APPENDIX D: FCC PART 1.1307, 1.1310, 2.1091, 2.1093: RF EXPOSURE

1. General Information:

FCCID: ALH36033110
Environment: Occupational/Controlled Exposure
2. Operating Configurations and Test Conditions:
2.1 Antenna Type(s):

Antenna	Type	Gain (dBi)	Numeric Gain
Half-Wave dipole	Dipole	2.15	1.65

Frequency Range	Frequency Tolerance (ppm)	Emission Designator
$450-490 \mathrm{MHz}$	2.5	$16 \mathrm{KOF3E}$
$450-490 \mathrm{MHz}$	2.5	$11 \mathrm{KOF3E}$

2.2 dBi Antenna

Output Power (Worst Case)	Time averaging as an inherent property $(50.0 \%$ Duty Cycle, $-3.0 \mathrm{~dB})(\mathrm{W})$
Conducted	25.82
Conducted	4.90

3. MPE Calculation:

The maximum distance, from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V / m, transmit power P in Watts, transmit antenna numeric gain G , and separation distance in meters:

The Electric field generated for a $1 \mathrm{~mW} / \mathrm{cm}^{2}$ exposure (S) is calculated as follows:

$$
\begin{array}{ll}
S=\frac{E^{2}}{Z} & \\
\text { where: } & \begin{array}{l}
S=\text { Power density } \\
\mathrm{E}=\text { Electric field } \\
Z
\end{array} \\
& \begin{array}{l}
\text { Impedance. }
\end{array} \\
E(V / m)=\sqrt{S \times Z} & 1.6 \mathrm{~mW} / \mathrm{cm}^{2}=16 \mathrm{~W} / \mathrm{m}^{2}
\end{array}
$$

The impedance of free space is 337 ohms, where E and H fields are perpendicular.
Thus:

$$
E(V / m)=\sqrt{16 \times 377}=\quad 77.6 \mathrm{~V} / \mathrm{m}
$$

The maximum distance, from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V / m, transmit power P in Watts, transmit antenna numeric gain G , and separation distance in meters above and solving for d below:
$E(V / m)=\frac{\sqrt{30 \times P \times G}}{d} \quad$ and $\quad d=\frac{\sqrt{30 \times P \times G}}{E(V / m)} \quad$ Power density: $P_{d}\left(\mathrm{~mW} / \mathrm{cm}^{2}\right)=\frac{E^{2}}{3770}$
The limit for general population/uncontrolled exposure environment above 1500 MHz is $1 \mathrm{~mW} / \mathrm{cm}^{2}$.
SEPARATION DISTANCE:

Separation Distance ${ }^{\text {A }}$	Antenna Gain (dBi)	Duty Cycle (\%)
	2.15	
Power ${ }^{\text {B }}$ (Watt)	(cm)	
25.82	32.0	50.0
25.82	46.0	100.0

Calculations:

$$
\begin{aligned}
& 50.0 \% \text { duty cycle }=0.32 \mathrm{~m}=\frac{\sqrt{30 \times 12.9 \times 1.65}}{77.6} \\
& 100 \% \text { duty cycle }=0.46 \mathrm{~m}=\frac{\sqrt{30 \times 25.8 \times 1.65}}{77.6}
\end{aligned}
$$

Notes:
$\mathrm{A}=$ Distances are calculated for the largest (worst-case) separation distance as applicable.

Conclusion:

The device complies with the MPE requirements by providing a safe separation distance between the antenna, including any radiating structure, and any persons.

