Date: October 22, 2004

Federal Communications Commission

Via: Electronic Filing

Attention: Authorization & Evaluation Division

Applicant: Kenwood USA Corporation Equipment: TK-2170-K and TK-2170-K2

FCC ID: ALH34703110

FCC Rules: 22, 74, 90, 90.210, Confidentiality

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

Filing fees are attached.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Sincerely yours,

David E. Lee,

Compliance Test Manager

enclosure(s) cc: Applicant DEL/ca

Transmitter Certification

of

FCC ID: ALH34703110 Model: TK-2170-K and TK-2170-K2

to

Federal Communications Commission

Rule Part(s) 22, 74, 90, 90.210, Confidentiality

Date of report: October 22, 2004

On the Behalf of the Applicant:

Kenwood USA Corporation

At the Request of:
P.O. UPS 9/10/2004

Kenwood USA Corporation Communications Division

3975 Johns Creek Court, Suite 300

Suwanee, GA 30024

Attention of: Joel E. Berger, Research & Development

JBerger@kenwoodusa.com (678) 474-4722; FAX: -4731

Supervised by:

David E. Lee, Compliance Test Manager

List of Exhibits

(FCC Certification (Transmitters) - Revised 9/28/98)

Applicant: Kenwood USA Corporation

FCC ID: ALH34703110

By Applicant:

- 1. Letter of Authorization
- 2. Confidentiality Request: 0.457 And 0.459
- 3. Part 90.203(e) & (g) Attestation
- 4. Identification Drawings, 2.1033(c)(11)

Label

Location of Label

Compliance Statement

Location of Compliance Statement

- 5. Photographs, 2.1033(c)(12)
- 6. Documentation: 2.1033(c)
 - User Manual (3)
 - (9) Tune Up Info
 - Schematic Diagram (10)
 - (10)Circuit Description

Block Diagram Parts List

Active Devices

7. SAR Report

By M.F.A. Inc.:

Α. **Testimonial & Statement of Certification**

The Applicant has been cautioned as to the following:

15.21 **Information to the User**.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) **Special Accessories**.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Table of Contents

Rule	<u>Description</u>	<u>Page</u>
2.1033(c)(14)	Rule Summary	2
	Standard Test Conditions and Engineering Practices	3
	Expository Statement for Permissive Changes	5
2.1033(c)	General Information Required	5
2.1046(a)	Carrier Output Power (Conducted)	8
2.1046(a)	ERP Carrier Power (Radiated)	10
2.1046(a)	RF Power Output (Radiated)	12
2.1051	Unwanted Emissions (Transmitter Conducted)	12
2.1053(a)	Field Strength of Spurious Radiation	14
2.1049(c)(1)	Emission Masks (Occupied Bandwidth)	18
90.214	Transient Frequency Behavior	31
2.1047(a)	Audio Low Pass Filter (Voice Input)	37
2.1047(a)	Audio Frequency Response	39
2.1047(b)	Modulation Limiting	41
2.1055(a)(1)	Frequency Stability (Temperature Variation)	43
2.1055(b)(1)	Frequency Stability (Voltage Variation)	46
2.202(a)	Necessary Bandwidth and Emission Bandwidth	48

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a) Test Report

b) Laboratory: M. Flom Associates, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85225

c) Report Number: d04a0068

d) Client: Kenwood USA Corporation

Communications Division

3975 Johns Creek Court, Suite 300

Suwanee, GA 30024

e) Identification: TK-2170-K and TK-2170-K2

FCC ID: ALH34703110

EUT Description: VHF FM Handheld Transceiver

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: October 22, 2004 EUT Received: September 10, 2004

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

I) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

David E. Lee,

Compliance Test Manager

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written

permission from this laboratory.

Sub-part 2.1033(c)(14):

Test and Measurement Data

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

	21 - Domestic Public Fixed Radio Services
X	22 - Public Mobile Services
	22 Subpart H - Cellular Radiotelephone Service
	22.901(d) - Alternative technologies and auxiliary services
	23 - International Fixed Public Radiocommunication services
	24 - Personal Communications Services
X	74 Subpart H - Low Power Auxiliary Stations
	80 - Stations in the Maritime Services
	80 Subpart E - General Technical Standards
	80 Subpart F - Equipment Authorization for Compulsory Ships
	80 Subpart K - Private Coast Stations and Marine Utility Stations
	80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats
	80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes
	80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act
	80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRB'S)
	80 Subpart W - Global Maritime Distress and Safety System (GMDSS)
-	80 Subpart X - Voluntary Radio Installations 87 - Aviation Services
	87 - Aviation Services
X	90 - Private Land Mobile Radio Services 94 - Private Operational-Fixed Microwave Service 95 Subpart A - General Mobile Radio Service (GMRS)
	94 - Private Operational-Fixed Microwave Service
-	95 Subpart A - General Mobile Radio Service (GMRS)
	95 Subpart C - Radio Control (R/C) Radio Service
	95 Subpart D - Citizens Band (CB) Radio Service
	95 Subpart E - Family Radio Service
-	95 Subpart F - Interactive Video and Data Service (IVDS)
-	97 - Amateur Radio Service
	101 - Fived Microwaye Services

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992/2001, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst-case measurements.

A2LA

"A2LA has accredited M. Flom Associates, Inc. Chandler, AZ for technical competence in the field of Electrical Testing. The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC 17025 - 1999 'General Requirements for the Competence of Testing and Calibration Laboratories' and any additional program requirements in the identified field of testing."

Certificate Number: 2152-01

United STATES DEPARTMENT OF COMMERCE Metional leablate of Standards and Technology Gatherstory, Moryland 20896-

September 15, 1999

Mr. Mortou Fleer M. Flora Associates Inc. 3356 N. San Marcon Place, Suite 107 Chandler, AZ 85224

Dear Mr. Flow

I am pleased to inform you that your laboratory has been validated by the Chinese Taipei Barous of Standards, Metrology, and laspectice (1984)) under the Asia Farefic Rosenesis Cooperation Missia Beengatines Armagement (AFBC MRA). Year laboratory in now formuly designated to set as a Confinedity Amerimment Bayle (CAB) under Appendix R, Phane 2 Proceedings, of the AFBC MRA between the American Institute in Taiwa (AIT) and the Taipei Economic and Cultural Representative Office (TECRI) in the United States, convenig equipment subject to Electro-Magnetic Competibility (EMC) requirements. The names of all validated and nonlinead inhomorphic will be period on the NIST website at http://in.nist.gov/mag.

As of August 1, 1999, you may submit test take to BSME to verify that the equipment to be imposed into Chinese Talpit satisfies the applicable BMC requirement. Near societies #880, namble table.24-No.6-EBM, you must not this number when sending test reports to BSME. Your disligation will remain in force as long as year NYLAF and/or AZLA and/or BSME surreditation remain valid for the CMS 12448.

Please acte that BSMI requires that the cettly making application for the approval of regulated equipment most state such application in person at their Taipal office. BSMI site requires the named of the attainties of regulations when an authorised to ago the nature reports. The case and this information with two C. Taipai CAB Response Manager at 301/973-5414. I am also exclusing a copy of the cover wheat that, according to BSMI requirements, most assumption exceptions expects.

If you have any questions, please contact Robert Gladhill at 391-975-4273 or Joe Dhillos at 301-975-5523. We appreciate your continued interest in our international conformity assessment activities.

Sinceroly,

pele R Collins Heliada L. Collins, 76 D. Director, Office of Standards Services

Enclosure

NIST

I am pleased to inform you that your laboratory has been validated by the Chinese Taipei Bureau of Standards, Metrology and Inspection (BSMI) under the Asia Pacific Economic Cooperation Mutual Recognition Agreement (APEC MRA). Your laboratory is now formally designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC MRA between the American Institute in Taiwan (AIT) and the Taipei Economic and Cultural Representative Office (TECRO) in the United States, covering equipment subject to Electro-Magnetic Compatibility (EMC) requirements. The names of all validated and nominated laboratories will be posted on the NIST website at http://ts.nist.gov/mra under the 'Asia' category."

BSMI Number: SL2-IN-E-041R

M. Flom Associates, Inc. 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (480) 926-3100 phone, (480) 926-3598 fax

List of General Information Required for Certification

In Accordance with FCC Rules and Regulations, Volume II, Part 2 and to

22, 74, 90, 90.210, Confidentiality

Sub-pa	rt 2.1033
(c)(1):	Name and Address of Applicant:

Kenwood USA Corporation Communications Division 3975 Johns Creek Court, Suite 300 Suwanee, GA 30024

Manufacturer:

Kenwood Electronics Technologies PTE Ltd. 1 Ang Mo Kio Street 63 Singapore 569110

(c)(2):	FCC ID:	ALH34703110
	Model Number:	TK-2170-K and TK-2170-K2
(c)(3):	Instruction Manual(s): Please see attached exhibits	
(c)(4):	Type of Emission:	16K0F3E, 11K0F3E
(c)(5):	Frequency Range, MHz:	136 to 174
(c)(6):	Power Rating, Watts: Switchable X Variable	1 to 5 N/A
(c)(7):	Maximum Power Rating, Watts:	300
	DUT Results:	Passes X Fails

Information for Push-To-Talk Devices

Type and number of antenna to be used for this device: 3 Whip types with sub-bands

Maximum antenna gain for antenna indicated above:

0dBi

Can this device sustain continuous operation with respect to its hardware capabilities and allowable operating functions?

No

Other hardware or operating restrictions that could limit a person's RF Exposure:

Time Out Timer

Source-based time-averaging (see 2.1093 of rules) applicable to reduce the average output power: No

If device has headset and belt-clip accessories that would allow body-worn operations, what is the minimum separation distance between the antenna and the user's body in this operating configuration?

Yes

Can device access wire-line services to make phone calls, either directly or through an operator?

Can specific operating instructions be given to users to eliminate any potential RF Exposure concerns for both front-of-the-face and body-worn operating configurations?

Yes - see manual

Other applicable information the applicant may provide that can serve as effective means for ensuring RF Exposure compliance:

Yes - operator training per manual

Subpart 2.1033 (continued)

(c)(8): Voltages & currents in all elements in final RF stage, <u>including final transistor or solid-state device</u>:

Collector Current, A = per manual Collector Voltage, Vdc = per manual

Supply Voltage, Vdc = 7.5

(c)(9): **Tune-Up Procedure**:

Please see attached exhibits

(c)(10): Circuit Diagram/Circuit Description:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

Please see attached exhibits

(c)(11): Label Information:

Please see attached exhibits

(c)(12): Photographs:

Please see attached exhibits

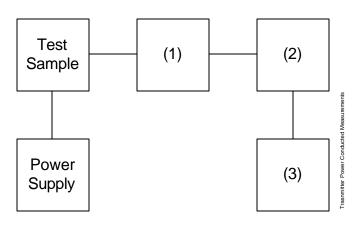
(c)(13): Digital Modulation Description:

Attached Exhibits
X N/A

(c)(14): Test and Measurement Data:

Follows

Name of Test: Carrier Output Power (Conducted)


Specification: 47 CFR 2.1046(a)

Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 2.2.1

Measurement Procedure

- A) The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an RF Power Meter.
- B) Measurement accuracy is $\pm 3\%$.

Transmitter Test Set-Up: RF Power Output

	Asset	Description	s/n	Cycle	Last Cal
(1) X	Coaxial i00231/2 i00122/3	Attenuator PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB)	231 or 232 7802 or 7802A	NCR NCR	
(2) X	Power N i00020	Meters HP 8901A Power Mode	2105A01087	12 mo.	Apr-04
(3) X	Frequer	ncy Counter HP 8901A Frequency Mode	2105A01087	12 mo.	Apr-04

Name of Test: Carrier Ou

Carrier Output Power (Conducted)

Measurement Results

(Worst case)

Frequency of Carrier, MHz Ambient Temperature = 155.05, 136.05, 173.95

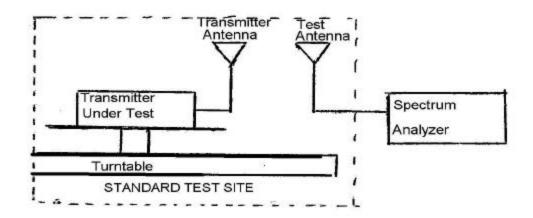
= 23°C \pm 3°C

Power Setting	RF Power, dBm	RF Power, Watts	_
Low	30	1	
High	37	5	

Performed by:

Name of Test: ERP Carrier Power (Radiated)

Specification: TIA/EIA 603A (Substitution Method)


Measurement Procedure

Definition

The average radiated power of a licensed device is the equivalent power required, when delivered to a half-wave dipole or horn antenna, to produce at a distant point the same average received power as produced by the licensed device.

Method of Measurement:

A) Connect the equipment as illustrated. Place the transmitter to be tested on the turntable in the standard test site.

- B) Raise and lower the test antenna from 1m to 6 m with the transmitter facing the antenna and record the highest received signal in dB as LVL.
- C) Repeat step B) for seven additional readings at 45° interval positions of the turntable.
- D) Replace the transmitter under test with a half-wave or horn vertically polarized antenna. The center of the antenna should be at the same location as the transmitter under test. Connect the antenna to a signal generator with a known output power and record the path loss in dB or LOSS.
- E) Calculate the average radiated output power from the readings in step C) and D) by the following:

average radiated power = $10 \log_{10} \acute{O} 10(LVL - LOSS)/10 (dBm)$

Name of Test: ERP Carrier Power (Radiated)

Test Equipment

	Asset	Description	s/n	Cycle	Last Cal
Tra	nsducer				
	i00088	EMCO 3109-B 25MHz-300MHz	2336	24 mo.	Sep-03
Χ	i00089	Aprel 2001 200MHz-1GHz	001500	24 mo.	Sep-03
Χ	i00103	EMCO 3115 1GHz-18GHz	9208-3925	24 mo.	Jan-04
Amı	plifier				
Χ	i00028	HP 8449A	2749A00121	12 mo.	May-04
Spe	ctrum Anal	yzer			
Χ	i00029	HP 8563E	3213A00104	12 mo.	May-04
Χ	i00033	HP 85462A	3625A00357	12 mo.	Jul-04
Sub	stitution Ge	enerator			
Χ	i00067	HP 8920A Communication TS	3345U01242	12 mo.	Jun-04
	i00207	HP 8753D Network Analyzer	3410A08514	12 mo.	Jul-04

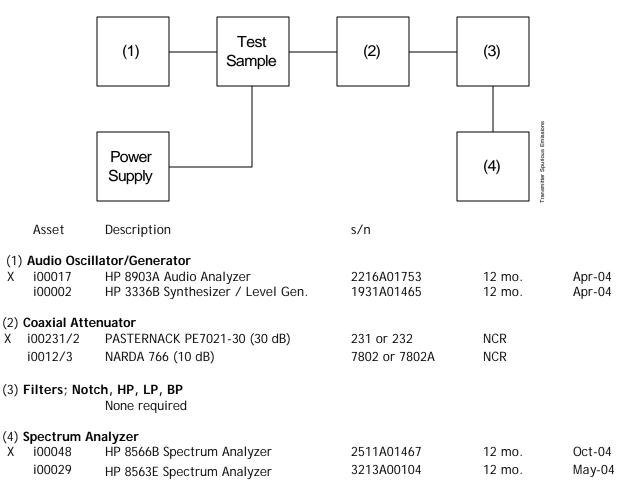
Measurement Results

	136	.050MHz	155	.050MHz	173	.950MHz
	LVL,	Path Loss, db	LVL,	Path Loss, db	LVL,	Path Loss, db
	dbm		dbm		dbm	
0°	17.7		27.9		27.9	
45°	17.1		32.1		32.1	
90°	20.7		29.3		29.3	
135°	18.9	Add 2.1	30.7	Add 4.2	30.7	Add 3.5
180°	22.8		31.5		31.5	
225°	20.7		32.3		32.3	
270°	23.4		26.1		26.1	
315°	13.4		30.4		30.4	

 Av. Radiated Power:
 21.44dbm
 34.24dbm
 33.54dbm

Performed by:

Name of Test: Unwanted Emissions (Transmitter Conducted)


Specification: 47 CFR 2.1051

Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 2.2.13

Measurement Procedure

- A) The emissions were measured for the worst case as follows:
 - 1). within a band of frequencies defined by the carrier frequency plus and minus one channel.
 - 2). from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.
- B) The magnitude of spurious emissions that are attenuated more than 20 dB below the permissible value need not be specified.

Transmitter Test Set-Up: Spurious Emission

Name of Test: Unwanted Emissions (Transmitter Conducted)

Measurement Results

(Worst Case)

Summary:

Frequency of carrier, MHz = 155.05, 136.05, 173.95

Spectrum Searched, GHz = $0 \text{ to } 10 \text{ x } F_C$

Maximum Response, Hz = 2820

All Other Emissions = = 20 dB Below Limit

Limit(s), dBc [Worst Case] 50 + 10 x Log (P)

50 + 10 x Log (5.0)

-57dBc (-20dBm)

Measurement Results

State:General Ambient Temperature: 23°C ± 3°C

Frequency Tuned, MHz Frequency Emission, MHz Level, dBm Level, dBc Margin, dB

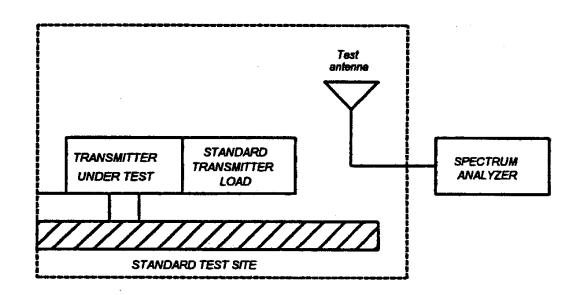
All Emissions were below -25dBm on Low and High Power, for 25kHz and 12.5kHz channels

Performed by:

Name of Test: Field Strength of Spurious Radiation

Specification: 47 CFR 2.1053(a)

Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 1.2.12 and Table 16, 47 CFR 22.917

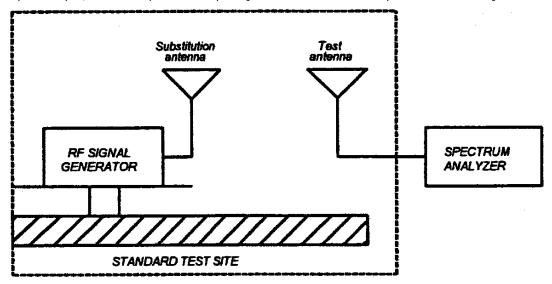

Measurement Procedure

Definition:

Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies, which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

Method of Measurement:

- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
 - 2) Video Bandwidth = 3 times Resolution Bandwidth, or 30 kHz (22.917)
 - 3) Sweep Speed ≤2000 Hz/second
 - 4) Detector Mode = Mean or Average Power
 - C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load that is placed on the turntable. The RF cable to this load should be of minimum length.



Name of Test:

Field Strength of Spurious Radiation (Cont.)

- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to \pm the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.

- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.

Name of Test: Field Strength of Spurious Radiation (Cont.)

- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB =

10log₁₀(TX power in watts/0.001) - the levels in step I)

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

Test Equipment

	Asset	Description		s/n	Cycle	Last Cal	
Tra	nsducer						
	i00088	EMCO 3109-B 25MHz-300	MHz	2336	24 mo.	Sep-03	
Χ	i00089	Aprel 2001 200MHz-1GHz	,	001500	24 mo.	Sep-03	
Χ	i00103	EMCO 3115 1GHz-18GHz		9208-3925	24 mo.	Jan-04	
Amı	olifier						
Χ	i00028	HP 8449A		2749A00121	12 mo.	May-04	
Spe	ctrum Analy	zer					
X	i00029	HP 8563E		3213A00104	12 mo.	May-04	
Χ	i00033	HP 85462A		3625A00357	12 mo.	Sep-04	
Sub	stitution Ge	nerator					
Χ	i00067	HP 8920A Communication	n TS	3345U01242	12 mo.	Jun-04	
	i00207	HP 8753D Network Analyz	rer	3410A08514	12 mo.	Jul-04	
Mic	Microphone, Antenna Port, and Cabling						
	Microphone)		ole Length 1.0 Me	ters		
	Antenna Po	ort Terminated	Yes Loa	d Yes	Antenna Gain	N/A	
	All Ports Terminated by Load Yes Peripheral Microphone						

Name of Test: Field Strength of Spurious Radiation

Measurement Results

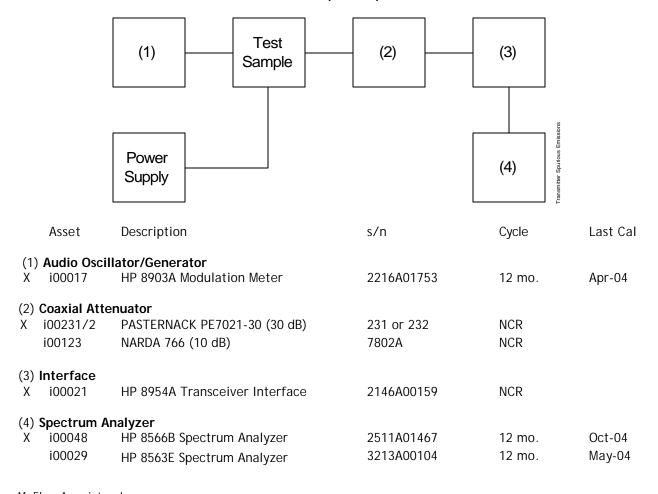
g0490005: 2004-Sep-30 Thu 11:59:00

STATE: 2:High Power Ambient Temperature: 23°C ± 3°C

	E	EDD ID	EDD ID
Frequency Tuned, MHz	Frequency Emission, MHz	ERP, dBm	ERP, dBc
136.050000	272.100000	-47.5	-84.5
136.050000	408.150000	-60.0	-97.0
136.050000	680.025000	-49.8	-86.8
136.050000	816.300000	-52.3	-89.3
136.050000	952.350000	-49.7	-86.7
136.050000	1088.400000	-50.9	-87.9
136.050000	1224.450000	-48.6	-85.6
136.050000	1360.500000	-49.5	-86.5

Note: The EUT was tested with fundamental frequencies of 136.05, 155.05 and 173.95MHz. Measurements at 136.05MHz yielded the highest levels of spurious emissions, which are tabulated above.

Performed by:

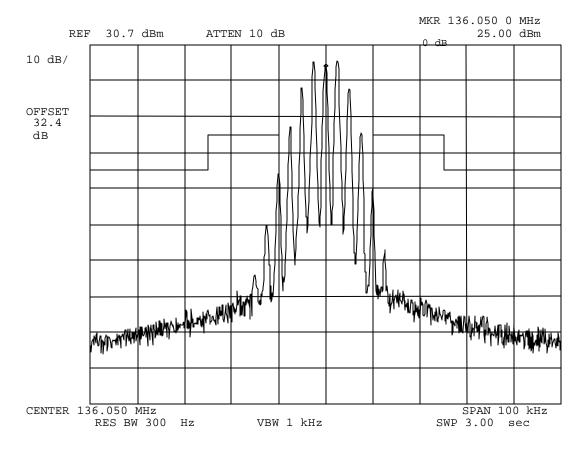

Specification: 47 CFR 2.1049(c)(1)

Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 2.2.11

Measurement Procedure

- A) The EUT and test equipment were set up as shown below
- B) For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ±2.5/±1.25 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- C) For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- D) The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.

Transmitter Test Set-Up: Occupied Bandwidth


(480) 926-3100 phone, (480) 926-3598 fax

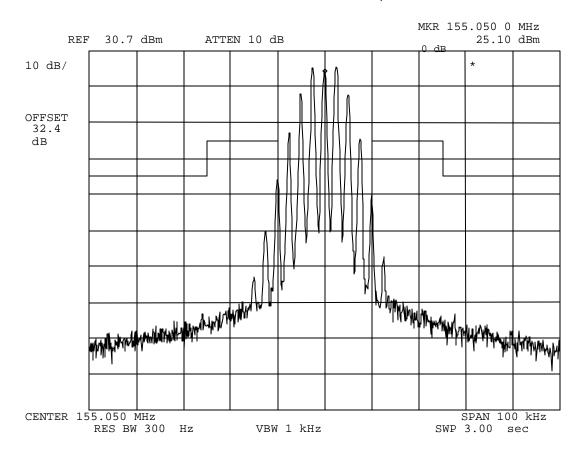
Measurement Results

g04a0045: 2004-Oct-01 Fri 14:55:00

State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: Modulation: LOW 25 KHZ DEVIATION

MASK: B, VHF/UHF 25kHz, w/LPF


Performed by:

Measurement Results

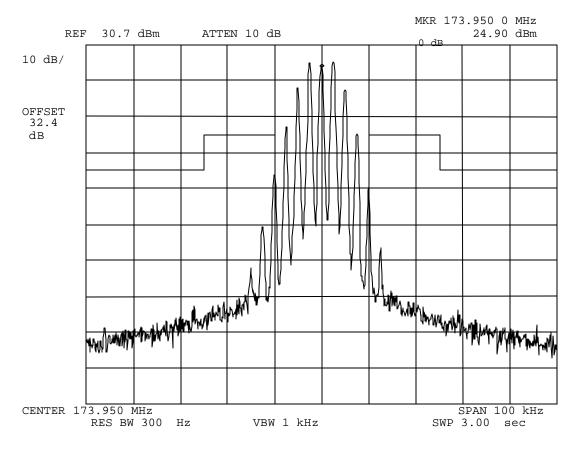
g04a0046: 2004-Oct-01 Fri 14:57:00

State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: LOW

Modulation: 25 KHZ DEVIATION

MASK: B, VHF/UHF 25kHz, w/LPF


Performed by:

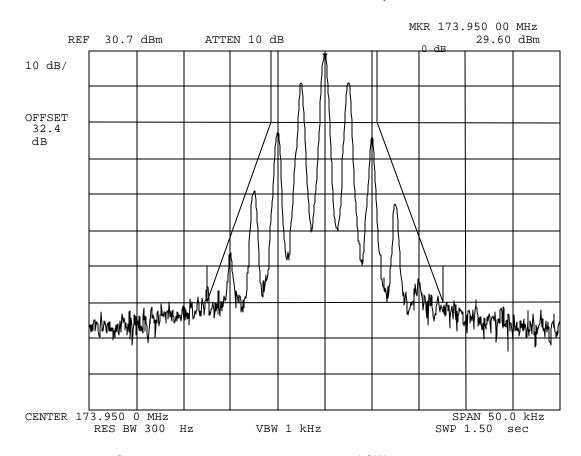
Measurement Results

g04a0047: 2004-Oct-01 Fri 14:59:00

State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: Modulation: LOW 25 KHZ DEVIATION

MASK: B, VHF/UHF 25kHz, w/LPF


Performed by:

Measurement Results

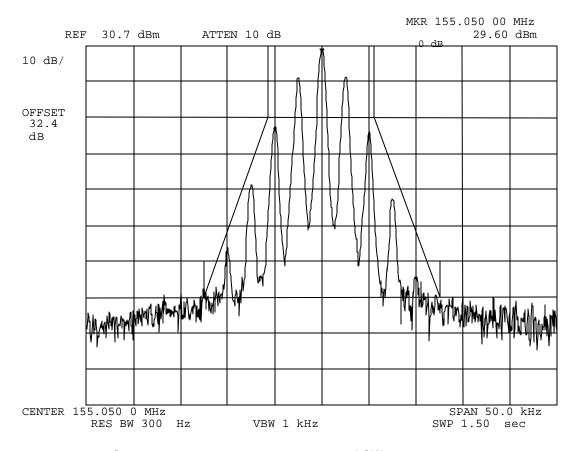
g04a0048: 2004-Oct-01 Fri 15:02:00

State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: LOW Modulation: Ref G

Iulation: Ref Gen=12.5 kHz Deviation

MASK: D, VHF/UHF 12.5kHz BW


Performed by:

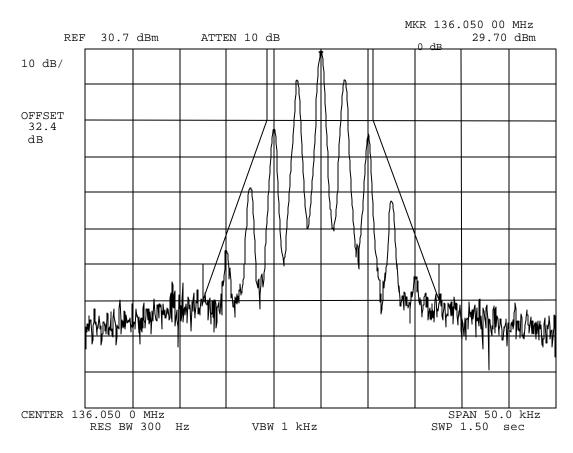
Measurement Results

g04a0050: 2004-Oct-01 Fri 15:06:00

State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: LOW Modulation: Ref G

Ref Gen=12.5 kHz Deviation MASK: D, VHF/UHF 12.5kHz BW


Performed by:

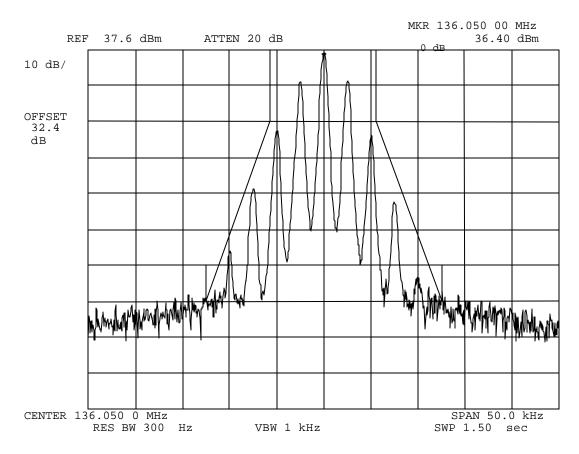
Measurement Results

g04a0051: 2004-Oct-01 Fri 15:07:00

State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: Modulation: LOW

Ref Gen=12.5 kHz Deviation MASK: D, VHF/UHF 12.5kHz BW


Performed by:

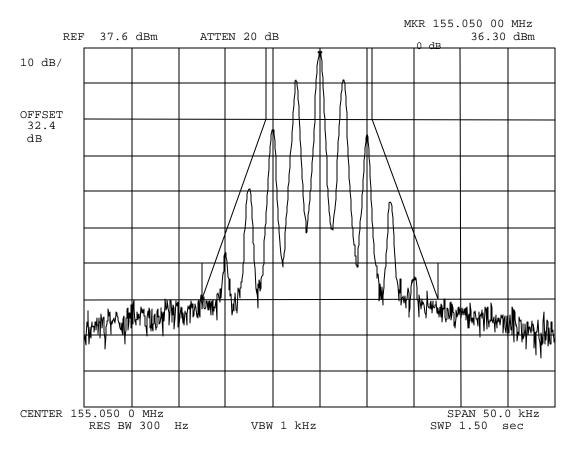
Measurement Results

g04a0052: 2004-Oct-01 Fri 15:08:00

State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: LOW Modulation: Ref G

Ref Gen=12.5 kHz Deviation MASK: D, VHF/UHF 12.5kHz BW


Performed by:

Measurement Results

g04a0053: 2004-Oct-01 Fri 15:08:00

State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: Modulation: LOW

Ref Gen=12.5 kHz Deviation MASK: D, VHF/UHF 12.5kHz BW


Performed by:

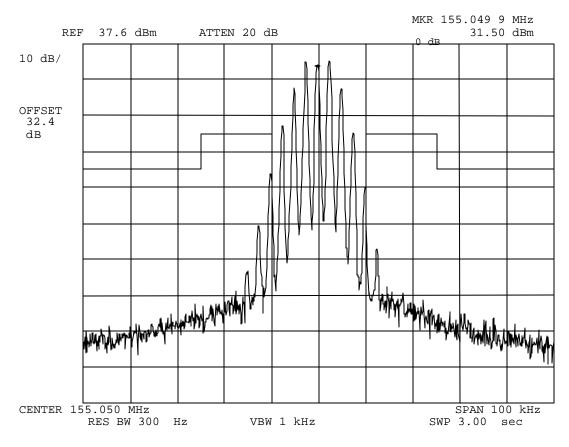
Measurement Results

g04a0054: 2004-Oct-01 Fri 15:11:00

State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: Modulation: LOW

Ref Gen=12.5 kHz Deviation MASK: D, VHF/UHF 12.5kHz BW


Performed by:

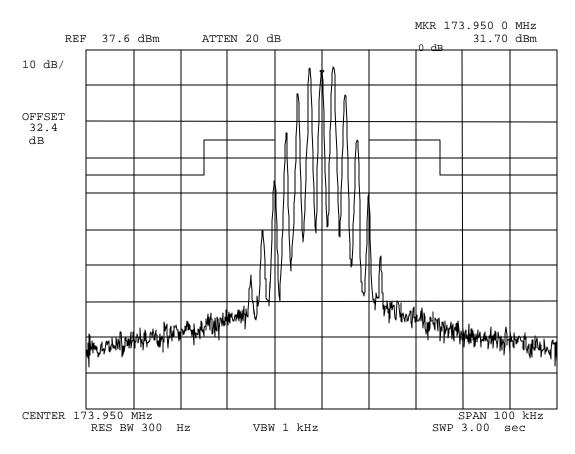
Measurement Results

g04a0042: 2004-Oct-01 Fri 14:50:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: Modulation: HIGH 25 KHZ DEVIATION

MASK: B, VHF/UHF 25kHz, w/LPF


Performed by:

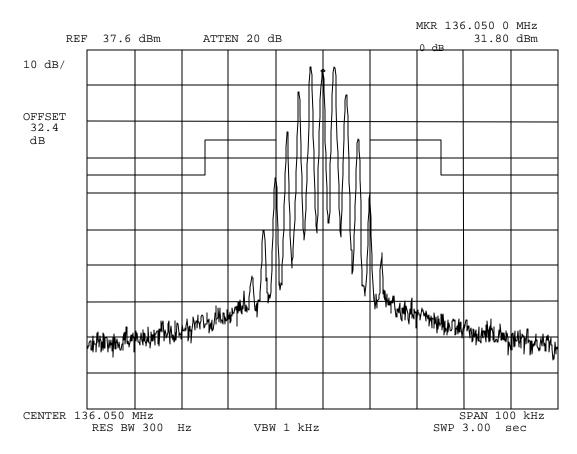
Measurement Results

g04a0043: 2004-Oct-01 Fri 14:53:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: Modulation: HIGH 25 KHZ DEVIATION

MASK: B, VHF/UHF 25kHz, w/LPF


Performed by:

Measurement Results

g04a0044: 2004-Oct-01 Fri 14:54:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: H Modulation: 2

HIGH 25 KHZ DEVIATION

MASK: B, VHF/UHF 25kHz, w/LPF

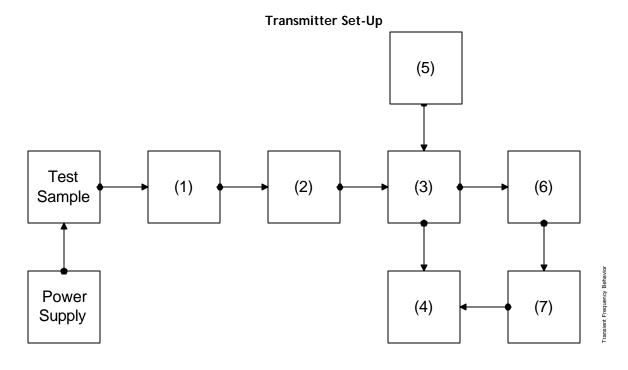
Performed by:

Name of Test: Transient Frequency Behavior

Specification: 47 CFR 90.214

Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 2.2.19

Measurement Procedure

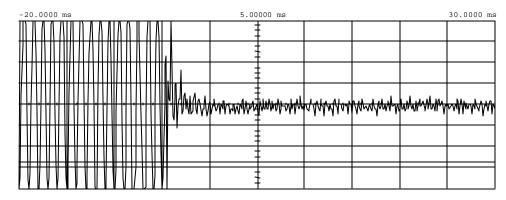

- A) The EUT was setup as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a *guide*.
- B) The transmitter was turned on.
- C) Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded.
- D) The transmitter was turned off.
- E) An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step C) above, measured at the output of the combiner. This level was then fixed for the remainder of the test.
- F) The oscilloscope was setup using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).
- G) The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded.
- H) The <u>carrier on-time</u> as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The <u>carrier off-time</u> as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

Performed by:

Name of Test:

Transient Frequency Behavior

	Asset	Description	s/n	Cycle	Last Cal
(1) X	Attenuator (I i00231/2	Removed after 1st step) PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR	
(2) X	Attenuator i00231/2 i00122/3	PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB)	231 or 232 7802 or 7802A	NCR NCR	
(3) X	Combiner i00154	4 x 25 Ω Combiner	154	NCR	
(4) X	Crystal Deco	der HP 8470B Crystal Detector	1822A10054	NCR	
(5) X	RF Signal Ge i00067	nerator HP 8920A Communication TS	3345U01242	12 mo.	Jun-04
(6) X	Modulation A i00020	Analyzer HP 8901A Modulation Meter	2105A01087	12 mo.	Apr-04
(7) X	Oscilloscope i00030	HP 54502A Digital Oscilloscope	2927A00209	12 mo.	Jan-04


M. Flom Associates, Inc. 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (480) 926-3100 phone, (480) 926-3598 fax

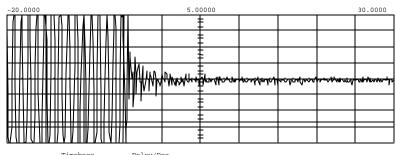
Page 32 of 48 FCC ID: ALH34703110 MFA p0490008, d04a0068

Name of Test: Transient Frequency Behavior

2004-Oct-04 Mon 10:54:00 Ambient Temperature: 23°C ± 3°C

Trigger mode : Edge On Negative Edge Of Chan2 Trigger Level Chan2 = -27.500 mV (noise reject ON) Holdoff = 40.000 ns

Power: High


Modulation: 25 kHz Deviation Description: Carrier On

Performed by:

Name of Test: Transient Frequency Behavior

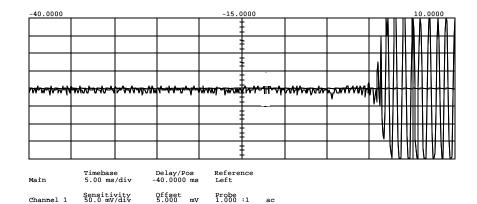
2004-Oct-04 Mon 11:04:00 Ambient Temperature: 23°C ± 3°C

 Main
 Timebase -5:00 ms/div
 Delay/Pos -20.0000 ms
 Left

 Sensitivity
 Offset 50.0 mV/div
 Probe 5.000 mV
 1.000 :1

Trigger mode:
On.Negative Edge Of
Trigger
- Chan2 = -27.500 mV (noise
Holdoff = 40.000

Power: High


Modulation: 12.5 kHz Deviation Description: Carrier On

Performed by:

Name of Test: Transient Frequency Behavior

Ambient Temperature: 23°C ± 3°C 2004-Oct-04 Mon 11:23:00

Trigger mode:
On Positive Edge Of
Trigger
Chan2 = -22.500 mV (noise reject
Holdoff = 40.000

Power: High

Modulation: 12.5 kHz Deviation


Description: Carrier Off

Performed by:

Name of Test: Transient Frequency Behavior

2004-Oct-04 Mon 14:33:00 Ambient Temperature: 23°C ± 3°C

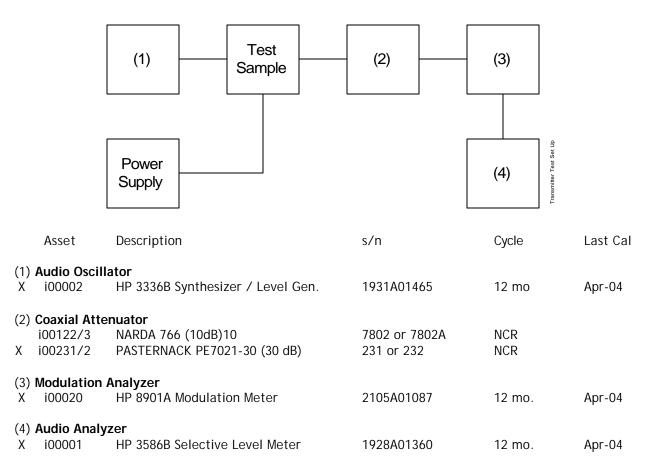
Trigger mode : Edge
On Positive Edge Of Chan2
Trigger Level
Chan2 - -22.500 mW (noise reject ON)
Holdoff = 40.000 ns

Power: High

Modulation: 25 kHz Deviation Description: Carrier Off

Performed by:

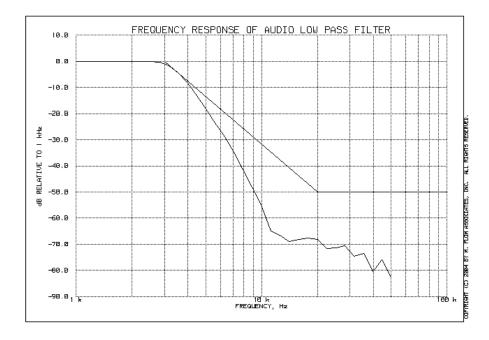
Name of Test: Audio Low Pass Filter (Voice Input)


Specification: 47 CFR 2.1047(a)

Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 2.2.15

Measurement Procedure

- A) The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
- B) The audio output was connected at the output to the modulated stage.

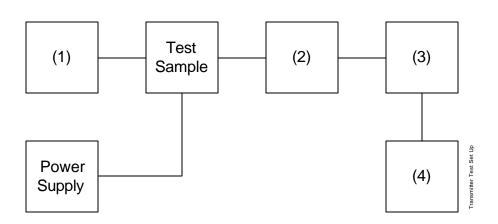

Transmitter Test Set-Up: Response of Low Pass Filter

g04a0017: 2004-Oct-01 Fri 10:57:00

State: 0:General Ambient Temperature: 23°C ± 3°C

Performed by:

Name of Test: Audio Frequency Response

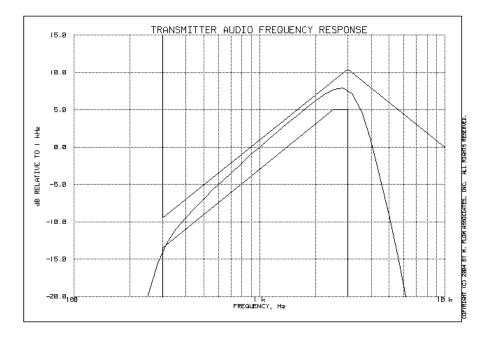

Specification: 47 CFR 2.1047(a)

Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 2.2.6

Measurement Procedure

- A) The EUT and test equipment were set up as shown below.
- B) The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- C) The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- D) With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to 50 kHz.
- E) The response in dB relative to 1 kHz was measured, using the HP 8901A Modulation Meter.

Transmitter Test Set-Up: Audio Frequency Response


	Asset	Description	s/n	Cycle	Last Cal
(1) X	Audio Oscill i00017	ator HP 8903A Audio Analyzer	2216A01753	12 mo.	Apr-04
(2)	Coaxial Atte	nuator			
	i00122/3	NARDA 766-(10 dB)	7802 or 7802A	NCR	
Χ	i00231/2	PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR	
(3) X	Modulation	Analyzer HP 8901A Modulation Meter	2105A01087	12 mo.	Apr-04
(4) Audio Analyzer					
X	i00017	HP 8903A Audio Analyzer	2216A01753	12 mo.	Apr-04

Name of Test: Audio Frequency Response

Measurement Results

g04a0020: 2004-Oct-01 Fri 11:34:00 State: 0:General Ambient Temperature: 23°C ± 3°C

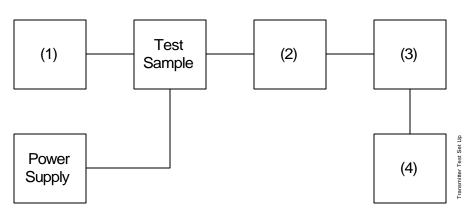
Frequency of Maximum Audio Response, Hz = 2820

Additional points:

Frequency, Hz	Level, dB	
300	-13.94	
20000	-60.59	
30000	-62.84	
50000	-70.39	

Performed by:

Name of Test: Modulation Limiting


Specification: 47 CFR 2.1047(b)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.3

Measurement Procedure

- A) The signal generator was connected to the input of the EUT as shown below.
- B) The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- C) The input level was varied from 30% modulation (±1.5 kHz deviation) to at least 20 dB higher than the saturation point.
- D) Measurements were performed for both negative and positive modulation and the respective results were recorded.

Transmitter Test Set-Up: Modulation Limiting

Asset	Description	s/n			
(1) Audio Oscil X i00017	lator HP 8903A Audio Analyzer	2216A01753	12 mo.	Apr-04	
(2) Coaxial Atto i0012/23 X i00231/2	e nuator NARDA 766-(10 dB) PASTERNACK PE7021-30 (30 dB)	7802 or 7802A 231 or 232	NCR NCR		
(3) Modulation Analyzer X i00020 HP 8901A Modulation Meter 2105A01087 12 mo. Apr-04					
(4) Audio Analyzer					

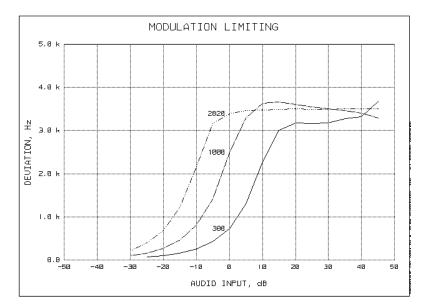
2216A01753

X i00017

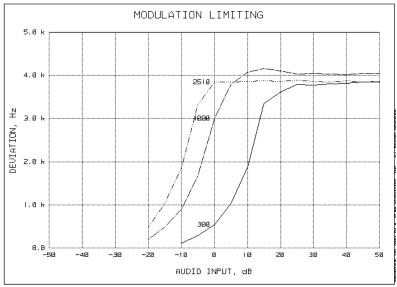
HP 8903A Audio Analyzer

Apr-04

12 mo.


Name of Test: Modulation Limiting

Measurement Results


g04a0005: 2004-Oct-01 Fri 09:00:00

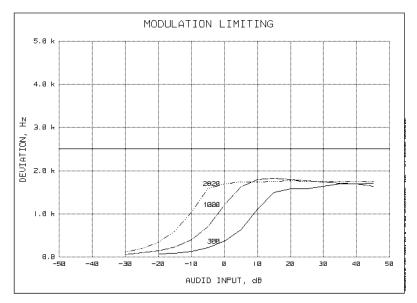
State: 25kHz Channel Ambient Temperature: 23°C ± 3°C

Positive Peaks:

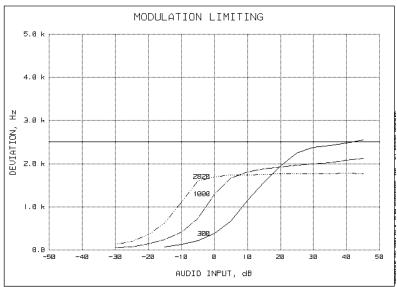
Negative Peaks:

Performed by:

Name of Test:


Modulation Limiting

Measurement Results


g04a0006: 2004-Oct-01 Fri 09:04:00

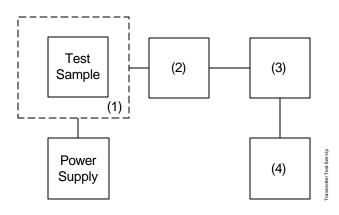
State: 12.5kHz Channel Ambient Temperature: 23°C ± 3°C

Positive Peaks:

Negative Peaks:

Performed by:

Name of Test: Frequency Stability (Temperature Variation)


Specification: 47 CFR 2.1055(a)(1)

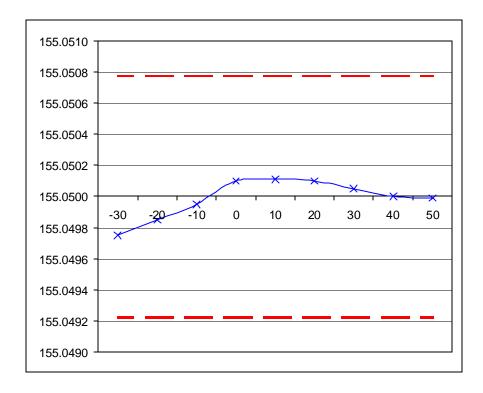
Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 2.2.2

Measurement Procedure

- A) The EUT and test equipment were set up as shown on the following page.
- B) With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- C) With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- D) The temperature tests were performed for the worst case.

Transmitter Test Set-Up: Temperature Variation

Asset	Description	s/n	Cycle	Last Cal		
(1) Tempera X i00027	ature, Humidity, Vibration Tenney Temp. Chamber	9083-765-234	NCR			
(2) Coaxial Attenuator						
X i00231/	,	231 or 232	NCR			
i00122/	(3 NARDA 766 (10 dB)	7802 or 7802A	NCR			
(3) RF Power						
X i00067		3345U01242	12 mo.	Jun-04		
(4) Frequency Counter						
X i00067		3345U01242	12 mo.	Jun-04		



Name of Test:

Frequency Stability (Temperature Variation)

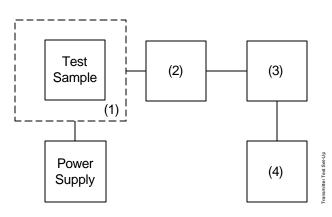
Measurement Results

Ambient Temperature: 23°C ± 3°C

Performed by:

David E. Lee, Compliance Test Manager

Name of Test: Frequency Stability (Voltage Variation)


Specification: 47 CFR 2.1055(d)(1)

Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 2.2.2

Measurement Procedure

- A) The EUT was placed in a temperature chamber (if required) at 25±5°C and connected as shown below.
- B) The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- C) The variation in frequency was measured for the worst case.

Transmitter Test Set-Up: Voltage Variation

	Asset	Description	s/n	Cycle	Last Cal		
(1)	(1) Temperature, Humidity, Vibration						
	i00027	Tenney Temp. Chamber	9083-765-234	NCR			
(2)	(2) Coaxial Attenuator						
χ̈́	i00231/2	PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR			
	i00122/3	NARDA 766 (10 dB)	7802 or 7802A	NCR			
(3)	(3) RF Power						
X	i00020	HP 8901A Power Mode	2105A01087	12 mo.	Apr-04		
(4) Frequency Counter							
(4) X	i00020	HP 8901A Frequency Mode	2105A01087	12 mo.	Apr-04		
		, ,			•		

Results: Frequency Stability (Voltage Variation)

Ambient Temperature: 23°C ± 3°C

Limit, ppm = 2.5 Limit, Hz = 387 Battery End Point (Voltage) = 6.2

% of STV		Voltage	Frequency, MHz	Change, Hz	Change, ppm
	85	6.37	155.049910	-90	-0.58
	100	7.50	155.049890	-110	-0.71
	115	8.62	155.049890	-110	-0.71
	84	6.30	155.049900	-100	-0.65

Performed by:

Name of Test: Necessary Bandwidth and Emission Bandwidth

Specification: 47 CFR 2.202(g)

Modulation = 16K0F3E

Necessary Bandwidth Calculation:

Necessary Bandwidth (B_N), kHz = (2xM)+(2xDxK)

= 16.0

Modulation = 11K0F3E

Necessary Bandwidth Calculation:

Necessary Bandwidth (B_N) , kHz = (2xM)+(2xDxK)

= 11.0

Supervised by:

David E. Lee, Compliance Test Manager

END OF TEST REPORT

Testimonial and Statement of Certification

This is to Certify:

- 1. **That** the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. **That** the technical data supplied with the application was taken under my direction and supervision.
- 3. **That** the data was obtained on representative units, randomly selected.
- 4. **That**, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Certifying Engineer:

David E. Lee, Compliance Test Manager