

March 26, 2004

Federal Communications Commission Equipment Approval Services 7435 Oakland Mills Road Columbia, MD 21046 Attn: Diane Poole

SUBJECT: Kenwood USA Corporation

FCC ID: ALH36423120

731 Confirmation No.: TC980512 Correspondence Ref. No.: 10553

Dear Diane:

On behalf of Kenwood USA Corporation is our response to your e-mail dated January 6, 2004 requesting additional information for the subject application.

1. Attached is remeasured SAR test data and SAR versus Time plots using a 5x5x7 zoom grid for the worst-case antenna measurement configurations previously reported. The original SAR measurements were performed using a 7x7x7 zoom grid. The 5x5x7 zoom grid provides a shortened zoom scan reporting a more conservative SAR value. The radio was re-evaluated with a fully charged NiMH battery (7.2V, 2000mAh) for both the area scan and zoom scan measurements. Upon completion of the area scan the radio was cooled down to ambient temperature prior to performing the zoom scan.

If you have any further questions regarding the above, please do not hesitate to contact us.

Sincerely,

Jonathan Hughes General Manager Celltech Labs Inc.

cc: Kenwood USA Corporation M. Flom Associates, Inc.

Stubby Antenna (P/N: KRA-23 (M2)) - 5x5x7 Zoom Scan - March 25, 2004

DUT: Kenwood USA Corp. Model: TK-3160-2; Type: Portable UHF PTT Radio Transceiver; Serial: U2-03

Ambient Temp: 25.0°C; Fluid Temp: 22.4°C; Barometric Pressure: 100.7 kPa; Humidity: 31%

Body-worn Accessories: Belt-Clip, Speaker-Microphone

Communication System: UHF NiMH Battery (7.2V, 2000mAh) Frequency: 470 MHz; Duty Cycle: 1:1 RF Output Power: 4.05 Watts (Conducted)

Medium: M450 (σ = 0.92 mho/m; ε_r = 56.8; ρ = 1000 kg/m³

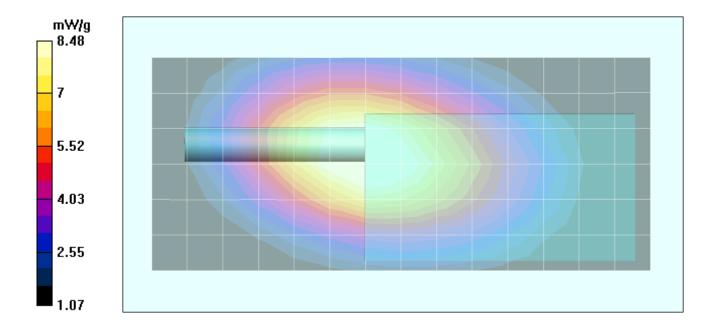
- Probe: ET3DV6 SN1590; ConvF(8.1, 8.1, 8.1); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Small Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

Body SAR - 0.9 cm Belt-Clip Separation Distance to Planar Phantom - Low Channel/Area Scan (7x15x1):

Measurement grid: dx=15mm, dy=15mm

Reference Value = 92.4 V/m

Body SAR - 0.9 cm Belt-Clip Separation Distance to Planar Phantom - Low Channel/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 12.5 W/kg

SAR(1 g) = 8.17 mW/g; SAR(10 g) = 5.79 mW/g

Reference Value = 90.7 V/m

Power Drift = 0.3 dB

SAR versus Time - Stubby Antenna (P/N: KRA-23 (M2)) - March 25, 2004

Initial SAR Level: 6.081 mW/g End SAR Level: 6.439 mW/g (drift = 0.248 dB)

Whip Antenna (P/N: KRA-27(M2)) - 5x5x7 Zoom Scan - March 25, 2004

DUT: Kenwood USA Corp. Model: TK-3160-2; Type: Portable UHF PTT Radio Transceiver; Serial: U2-03

Ambient Temp: 25.0°C; Fluid Temp: 22.4°C; Barometric Pressure: 100.7 kPa; Humidity: 31%

Body-worn Accessories: Belt-Clip, Speaker-Microphone

Communication System: UHF NiMH Battery (7.2V, 2000mAh) Frequency: 491 MHz; Duty Cycle: 1:1 RF Output Power: 4.24 Watts (Conducted)

Medium: M450 (σ = 0.92 mho/m; ε_r = 56.8; ρ = 1000 kg/m³

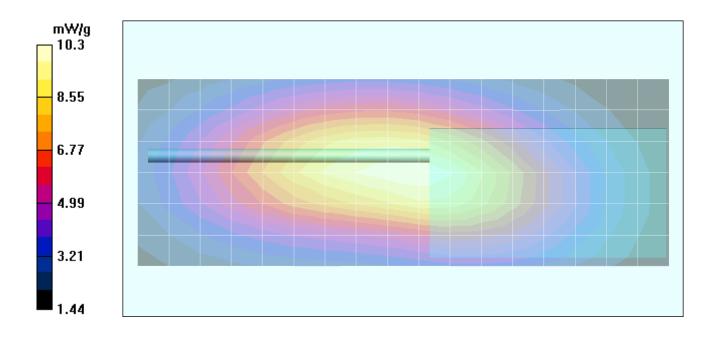
- Probe: ET3DV6 SN1590; ConvF(8.1, 8.1, 8.1); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Small Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

Body SAR - 0.9 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel/Area Scan (7x18x1):

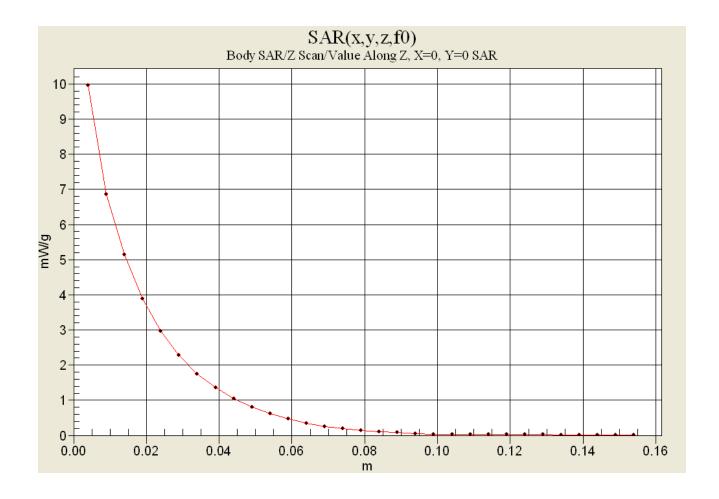
Measurement grid: dx=15mm, dy=15mm

Reference Value = 55.5 V/m

Body SAR - 0.9 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 15.2 W/kg;


SAR(1 g) = 9.86 mW/g; SAR(10 g) = 6.98 mW/g

Reference Value = 104.0 V/m

Power Drift = -0.4 dB

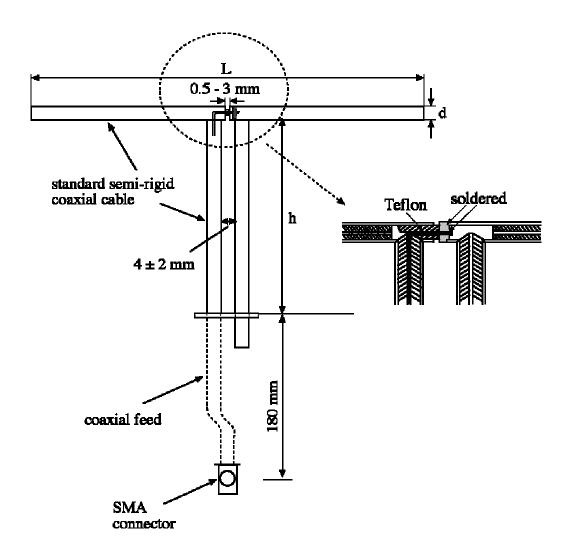
Z-Axis Scan - Whip Antenna (P/N: KRA-27(M2)) - March 25, 2004

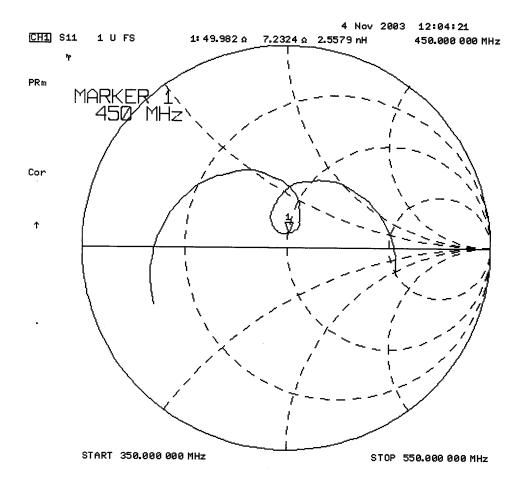
SAR versus Time - Whip Antenna (P/N: KRA-27(M2)) - March 25, 2004

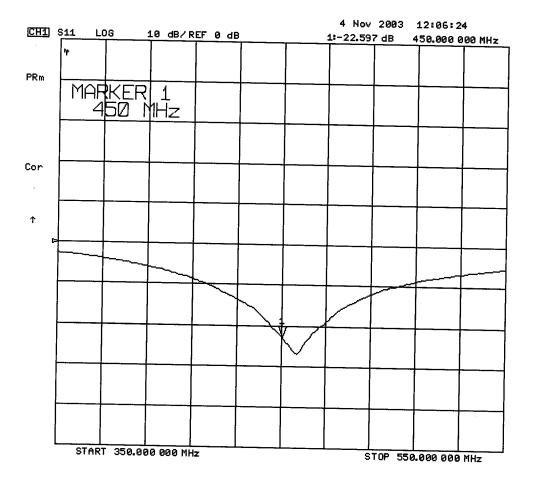
Initial SAR Level: 8.353 mW/g End SAR Level: 7.333 mW/g (drift = -566 dB)

450MHz SYSTEM VALIDATION DIPOLE

Type:	450MHz Validation Dipole
Serial Number:	136
Place of Calibration:	Celltech Labs Inc.
Date of Calibration:	November 4, 2003
Celltech Labs Inc. hereby certifies that this devi	ice has been calibrated on the date indicated above
Calibrated by:	Spenser Watson
Approved by:	Wussell W. Pyse


1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 450MHz $Re{Z} = 49.982\Omega$

 $Im{Z} = 7.2324\Omega$

Return Loss at 450MHz -22.597dB

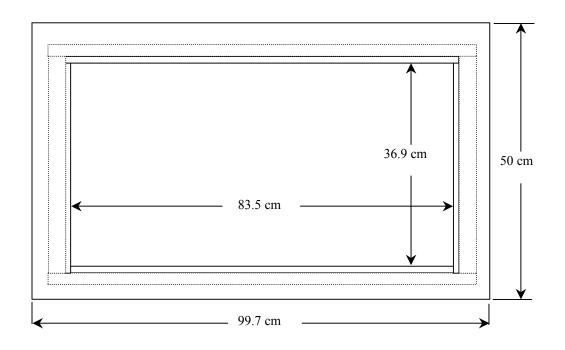
2. Validation Dipole Dimensions

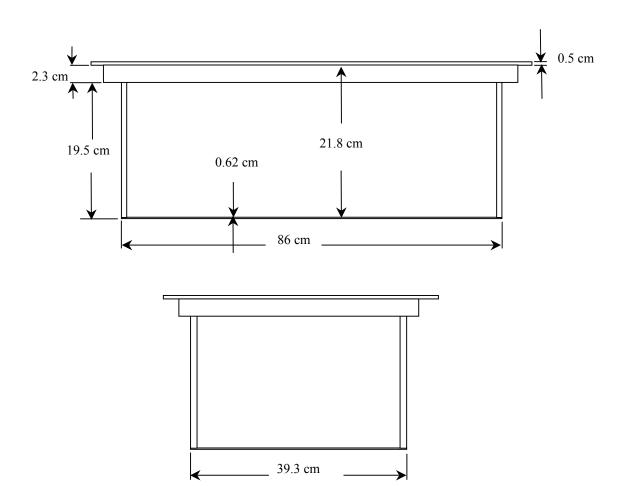
Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

3. Validation Phantom

The validation phantom was constructed using relatively low-loss tangent Plexiglas material. The inner dimensions of the phantom are as follows:

 Length:
 83.5 cm


 Width:
 36.9 cm


 Height:
 21.8 cm

The bottom section of the validation phantom is constructed of 6.2 \pm 0.1mm Plexiglas.

4. Dimensions of Plexiglas Planar Phantom

5. 450MHz System Validation Setup

450MHz System Validation Setup

6. Measurement Conditions

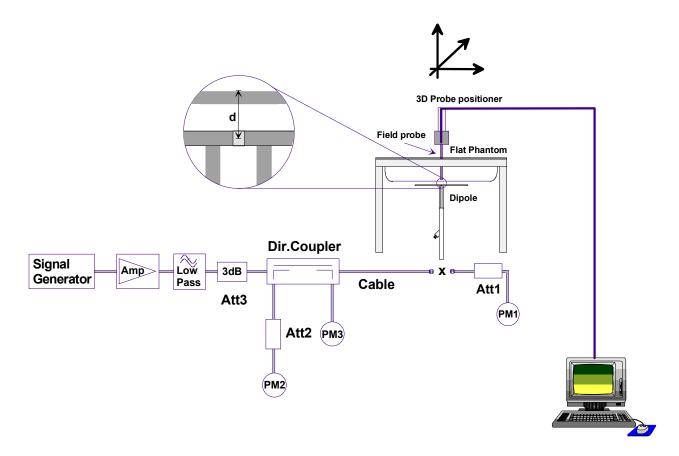
The planar phantom was filled with brain simulating tissue having the following parameters at 450MHz:

Relative Permittivity: 43.7

Conductivity: 0.88 mho/m Fluid Temperature: 22.0 °C Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 22.1 °C Humidity: 49 % Barometric Pressure: 102.8 kPa


The 450MHz simulated brain tissue mixture consists of the following ingredients:

Ingredient	Percentage by weight
Water	38.56%
Sugar	56.32%
Salt	3.95%
HEC	0.98%
Dowicil 75	0.19%
450MHz Target Dielectric Parameters at 22 °C	$\epsilon_{\rm r}$ = 43.5 σ = 0.87 S/m

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	1.29	5.16	0.810	3.24	2.28
Test 2	1.31	5.24	0.827	3.31	2.31
Test 3	1.30	5.20	0.823	3.29	2.29
Test 4	1.30	5.20	0.822	3.29	2.29
Test 5	1.29	5.16	0.819	3.28	2.28
Test 6	1.30	5.20	0.826	3.30	2.28
Test 7	1.31	5.24	0.826	3.30	2.30
Test 8	1.31	5.24	0.829	3.32	2.30
Test 9	1.30	5.20	0.822	3.29	2.28
Test 10	1.31	5.24	0.822	3.29	2.33
Average Value	1.30	5.21	0.823	3.29	2.29

The results have been normalized to 1W (forward power) into the dipole.

IEEE Target over 1cm³ (1g) of tissue: 1.23 mW/g (+/- 10%)

Averaged over 1cm (1g) of tissue: 5.21 mW/g

Averaged over 10cm (10g) of tissue: 3.29 mW/g

Test Date: 11/04/03

DUT: Dipole 450MHz; Model: D450V2; Type: System Performance Check; Serial: 136

Ambient Temp: 22.1°C; Fluid Temp: 22.0°C; Barometric Pressure: 102.8 kPa; Humidity: 49%

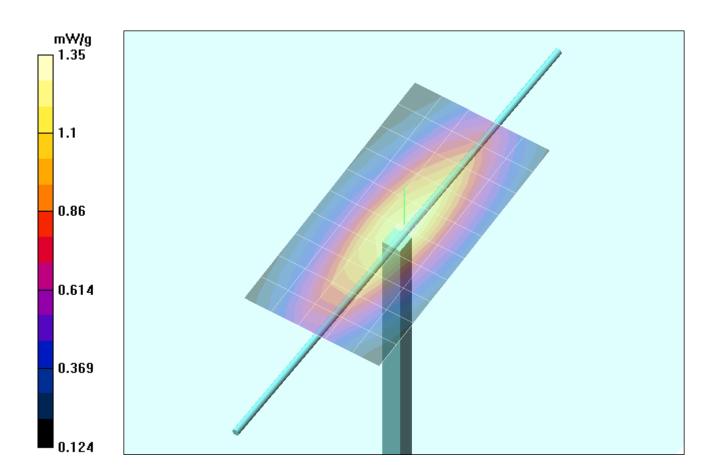
Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 (σ = 0.88 mho/m, ϵ_r = 43.7, ρ = 1000 kg/m³)

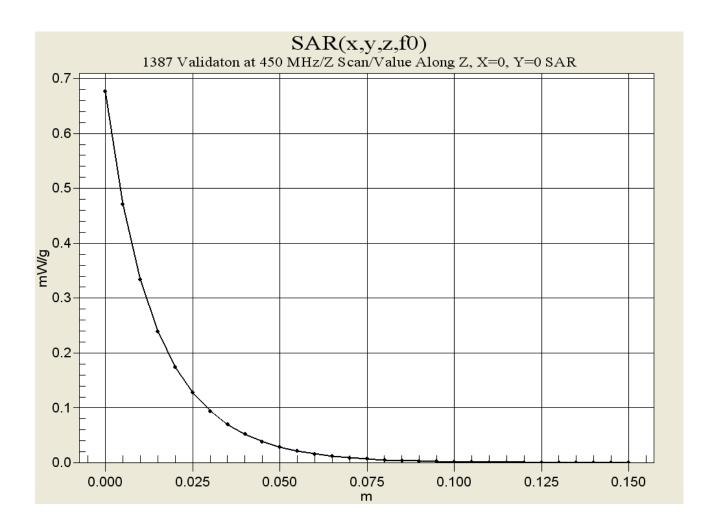
- Probe: ET3DV6 SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 26/02/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 19/05/2003
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

450 MHz Validation/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 39 V/m Power Drift = -0.08 dB


Maximum value of SAR = 1.3 mW/g

450 MHz Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 2.28 W/kg

SAR(1 g) = 1.3 mW/g; SAR(10 g) = 0.822 mW/g

Reference Value = 39 V/m Power Drift = 0.08 dB

450MHz System ValidationMeasured Fluid Dielectric Parameters (Brain) November 04, 2003

Frequency	e'	e"
350.000000 MHz	46.2660	40.8224
360.000000 MHz	45.9937	40.0986
370.000000 MHz	45.7556	39.4543
380.000000 MHz	45.5625	38.7387
390.000000 MHz	45.2820	38.1140
400.000000 MHz	45.0146	37.4981
410.000000 MHz	44.7508	36.9734
420.000000 MHz	44.5046	36.4917
430.000000 MHz	44.2494	35.9460
440.000000 MHz	43.9621	35.5647
450.000000 MHz	43.7384	35.2106
460.000000 MHz	43.5513	34.7930
470.000000 MHz	43.2846	34.3970
480.000000 MHz	43.0654	33.9576
490.000000 MHz	42.8566	33.6391
500.000000 MHz	42.6744	33.2270
510.000000 MHz	42.5036	32.8459
520.000000 MHz	42.3492	32.5261
530.000000 MHz	42.1783	32.1727
540.000000 MHz	41.9985	31.7385
550.000000 MHz	41.8097	31.4862

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech Labs

CALIBRATION C	ERTIFICAT	E	
Object(s)	ET3DV6 - SN 1	590	
Calibration procedure(s)	QA CAL-01 v2 Calibration proc	redure for dosimetric E-field probe	as .
Calibration date:	May 15, 2003		
Condition of the calibrated item	In Tolerance (a	coording to the specific calibration	r document)
This calibration statement documen 17025 international standard.	ts traceability of M&TE u	sed in the calibration procedures and conformity of	the procedures with the ISO/IEC
All calibrations have been conducte	d in the closed laboratory	facility: environment temperature 22 +/- 2 degrees	Celsius and humidity < 75%.
Calibration Equipment used (M&TE	critical for calibration)		
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (Agilent, No. 20020918)	Sep-03
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Network Analyzer HP 8753E	US38432426	3-May-00 (Aglient, No. 8702K084602)	In house check: May 03
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01 (ELCAL, No.2360)	Sep-03
	Name	Function	Signature
Celibrated by:	Nou Vetteri	Tochrician	N. TOLKE
Approved by:	Kalje Pokovic	Laboratory Offector	Alexa Vefe

Date issued: May 15, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1590

Manufactured:

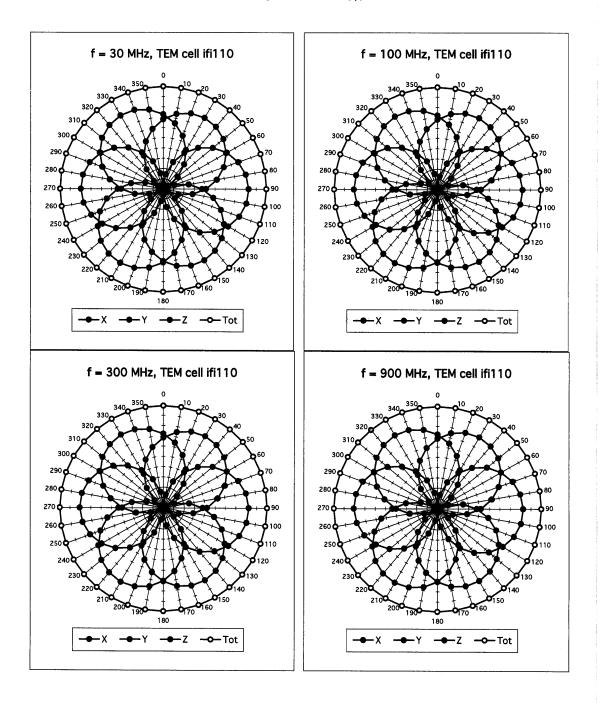
March 19, 2001

Last calibration:

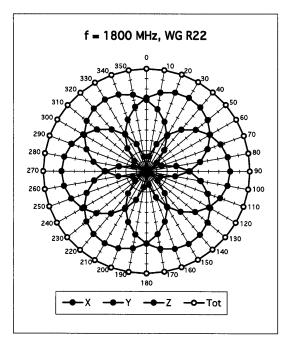
April 26, 2002

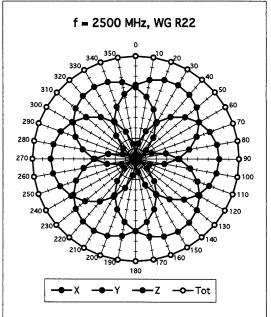
Recalibrated:

May 15, 2003

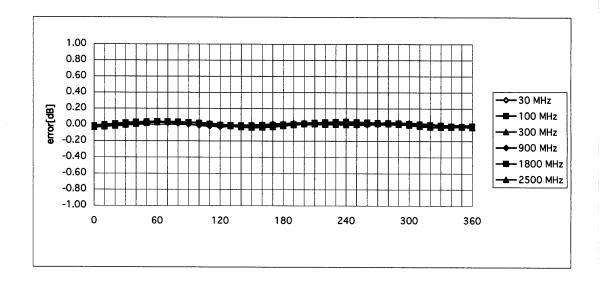

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

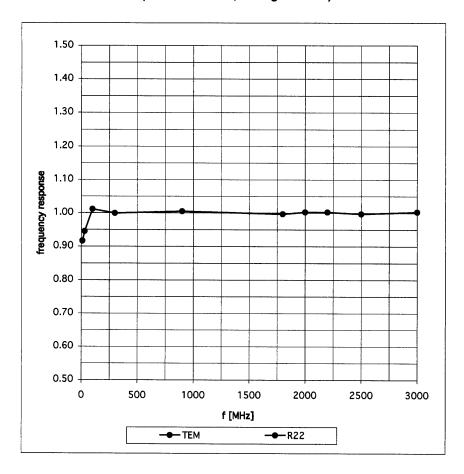

DASY - Parameters of Probe: ET3DV6 SN:1590


Sensitivity in Free	Space	Diode Co	mpression		
NormX	1.76 μV/(V/m) ²		DCP X	92	mV
NormY	1.91 μV/(V/m) ²		DCP Y	92	mV
NormZ	1.66 μV/(V/m) ²		DCP Z	92	mV
Sensitivity in Tissue	Simulating Liquid				
Head 900	MHz $\varepsilon_r = 41.5 \pm 59$	6 σ=	0.97 ± 5% mh	io/m	
Valid for f=800-1000 MHz with	th Head Tissue Simulating Liquid accordi	ing to EN 50361	, P1528-200X		
ConvF X	7.0 $\pm 9.5\%$ (k=2)		Boundary effect	:	
ConvF Y	7.0 $\pm 9.5\%$ (k=2)		Alpha	0.33	
ConvF Z	7.0 $\pm 9.5\%$ (k=2)		Depth	2.56	
Head 1800	MHz $\varepsilon_r = 40.0 \pm 59$	6 σ=	1.40 ± 5% mh	io/m	
Valid for f=1710-1910 MHz w	vith Head Tissue Simulating Liquid accord	ding to EN 5036	1, P1 528-200X		
ConvF X	5.5 \pm 9.5% (k=2)		Boundary effect	:	
ConvF Y	5.5 \pm 9.5% (k=2)		Alpha	0.44	
ConvF Z	$5.5 \pm 9.5\%$ (k=2)		Depth	2.69	
Boundary Effect					
Head 900	MHz Typical SAR gradient:	5 % per mm ~			
Probe Tip to B	oundary		1 mm	2 mm	
SAR _{be} [%]	Without Correction Algorithm		8.7	5.0	
SAR _{be} [%]	With Correction Algorithm		0.3	0.5	
Head 1800	MHz Typical SAR gradient:				
	Typical Oral gradient.	10 % per mm			
	, ,	10 % per mm	1 mm	2 mm	
Probe Tip to Be	, ,	10 % per mm	1 mm 12.3	2 mm 8.5	
Probe Tip to B	oundary	10 % per mm			
Probe Tip to Boundary	oundary Without Correction Algorithm	10 % per mm	12.3	8.5	
Probe Tip to Be SAR _{be} [%] SAR _{be} [%]	oundary Without Correction Algorithm With Correction Algorithm	10 % per mm	12.3	8.5	

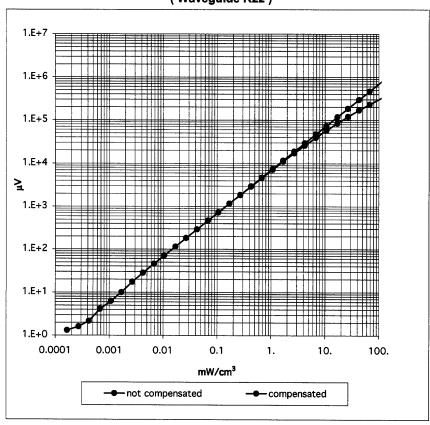
Receiving Pattern (ϕ), θ = 0°

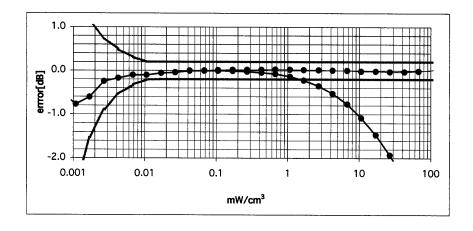


Page 3 of 10

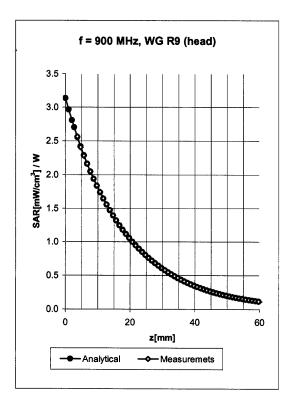

Isotropy Error (ϕ), $\theta = 0^{\circ}$

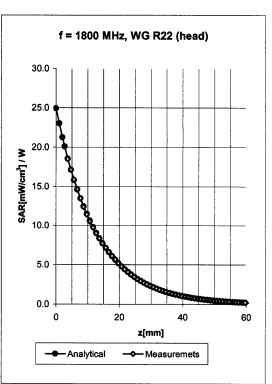
Page 4 of 10


Frequency Response of E-Field

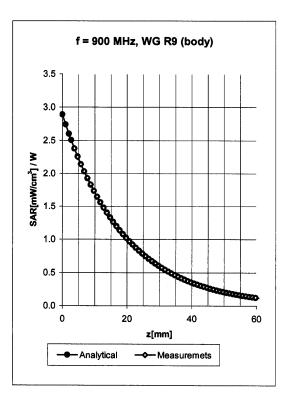

(TEM-Cell:ifi110, Waveguide R22)

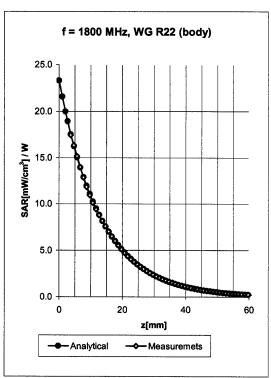
Dynamic Range f(SAR_{brain})


(Waveguide R22)

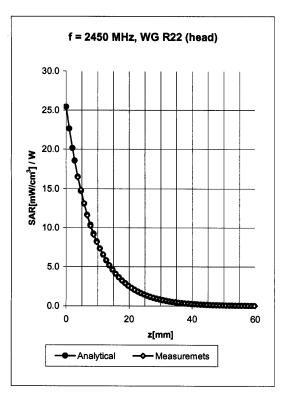


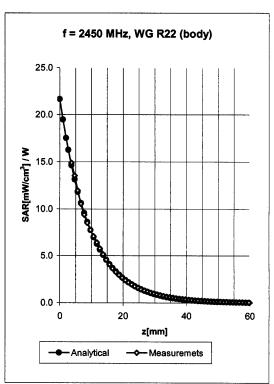
Page 6 of 10


Conversion Factor Assessment



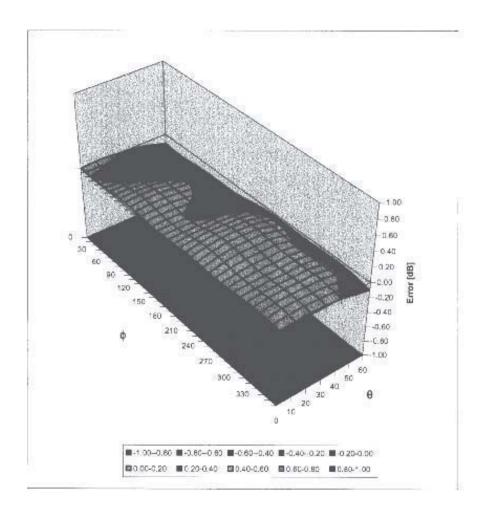
Head 900 MHz ε_r = 41.5 ± 5% σ = 0.97 ± 5% mho/m Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X $7.0 \pm 9.5\% (k=2)$ Boundary effect: ConvF Y $7.0 \pm 9.5\% (k=2)$ Alpha 0.33 ConvF Z $7.0 \pm 9.5\% (k=2)$ Depth 2.56 Head 1800 MHz ε_r = 40.0 ± 5% σ = 1.40 ± 5% mho/m Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X $5.5 \pm 9.5\% (k=2)$ Boundary effect: ConvF Y $5.5 \pm 9.5\% (k=2)$ Alpha 0.44 ConvF Z $5.5 \pm 9.5\% (k=2)$ 2.69 Depth


Conversion Factor Assessment



Body	900 MHz		ε_r = 55.0 ± 5%	σ=	1.05 ± 5% mho/n	n
Valid for f=80	00-1000 MHz with Body	Tissue	Simulating Liquid according to OET	65 5	Suppl. C	
	ConvF X	6.8	± 9.5% (k=2)		Boundary effect:	
	ConvF Y	6.8	± 9.5% (k=2)		Alpha	0.34
	ConvF Z	6.8	± 9.5% (k=2)		Depth	2.61
Body	1800 MHz		ε _r = 53.3 ± 5%	σ=	1.52 ± 5% mho/n	n
Valid for f=17	710-1910 MHz with Bod	y Tissu	e Simulating Liquid according to OE	Г 65	Suppl. C	
	ConvF X	5.0	± 9.5% (k=2)		Boundary effect:	
	ConvF Y	5.0	± 9.5% (k=2)		Alpha	0.52
	ConvF Z	5.0	± 9.5% (k=2)		Depth	2.69

Conversion Factor Assessment



Head	2450	MHz	ε_r = 39.2 ± 5%	σ= 1.80	± 5% mho/n	n
Valid for f=24	Valid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X					
	ConvF X	5.0	± 8.9% (k=2)	Boun	dary effect:	
	ConvF Y	5.0	± 8.9% (k=2)	Alpha	a	0.88
	ConvF Z	5.0	± 8.9% (k=2)	Depti	h	1.92
Body	2450	MHz	ε _τ = 52.7 ± 5%	σ= 1.95	± 5% mho/n	n
Valid for f=24	100-2500 MHz v	with Body Tissu	e Simulating Liquid according to OE	Г 65 Ѕирр	I. C	
	ConvF X	4.4	± 8.9% (k=2)	Boun	dary effect:	
	ConvF Y	4.4	± 8.9% (k=2)	Alpha	a	0.90
	ConvF Z	4.4	± 8.9% (k=2)	Depti	h	1.87

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1590
Place of Assessment:	Zurich
Date of Assessment:	May 19, 2003
Probe Calibration Date:	May 15, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Then: Kt.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

150 MHz	ConvF	9.6 ± 8%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue)
300 MHz	ConvF	$8.3\pm8\%$	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	$7.9 \pm 8\%$	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\% \text{ mho/m}$ (head tissue)
150 MHz	ConvF	$9.2\pm8\%$	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\%$ mho/m (body tissue)
450 MHz	ConvF	$8.1\pm8\%$	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\%$ mho/m (body tissue)