M. FIom Associates, Inc. - Global Compliance Center 3356 North San Marcos Place, Suite 107, Chandler, Arizona 85225-7176 www.mflom.com general@mflom.com (480) 926-3100, FAX: 926-3598

Date:
November 11, 1999
Federal Communications Commission
Via: Electronic Filing
Attention: Authorization \& Evaluation Division
Applicant: Kenwood Communications Corporation
Equipment: TK-860G-3
FCC ID: ALH29383130
FCC Rules: 22, 90
Gentlemen:
On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

Filing fees are attached.
We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Morton Flom, P. Eng.
enclosure(s)
cc: Applicant
MF/cvr

APPLICANT: Kenwood Communications Corporation

FCC ID:
ALH29383130

BY APPLICANT:

1. LETTER OF AUTHORIZATION
2. IDENTIFICATION DRAWINGS, 2.1033(c) (11) LABEL

- LOCATION OF LABEL COMPLIANCE STATEMENT LOCATION OF COMPLIANCE STATEMENT

3. PHOTOGRAPHS, $2.1033(\mathrm{c})(12)$
4. DOCUMENTATION: 2.1033 (c)
(3) USER MANUAL
(9) TUNE UP INFO
(10) SCHEMATIC DIAGRAM
(10) CIRCUIT DESCRIPTION
5. PART 90.203(e) \& (g) ATTESTATION

BY M.F.A. INC.
A. TESTIMONIAL \& STATEMENT OF CERTIFICATION
B. STATEMENT OF QUALIFICATIONS M. Flom fissociates, Inc. - Global Compliance Center 3356 North San Marcos Place, Suite 107, Chandler, Arizona 85225-7176 www.mflom.com general@mflom.com (480) 926-3100, FAX: 926-3598

```
Sub-part
2.1033(c):
```

FCC ID: ALH29383130

NAMEPLATE DRAWING

ATTACHED, EXHIBIT 1.

LOCATION

AS PER LABEL DRAWING (S)

DATE OF REPORT

November 11, 1999

Morton Flom, P. Eng.

15.21 INFORMATION TO USER.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
15.27(a) SPECIAL ACCESSORIES.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in $\$ 2.909$ of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

TABLE OF CONTENTS

RULE	DESCRIPTION	PAGE
	Test Report	1
2.1033 (c)	General Information Required	2
2.1033 (c) (14)	Rule Summary	5
	Standard Test Conditions and Engineering Practices	- 6
2.1046 (a)	Carrier Output Power (Conducted)	7
2.1051	Unwanted Emissions (Transmitter Conducted)	9
2.1053 (a)	Field Strength of Spurious Radiation	13
2.1049 (c) (1)	Emission Masks (Occupied Bandwidth)	16
90.214	Transient Frequency Behavior	27
2.1047 (a)	Audio Low Pass Filter (Voice Input)	41
2.1047 (a)	Audio Frequency Response	44
2.1047 (b)	Modulation Limiting	46
2.1055 (a) (1)	Frequency Stability (Temperature Variation)	49
2.1055 (b) (1)	Frequency Stability (Voltage Variation)	52
2.202 (g)	Necessary Bandwidth and Emission Bandwidth	53

PAGE NO. 1 of 53.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:
a)

TEST REPORT
$\begin{array}{ll}\text { b) Laboratory: } & \text { M. Flom Associates, Inc. } \\ \text { (FCC: } 31040 / \text { SIT) } & 3356 \mathrm{~N} . \text { San Marcos Place, Suite } 107\end{array}$ (Canada: IC 2044) Chandler, AZ 85224
C) Report Number: d99b0040
d) Client: Kenwood Communications Corporation
P.O. Box 22745

Long Beach, CA 90801-5745
e) Identification: TK-860G-3

FCC ID: ALH29383130
Description: UHF FM Mobile Transceiver
f) EUT Condition: Not required unless specified in individual tests.
g) Report Date: November 11, 1999

EUT Received: September 10, 1999
h, j, k): As indicated in individual tests.
i) Sampling method: No sampling procedure used.
l) Uncertainty: In accordance with MFA internal quality manual.
m) Supervised by:
n) Results:
o) Reproduction:

The results presented in this report relate only to the item tested.

This report must not be reproduced, except in full, without written permission from this laboratory.

PAGE NO. 2 of 53.
LIST OF GENERAL INFORMATION REQUIRED FOR CERTIFICATION
IN ACCORDANCE WITH FCC RULES AND REGULATIONS, VOLUME II, PART 2 AND TO

$$
22,90
$$

Sub-part 2.1033
(c) (1): NAME AND ADDRESS OF APPLICANT:

Kenwood Communications Corporation
2201 E. Dominguez St
P.O. Box 22745

Long Beach, CA 90801-5745
MANUFACTURER:
Kenwood Technologies Pte. Ltd.
1 Ang Mo Kio Street 63
Singapore 569110
(c) (2): FCC ID: ALH29383130

MODEL NO: TK-860G-3
(c) (3): INSTRUCTION MANUAL (S):

PLEASE SEE ATTACHED EXHIBITS
(c) (4): TYPE OF EMISSION: 20K0F1D, 16K0F3E, 11K0F3E, 11K2F1D
(c) (5): FREQUENCY RANGE, MHz: 400 to 430
(c) (6): POWER RATING, Watts: 5 to 25
_ Switchable \quad x Variable \quad N/A
(c) (7): MAXIMUM POWER RATING, Watts: 300
M. Flom Associates, Inc. is accredited by the American Association for Laboratory Association (A2LA) as shown in the scope below.

 THE AMERICAN
 ASSOCIATION
 FOR LABORATORY
 ACCREDITATION
 ACCREDITED LABORATORY

A2LA has accredited

M. FLOM ASSOCIATES, INC. Chandler, AZ
for technical competence in the field of
Electrical (EMC) Testing
The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/EC Guide 251990 "General Requirements for the Competence of Calibration and Testing Laboratories" (equivalent to relevant requirements of the ISO 9000 series of standards) and any additional program requirements in the identified field of testing

Presented this $24^{\text {th }}$ day of November, 1998.

or tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical (EMC) Scope of Accreditation

SCOPE OF ACCREDTIATION TO ISOAEC GUIDE 25-1990 AND EN 45001

"This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this report have been determined in accordance with the laboratory's terms of accreditation unless stated otherwise in the report."

Should this report contain any data for tests for which we are not accredited, or which have been undertaken by a subcontractor that is not A2LA accredited, such data would not covered by this laboratory's A2LA accreditation.

PAGE NO. 4 of 53.
Subpart 2.1033 (continued)
(c) (8): VOLTAGES \& CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE, INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

COLLECTOR CURRENT, A $=$ per manual COLLECTOR VOLTAGE, Vdc $=$ per manual SUPPLY VOLTAGE, Vdc $=13.6$
(c) (9): TUNE-UP PROCEDURE:

PLEASE SEE ATTACHED EXHIBITS
(c) (10): CIRCUIT DIAGRAM/CIRCUIT DESCRIPTION:

Including description of circuitry \& devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

PLEASE SEE ATTACHED EXHIBITS
(c) (11): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS
(c) (12): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS
(c) (13): DIGITAL MODULATION DESCRIPTION:
= ATTACHED EXHIBITS
$\overline{\overline{x-}_{-}} N / A$
(c) (14): TEST AND MEASUREMENT DATA:

FOLLOWS

PAGE NO. 6 of 53.

```
STANDARD TEST CONDITIONS
    and
    ENGINEERING PRACTICES
```

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to $40^{\circ} \mathrm{C}\left(50^{\circ}\right.$ to $\left.104{ }^{\circ} \mathrm{F}\right)$ unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90\% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

1. The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an R. F. Power Meter.
2. Measurement accuracy is $\pm 3 \%$.

MEASUREMENT RESULTS
(Worst case)

FREQUENCY OF CARRIER, MHz $=415.1,400.1,429.9$
POWER SETTING R. F. POWER, WATTS
Low 5

High
25

PAGE NO.
8 of 53.

TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R. F. POWER OUTPUT
TEST 2: FREQUENCY STABILITY


```
Asset Description
s/n
    (as applicable)
```

(1) COAXIAL ATTENUATOR i00122 Narda 766-10 7802
i00123 Narda 766-10 7802A
i00069 Bird 8329 (30 dB) 1006
i00113 Sierra 661A-3D 1059
(2) POWER METERS
i00014 HP 435A 1733A05836
i00039 HP 436A 2709A26776
i00020 HP 8901A POWER MODE 2105A01087
(3) FREQUENCY COUNTER
i00042 HP 5383A 1628A00959
i00019 HP 5334B 2704A00347
i00020 HP 8901A FREQUENCY MODE 2105A01087

PAGE NO.

NAME OF TEST:

SPECIFICATION:

GUIDE :

TEST EQUIPMENT:

9 of 53.
Unwanted Emissions (Transmitter Conducted)
47 CR 2.1051
ANSI/TIA/EIA-603-1992, Paragraph 2.2.13

As per attached page

MEASUREMENT PROCEDURE

1. The emissions were measured for the worst case as follows: (a): within a band of frequencies defined by the carrier frequency plus and minus one channel.
(b): from the lowest frequency generated in the EUT and to at least the 10 th harmonic of the carrier frequency, or 40 GHz , whichever is lower.
2. The magnitude of spurious emissions that are attenuated more than 20 dB below the permissible value need not be specified.
3. MEASUREMENT RESULTS: ATTACHED FOR WORST CASE
```
FREQUENCY OF CARRIER, MHz = 415.1, 400.1, 429.9
SPECTRUM SEARCHED, GHz = 0 to 10 x F C
MAXIMUM RESPONSE, Hz = 3160
ALL OTHER EMISSIONS = = 20 dB BELOW LIMIT
LIMIT(S), dBC
-(50+10xLOG P) = -57 (5 Watts)
-(50+10xLOG P) = -64 (25 Watts)
```

PAGE NO. 10 of 53.

TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)
TEST B. OUT-OF-BAND SPURIOUS

Asset Description s/n
(as applicable)
(1) AUDIO OSCILLATOR/GENERATOR i00010 HP 204D 1105A04683
i00017 HP 8903A
i00012 HP 3312A
2216A01753
1432A11250
(2) COAXIAL ATTENUATOR i00122 Narda 766-10

7802
i00123 Narda 766-10
i00069 Bird 8329 (30 dB)
7802A
i00113 Sierra 661A-3D
1006
1059
(3) FILTERS; NOTCH, HP, LP, BP
i00126 Eagle TNF-1
i00125 Eagle TNF-1 i00124 Eagle TNF-1

100-250
50-60
250-850
(4) SPECTRUM ANALYZER
i00048 HP 8566B
2511A01467
i00029 HP 8563E

3213A00104

PAGE NO.	11 of 53.
NAME OF TEST $:$ Unwanted Emissions (Transmitter Conducted) g99a0392:1999-Oct-08 Fri 11:26:00 STATE $:$ 1:Low Power	

FREQUENCY TUNED, $\begin{array}{r}\mathrm{MHz}\end{array}$	$$	LEVEL, dBm	LEVEL, dBc	MARGIN, dB
400.100000	800.209000	-33.7	-70.6	-13.7
415.100000	830.198000	-40.5	-77.4	-20.5
429.900000	859.484000	-44.1	-81	-24.1
400.100000	1200.300000	-39.8	-76.7	-19.8
415.100000	1244.913000	-42.8	-79.7	-22.8
429.900000	1289.707000	-42.6	-79.5	-22.6
400.100000	1600.357000	-43.6	-80.5	-23.6
415.100000	1660.834000	-41.9	-78.8	-21.9
429.900000	1719.682000	-42.6	-79.5	-22.6
400.100000	2000.724000	-43.4	-80.3	-23.4
415.100000	2075.789000	-42.8	-79.7	-22.8
429.900000	2149.936000	-41.8	-78.7	-21.8
400.100000	2400.245000	-42	-78.9	-22
415.100000	2490.872000	-41.2	-78.1	-21.2
429.900000	2579.209000	-44.3	-81.2	-24.3
400.100000	2800.922000	-44	-80.9	-24
415.100000	2905.288000	-44.7	-81.6	-24.7
429.900000	3009.646000	-43.6	-80.5	-23.6
400.100000	3201.285000	-44.7	-81.6	-24.7
415.100000	3321.158000	-44.5	-81.4	-24.5
429.900000	3438.741000	-45.3	-82.2	-25.3
400.100000	3600.689000	-44.6	-81.5	-24.6
415.100000	3735.462000	-45	-81.9	-25
429.900000	3868.921000	-44.5	-81.4	-24.5
400.100000	4000.673000	-45.2	-82.1	-25.2
415.100000	4151.107000	-45.3	-82.2	-25.3
429.900000	4298.747000	-45	-81.9	-25
400.100000	4401.076000	-44.2	-81.1	-24.2
415.100000	4566.081000	-44.8	-81.7	-24.8
429.900000	4728.798000	-45.1	-82	-25.1
400.100000	4801.043000	-43.2	-80.1	-23.2
415.100000	4981.341000	-44.1	-81	-24.1
429.900000	5158.948000	-43.6	-80.5	-23.6
400.100000	5201.632000	-44.4	-81.3	-24.4
415.100000	5396.287000	-44	-80.9	-24
429.900000	5588.505000	-44.1	-81	-24.1
400.100000	5600.976000	-44.4	-81.3	-24.4
415.100000	5811.066000	-39.7	-76.6	-19.7
400.100000	6001.766000	-39.3	-76.2	-19.3
429.900000	6018.403000	-37.5	-74.4	-17.5
415.100000	6226.485000	-39.7	-76.6	-19.7
429.900000	6448.473000	-39.3	-76.2	-19.3

PAGE NO. 12 of 53.
NAME OF TEST: Unwanted Emissions (Transmitter Conducted)
999a0389: 1999-Oct-08 Fri 09:45:00
STATE: 2:High Power

FREQUENCY TUNED, $\begin{array}{r}\text { MHz }\end{array}$	FREQUENCY EMISSION, MHz	LEVEL, dBm	LEVEL, dBc	MARGIN, dB
400.100000	800.211000	-28	-71.9	-8
415.100000	830.211000	-32	-75.9	-12
429.900000	859.984000	-33.3	-77.2	-13.3
400.100000	1200.792000	-32.5	-76.4	-12.5
415.100000	1245.294000	-32.8	-76.7	-12.8
429.900000	1289.690000	-32.5	-76.4	-12.5
400.100000	1600.849000	-33.8	-77.7	-13.8
415.100000	1660.274000	-32.6	-76.5	-12.6
429.900000	1719.768000	-33.9	-77.8	-13.9
400.100000	2000.410000	-32.4	-76.3	-12.4
415.100000	2075.463000	-32.4	-76.3	-12.4
429.900000	2149.887000	-32.2	-76.1	-12.2
400.100000	2400.366000	-32.4	-76.3	-12.4
415.100000	2490.274000	-32.1	-76	-12.1
429.900000	2579.684000	-34	-77.9	-14
400.100000	2800.381000	-34.7	-78.6	-14.7
415.100000	2906.111000	-35.6	-79.5	-15.6
429.900000	3009.692000	-34	-77.9	-14
400.100000	3201.120000	-35	-78.9	-15
415.100000	3320.608000	-34.2	-78.1	-14.2
429.900000	3439.370000	-34.8	-78.7	-14.8
400.100000	3600.658000	-35.2	-79.1	-15.2
415.100000	3735.510000	-35.3	-79.2	-15.3
429.900000	3869.299000	-34.8	-78.7	-14.8
400.100000	4000.689000	-34.5	-78.4	-14.5
415.100000	4150.885000	-35.5	-79.4	-15.5
429.900000	4298.720000	-33.6	-77.5	-13.6
400.100000	4401.066000	-34.1	-78	-14.1
415.100000	4565.994000	-33.8	-77.7	-13.8
429.900000	4729.206000	-34.3	-78.2	-14.3
400.100000	4800.796000	-34.3	-78.2	-14.3
415.100000	4981.339000	-33.9	-77.8	-13.9
429.900000	5159.173000	-34.7	-78.6	-14.7
400.100000	5201.412000	-34.2	-78.1	-14.2
415.100000	5396.721000	-34.1	-78	-14.1
429.900000	5589.046000	-35.2	-79.1	-15.2
400.100000	5601.844000	-34.7	-78.6	-14.7
415.100000	5811.450000	-28.5	-72.4	-8.5
400.100000	6001.820000	-28.6	-72.5	-8.6
429.900000	6018.712000	-28.7	-72.6	-8.7
415.100000	6226.585000	-28.6	-72.5	-8.6
429.900000	6448.220000	-29.3	-73.2	-9.3

PAGE NO. 13 of 53.
NAME OF TEST: Field Strength of Spurious Radiation
SPECIFICATION: 47 CFR 2.1053 (a)
GUIDE:
ANSI/TIA/EIA-603-1992, Paragraph 2.2.12
As per attached page

MEASUREMENT PROCEDURE

1. A description of the measurement facilities was filed with the FCC and was found to be in compliance with the requirements of Section 2.948, by letter from the FCC dated March 3, 1997, FILE 31040/SIT. All pertinent changes will be reported to the Commission by up-date prior to March 2000.
2. At first, in order to locate all spurious frequencies and approximate amplitudes, and to determine proper equipment functioning, the test sample was set up at a distance of three meters from the test instrument. Valid spurious signals were determined by switching the power on and off.
3. In the field, the test sample was placed on a wooden turntable above ground at three (or thirty) meters away from the search antenna. Excess power leads were coiled near the power supply.

The cables were oriented in order to obtain the maximum response. At each emission frequency, the turntable was rotated and the search antennas were raised and lowered vertically.
4. The emission was observed with both a vertically polarized and a horizontally polarized search antenna and the worst case was used.
6. The field strength of each emission within 20 dB of the limit was recorded and corrected with the appropriate cable and transducer factors.
7. The worst case for all channels is shown.
8. Measurement results: ATTACHED FOR WORST CASE

PAGE NO. 14 of 53.

RADIATED TEST SETUP

NOTES:
(a) Search Antenna - Rotatable on boom
(b) Non-metallic boom
(c) Non-metallic mast
(d) Adjustable horizontally
(e) Equipment Under Test
(f) Turntable
(g) Boom adjustable in height.
(h) External control cables routed horizontally at least one wavelength.
(i) Rotatable
(j) Cables routed through hollow turntable center
(k) 30 cm or less
(l) External power source
(m) 10 cm diameter coil of excess cable
(n) $25 \mathrm{~cm}(\mathrm{~V}), 1 \mathrm{~m}-7 \mathrm{~m}(\mathrm{~V}, \mathrm{H})$
(o) 25 cm from bottom end of 'V', 1m normally
(p) Calibrated Cable at least 10m in length
(q) Amplifier (optional)
(r) Spectrum Analyzer

Asset Description (as applicable)
s / n
$2336 \quad 12 \mathrm{mo}$
2635
001500
9208-3925

2749A00121 $12 \mathrm{mo} \quad$ Mar-99
SPECTRUM ANALYZER

i00029	HP 8563E	3213A00104	12 mo.	Aug-99
i00033	HP 85462A	$3625 A 00357$	12 mo.	May-99
i00048	HP 8566B	2511 AD1467	6 mo.	May-99

PAGE NO.
$\begin{array}{cl}\text { NAME OF TEST: Field Strength of } & \text { Spurious Radiation } \\ \text { ALL OTHER EMISSIONS } & =20 \mathrm{~dB} \text { BELOW LIMIT }\end{array}$

EMISSION, MHz/HARMONIC	SPURIOUS LEVEL, dBC	
LOW	High	
2nd to 10th	<-70	<-70

Ou. 1 mem $1 . \mathrm{cm}_{4}$
Morton Flom, P. Eng.

PAGE NO.	16 of 53.
NAME OF TEST:	Emission Masks (Occupied Bandwidth)
SPECIFICATION:	47 CFR 2.1049 (c) (1)
GUIDE:	ANSI/TIA/EIA-603-1992, Paragraph 2.2.11
TEST EQUIPMENT:	As per previous page

1. The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for $\pm 2.5 \mathrm{kHz}$ deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
3. For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
5. MEASUREMENT RESULTS: ATTACHED

PAGE NO.
17 of 53 .
NAME OF TEST: Emission Masks (Occupied Bandwidth) 999a0383: 1999-Oct-08 Fri 07:44:00
STATE: 1:Low Power

POWER:
MODULATION :

LOW NONE

Morton Flom, P. Eng.

PAGE NO. 18 of 53.

NAME OF TEST: Emission Masks (Occupied Bandwidth) 999a0384: 1999-Oct-08 Fri 07:46:00
STATE: 1:Low Power

POWER:
MODULATION:

LOW
VOICE: 2500 Hz SINE WAVE MASK: B, VHF/UHF 25 kHz , w/LPF

PAGE NO. 19 of 53.

NAME OF TEST: Emission Masks (Occupied Bandwidth) 999b0089: 1999-Nov-05 Fri 13:40:00
STATE: 1:Low Power

POWER:
MODULATION:

LOW
GMSK 19200 BITS PER SECOND MASK: B, VHF/UHF 25 kHz , w/LPF

PAGE NO. 20 of 53.

NAME OF TEST: Emission Masks (Occupied Bandwidth) 999a0387: 1999-Oct-08 Fri 07:52:00
STATE: 1:Low Power

POWER:
MODULATION:

LOW
VOICE: 2500 Hz SINE WAVE MASK: D, VHF/UHF 12.5 kHz BW

PAGE NO. 21 of 53.

NAME OF TEST: Emission Masks (Occupied Bandwidth) 999b0090: 1999-Nov-05 Fri 13:47:00
STATE: 1:Low Power

POWER:
MODULATION:

LOW
GMSK 9600 BITS PER SECOND MASK: D, VHF/UHF 12.5 kHz BW

PAGE NO.
NAME OF TEST: Emission Masks (Occupied Bandwidth) 999a0382: 1999-Oct-08 Fri 07:41:00
STATE: 2:High Power

POWER:
MODULATION:

HIGH
NONE

PAGE NO.
NAME OF TEST: Emission Masks (Occupied Bandwidth)
999a0385: 1999-Oct-08 Fri 07:47:00
STATE: 2:High Power

POWER:
MODULATION:

HIGH
VOICE: 2500 Hz SINE WAVE MASK: B, VHF/UHF 25 kHz , w/LPF

PAGE NO. 24 of 53.

NAME OF TEST: Emission Masks (Occupied Bandwidth) 999b0087: 1999-Nov-05 Fri 13:30:00
STATE: 2:High Power

POWER:
MODULATION:

HIGH
GMSK 19200 BITS PER SECOND MASK: B, VHF/UHF 25 kHz , w/LPF

PAGE NO. 25 of 53.

NAME OF TEST: Emission Masks (Occupied Bandwidth) 999a0386: 1999-Oct-08 Fri 07:50:00
STATE: 2:High Power

POWER:
MODULATION:

HIGH
VOICE: 2500 Hz SINE WAVE MASK: D, VHF/UHF 12.5 kHz BW

PAGE NO. 26 of 53.

NAME OF TEST: Emission Masks (Occupied Bandwidth) 999b0088: 1999-Nov-05 Fri 13:34:00
STATE: 2:High Power

POWER:
MODULATION:

HIGH
GMSK 9600 BITS PER SECOND MASK: D, VHF/UHF 12.5 kHz BW

PAGE NO.

NAME OF TEST:

SPECIFICATION:

GUIDE:
TEST EQUIPMENT:

27 of 53.

Transient Frequency Behavior
47 CFR 90.214
ANSI/TIA/EIA-603-1992, Paragraph 2.2.19
As per attached page

MEASUREMENT PROCEDURE

1. The EUT was setup as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a guide.
2. The transmitter was turned on.
3. Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded as step f.
4. The transmitter was turned off.
5. An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5 , or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step f , as measured at the output of the combiner. This level was then fixed for the remainder of the test and is recorded at step h .
6. The oscilloscope was setup using TIA/EIA-603 steps j and k as a guide, and to either $10 \mathrm{~ms} / \mathrm{div}$ (UHF) or $5 \mathrm{~ms} / \mathrm{div}$ (VHF).
7. The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as step 1 .
8. The carrier on-time as referenced in TIA/EIA-603 steps m, n, and O was captured and plotted. The carrier off-time as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

LEVELS MEASURED:

step f, dBm	$=-18.8$	
step h, dBm	$=$	-49.7
step l, dBm	$=$	0.5

LEVELS MEASURED (With Data Modem) :

step $f, d B m$	$=-19.4$
step h, dBm	$=-39.0$
step $1, d B m$	$=11.5$

Morton Flom, P. Eng.

PAGE NO. 28 of 53.

TRANSIENT FREQUENCY BEHAVIOR

Asset Description s/n
(as applicable)
(1) ATTENUATOR (Removed after 1st step)
i00112 Philco 30 dB
989
(2) ATTENUATOR
i00112 Philco 30 dB 989
i00172 Bird 30 dB 989
i00122 Narda 10 dB 7802
i00123 Narda 10 dB 7802A
i00110 Kay Variable 145-387
(3) COMBINER
i00154 $4 \times 25 \Omega$ COMBINER 154
(4) CRYSTAL DETECTOR
i00159 HP 8470B 1822A10054
(5) RF SIGNAL GENERATOR
$i 00018$ HP 8656A 2228A03472
i00031 HP 8656A 2402A06180
i00067 HP 8920A 3345U01242
(6) MODULATION ANALYZER
i00020 HP 8901A 2105A01087
(7) SCOPE
i0 $\overline{0030}$ HP 54502A 2927A00209

PAGE NO.
NAME OF TEST: Transient Frequency Behavior
999a0371: 1999-Oct-07 Thu 14:01:00
STATE: 2:High Power

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=25 kHz Deviation CARRIER ON TIME

PAGE NO.
NAME OF TEST: Transient Frequency Behavior
999a0372: 1999-Oct-07 Thu 14:03:00
STATE: 2:High Power

0

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=25 kHz Deviation CARRIER OFF TIME

PAGE NO.
NAME OF TEST: Transient Frequency Behavior
999a0373: 1999-Oct-07 Thu 14:07:00
STATE: 2:High Power

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=12.5 kHz Deviation CARRIER ON TIME

PAGE NO. 32 of 53.

NAME OF TEST: Transient Frequency Behavior
999a0374: 1999-Oct-07 Thu 14:08:00
STATE: 2:High Power
0

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=12.5 kHz Deviation CARRIER OFF TIME

PAGE NO.
NAME OF TEST:
999b0141: 1999-Nov-08 Mon 10:22:00
STATE: 2:High Power With Data Modem

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=25 kHz Deviation CARRIER ON TIME

PAGE NO.
NAME OF TEST: Transient Frequency Behavior
999b0142: 1999-Nov-08 Mon 10:22:00
STATE: 2:High Power With Data Modem

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=25 kHz Deviation CARRIER ON TIME

Morton Flom, P. Eng.

PAGE NO.
NAME OF TEST:
999b0139: 1999-Nov-08 Mon 10:19:00
STATE: 2:High Power With Data Modem

0

POWER:
MODULATION:
DESCRIPTION:

HIGH

Ref Gen=25 kHz Deviation CARRIER OFF TIME

PAGE NO.
NAME OF TEST: Transient Frequency Behavior
999b0140: 1999-Nov-08 Mon 10:19:00
STATE: 2:High Power With Data Modem

0

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=25 kHz Deviation CARRIER OFF TIME

Morton Flom, P. Eng.

PAGE NO.
NAME OF TEST: Transient Frequency Behavior
999b0149: 1999-Nov-08 Mon 10:55:00
STATE: 2:High Power With Data Modem

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=12.5 kHz Deviation CARRIER ON TIME

PAGE NO. 38 of 53.

NAME OF TEST: Transient Frequency Behavior
999b0150: 1999-Nov-08 Mon 10:55:00
STATE: 2:High Power With Data Modem

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=12.5 kHz Deviation CARRIER ON TIME

Morton Flom, P. Eng.

PAGE NO.
NAME OF TEST:
999b0147: 1999-Nov-08 Mon 10:47:00
STATE: 2:High Power With Data Modem

0

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=12.5 kHz Deviation CARRIER OFF TIME

PAGE NO. 40 of 53.
NAME OF TEST: Transient Frequency Behavior
999b0148: 1999-Nov-08 Mon 10:48:00
STATE: 2:High Power With Data Modem
0

POWER:
MODULATION:
DESCRIPTION:

HIGH
Ref Gen=12.5 kHz Deviation CARRIER OFF TIME

Morton Flom, P. Eng.

```
PAGE NO. 41 of 53.
NAME OF TEST: Audio Low Pass Filter (Voice Input)
SPECIFICATION: 47 CFR 2.1047(a)
GUIDE:
TEST EQUIPMENT: As per attached page
    MEASUREMENT PROCEDURE
```

1. The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
2. The audio output was connected at the output to the modulated stage.
3. MEASUREMENT RESULTS: ATTACHED

PAGE NO.
42 of 53.
TRANSMITTER TEST SET-UP

TEST A. MODULATION CAPABILITY/DISTORTION
TEST B. AUDIO FREQUENCY RESPONSE
TEST C. HUM AND NOISE LEVEL
TEST D. RESPONSE OF LOW PASS FILTER
TEST E. MODULATION LIMITING

Asset Description
s / n
(as applicable)
(1) Audio Oscillator
i00010 HP 204D 1105A04683
i00017 HP 8903A 2216A01753
i00118 HP 33120A
US36002064
(2) COAXIAL ATTENUATOR
i0 $\overline{0122}$ NARDA 766-10 7802
i00123 NARDA 766-10 7802A
i00113 SIERRA 661A-3D 1059
i00069 BIRD 8329 (30 dB) 10066
(3) MODULATION ANALYZER
io0020 HP 8901A
2105A01087
(4) AUDIO ANALYZER
i00017 HP 8903A
2216A01753

PAGE NO.
NAME OF TEST: Audio Low Pass Filter (Voice Input)
999a0066: 1999-Oct-07 Thu 14:48:00
STATE: 0:General

Ou. 8 mem $1 . \mathrm{cm}_{4}$
Morton Flom, P. Eng.

PAGE NO.	44 of 53.
NAME OF TEST:	Audio Frequency Response
SPECIFICATION:	47 CFR 2.1047 (a)
GUIDE:	ANSI/TIA/EIA-603-1992, Paragraph 2.2.6
TEST EQUIPMENT:	As per previous page

1. The EUT and test equipment were set up as shown on the following page.
2. The audio signal generator was connected to the audio input circuit/microphone of the EUT.
3. The audio signal input was adjusted to obtain 20% modulation at 1 kHz , and this point was taken as the 0 dB reference level.
4. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to 50 kHz .
5. The response in $d B$ relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
6. MEASUREMENT RESULTS:

ATTACHED

PAGE NO.
NAME OF TEST: Audio Frequency Response 999a0062: 1999-Oct-07 Thu 14:38:00
STATE: 0:General

Frequency of Maximum Audio Response, $\mathrm{Hz}=3160$

Additional points:

FREQUENCY, Hz	LEVEL, dB
300	-13.86
20000	-28.26
30000	-28.08
50000	-27.19

Morton Flom, P. Eng.

```
PAGE NO. 46 of 53.
NAME OF TEST: Modulation Limiting
SPECIFICATION: 47 CFR 2.1047(b)
GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.3
TEST EQUIPMENT: As per previous page
    MEASUREMENT PROCEDURE
```

1. The signal generator was connected to the input of the EUT as for "Frequency Response of the Modulating Circuit."
2. The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
3. The input level was varied from 30% modulation ($\pm 1.5 \mathrm{kHz}$ deviation) to at least 20 dB higher than the saturation point.
4. Measurements were performed for both negative and positive modulation and the respective results were recorded.
5. MEASUREMENT RESULTS:

ATTACHED

PAGE NO.
NAME OF TEST: Modulation Limiting
999a0068: 1999-Oct-07 Thu 14:57:00
STATE: 0:General
Positive Peaks:

Negative Peaks:

Morton Flom, P. Eng.

PAGE NO.
NAME OF TEST: Modulation Limiting
999a0070: 1999-Oct-07 Thu 15:04:00
STATE: 0:General
Positive Peaks:

Negative Peaks:

Morton Flom, P. Eng.

PAGE NO.	49 of 53.
NAME OF TEST:	Frequency Stability (Temperature Variation)
SPECIFICATION:	47 CFR 2.1055 (a) (1)
GUIDE:	ANSI/TIA/EIA-603-1992, Paragraph 2.2.2
TEST CONDITIONS:	As Indicated
$\underline{\text { TEST EQUIPMENT: }}$	As per previous page

1. The EUT and test equipment were set up as shown on the following page.
2. With all power removed, the temperature was decreased to $-30^{\circ} \mathrm{C}$ and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
3. With power OFF, the temperature was raised in $10^{\circ} \mathrm{C}$ steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
4. The temperature tests were performed for the worst case.
5. MEASUREMENT RESULTS:

ATTACHED

PAGE NO. 50 of 53.

TRANSMITTER TEST SET-UP

TEST A. OPERATIONAL STABILITY
TEST B. CARRIER FREQUENCY STABILITY
TEST C. OPERATIONAL PERFORMANCE STABILITY
TEST D. HUMIDITY
TEST E. VIBRATION
TEST F. ENVIRONMENTAL TEMPERATURE
TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION

Asset Description s/n
(as applicable)
(1) TEMPERATURE, HUMIDITY, VIBRATION
i00027 Tenny Temp. Chamber 9083-765-234
i00 Weber Humidity Chamber
i00 L.A.B. RVH 18-100
(2) COAXIAL ATTENUATOR
i0 0122 NARDA 766-10
7802
i00123 NARDA 766-10 7802A
i00113 SIERRA 661A-3D 1059
i00069 BIRD $8329(30 \mathrm{~dB}) 10066$
(3) R.F. POWER
i00014 HP 435A POWER METER 1733A05839
i00039 HP 436A POWER METER 2709A26776
i00020 HP 8901A POWER MODE 2105A01087
(4) FREQUENCY COUNTER
i0 0042 HP 5383A 1628A00959
i00019 HP 5334B 2704A00347
i00020 HP 8901A 2105A01087

PAGE NO.
NAME OF TEST: 51 of 53. 999a0071: 1999-Oct-07 Thu 16:35:00
STATE: 0:General

PAGE NO. 52 of 53.

NAME OF TEST: Frequency Stability (Voltage Variation)
SPECIFICATION: 47 CFR 2.1055(b)(1)
GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2
TEST EQUIPMENT: As per previous page
MEASUREMENT PROCEDURE

1. The EUT was placed in a temperature chamber at $25 \pm 5^{\circ} \mathrm{C}$ and connected as for "Frequency Stability - Temperature Variation" test.
2. The power supply voltage to the EUT was varied from 85\% to 115\% of the nominal value measured at the input to the EUT.
3. The variation in frequency was measured for the worst case.

RESULTS: Frequency Stability (Voltage Variation)
999a0375: 1999-Oct-07 Thu 15:14:03
STATE: 0:General

LIMIT, ppm	$=2.5$
LIMIT, Hz	$=1038$
BATTERY END POINT (Voltage)	$=10$

| $\%$ of STV | Voltage | Frequency, MHz | Change, Hz | Change, Ppm |
| ---: | :---: | :---: | ---: | ---: | ---: |
| 85 | 11.56 | 415.100010 | 10 | 0.02 |
| 100 | 13.6 | 415.100000 | 0 | 0.00 |
| 115 | 15.64 | 415.100020 | 20 | 0.05 |
| 74 | 10 | 415.100890 | 890 | 2.14 |

```
PAGE NO. }53\mathrm{ of 53.
NAME OF TEST: Necessary Bandwidth and Emission Bandwidth
SPECIFICATION: 47 CFR 2.202(g)
```

MODULATION = 16K0F3E
NECESSARY BANDWIDTH CALCULATION:
MAXIMUM MODULATION (M), $\mathrm{kHz}=3$
MAXIMUM DEVIATION (D), $\mathrm{kHz}=5$
CONSTANT FACTOR (K) = 1
NECESSARY BANDWIDTH $\left(\mathrm{B}_{\mathrm{N}}\right), \mathrm{kHz}=(2 \mathrm{x} \mathrm{M})+(2 \mathrm{x} \mathrm{D} \times \mathrm{K})$
$=16.0$
MODULATION = 11K0F3E
NECESSARY BANDWIDTH CALCULATION:
MAXIMUM MODULATION (M), $\mathrm{kHz}=3$
MAXIMUM DEVIATION (D), kHz $=2.5$
CONSTANT FACTOR (K) = 1
NECESSARY BANDWIDTH $\left(\mathrm{B}_{\mathrm{N}}\right), \mathrm{kHz} \quad=(2 \mathrm{x} \mathrm{M})+(2 \mathrm{x} \mathrm{D} \mathrm{x} \mathrm{K})$
$=11.0$
MODULATION = 11K2F1D
NECESSARY BANDWIDTH CALCULATION:
MAXIMUM MODULATION $(\mathrm{M}), \mathrm{kHz}=3.2$
MAXIMUM DEVIATION (D), $\mathrm{kHz}=2.4$
CONSTANT FACTOR (K)
NECESSARY BANDWIDTH $\left(\mathrm{B}_{\mathrm{N}}\right), \mathrm{kHz} \quad=(2 \mathrm{x} \mathrm{M})+(2 \mathrm{x} \mathrm{D} \mathrm{x} \mathrm{K})$
$=1$
$=11.2$
MODULATION $=20 \mathrm{KOF} 1 \mathrm{D}$
NECESSARY BANDWIDTH CALCULATION:
MAXIMUM MODULATION $(\mathrm{M}), \mathrm{kHz}=6.4$
MAXIMUM DEVIATION (D), kHz $=3.6$
CONSTANT FACTOR (K) $=1$
NECESSARY BANDWIDTH $\left(\mathrm{B}_{\mathrm{N}}\right)$, $\mathrm{kHz} \quad=(2 \mathrm{x} \mathrm{M})+(2 \mathrm{x} \mathrm{D} \mathrm{x} \mathrm{K})$
$=20.0$

Morton Flom, P. Eng.

TESTIMONIAL

AND
STATEMENT OF CERTIFICATION

THIS IS TO CERTIFY THAT:

1. THAT the application was prepared either by, or under the direct supervision of, the undersigned.
2. THAT the technical data supplied with the application was taken under my direction and supervision.
3. THAT the data was obtained on representative units, randomly selected.
4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Morton Flom, P. Eng.

