

M. Flom Associates, Inc. - Global Compliance Center

M. Flom Associates, Inc. - Global Compilance Center 3356 North San Marcos Flace, Suite 107, Chandler, Arizona 85225-7176 www.mflom.com general@mflom.com (480) 926-3100, FAX: 926-3598

Date:

May 17, 1999

Federal Communications Commission EQUIPMENT APPROVAL SERVICES P.O. Box 358315 Pittsburgh, PA 15251-5315

Attention:

Authorization & Evaluation Division

Applicant:

Kenwood Communications Corporation

Equipment: FCC ID:

TK-880H-1 ALH24593210

FCC Rules:

22**, 74,** 90 **& 95**

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

Filing fees are attached.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Sincerely yours,

Morton Flom, P. Eng.

enclosure(s) CERTIFIED MAIL, R.R.R.

cc: Applicant

MF/cvr

LIST OF EXHIBITS (FCC CERTIFICATION (TRANSMITTERS) - REVISED 9/28/98)

APPLICANT:

Kenwood Communications Corporation

FCC ID:

ALH24593210

BY APPLICANT:

- 1. LETTER OF AUTHORIZATION
- 2. IDENTIFICATION DRAWINGS, 2.1033(c)(11)

 - x LABEL LOCATION OF LABEL
 - x COMPLIANCE STATEMENT
 - x LOCATION OF COMPLIANCE STATEMENT
- 3. PHOTOGRAPHS, 2.1033(c)(12)
- 4. DOCUMENTATION: 2.1033(c)

(3)	USER MANUAL	Instruction
(9)	TUNE UP INFO	2 pages
(10)	SCHEMATIC DIAGRAM	3
(10)	CIRCUIT DESCRIPTION	4 pages

- att'd 5. PART 90.203(e) & (g) ATTESTATION
- ONE 6. BLOCK DIAGRAM
- 3 pages 7. LIST OF ACTIVE DEVICES

BY M.F.A. INC.

- A. TESTIMONIAL & STATEMENT OF CERTIFICATION
- B. STATEMENT OF QUALIFICATIONS

KENWOOD COMMUNICATIONS CORPORATION

2201 E. Dominguez St. Long Beach, CA 90810 Tetephone: (310) 639-4200 Mailing Address: P.O. Box 22745 Long Beach, CA 90801-5745

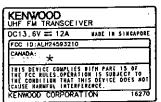
June 29, 1998

Federal Communications Commission Authorization & Evaluation Division 7435 Oakland Mills Road Columbia, MD 21046

Gentlemen:

This letter will authorize the appointment of MORTON FLOM, P. Eng, and/or M. Flom Associates, Inc. to act as our Agent in all FCC matters.

This appointment is effective until otherwise notified by us.


This is to advise that we are in full compliance with the Anti-Drug Abuse Act. The application is not subject to a denial of federal benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1988, 21 USC 8.62, and no party to the applications is subject to a denial of federal benefits pursuant to that section.

Sincerely,

Kenwood Communications Corporation

Joel E. Berger

Research & Development Department

Model: TK-880H-1

SCALE(1:1)

KENWOOD UHF FM TRANSCEIVER	
DC13.6V == 12A MADE IN ST	NGAPORE
FCC ID: ALH24593210	
CANADA: Model: TK-880H-1	
THIS DEVICE COMPLIES WITH PART 1 THE FCC RULES.OPERATION IS SUBJETHE CONDITION THAT THIS DEVICE DECAUSE HARMFUL INTERFERENCE.	CT TO
KENWOOD CORPORATION	16270

SCALE(2:1)

PESIGN Y.SUZUKI

DATE1999-04-27

TK-880H(K

KENWOOD COMMUNICATIONS CORPORATION 2201 E. Dominguez St. Long Beach, CA 90310 Telephone: (310) 639-4200 Mailing Address: P.O. Box 22745 Long Beach, CA 90801-5745

May 28, 1996

Federal Communications Commission Authorization & Evaluation Division 7435 Oakland Mills Road Columbia, MD 21046

Gentlemen:

Reference:

FCC ID: ALH24593210

(Model TK-880H-1)

This equipment meets the requirements of FCC Rules, Parts 90.203(e) and (g), as applicable.

Programming of this product's transmit frequencies can be performed ONLY by the manufacturer or by service or maintenance personnel. The operator cannot program transmit frequencies using the equipment's external operation controls.

Sincerely,

Kenwood Communications Corporation

ਹੋਰਵੀ E. Berger

R & D Assistance Manager

Sub-part 2.1033(c):

EQUIPMENT IDENTIFICATION

FCC ID: ALH24593210

NAMEPLATE DRAWING

ATTACHED, EXHIBIT 1.

LOCATION

AS PER LABEL DRAWING(S)

DATE OF REPORT

May 17, 1999

SUPERVISED BY:

Morton Flom, P. Eng.

THE APPLICANT HAS BEEN CAUTIONED AS TO THE FOLLOWING:

15.21 INFORMATION TO USER.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) SPECIAL ACCESSORIES.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

TABLE OF CONTENTS

RULE	DESCRIPTION	PAGE
	Test Report	1
2.1033(c)	General Information Required	2
2.1033©(14)	Rule Summary	5
	Standard Test Conditions and Engineering Practices	s 6
2.1046(a)	Carrier Output Power (Conducted)	7
2.1051	Unwanted Emissions (Transmitter Conducted)	9
2.1053(a)	Field Strength of Spurious Radiation	13
2.1049(c)(1)	Emission Masks (Occupied Bandwidth)	16
90.214	Transient Frequency Behavior	23
2.1047(a)	Audio Low Pass Filter (Voice Input)	29
2.1047(a)	Audio Frequency Response	32
2.1047(b)	Modulation Limiting	34
2.1055(a)(1)	Frequency Stability (Temperature Variation)	37
2.1055(b)(1)	Frequency Stability (Voltage Variation)	40
2 202(a)	Necessary Bandwidth and Emission Bandwidth	41

1 of 41. PAGE NO.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

TEST REPORT a)

M. Flom Associates, Inc. b) Laboratory: 3356 N. San Marcos Place, Suite 107 (FCC: 31040/SIT)

(Canada: IC 2044) Chandler, AZ 85224

d9950024 c) Report Number:

Kenwood Communications Corporation d) Client:

P.O. Box 22745

Long Beach, CA 90801-5745

e) Identification: TK-880H-1

FCC ID: ALH24593210

UHF FM Mobile Transceiver Description:

Not required unless specified in individual f) EUT Condition:

tests.

May 17, 1999 g) Report Date: May 10, 1999 EUT Received:

As indicated in individual tests. h, j, k):

i) Sampling method: No sampling procedure used.

In accordance with MFA internal quality manual. 1) Uncertainty:

m) Supervised by:

Morton Flom, P. Eng.

Mi Oher bient

The results presented in this report relate n) Results:

only to the item tested.

This report must not be reproduced, except in o) Reproduction:

full, without written permission from this

laboratory.

2 of 41.

LIST OF GENERAL INFORMATION REQUIRED FOR CERTIFICATION

IN ACCORDANCE WITH FCC RULES AND REGULATIONS, VOLUME II, PART 2 AND TO

22, 74 90 & 95

Sub-part 2.1033

(c) (1): NAME AND ADDRESS OF APPLICANT:

Kenwood Communications Corporation 2201 E. Dominguez St P.O. Box 22745 Long Beach, CA 90801-5745

MANUFACTURER:

Kenwood Electronics Technologies Pte. Ltd. 1 Ang Mo Kio Street 63 Singapore 569110

(c)(2): FCC ID:

ALH24593210

MODEL NO:

TK-880H-1

(c)(3): INSTRUCTION MANUAL(S):

PLEASE SEE ATTACHED EXHIBITS

(c) (4): TYPE OF EMISSION: 16K0F3E, 11K0F3E

(c)(5): FREQUENCY RANGE, MHz:

450 to **4**90

POWER RATING, Watts: 10 to 40 (c)(6):

Switchable x Variable N/A

⊕(7):MAXIMUM POWER RATING, Watts: 500 ERP

3 of 41.

M. Flom Associates, Inc. is accredited by the American Association for Laboratory Association (A2LA) as shown in the scope below.

THE AMERICAN ASSOCIATION FOR LABORATORY **ACCREDITATION**

ACCREDITED LABORATORY

A2LA has accredited

M. FLOM ASSOCIATES, INC. Chandler, AZ

for technical competence in the field of

Electrical (EMC) Testing

The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC Guide 25-1990 "General Requirements for the Competence of Calibration and Testing Laboratories" (equivalent to relevant requirements of the ISO 9000 senes of standards) and any additional program requirements in the identified field of testing

Presented this 24th day of November, 1998.

For the Accreditation Council Certificate Number 1008.01 Velid to December 31, 2000

For tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical (EMC) Scope of Accreditation

American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO ISOMEC GUIDE 25-1990 AND EN 45001

M. PLOM ASSOCIATES, INC Electronic Terting Laboratory 3356 North San Marcos Place, Soite 107 Chandler, AZ 15224-1571 Marton Floss Phone: 602 926 3100

ELECTRICAL (EMC)

Valid to: December 31, 2000

Tats

SET

RP Emirane

Certificats Number: 1008-01

In recognition of the ruccessful completion of the AZLA evaluation process, accreditation is granted to that taboratory to perform the following electromagnetic community tests:

PCC Part 15 (Subparts 8 and C) using ANSI C63.4-1992; CISFR 11; CISFR 13; CISFR 14; CISFR 22; EN 55011; EN 55013; EN 5501; EN 5502; PS 5081-1; EN 50081-2; FCC Part 18; ICES 903; ASNIZS 1044; ASNIZS 1053; ASNIZS 3541; ASNIZS 4031.1

EN 50082-1; EN 50082-2; AS/NZS 4251.1 EN 61000-4-3; ENV 50140; ENV 50204; TEC 1000-4-3; TEC 801-3

Standard(s)

Radiated Susceptibility

EN 61000-4-2; IEC 1000-4-2; IEC 801-2 EN 61000-4-4; (EC 1000-4-4; IEC 801-4

Surge

EN 61000-4-5; ENV 50142; IEC 1000-4-5; IEC 801-5

2, 21, 22, 23, 24, 74, 80, 87, 90, 95, 97 47 CFR (FCC)

Peter Alaye

5301 Buckeystown Pike, Sulte 350 • Frederick, MD 21704-8307 « Phane: 301 644 3200 » Fax: 301 662 2974 😥

"This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this report have been determined in accordance with the laboratory's terms of accreditation unless stated otherwise in the report."

Should this report contain any data for tests for which we are not accredited, or which have been undertaken by a subcontractor that is not A2LA accredited, such data would not covered by this laboratory's A2LA accreditation.

4 of 41.

Subpart 2.1033 (continued)
③(8):VOLTAGES & CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE,
INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

COLLECTOR CURRENT, A = per manual COLLECTOR VOLTAGE, Vdc = per manual SUPPLY VOLTAGE, Vdc = 13.6

©(9):TUNE-UP PROCEDURE:

PLEASE SEE ATTACHED EXHIBITS

©(10): CIRCUIT DIAGRAM/CIRCUIT DESCRIPTION:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

PLEASE SEE ATTACHED EXHIBITS

©(11): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS

©(12): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS

©(13): DIGITAL MODULATION DESCRIPTION:

ATTACHED EXHIBITS

x N/A

©(14): TEST AND MEASUREMENT DATA:

FOLLOWS

5 of 41.

Sub-part 2.1033@(14):

TEST AND MEASUREMENT DATA

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033©, 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts: 21 - Domestic Public Fixed Radio Services x 22 - Public Mobile Services 22 Subpart H - Cellular Radiotelephone Service 22.901(d) - Alternative technologies and auxiliary services 23 - International Fixed Public Radiocommunication services 24 - Personal Communications Services \overline{x} 74 Subpart H - Low Power Auxiliary Stations 80 - Stations in the Maritime Services 80 Subpart E - General Technical Standards 80 Subpart F - Equipment Authorization for Compulsory Ships 80 Subpart K - Private Coast Stations and Marine Utility ____ Stations 80 Subpart S - Compulsory Radiotelephone Installations for ___ Small Passenger Boats 80 Subpart T - Radiotelephone Installation Required for __ Vessels on the Great Lakes 80 Subpart U - Radiotelephone Installations Required by the __Bridge-to-Bridge Act 80 Subpart V - Emergency Position Indicating Radiobeacons __(EPIRB'S) 80 Subpart W - Global Maritime Distress and Safety System __ (GMDSS) 80 Subpart X - Voluntary Radio Installations 87 - Aviation Services 90 - Private Land Mobile Radio Services 94 - Private Operational-Fixed Microwave Service x 95 Subpart A - General Mobile Radio Service (GMRS) 95 Subpart C - Radio Control (R/C) Radio Service 95 Subpart D - Citizens Band (CB) Radio Service 95 Subpart E - Family Radio Service 95 Subpart F - Interactive Video and Data Service (IVDS)

____ 101 - Fixed Microwave Services

6 of 41.

STANDARD TEST CONDITIONS and ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40° C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

7 of 41.

NAME OF TEST: Carrier Output Power (Conducted)

SPECIFICATION: 47 CFR 2.1046(a)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.1

TEST EQUIPMENT: As per attached page

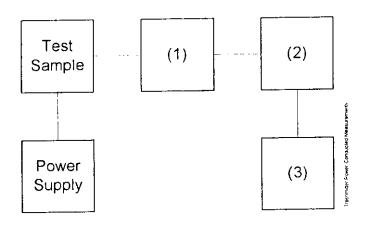
MEASUREMENT PROCEDURE

- The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an R. F. Power Meter.
- 2. Measurement accuracy is $\pm 3\%$.

MEASUREMENT RESULTS (Worst case)

FREQUENCY OF CARRIER, MHz = 470.1, 450.1, 489.9

POWER SETTING	R. F. POWER, WATTS
High	40
Low	10


SUPERVISED BY:

Morton Flom, P. Eng.

8 of 41.

TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R. F. POWER OUTPUT TEST 2: FREQUENCY STABILITY

Asset Description	s/n
(1) COAXIAL ATTENUATOR i00122 Narda 766-10 i00123 Narda 766-10	7802 7802 A
i00069 Bird 8329 (30 dB	1006
x i00113 Sierra 661A-3D	1059
(2) POWER METERS i00014 HP 435A x i00039 HP 436A x i00020 HP 8901A POWER M	1733A05836 2709A26776 MODE 2105A01087
(3) FREQUENCY COUNTER i00042 HP 5383A x i00019 HP 5334B	1628A00959 2704A00347
x i00020 HP 8901A FREQUEN	ICY MODE 2105A01087

9 of 41.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)

SPECIFICATION: 47 CFR 2.1051

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.13

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

The emissions were measured for the worst case as follows:

(a): within a band of frequencies defined by the carrier

frequency plus and minus one channel.

(b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.

The magnitude of spurious emissions that are attenuated more 2. than 20 dB below the permissible value need not be specified.

MEASUREMENT RESULTS: 3.

ATTACHED FOR WORST CASE

FREQUENCY OF CARRIER, MHz = 470.1, 450.1, 489.9

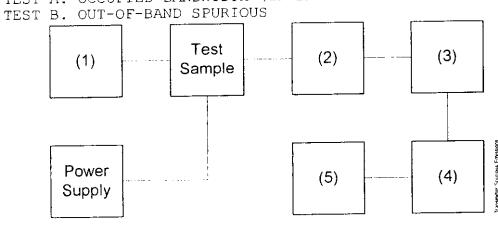
SPECTRUM SEARCHED, GHz = 0 to 10 \times Fc

MAXIMUM RESPONSE, Hz = 3160

ALL OTHER EMISSIONS = ≥ 20 dB BELOW LIMIT

LIMIT(S), dBc

 $-(43+10\times LOG\ P) = -53\ (10\ Watts)$ $-(43+10\times LOG\ P) = -59\ (40\ Watts)$


SUPERVISED BY:

Morton Flom, P. Eng.

10 of 41.

TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)

Asset	Description	s/n
i00010	HP 8903A	1105A04683 2216A01753 1432A11250
i00122 i00123 x i00069	AL ATTENUATOR Narda 766-10 Narda 766-10 Bird 8329 (30 dB) Sierra 661A-3D	7802 7802 A 1006 1059
$\frac{x}{x}$ i00126 $\frac{100125}{100125}$	RS; NOTCH, HP, LP, BP Eagle TNF-1 Eagle TNF-1 Eagle TNF-1	100-250 50-60 250-850
x i00048	UM ANALYZER HP 8566B HP 8563E	2511A01467 3213A00104
i00030	HP 1741A HP 54502A Tektronix 935	2251A09356 2927A00209 1935-B011343

PAGE NO. 11 of 41.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted) 99950102: 1999-May-17 Mon 07:38:00

STATE: 1:Low Power

EDECHENCY TIMED	FREQUENCY	LEVEL, dBm	LEVEL, dBc	MARGIN, dB
FREQUENCY TUNED, MHz	EMISSION, MHz	<i></i>	,	
470.050000	940.207000	-24.5	-64.5	-11.5
470.050000	1410.556000	-41.4	-81.4	-28.4
470.050000	1879.741000	-40.6	-80.6	-27.6
470.050000	2350.367000	-39.8	-79.8	-26.8
470.050000	2820.513000	-41.5	-81.5	-28.5
470.050000	3290.365000	-42.1	-82.1	-29.1
470.050000	3760.421000	-42.3	-82.3	-29.3
470.050000	4230.079000	-40.8	-80.8	-27.8
470.050000	4700.521000	-42.4	-82.4	-29.4
470.050000	5170.788000	-42	-82	-29
470.050000	5640.412000	-40.1	-80.1	-27.1
470.050000	6110.963000	-36.6	-76.6	-23.6
470.050000	6580.966000	-36	-76	-23
470.050000	7050.905000	-37	-77	-24

PAGE NO. 12 of 41.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted) 9950101: 1999-May-17 Mon 07:30:00

STATE: 2:High Power

FREQUENCY TUNED,	FREQUENCY	LEVEL, dBm	LEVEL, dBc	MARGIN, dB
MHz	EMISSION, MHz			
470.050000	940.290000	-20.4	-66.9	-7.4
470.050000	1410.591000	-30.4	-76.9	-17.4
470.050000	1880.551000	-28.9	-75.4	-15.9
470.050000	2349.861000	-29.3	-75.8	-16.3
470.050000	2820.680000	-31.2	-77.7	-18.2
470.050000	3290.734000	-31	-77.5	-18
470.050000	3760.072000	-31.6	-78.1	-18.6
470.050000	4230.154000	-31.9	-78.4	-18.9
470.050000	4700.062000	-32.5	-79	-19.5
470.050000	5170.613000	-31.5	-78	-18.5
470.050000	5640.365000	-32	-78.5	-19
470.050000	6110.646000	-25.7	-72.2	-12.7
470.050000	6580.930000	-25.3	-71.8	-12.3
470.050000	7050.746000	-26.4	-72.9	-13.4

13 of 41.

NAME OF TEST:

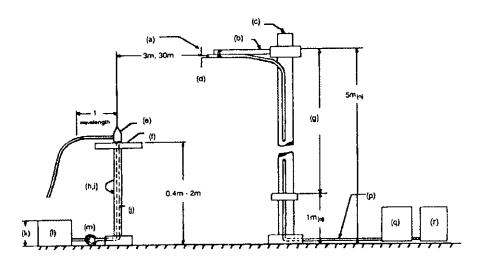
Field Strength of Spurious Radiation

SPECIFICATION: 47 CFR 2.1053(a)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.12

TEST EQUIPMENT:


As per attached page

MEASUREMENT PROCEDURE

- A description of the measurement facilities was filed with the 1. FCC and was found to be in compliance with the requirements of Section 2.948, by letter from the FCC dated March 3, 1997, FILE 31040/SIT. All pertinent changes will be reported to the Commission by up-date prior to March 2000.
- At first, in order to locate all spurious frequencies and 2. approximate amplitudes, and to determine proper equipment functioning, the test sample was set up at a distance of three meters from the test instrument. Valid spurious signals were determined by switching the power on and off.
- In the field, the test sample was placed on a wooden turntable 3. above ground at three (or thirty) meters away from the search antenna. Excess power leads were coiled near the power supply.
 - The cables were oriented in order to obtain the maximum response. At each emission frequency, the turntable was rotated and the search antennas were raised and lowered vertically.
- The emission was observed with both a vertically polarized and 4. a horizontally polarized search antenna and the worst case was used.
- The field strength of each emission within 20 dB of the limit 6. was recorded and corrected with the appropriate cable and transducer factors.
- The worst case for all channels is shown. 7.
- 8. Measurement results: ATTACHED FOR WORST CASE

14 of 41.

RADIATED TEST SETUP

NOTES:

- (a) Search Antenna Rotatable on boom
- (b) Non-metallic boom
- (c) Non-metallic mast
- (d) Adjustable horizontally
- (e) Equipment Under Test
- (f) Turntable
- (g) Boom adjustable in height.
- (h) External control cables routed horizontally at least one wavelength.
- (i) Rotatable

- (j)Cables routed through hollow turntable center
- (k) 30 cm or less
- (1) External power source
- (m) 10 cm diameter coil of excess cable
- (n) 25 cm (V), 1 m-7 m (V, H)
- (o) 25 cm from bottom end of 'V', 1m normally
- (p) Calibrated Cable at least 10m
 in length
- (q) Amplifier (optional)
- (r) Spectrum Analyzer

Asset	Description	s/n	Cycle	Last Cal
TRANSDUCER		2336 0219 2336 001500 9208-3925 2076	12 mo. 12 mo. 12 mo. 12 mo. 12 mo. 12 mo.	Oct-98 Oct-98 Oct-98
AMPLIFIER 100028	HP 8449A	2749A00121	12 mo.	Mar-98
SPECTRUM / i00029 x i00033 i00048	ANALYZER HP 8563E HP 85462A HP 8566B	3213A00104 3625A00357 2511AD1467	12 mo. 12 mo. 6 mo.	Aug-98 Dec-98 Dec-98

15 of 41.

NAME OF TEST: Field Strength of Spurious Radiation

ALL OTHER EMISSIONS = \geq 20 db below limit

EMISSION, MHZ/HARMONIC	SPURIOUS L	
	Low	High
2nd to 10th	<-60	<-65

SUPERVISED BY:

Morton Flom, P. Eng.

The second secon

PAGE NO.

16 of 41.

NAME OF TEST:

Emission Masks (Occupied Bandwidth)

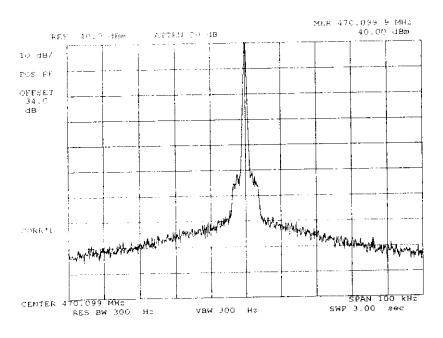
SPECIFICATION: 47 CFR 2.1049(c)(1)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE


- The EUT and test equipment were set up as shown on the 1. following page, with the Spectrum Analyzer connected.
- For EUTs supporting audio modulation, the audio signal 2. generator was adjusted to the frequency of maximum response and with output level set for ± 2.5 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- For EUTs supporting digital modulation, the digital modulation 3. mode was operated to its maximum extent.
- The Occupied Bandwidth was measured with the Spectrum Analyzer 4. controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED

17 of 41.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

q9950096: 1999-May-17 Mon 07:17:00

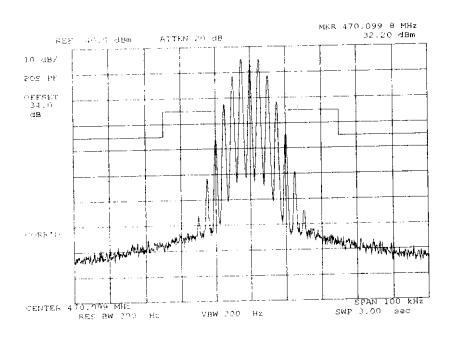
STATE: 1:Low Power

POWER: MODULATION:

LOW NONE

SUPERVISED BY:

Morton Flom, P. Eng.


au Duck P. Eug

18 of 41.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9950098: 1999-May-17 Mon 07:22:00

STATE: 1:Low Power

POWER: MODULATION:

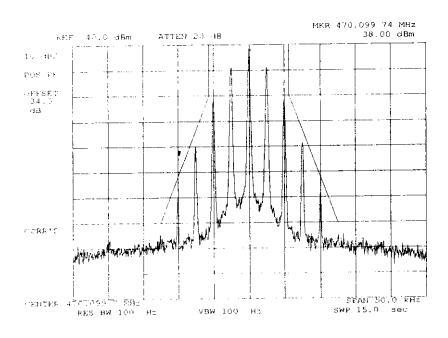
LOW

VOICE: 2500 Hz SINE WAVE MASK: B, VHF/UHF 25kHz,

w/LPF

SUPERVISED BY:

Morton Flom, P. Eng.


M. Thur P. Eug

19 of 41.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9950100: 1999-May-17 Mon 07:27:00

STATE: 1:Low Power

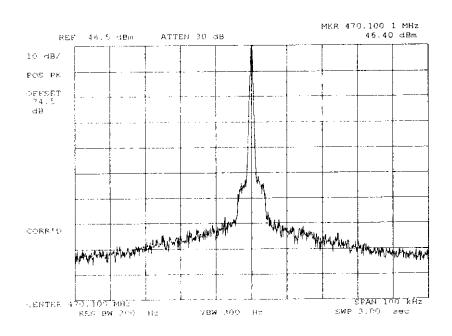
POWER: MODULATION:

LOW

VOICE: 2500 Hz SINE WAVE

MASK: D, VHF/UHF 12.5kHz BW

SUPERVISED BY:


Morton Flom, P. Eng.

20 of 41.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

q9950095: 1999-May-17 Mon 07:14:00

STATE: 2: High Power

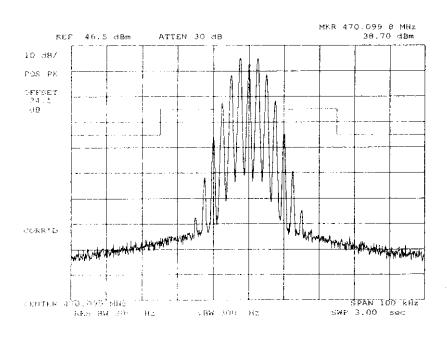
POWER: MODULATION:

HIGH NONE

SUPERVISED BY:

Morton Flom, P. Eng.

au. Duck P. Eng


21 of 41.

NAME OF TEST:

Emission Masks (Occupied Bandwidth)

g9950097: 1999-May-17 Mon 07:20:00

STATE: 2:High Power

POWER: MODULATION:

HIGH

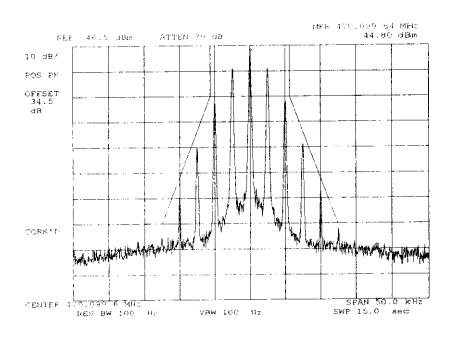
VOICE: 2500 Hz SINE WAVE

MASK: B, VHF/UHF 25kHz,

w/LPF

SUPERVISED BY:

Morton Flom, P. Eng.


M. There P. Eur

22 of 41.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

q9950099: 1999-May-17 Mon 07:25:00

STATE: 2: High Power

POWER:
MODULATION:

HIGH

VOICE: 2500 Hz SINE WAVE

MASK: D, VHF/UHF 12.5kHz BW

SUPERVISED BY:

Morton Flom, P. Eng.

23 of 41.

NAME OF TEST: Transient Frequency Behavior

SPECIFICATION:

47 CFR 90.214

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.19

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

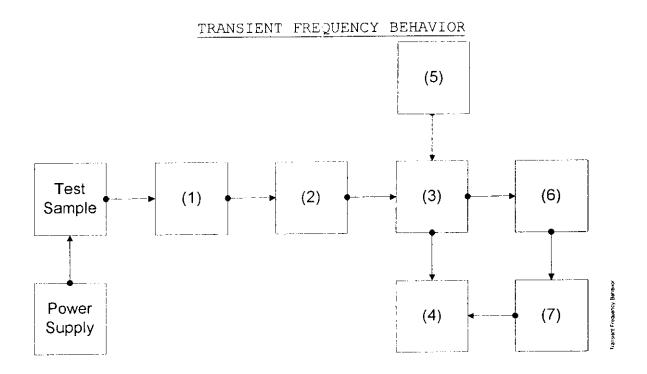
- The EUT was setup as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a guide.
- The transmitter was turned on. 2.
- Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded as step f.
- The transmitter was turned off. 4.
- 5. An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step f, as measured at the output of the combiner. This level was then fixed for the remainder of the test and is recorded at step h.
- The oscilloscope was setup using TIA/EIA-603 steps j and k as a quide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).
- The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as step 1.
- The carrier on-time as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The carrier off-time as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

LEVELS MEASURED:

step f, dBm step h, dBm

= -7.3 = -41.2

step 1, dBm

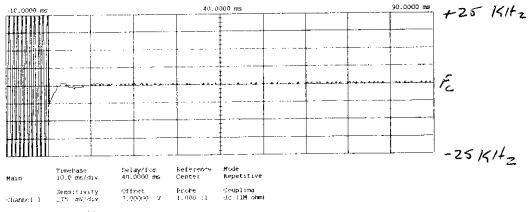

= 11.3

SUPERVISED BY:

Morton Flom, P. Eng.

M. Shur P. Eng

24 of 41.



Asset Description	s/n
(1) ATTENUATOR (Removed after 1st x i00112 Philco 30 dB	step) 989
(2) <u>ATTENUATOR</u> i00112 Philco 30 dB	989
i00172 Bird 30 dB	989
x i00122 Narda 10 dB	7802
i00123 Narda 10 dB	7802A
i00110 Kay Variable	145-387
(3) COMBINER	
x 100154 4 x 25 Ω COMBINER	154
(4) CRYSTAL DETECTOR x i00159 HP 8470B	1822A10054
(5) RF SIGNAL GENERATOR	
i00018 HP 8656A	2228A03472
i00031 HP 8656A	2402A06180
x i00067 HP 8920A	3345U01242
(6) MODULATION ANALYZER	
x 100020 HP 8901A	2105A01087
(7) <u>SCOPE</u> <u>x</u> i00030 HP 54502A	2927A00209

25 of 41.

NAME OF TEST: Transient Frequency Behavior g9950103: 1999-May-17 Mon 08:03:00

STATE: 0:General

Tringet mode : Bdge On Negative Edge Of Chand Tringer loved chand = -24,000 mW upday reject ON) Huldoff = 40,000 mW

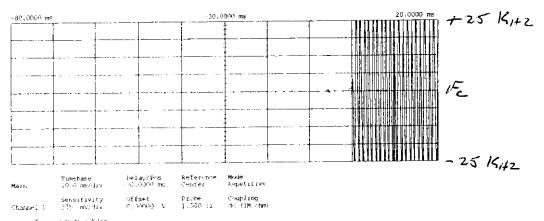
POWER: MODULATION: DESCRIPTION: n/a

Ref Gen=25 kHz Deviation

CARRIER ON TIME

SUPERVISED BY:

OM. Ohur P. Eng Morton Flom, P. Eng.


26 of 41.

NAME OF TEST:

Transient Frequency Behavior

q9950104: 1999-May-17 Mon 08:04:00

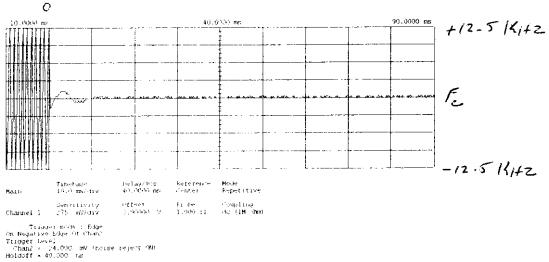
STATE: 0:General

Transfer meds : Edge On Fosticive Enge of Chang Trigger Level Chang = 335,000 mV (noise lengt ON) Holdoff : 40,000 mV

POWER: MODULATION: DESCRIPTION: n/a Ref Gen=25 kHz Deviation CARRIER OFF TIME

SUPERVISED BY:

Morton Flom, P. Eng.


M. Duck P. Eng

27 of 41.

NAME OF TEST: Transient Frequency Behavior

g9950105: 1999-May-17 Mon 08:07:00

STATE: 0:General

POWER: MODULATION:

DESCRIPTION:

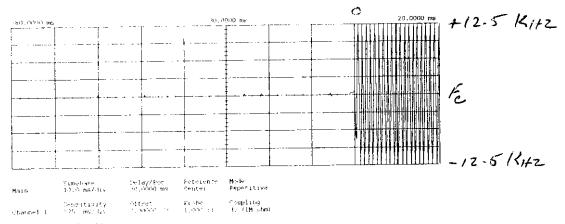
n/a

Ref Gen=12.5 kHz Deviation

CARRIER ON TIME

SUPERVISED BY:

Morton Flom, P. Eng.


M. Thuch P. Eng

28 of 41.

NAME OF TEST: Transient Frequency Behavior

g9950106: 1999-May-17 Mon 08:08:00

STATE: 0:General

Tringer mode : EAge On Positive EAGE Of Than Tripger Lovel (han) - positive par insise to be CAL Holderf + 40,000 mg

POWER: MODULATION:

DESCRIPTION:

n/a

Ref Gen=12.5 kHz Deviation

CARRIER OFF TIME

SUPERVISED BY:

Morton Flom, P. Eng.

29 of 41.

NAME OF TEST: Audio Low Pass Filter (Voice Input)

SPECIFICATION:

47 CFR 2.1047(a)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.15

TEST EQUIPMENT:

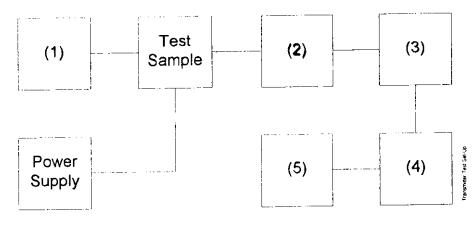
As per attached page

MEASUREMENT PROCEDURE

- The EUT and test equipment were set up such that the audio 1. input was connected at the input to the modulation limiter, and the modulated stage.
- The audio output was connected at the output to the modulated 2. stage.
- MEASUREMENT RESULTS: ATTACHED 3.

30 of 41.

TRANSMITTER TEST SET-UP


TEST A. MODULATION CAPABILITY/DISTORTION

TEST B. AUDIO FREQUENCY RESPONSE

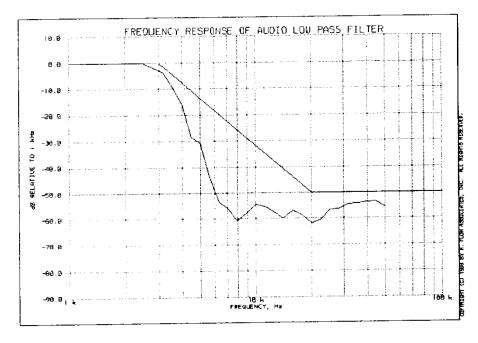
TEST C. HUM AND NOISE LEVEL

TEST D. RESPONSE OF LOW PASS FILTER

TEST E. MODULATION LIMITING

Asset Description

s/n


(1) LINE IMPEDANCE STABILIZATION	NETWORK
i00010 HP 204D	1105A04683
x i00017 HP 8903A	2216A01753
x i00118 HP 33120A	US36002064
(2) COAXIAL ATTENUATOR	5 000
i00122 NARDA 766-10	7802
100123 NARDA 766-10	7802A
x i00113 SIERRA 661A-3D	1059
i00069 BIRD 8329 (30 dB)	10066
(3) MODULATION ANALYZER x 100020 HP 8901A	2105A01087
(4) AUDIO ANALYZER x i00017 HP 8903A	2216A01753
(5) <u>SCOPE</u> i00058 HP 1741A i00071 Tektronix 935	2215A09356 1935-B011343

31 of 41.

NAME OF TEST: Audio Low Pass Filter (Voice Input)

g9950083: 1999-May-17 Mon 08:17:00

STATE: 0:General

SUPERVISED BY:

Morton Flom, P. Eng.

32 of 41.

NAME OF TEST:

Audio Frequency Response

SPECIFICATION:

47 CFR 2.1047(a)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.6

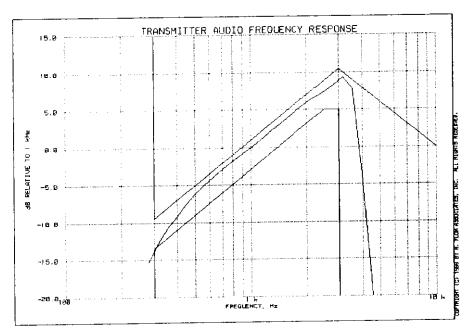
TEST EQUIPMENT:

As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up as shown on the following page.
- The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- 3. The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- 4. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to $50\ \mathrm{kHz}$.
- 5. The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
- 6. MEASUREMENT RESULTS:

ATTACHED


33 of 41.

NAME OF TEST:

Audio Frequency Response

g9950084: 1999-May-17 Mon 08:25:00

STATE: 0:General

Additional points:

dB

SUPERVISED BY:

Morton Flom, P. Eng.

M. Duck P. Eug

34 of 41.

NAME OF TEST: Modulation Limiting

SPECIFICATION:

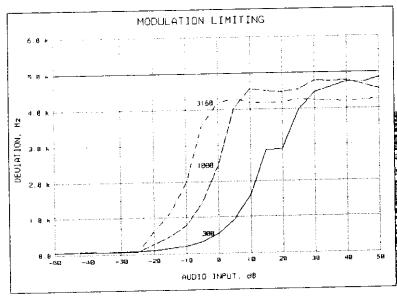
47 CFR 2.1047(b)

GUIDE:

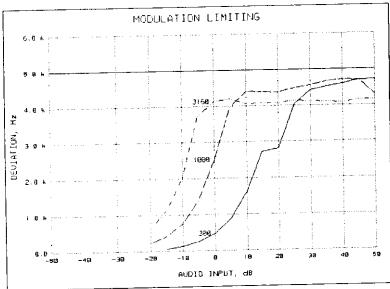
ANSI/TIA/EIA-603-1992, Paragraph 2.2.3

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE


- The signal generator was connected to the input of the EUT as 1. for "Frequency Response of the Modulating Circuit."
- The modulation response was measured for each of three 2. frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- The input level was varied from 30% modulation ($\pm 1.5~\mathrm{kHz}$ 3. deviation) to at least 20 dB higher than the saturation point.
- Measurements were performed for both negative and positive 4. modulation and the respective results were recorded.
- MEASUREMENT RESULTS: ATTACHED 5.

35 of 41.


Modulation Limiting NAME OF TEST: Modulation Limits 99950086: 1999-May-17 Mon 08:31:00

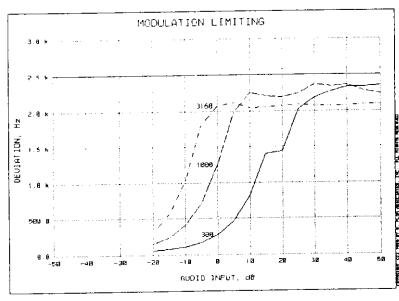
STATE: 0:General

Positive Peaks:

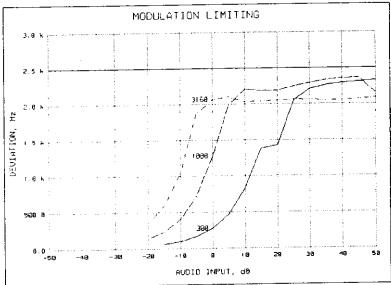
Negative Peaks:

SUPERVISED BY:

Morton Flom, P. Eng.


36 of 41.

NAME OF TEST: Modulation Limiting


g9950087: 1999-May-17 Mon 08:36:00

STATE: 0:General

Positive Peaks:

Negative Peaks:

SUPERVISED BY:

Morton Flom, P. Eng.

M. Duck P. Eng

37 of 41.

NAME OF TEST:

Frequency Stability (Temperature Variation)

SPECIFICATION:

47 CFR 2.1055(a)(1)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST CONDITIONS: As Indicated

TEST EQUIPMENT:

As per previous page

MEASUREMENT PROCEDURE

- The EUT and test equipment were set up as shown on the 1 _ following page.
- With all power removed, the temperature was decreased to -30°C 2. and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- With power OFF, the temperature was raised in 10°C steps. The 3. sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- The temperature tests were performed for the worst case. 4.
- MEASUREMENT RESULTS: 5.

ATTACHED

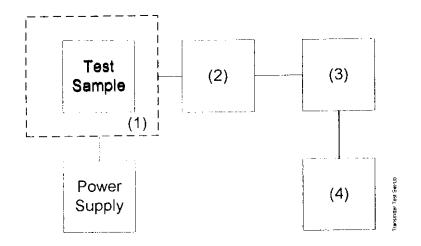
38 of 41.

TRANSMITTER TEST SET-UP

TEST A. OPERATIONAL STABILITY

TEST B. CARRIER FREQUENCY STABILITY

TEST C. OPERATIONAL PERFORMANCE STABILITY

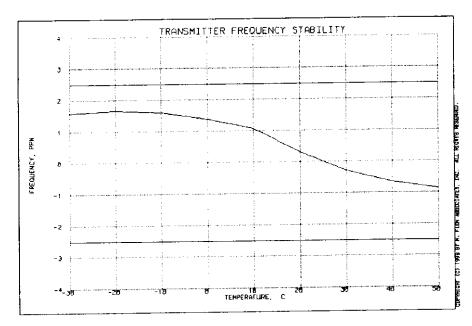

TEST D. HUMIDITY

TEST E. VIBRATION

TEST F. ENVIRONMENTAL TEMPERATURE

TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION

TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION


Asset	Description	s/n
x i00027	RATURE, HUMIDITY, VIBRATION Tenny Temp. Chamber Weber Humidity Chamber L.A.B. RVH 18-100	<u>ON</u> 9083-765-234
i00122 i00123 x i00113	Dillian oom op	7802 7802A 1059 10066
x i00039 x i00020	HP 435A POWER METER HP 436A POWER METER HP 8901A POWER MODE	1733A05839 2709A26776 2105A01087
i00042 x i00019	JENCY COUNTER HP 5383A HP 5334B HP 8901A	1628A00959 2704A00347 2105A01087

39 of 41.

NAME OF TEST: Frequency Stability (Temperature Variation)

g9950079: 1999-May-14 Fri 08:49:00

STATE: 0:General

SUPERVISED BY:

Morton Flom, P. Eng.

Qui Duce P. Eng

40 of 41.

NAME OF TEST:

Frequency Stability (Voltage Variation)

SPECIFICATION:

47 CFR 2.1055(b)(1)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST EQUIPMENT:

As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT was placed in a temperature chamber at $25\pm5^{\circ}\text{C}$ and connected as for "Frequency Stability Temperature Variation" test.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

RESULTS:

Frequency Stability (Voltage Variation)

g9950107: 1999-May-17 Mon 08:46:55

STATE: 0:General

LIMIT, ppm = 2.5 LIMIT, Hz = 1175 BATTERY END POINT (Voltage) = 9.7

S of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
9 OT DIA"			-10	-0.02
0 =	11.56	470.099990	-10	0.02
8.5	11.50		0	0.00
100	13.6	470.100000	U	
100	13.0		0	0.00
115	15.64	470.100000	U	0.00
110	10.01	170 100010	1 0	0.02
71	9.7	470.100010	10	0.02
/ 1	2.1	• • •		

SUPERVISED BY:

Morton Flom, P. Eng.

M. Sher P. Eug

41 of 41.

NAME OF TEST: Necessary Bandwidth and Emission Bandwidth

SPECIFICATION: 47 CFR 2.202(g)

MODULATION = 16K0F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz = 3

MAXIMUM DEVIATION (D), kHz = 5 = 1

CONSTANT FACTOR (K)

CONSTANT FACTOR (K) NECESSARY BANDWIDTH (B_N), kHz = $(2 \times M) + (2 \times D \times K)$ = 16.0

MODULATION = 11K0F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz = 3 MAXIMUM DEVIATION (D), kHz = 2.5

CONSTANT FACTOR (K)

NECESSARY BANDWIDTH (B_N) , kHz = $(2 \times M) + (2 \times D \times K)$ = 11.0

= 1

SUPERVISED BY:

Morton Flom, P. Eng.

M. Ouch P. Eug

TESTIMONIAL AND STATEMENT OF CERTIFICATION

THIS IS TO CERTIFY THAT:

- THAT the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. THAT the technical data supplied with the application was taken under my direction and supervision.
- 3. THAT the data was obtained on representative units, randomly selected.
- 4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

CERTIFYING ENGINEER:

Morton Flom, P. Eng.

STATEMENT OF CUALIFICATIONS

EDUCATION:

- 1. B. ENG. in ENGINEERING PHYSICS, 1949, McGill University, Montreal, Canada.
- Post Graduate Studies, McGill University & Sir Goerge Williams University, Montreal.

PROFESSIONAL AFFILIATIONS:

- 1. ARIZONA SOCIETY OF PROFESSIONAL ENGINEERS (NSPE), #026 031 821.
- 2. ORDER OF ENGINEERS (QUEBEC) 1949. #45 34.
- 3. ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOPHYSICISTS & GEOLOGISTS OF ALBERIA #5916.
- 4. REGISTERED ENGINEERING CONSULTANT GOVERNMENT OF CANADA, DEPARTMENT OF COMMUNICATIONS. Radio Equipment approvals.
- 5. IEEE, Lifetime member no. 041/204 (Member since 1947).

EXPERIENCE:

- Research/Development/Senior Project Engineer.
 R.C.A. LIMITED (4 years).
- Owner/Chief Engineer of Electronics.
 Design/Manufacturing & Cable TV Companies (10 years)
- 3. CONSULTING ENGINEER (over 25 years).

MORTON FLOM, P. Eng.