57.17	0.90
0.4200	57.00	0.94	57.02	0.91
0.4300	56.90	0.94	56.83	0.92
0.4400	56.80	0.94	56.95	0.93
0.4500	56.70	0.94	56.60	0.93
0.4600	56.66	0.94	56.55	0.94
0.4700	56.62	0.94	56.42	0.95
0.4800	56.58	0.94	56.33	0.96
0.4900	56.54	0.94	56.06	0.96
0.5000	56.51	0.94	56.03	0.96
0.5100	56.47	0.94	55.91	0.98
0.5200	56.43	0.95	55.97	0.99
0.5300	56.39	0.95	55.61	0.99
0.5400	56.35	0.95	55.57	1.00
0.5500	56.31	0.95	55.30	1.01

Company:	Ke	Tenwood USA Corporation Model(s):		TK-3230-K	TK-3230-K FCC ID:		KENWOOD
DUT Type:	Po	Portable FM UHF PTT Radio Transceiver		Transmit Frequency Range:		460 - 470 MHz	KLIKWOOD
2007 Celltech Labs Inc. This document is not to be reproduced in whole			or in part without the prid	or written permission	on of Celltech Labs Inc.	Page 33 of 43	