Cillion	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	Test Report Revision No. Rev. 1.0 (Initial Release)	
Centrecon	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Treing and Engineering Services Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

Г

SAF	SAR TEST REPORT (FCC/IC)							
RF EXPOSURE EVALU	ATION		SPECIFI		RPTION RATE			
APPLICANT / MANUFACTURER		KEN		CORPOR	ATION			
DEVICE UNDER TEST (DUT)	PORTA	BLE DUAL-B	UAL-BAND PUSH-TO-TALK RADIO TRANSCEIVER					
MANUF. RATED OUTPUT POWER			2.5 Watts (Conducted)					
DEVICE MODES OF OPERATION			ANAL	OG FM				
TRANSMIT FREQUENCY BAND(S)	896 - 9	01 MHz (Low	/ Band)	935 - 9	940 MHz (High Band)			
DEVICE MODEL(S)	TK-48	1-3 (without	DTMF)	TK-	481-4 (with DTMF)			
DEVICE IDENTIFIER(S)	FCC ID:	ALH22	29900	IC:	282D-229900			
APPLICATION TYPE			FCC/IC C	ertification				
STANDARD(S) APPLIED			FCC 47 C	FR §2.1093				
STANDARD(S) AT LIED		Не	alth Canada	a Safety Co	de 6			
		FCC OET	Bulletin 65,	Suppleme	nt C (01-01)			
	FCC KDB 447498 D01v04							
PROCEDURE(S) APPLIED		Indu	stry Canada	RSS-102 I	ssue 3			
			IEEE 15	528-2003				
			IEC 6220	09-1:2005				
			IEC 6220	9-2 (Draft)				
FCC DEVICE CLASSIFICATION	Lice	ensed Non-B	roadcast Tr	ansmitter H	leld to Face (TNF)			
IC DEVICE CLASSIFICATION	Lan	d Mobile Rac	lio Transmi	tter/Receive	er (27.41-960 MHz)			
RF EXPOSURE CATEGORY		C	Occupationa	al / Controll	ed			
RF EXPOSURE EVALUATION(S)			Face-held &	& Body-wor	n			
DATE(S) OF EVALUATION		Decem	ber 23, 2009	& January	04, 2010			
TEST REPORT SERIAL NO.			121509ALF	I-T999-S90I	=			
TEST REPORT REVISION NO.	Revis	ion 1.0	Initial I	Release	January 15, 2010			
TEST REPORT SIGNATORIES	Test	ing Performe	ed By	Test	Report Prepared By			
	Sean Joh	nston - Cellt	ech Labs	Jon Hu	ghes - Celltech Labs			
TEST LAB AND LOCATION	C	Celltech Com	pliance Tes	ting and E	ngineering Lab			
	21-364 Lougheed Road, Kelowna, B.C. V1X 7R8 Canada							
TEST LAB CONTACT INFO.	Те	I.: 250-765-7	650	Fa	Fax: 250-765-7645			
	info@	info@celltechlabs.com			v.celltechlabs.com			
TEST LAB ACCREDITATION(S)	ISO/I	EC 17025:200	05 (A2LA Te	est Lab Cert	ificate No. 2470.01)			

Applicant:	Ken	wood US	A Corporation	FCC ID:	ALH229900	ALH229900 IC: 282D-229900			
Model(s):	TK	-481-3	TK-481-4	DUT Type:	Portable Dual-Band	KEINWOOD			
2010 Celltech La	abs Inc.	This doc	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 1 of 66	

Callhada	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Teeting and Engineering Services Lat	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

	Nama				LUAI					
Test Lab Information	Name			Deed 1				un e el e		
	Address	21-364 LC				3.C. V1X	r Ro Ca	nada		
Applicant Information	Name	KENWOC	D USA	CORPO	RATION					
	Address	3970 Johr	ns Creek	Court,	Suite 100,	, Suwan	ee, GA 3	0024 Unite	ed State	es en
Standard(s) Applied	FCC	47 CFR §	2.1093				Health	Canada S	afety C	ode 6
	FCC	OET Bulletin 65, Supplement C (Edition 01-01)								
Procedure(s) Applied	FCC	KDB 4474	98 D01	/04 (Mc	bile and P	ortable I	RF Expo	sure Proce	dures)	
	IC	RSS-102	Issue 3	IEE	E 1528-	-2003	IEC	62209-1:2	2005	62209-2 (Draft)
Device Classification(s)	FCC	Licensed	Non-Bro	adcast	Transmitte	er Held to	o Face (1	NF)		
	IC	Land Mob	ile Radio	Trans	mitter/Rec	eiver (27	7.41-960	MHz)		
Device RF Exposure Category	FCC/IC	Occupatio	nal / Co	ntrolled	Environm	ent				
Device Identifier(s)	FCC ID:	ALH2299	00							
	IC:	282D-229900								
Device Model(s)	TK-481-3 (with	out DTMF)				TK-48	1-4 (with	DTMF)		
	Note: the two	models are	electrica	lly and	mechanica	ally ident	ical exce	ept for DTM	1F funct	tion per manuf.
Test Sample Model	TK-481-4 (with DTMF) Test San			Sample S	erial No		2S-02 (Ide	entical I	Prototype)	
Description of Device-Under-Test	Portable Dual-	Band Push	-To-Talk	(PTT)	-M Radio	Transce	iver			
Manufacturer's Rated Output Power	2.5 Watts									
DUT Mode(s) of Operation	Analog FM									
Transmit Frequency Band(s)	896 - 901 MHz	(Low Band	l)			935 -	940 MHz	: (High Bar	ıd)	
RF Conducted Output Power Tested	34.2 dBm	2.63 V	Vatts	898.	95 MHz	34.2	2 dBm	2.63 \	Vatts	935.05 MHz
Antenna Type(s) Tested	Detacha	able		Whip		P/N	I: T90-06	640-25	Le	ngth: 151 mm
	Ni-Cd IS Batt	ery Pack		7.2 V			1500 m	Ah	P	/N: KNB-17B
	Ni-MH Batte	ry Pack		7.2 V			1400 m	۹h	P	/N: KNB-52N
Battany Type(s) Tastad	Ni-MH Batte	ry Pack		7.2 V			1600 m	۹h	Р	/N: KNB-21N
Ballery Type(s) Tested	Ni-MH Batte	ry Pack		7.2 V			2100 m	Ah	Р	/N: KNB-22N
	Ni-MH IS Bat	ery Pack		7.2 V			2100 m	۹h	P/	N: KNB-22NC
	Alkaline Batte	ery Case	18	3 V (12)	AA)	Ene	rgizer In	dustrial		P/N: KBP-4
Body-worn Accessories Tested	Belt-C	lip		Со	ntains Met	al Comp	onents		F	P/N: KBH-10
Audio Accessories Tested	Speaker-Micro	phone							F	P/N: KMC-25
Max SAB Level(a) Evoluted	Face-held	0.950 V	V/kg	1g	50% PT	Γ duty cy	vcle (Occupation	al / Con	trolled Exposure
Wax. SAR Level(S) Evaluated	Body-worn	3.58 W	/kg	1g	50% PT	T duty cy	cle (Occupation	al / Con	trolled Exposure
FCC/IC Spatial Peak SAR Limit	Head/Body	8.0 W	/kg	1g	50% PT	Γ duty cy	cle (Occupation	al / Con	trolled Exposure

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6 for the Occupational / Controlled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 3, IEEE Standard 1528-2003, IEC International Standard 62209-1:2005 and IEC International Standard 62209-2 (Draft). All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results and statements contained in this report pertain only to the device(s) evaluated.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. Sun Junt

Test Report Approved By

Sean Johnston

Celltech Labs Inc.

35

Applicant:	Ken	wood US	A Corporation	FCC ID:	ALH229900 IC: 282D-229900		
Model(s):	TK	481-3	TK-481-4	DUT Type:	Portable Dual-Banc	KENWOOD	
2010 Celltech La	abs Inc.	This doc	ument is not to be re	produced in whole	or in part without the prior wri	Page 2 of 66	

<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	ACCREDITED
January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

TABLE OF CONTENTS

1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS	4
4.0 MEASUREMENT SUMMARY	5
5.0 DETAILS OF SAR EVALUATION	6
6.0 EVALUATION PROCEDURES	6
7.0 MEASURED FLUID DIELECTRIC PARAMETERS	7
8.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	7
9.0 SYSTEM PERFORMANCE CHECK	8
10.0 SIMULATED EQUIVALENT TISSUES	9
11.0 SAR LIMITS	9
12.0 ROBOT SYSTEM SPECIFICATIONS	10
13.0 PROBE SPECIFICATION (ET3DV6)	11
14.0 SIDE PLANAR PHANTOM	11
15.0 VALIDATION PHANTOM	11
16.0 DEVICE HOLDER	11
17.0 TEST EQUIPMENT LIST	12
18.0 MEASUREMENT UNCERTAINTIES	13
19.0 REFERENCES	14
APPENDIX A - SAR MEASUREMENT DATA	15
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	36
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	41
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	44
APPENDIX E - DIPOLE CALIBRATION	65
APPENDIX F - PROBE CALIBRATION	66

Applicant:	Kenv	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band	RENWOOD		
2010 Celltech La	ibs Inc.	This doc	is document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 3 of 66

Callback	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Centrech	<u>Test Report Issue Date</u>	Description of Test(s)	<u>RF Exposure Category</u>	Test Lab Certificate No. 2470.01
Retry and Engineering Services Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

1.0 INTRODUCTION

This measurement report demonstrates that the Kenwood USA Corporation Models: TK-481-3 and TK-481-4 Portable FM PTT Radio Transceiver complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [3]), IC RSS-102 Issue 3 (see reference [4]), IEEE Standard 1528-2003 (see reference [5]), IEC Standard 62209-1:2005 (see reference [6]) and Draft Standard IEC 62209-2 (see reference [7]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

MEASURED RF CONDUCTED AVERAGE OUTPUT POWER LEVELS									
Frequency (MHz)	quency Band Channel Mode dBm Watts								
898.95	Low	Mid	CW	34.2	2.63				
935.05	High	Low	CW	34.2	2.63				
Notes									
1. The RF cond SAR evaluations	ucted output po	ower levels of the	e DUT were me versal Power Me	easured by Cellte	ch prior to the				

Applicant:	Kenv	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band	RENWOOD		
2010 Celltech La	abs Inc.	This doc	his document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 4 of 66

Callback	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Centrecn	<u>Test Report Issue Date</u>	Description of Test(s)	<u>RF Exposure Category</u>	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

4.0 MEASUREMENT SUMMARY

					SAR EVA	LUATIO	ON RESI	JLTS						
Test	Test	Freq.	Battery Part No.	Accesso	ory Type(s)	De Dist to F	vice tance lanar	Cond. Power Before	M	easured 1g (W/k	SAR g)	SAR Drift During	Scale with 1g (d SAR droop W/kg)
Type	Date					Pha	ntom	Test	P/S	PTT Du	ty Cycle	Test	PTT Du	ity Cycle
		MHz		Body-worn	Audio	DUT	Antenna	Watts		100%	50%	dB	100%	50%
Face	Jan 4		KNB-17B	n/a	n/a	2.5 cm	4 3 cm	2 63	Р	1.71	0.855	-0 414	1.88	0.940
		898.95							S	1.42	0.710		1.56	0.781
Face	Jan 4	Low Band	KNB-22NC	n/a	n/a	2.5 cm	4.3 cm	2.63	Р	1.48	0.740	-0.139	1.53	0.764
		Dana							S	1.29	0.645		1.46	0.730
Face	Jan 4		KBP-4	n/a	n/a	2.5 cm	4.3 cm	2.63	-	1.55	0.775	-0.543	1.76	0.878
Face	Jan 4		KNB-17B	n/a	n/a	2.5 cm	4.3 cm	2.63	P	1.54	0.770	-0.668	1.80	0.900
		935.05 High							5	1.10	0.580		1.35	0.075
Face	Jan 4	Band	KNB-22NC	n/a	n/a	2.5 cm	4.3 cm	2.63	Р С	1.02	0.910	-0.192	1.90	0.800
Face	Jan 4	-	KBP-4	n/a	n/a	2.5 cm	4.3 cm	2.63	-	1.00	0.630	-0 690	1.00	0.000
1 400	ouri 4			17/4	11/4	2.0 011	4.0 011	2.00	Р	4.80	2 40	0.000	-	-
Body	Dec 23		KNB-17B	Belt-Clip	Speaker-Mic	0.8 cm	1.8 cm	2.63	s.	3.71	1.86	0.458	-	_
									Р	5.07	2.54	-0.191	5.30	2.65
Body	Dec 23		KNB-21N	Belt-Clip	Speaker-Mic	1.1 cm	1.8 cm	2.63	S	4.07	2.04	-0.122	4.19	2.10
Desta	D 00	898 95		Dalk Oliv	On a share Mire		1.0	0.00	Р	4.73	2.37	0.034	-	-
воау	Dec 23	Low	KNB-22N	Belt-Clip	Speaker-Mic	0.9 cm	1.8 CM	2.63	S	3.26	1.63	-0.066	3.31	1.66
Body	Dec 23	Band		Belt-Clin	Speaker-Mic	0.9.cm	1.8 cm	2.63	Р	3.58	1.79	-0.379	3.91	1.96
Bouy	Dec 25		RIND-22INC	Beit-Cilp	Opeaker-Inite	0.9 Cm	1.0 Cm	2.05	S	5.42	2.71	-0.027	5.45	2.73
Body	Dec 23		KNB-52N	Belt-Clip	Speaker-Mic	11 cm	1.8 cm	2.63	Р	3.98	1.99	-0.363	4.33	2.17
200,	20020			Boit onp			1.0 0111	2.00	S	4.88	2.44	-0.450	5.41	2.71
Body	Dec 23		KBP-4	Belt-Clip	Speaker-Mic	1.0 cm	1.8 cm	2.63	-	6.34	3.17	-0.529	7.16	3.58
Body	Dec 23		KNB-17B	Belt-Clip	Speaker-Mic	0.8 cm	1.8 cm	2.63	-	4.21	2.11	-0.606	4.84	2.42
Body	Dec 23		KNB-21N	Belt-Clip	Speaker-Mic	1.1 cm	1.8 cm	2.63	P	4.86	2.43	-0.640	5.63	2.82
	D 00						1.0	0.00	S	3.19	1.60	-0.724	3.77	1.89
воау	Dec 23	935.05	KNB-22N	Belt-Clip	Speaker-Mic	0.9 cm	1.8 CM	2.63	-	4.67	2.34	-0.529	5.27	2.64
Body	Dec 23	Band	KNB-22NC	Belt-Clip	Speaker-Mic	0.9 cm	1.8 cm	2.63	г е	3.20	2.03	-0.579	0.00	3.00
									P	4 4 4	2.22	-0.431	4 90	2.45
Body	Dec 23		KNB-52N	Belt-Clip	Speaker-Mic	1.1 cm	1.8 cm	2.63	s	3.41	1 71	-0.027	3.43	1.72
Body	Dec 23		KBP-4	Belt-Clip	Speaker-Mic	1.0 cm	1.8 cm	2.63	-	5.57	2.79	-0.910	6.87	3.44
-	SAR LIMIT(S) HEAD				HEAD & E	BODY		SPATIAL P	EAK		R	F Exposure	e Catego	ry
FCC 47	FCC 47 CFR 2.1093 Health Canada Safety Code 6						ave	raged over	1 gran	n	Oc	cupational	/ Contro	lled
Notes														
1.	Detailed r	measurem	ent data and p	lots showing t	he maximum SA	R location of	of the DUT ar	e reported i	n Appe	ndix A.				
2.	Secondar	ry peak SA	R levels meas	ured within 2	dB of the primary	/ are reported	ed (P = Prima	ary, S = Sec	ondary	[']).				
3.	The SAR	droop of t	he DUT measu	ured by the DA	SY4 system dur	ing each SA	AR measuren	nent was ac	Ided to	the meas	ured SAR	level.		
4.	The trans 01). Due the 935.0	mit freque to the SA 5 MHz free	ncy bands of t R system mai quency was se	the DUT are < nufacturer's sp elected in place	10 MHz; therefore becified probe co e of the mid char	ore mid-cha onversion fa nnel frequer	nnel data on ctor validity o cy.	ly is require of +/- 100 N	d to be 1Hz for	835 MHz	per FCC (see prol	OET 65, Su be calibratio	upplemer on - Appe	endix F),
	the 935.05 MHz frequency was selected in place of the mid channel frequency.													

Applicant:	Kenwood USA Corporation			FCC ID:	ALH229900	IC:	282D-229900	KENWOOD		
Model(s):	TK-481-3		TK-481-4	DUT Type:	Portable Dual-Banc	Portable Dual-Band PTT FM Radio Transceiver				
2010 Celltech Labs Inc. This document is not to be				produced in whole of	or in part without the prior wri	itten permiss	sion of Celltech Labs Inc.	Page 5 of 66		

Callhach	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

5.0 DETAILS OF SAR EVALUATION

The Kenwood USA Corporation Models: TK-481-3 and TK-481-4 Portable PTT FM Radio Transceiver described in this report was compliant for localized Specific Absorption Rate (Occupational / Controlled Exposure) based on the test provisions and conditions described below. Detailed photographs of the test setup are shown in Appendix D.

- 1. The DUT was evaluated in a face-held configuration with the front of the radio placed parallel to the outer surface of the planar phantom. A 2.5 cm spacing was maintained between the front side of the DUT and the outer surface of the planar phantom.
- The face-held SAR evaluations with the Ni-MH Intrinsically Safe battery (P/N: KNB-22NC) were selected based on the maximum SAR level measured between the Ni-MH battery options during the body-worn SAR evaluations (100% PTT duty factor).
- 3. The DUT was evaluated in a body-worn configuration with the back of the radio facing the outer surface of the planar phantom and the attached belt-clip accessory placed parallel to and touching the planar phantom. The belt-clip separation distances listed in the test data table (page 5) were determined by the thickness of the battery and measured from the battery housing to the outer surface of the planar phantom. The body-worn SAR evaluations were performed with the customer-supplied speaker-microphone accessory connected to the audio input connector.
- 4. The DUT was tested at the power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 5. The conducted output power levels of the DUT referenced in this report were measured prior to the SAR evaluations at the antenna connector of the DUT using a Gigatronics 8652A Universal Power Meter in accordance with the procedures prescribed in FCC 47 CFR §2.1046 and IC RSS-Gen.
- 6. The area scan evaluation was performed with a fully charged battery. After the area scan was completed the radio was cooled down and the battery was replaced with a fully charged battery prior to the zoom scan evaluation.
- 7. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 8. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).

6.0 EVALUATION PROCEDURES

a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.

(ii) For body-worn and face-held devices a planar phantom was used.

b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix E). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan was used for all zoom scans.

Applicant:	Kenwood USA Corporation			FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-481-3 TK-481-4		DUT Type:	Portable Dual-Band	I PTT FM	Radio Transceiver	KENWOOD	
2010 Celltech Labs Inc. This document is not to be				produced in whole	or in part without the prior wr	itten permis	sion of Celltech Labs Inc.	Page 6 of 66

Colltoch	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
CCENTECH	<u>Test Report Issue Date</u>	Description of Test(s)	<u>RF Exposure Category</u>	Test Lab Certificate No. 2470.01
Testing and Engineering Services Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

7.0 MEASURED FLUID DIELECTRIC PARAMETERS

	MEASURED FLUID PARAMETERS																	
Test Date			Januar	y 04, 2010			Janua	ary 04, 2010			[Decemb	er 23, 20	09		Decemb	oer 23, 200	9
Fluid Type		835 H	ead	895 MHz	z Meas.	. 835 H	lead	935 MH	z Mea	is.	835 E	Body	895 MH	z Meas.	835	Body	935 MH	z Meas.
Dielectric		IEEE T	arget	Meas.	Dev.	IEEE T	arget	Meas.	De	v .	IEEE 1	Farget	Meas.	Dev.	IEEE .	Target	Meas.	Dev.
Constant ε _r		41.5	<u>+</u> 5%	39.5	-4.8%	41.5	<u>+</u> 5%	39.6	-4.6	6%	55.2	<u>+</u> 5%	53.1	-3.8%	55.2	<u>+</u> 5%	52.8	-4.3%
Conductivity	1	IEEE T	arget	Meas.	Dev.	IEEE T	arget	Meas.	De	v .	IEEE 1	Farget	Meas.	Dev.	IEEE '	Target	Meas.	Dev.
σ (mho/m)		0.90	<u>+</u> 5%	0.92	+2.2%	0.90	<u>+</u> 5%	0.94	+4.4	4%	0.97	<u>+</u> 5%	1.00	+3.1%	0.97	<u>+</u> 5%	1.02	+5.0%
Test Date	Flu	id Type	Aml	pient Tem	p. F	Fluid Temp) .	Fluid Dept	th	A	tmosph	eric Pr	essure	Relativ	/e Humi	dity	ρ (Kg	/m³)
Jan 04, 2010	I	Head		22.5°C		21.3°C		≥ 15			10	1.1 kPa			35%		100	0
Dec 23, 2009 Body 22.8°C			21.5°C	21.5°C ≥ 15			101.1 kPa		35%		100	0						
Notes																		

1. The measured fluid parameters for each test frequency satisfy the dielectric parameter requirements of the probe calibration and routine measurements in accordance with FCC KDB 450824 D01 v01r01 (see reference [9]).

8.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within \pm 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within \pm 100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, \pm 25 MHz < 300 MHz and \pm 50 MHz \geq 300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [9]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	<u>+</u> 50 MHz ≥ 300 MHz
835 MHz	898.95 MHz	63.95 MHz	> 50 MHz ¹
033 11112	935.05 MHz	100.5 MHz	> 50 MHz ¹

1. The probe calibration and measurement frequency interval is > 50 MHz; therefore the following additional steps were implemented (per FCC KDB 450824 D01 v01r01): The measured 1-g SAR may be compensated with respect to +5% tolerances in ε_r and -5% tolerances in σ , computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness. SAR sensitivity data is per SPEAG DASY4 Manual (see reference [10]).

Probe Calib	ration Fre	quency	= 835 MHz	Target	Parameters:	Head 41.5 a	ε _r / 0.9 σ	Body 55.2 ε _r / 0.97 σ		
Test Freq.	Tissue	σ	Sensitivity	٤r	Sensitivity	% Change	Compens	sated Max	. SAR Level	
909 05 MH 7	Head	+2.2%	-	-4.8%	-	-	n/a	-	-	
090.95 WITZ	Body	+3.1%	-	-3.8%	-	-	n/a	-	-	
Head +4.4% -					-	-	n/a	-	-	
933.03 WI 12	Body	+5.0%	-	-4.3%	-	-	n/a	-	-	
\mathbf{Pa}	rameter				e	σ		ρ		
1	f = 800 M	Hz, d=1	$5\mathrm{mm}$							
	$(\epsilon_r = 41.5)$	$\sigma = 0.90$	S/m							
		SAR	Peak		- (0.70 + 0	.86 -			
		SAR	$1\mathrm{g}$		- (0.57 + 0).59 0.	.10		
	SAR	$10 ext{ g}$		- (0.45 + 0	.35 0.	.18			

Note: Per SPEAG, the above sensitivity data (Head) from the DASY4 manual (see reference [10]) can be applied to Body tissue parameters provided the approximation is for <5% deviation of liquid parameters.

Applicant:	Kenv	wood US	A Corporation	FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-481-3 TK-481-4		DUT Type:	Portable Dual-Band	I PTT FM	Radio Transceiver	KEINWOOD	
2010 Celltech La	abs Inc.	This doc	ument is not to be re	produced in whole	or in part without the prior wr	itten permis	sion of Celltech Labs Inc.	Page 7 of 66

Callback	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	Test Report Serial No. 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
CCENTECCN	<u>Test Report Issue Date</u>	Description of Test(s)	<u>RF Exposure Category</u>	Test Lab Certificate No. 2470.01
Testing and Engineering Services Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

9.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, daily system checks were performed at the planar section of the SAM phantom with an 835MHz SPEAG dipole (see Appendix B for system performance check test plots) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]) and International Standard IEC 62209-1:2005 (see reference [6]). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of \pm 10% from the system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

	SYSTEM PERFORMANCE CHECK EVALUATION															
Test	Equiv. Tissue	S (AR 1g W/kg)		Dielect	ric Cons _{8r}	tant	Cor σ (Conductivity σ (mho/m)			Amb. Temp	Fluid	Fluid	Humid.	Barom.
Date	Freq. (MHz)	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	(Kg/m*)	(°C)	(°C)	(cm)	(%)	(kPa)
Dec-23	Body	2.49	2.26	-9.2%	55.2	53.0	-4.0%	0.97	0.94	-3.0%	1000	22.8	21.5	> 15	35	101.1
2009	835	±10%	2.20	-9.270	±5%	55.0	-4.070	±5%	0.54	-0.070	1000	22.0	21.5	210	35	101.1
Jan-04	Head	2.35	2.26	-3.8%	41.5	40.3	-2.0%	0.90	0.86	.4.5%	1000	22.5	21.3	> 15	35	101.1
2010	835	±10%	2.20	-5.070	±5%	40.5	-2.570	±5%	0.00	-4.570	1000	22.5	21.5	210	35	101.1
	1.	The targe	t SAR va	alues are	e the meas	sured val	lues fror	m the SAR	system	manufa	cturer's (dipole ca	libration	(see Ap	pendix E	.).
	2.	The target	t dielectri	ic param	ieters are t	he nomir	nal value	es from the	SAR sy	stem ma	anufactur	rer's dipo	le calibra	ation (se	e Append	lix E).
Notes	3.	The fluid f within +/-2	temperat 2°C of th	ture was e fluid te	s measure emperature	d prior t e reporte	o and a d during	after the sy g the dieled	stem pe	erformar ameter r	nce chec neasurei	k to ens ments.	ure the	tempera	ture rema	ained
	4. The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).															

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KEINWOOD
2010 Celltech La	2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 8 of 66

Calltach	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

10.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [11] and [12]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [5]) and IEC Standard 62209-1:2005 (see reference [6]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

SIMULATED TISSUE MIXTURES									
INGREDIENT	Water		40.71 %		53.79 %				
	Sugar	Sugar			45.13 %				
	Salt	835 MHz Head Tissue Mixture	1.48 %	835 MHz Body Tissue Mixture	0.98 %				
	HEC		0.99 %						
	Bactericide		0.19 %		0.10 %				

11.0 SAR LIMITS

	SAR RF EXPOSURE LIMITS								
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)						
Spatial Average (ave	raged over the whole body)	0.08 W/kg	0.4 W/kg						
Spatial Peak (averaged over any 1 g of tissue) 1.6 W/kg 8.0 W/kg									
Spatial Peak (hands/wrists	s/feet/ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg						
The Spatial Average value of	of the SAR averaged over the whole	body.							
The Spatial Peak value of th cube) and over the appropri	ne SAR averaged over any 1 gram o ate averaging time.	of tissue (defined as a tissue v	olume in the shape of a						
The Spatial Peak value of th a cube) and over the approp	ne SAR averaged over any 10 grams priate averaging time.	s of tissue (defined as a tissue	e volume in the shape of						
Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.									
Controlled environments a knowledge of their potential	re defined as locations where th exposure and can exercise control of	ere is potential exposure o over their exposure.	f individuals who have						

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 9 of 66	

<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	Test Lab Certificate No. 2470.01

12.0 ROBOT SYSTEM SPECIFICATIONS

Specifications	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
Software	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1590
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Evaluation Phantom	
Туре	Side Planar Phantom
Shell Material	Plexiglas
Bottom Thickness	2.0 mm ± 0.1 mm
Inner Dimensions	72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H)
Validation Phantom	
Туре	SAM V4.0C
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 25 liters

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KEINWOOD
2010 Celltech La	0 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 10 of 66	

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Centerna Services Lat	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

13.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core;	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic solvents, glycol)	
Calibration:	In air from 10 MHz to 2.5 GHz	
	In head simulating tissue at frequencies of 900 MHz	
	and 1.8 GHz (accuracy \pm 8%)	
Frequency:	10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)	
Directivity:	\pm 0.2 dB in head tissue (rotation around probe axis)	
	\pm 0.4 dB in head tissue (rotation normal to probe axis)	
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB	
Surface Detect:	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces	
Dimensions:	Overall length: 330 mm; Tip length: 16 mm;	
	Body diameter: 12 mm; Tip diameter: 6.8 mm	
	Distance from probe tip to dipole centers: 2.7 mm	
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	

ET3DV6 E-Field Probe

14.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

Plexiglas Side Planar Phantom

15.0 VALIDATION PHANTOM

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections.

16.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 11 of 66	

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Centrecn	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testing and Engeneering Devices Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

17.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO	SERIAL NO	DATE	CALIBRATION
USED	DESCRIPTION	AUDEL HU.	CERTIFIC RO.	CALIBRATED	DUE DATE
x	Schmid & Partner DASY4 System	-	-	-	-
x	-DASY4 Measurement Server	00158	1078	CNR	CNR
x	-Robot	00046	599396-01	CNR	CNR
x	-DAE4	00019	353	28Apr09	28Apr10
x	-ET3DV6 E-Field Probe	00017	1590	16Jul09	16Jul10
x	-D835V2 Validation Dipole	00217	4d075	20Apr09	20Apr10
x	-SAM Phantom V4.0C	00154	1033	CNR	CNR
x	HP 85070C Dielectric Probe Kit	00033	US39240170	CNR	CNR
x	HP E4408B Spectrum Analyzer	00015	US39240170	23Apr08	28Apr10
x	Gigatronics 8652A Power Meter	00007	1835272	23Apr08	28Apr10
x	Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	28Apr10
x	HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr10
x	Rohde & Schwarz SMR20 Signal Generator	00006	100104	CNR	CNR
x	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required			-	

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Banc	KENWOOD	
2010 Celltech La	abs Inc.	This doc	ument is not to be re	produced in whole	or in part without the prior wri	Page 12 of 66	

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> Occupational (Controlled)	Test Lab Certificate No. 2470.0

18.0 MEASUREMENT UNCERTAINTIES

	UNCERT	AINTY BUD	GET FOR D	EVICE EVAL	UATIO	NC			
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (835 MHz)	E.2.1	5.5	Normal	1	1	1	5.5	5.5	œ
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	œ
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	œ
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	œ
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	œ
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	œ
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	x
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	x
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	œ
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	œ
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	œ
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	œ
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	œ
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	œ
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	œ
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	œ
Liquid Conductivity (measured)	E.3.3	5	Normal	1	0.64	0.43	3.2	2.2	œ
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	×
Liquid Permittivity (measured)	E.3.3	4.8	Normal	1	0.6	0.49	2.9	2.4	œ
Combined Standard Uncertainty			RSS				11.21	10.70	
Expanded Uncertainty (95% Confidence	Expanded Uncertainty (95% Confidence Interval) k=2 22.42 21.39								
Measu	urement Un	certainty Table	e in accordanc	e with IEEE Sta	ndard 1	528-20	03		

Applicant:	Kenv	wood US	A Corporation	oration FCC ID: ALH229900 IC: 282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band	KEINWOOD
2010 Celltech La	abs Inc.	This doc	ument is not to be re	produced in whole	or in part without the prior wr	Page 13 of 66

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

19.0 REFERENCES

[1] Federal Communications Commission - "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.

[2] Health Canada - "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.

[3] Federal Communications Commission - "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Industry Canada - "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 3: June 2009.

[5] IEEE Standard 1528-2003 - "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.

[6] IEC International Standard 62209-1:2005 - "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices - Human models, instrumentation, and procedures."

[7] International Standard IEC 62209-2 Draft (106-62209-2-CDV_090323) - "Human exposure to radio frequency fields from hand-held & body-mounted wireless comm. devices - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (30 MHz to 6 GHz)".

[8] Federal Communications Commission, Office of Engineering and Technology - "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01 v04: November 2009.

[9] Federal Communications Commission, Office of Engineering and Technology - "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz"; KDB 450824 D01 v01r01: January 2007.

[10] Schmid & Partner Engineering AG - DASY4 Manual V4.6, Chapter 21 Application Note, SAR Sensitivities: Sept. 2005.

[11] Schmid & Partner Engineering AG - DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.

[12] Schmid & Partner Engineering AG - DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.

Applicant:	Kenv	wood US	A Corporation	FCC ID:	ALH229900 IC: 282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band	KENWOOD	
2010 Celltech La	abs Inc.	This doc	ument is not to be re	produced in whole	or in part without the prior wr	Page 14 of 66	

Celltech	Date(s) of Evaluation Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> Occupational (Controlled)	Test Lab Certificate No. 2470.01

APPENDIX A - SAR MEASUREMENT DATA

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band	KENWOOD	
2010 Celltech La	ibs Inc.	This doc	ument is not to be re	produced in whole of	or in part without the prior wr	Page 15 of 66	

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Face-held SAR - Low Band - 898.95 MHz - Ni-Cd 1500mAh Battery P/N: KNB-17B

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Ambient Temp: 22.5°C; Fluid Temp: 21.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 898.95 MHz; Duty Cycle: 1:1 Medium: HSL835 Medium parameters used: f = 898.95 MHz; σ = 0.92 mho/m; ϵ_r = 39.5; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(6.59, 6.59, 6.59); Calibrated: 16/07/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.72 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.0 V/m; Power Drift = -0.414 dB Peak SAR (extrapolated) = 2.23 W/kg SAR(1 g) = 1.71 mW/g; SAR(10 g) = 1.23 mW/g Maximum value of SAR (measured) = 1.80 mW/g Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.0 V/m; Power Drift = -0.414 dB Peak SAR (extrapolated) = 1.88 W/kg SAR(1 g) = 1.42 mW/g; SAR(10 g) = 1.02 mW/g Maximum value of SAR (measured) = 1.50 mW/g

Applicant:	Kenv	wood US	A Corporation	FCC ID:	D: ALH229900 IC: 282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band	KENWOOD	
2010 Celltech La	abs Inc.	This doc	ument is not to be re	produced in whole	or in part without the prior wr	Page 16 of 66	

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Face-held SAR - Low Band - 898.95 MHz - Ni-MH IS 2100mAh Battery P/N: KNB-22NC

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Ambient Temp: 22.5°C; Fluid Temp: 21.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 898.95 MHz; Duty Cycle: 1:1 Medium: HSL835 Medium parameters used: f = 898.95 MHz; σ = 0.92 mho/m; ϵ_r = 39.5; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(6.59, 6.59, 6.59); Calibrated: 16/07/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.55 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.6 V/m; Power Drift = -0.139 dB Peak SAR (extrapolated) = 2.06 W/kg SAR(1 g) = 1.48 mW/g; SAR(10 g) = 1.01 mW/g Maximum value of SAR (measured) = 1.65 mW/g Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.6 V/m; Power Drift = -0.139 dB Peak SAR (extrapolated) = 1.70 W/kg SAR(1 g) = 1.29 mW/g; SAR(10 g) = 0.927 mW/g Maximum value of SAR (measured) = 1.37 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		Radio Transceiver	KENWOOD
2010 Celltech Labs Inc. This document is not to be re				produced in whole	or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 17 of 66

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
CCENTECH	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Tetra and Expressing Services Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

Face-held SAR - Low Band - 898.95 MHz - Alkaline Battery Case P/N: KBP-4

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Ambient Temp: 22.5°C; Fluid Temp: 21.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 898.95 MHz; Duty Cycle: 1:1 Medium: HSL835 Medium parameters used: f = 898.95 MHz; σ = 0.92 mho/m; ϵ_r = 39.5; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(6.59, 6.59, 6.59); Calibrated: 16/07/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.77 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 29.9 V/m; Power Drift = -0.543 dB Peak SAR (extrapolated) = 2.04 W/kg SAR(1 g) = 1.55 mW/g; SAR(10 g) = 1.11 mW/g Maximum value of SAR (measured) = 1.64 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		Radio Transceiver	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the				or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 18 of 66	

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Centech	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Face-held SAR - High Band - 935.05 MHz - Ni-Cd 1500mAh Battery P/N: KNB-17B

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Ambient Temp: 22.5°C; Fluid Temp: 21.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 935.05 MHz; Duty Cycle: 1:1 Medium: HSL835 Medium parameters used: f = 935.05 MHz; σ = 0.94 mho/m; ϵ_r = 39.6; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(6.59, 6.59, 6.59); Calibrated: 16/07/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.69 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.8 V/m; Power Drift = -0.668 dB Peak SAR (extrapolated) = 2.06 W/kg SAR(1 g) = 1.54 mW/g; SAR(10 g) = 1.1 mW/g Maximum value of SAR (measured) = 1.64 mW/g Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.8 V/m; Power Drift = -0.668 dB Peak SAR (extrapolated) = 1.54 W/kg SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.829 mW/g Maximum value of SAR (measured) = 1.23 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	odel(s): TK-481-3 TK-481-4		DUT Type:	Portable Dual-Band PTT FM Radio Transceiver			KEINWOOD	
2010 Celltech Labs Inc. This document is not to be reproduced in v				produced in whole	or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 19 of 66

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Centech	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Face-held SAR - High Band - 935.05 MHz - Ni-MH IS 2100mAh Battery P/N: KNB-22NC

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Ambient Temp: 22.5°C; Fluid Temp: 21.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 935.05 MHz; Duty Cycle: 1:1 Medium: HSL835 Medium parameters used: f = 935.05 MHz; σ = 0.94 mho/m; ϵ_r = 39.6; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(6.59, 6.59, 6.59); Calibrated: 16/07/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.87 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.0 V/m; Power Drift = -0.192 dB Peak SAR (extrapolated) = 2.37 W/kg SAR(1 g) = 1.82 mW/g; SAR(10 g) = 1.32 mW/g Maximum value of SAR (measured) = 1.92 mW/g Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.0 V/m; Power Drift = -0.192 dB Peak SAR (extrapolated) = 2.03 W/kg SAR(1 g) = 1.53 mW/g; SAR(10 g) = 1.09 mW/g Maximum value of SAR (measured) = 1.63 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK-481-3 TK-481-4 DUT Type: Portable Dua		Portable Dual-Band	I PTT FM	Radio Transceiver	KENWOOD		
2010 Celltech Labs Inc. This document is not to be re				produced in whole of	or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 20 of 66

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Z-Axis Scan

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written p					itten permis	sion of Celltech Labs Inc.	Page 21 of 66

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Centech	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Face-held SAR - High Band - 935.05 MHz - Alkaline Battery Case P/N: KBP-4

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Ambient Temp: 22.5°C; Fluid Temp: 21.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 935.05 MHz; Duty Cycle: 1:1 Medium: HSL835 Medium parameters used: f = 935.05 MHz; σ = 0.94 mho/m; ϵ_r = 39.6; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(6.59, 6.59, 6.59); Calibrated: 16/07/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.21 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.7 V/m; Power Drift = -0.690 dB Peak SAR (extrapolated) = 1.71 W/kg SAR(1 g) = 1.26 mW/g; SAR(10 g) = 0.899 mW/g Maximum value of SAR (measured) = 1.35 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KEINWOOD	
2010 Celltech Labs Inc. This document is not to be reprodu				produced in whole of	or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 22 of 66

<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - Low Band - 898.95 MHz - Ni-Cd IS 1500mAh Battery P/N: KNB-17B

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 898.95 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 898.95 MHz; σ = 1 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 0.8 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.16 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.2 V/m; Power Drift = 0.458 dB Peak SAR (extrapolated) = 6.37 W/kg SAR(1 g) = 4.8 mW/g; SAR(10 g) = 3.37 mW/g Maximum value of SAR (measured) = 5.12 mW/g Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.2 V/m; Power Drift = 0.458 dB Peak SAR (extrapolated) = 8.25 W/kg SAR(1 g) = 3.71 mW/g; SAR(10 g) = 2.2 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		Radio Transceiver	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 23 of 66			

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - Low Band - 898.95 MHz - Ni-MH 1600mAh Battery P/N: KNB-21N

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 898.95 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 898.95 MHz; σ = 1 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.1 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.37 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 66.0 V/m; Power Drift = -0.191 dB Peak SAR (extrapolated) = 6.73 W/kg SAR(1 g) = 5.07 mW/g; SAR(10 g) = 3.52 mW/g Maximum value of SAR (measured) = 5.38 mW/g Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.3 V/m; Power Drift = -0.122 dB Peak SAR (extrapolated) = 9.75 W/kg SAR(1 g) = 4.07 mW/g; SAR(10 g) = 2.29 mW/g

Maximum value of SAR (measured) = 4.51 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		Radio Transceiver	KENWOOD
2010 Celltech Labs Inc. This document is not to be rep				produced in whole	or in part without the prior wr	itten permis	sion of Celltech Labs Inc.	Page 24 of 66

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - Low Band - 898.95 MHz - Ni-MH 2100mAh Battery P/N: KNB-22N

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 898.95 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 898.95 MHz; σ = 1 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 0.9 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.89 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.4 V/m; Power Drift = 0.034 dB Peak SAR (extrapolated) = 6.35 W/kg SAR(1 g) = 4.73 mW/g; SAR(10 g) = 3.3 mW/g Maximum value of SAR (measured) = 5.06 mW/g Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.5 V/m; Power Drift = -0.066 dB Peak SAR (extrapolated) = 6.93 W/kg SAR(1 g) = 3.26 mW/g; SAR(10 g) = 1.93 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		Radio Transceiver	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of					sion of Celltech Labs Inc.	Page 25 of 66		

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Celifech	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - Low Band - 898.95 MHz - Ni-MH IS 2100mAh Battery P/N: KNB-22NC

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 898.95 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 898.95 MHz; σ = 1 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 0.9 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.19 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.4 V/m; Power Drift = -0.379 dB Peak SAR (extrapolated) = 7.95 W/kg SAR(1 g) = 3.58 mW/g; SAR(10 g) = 2.09 mW/g Maximum value of SAR (measured) = 3.80 mW/g Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.0 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 7.25 W/kg SAR(1 g) = 5.42 mW/g; SAR(10 g) = 3.78 mW/g

Maximum value of SAR (measured) = 5.80 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 26 of 66		

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - Low Band - 898.95 MHz - Ni-MH 1400mAh Battery P/N: KNB-52N

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 898.95 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 898.95 MHz; σ = 1 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.1 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.88 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 67.6 V/m; Power Drift = -0.363 dB Peak SAR (extrapolated) = 9.27 W/kg SAR(1 g) = 3.98 mW/g; SAR(10 g) = 2.2 mW/g Maximum value of SAR (measured) = 4.30 mW/g Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 66.0 V/m; Power Drift = -0.450 dB Peak SAR (extrapolated) = 6.48 W/kg SAR(1 g) = 4.88 mW/g; SAR(10 g) = 3.43 mW/g

Maximum value of SAR (measured) = 5.22 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		Radio Transceiver	KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without				or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 27 of 66	

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - Low Band - 898.95 MHz - Alkaline Battery Case P/N: KBP-4

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 898.95 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 898.95 MHz; σ = 1 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.0 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.42 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 71.0 V/m; Power Drift = -0.529 dB Peak SAR (extrapolated) = 8.47 W/kg SAR(1 g) = 6.34 mW/g; SAR(10 g) = 4.45 mW/g Maximum value of SAR (measured) = 6.80 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 28 of 66		

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Z-Axis Scan

SAR-versus-Time Power Droop Evaluation Body-worn - Low Band - 898.95 MHz Alkaline Battery Case P/N: KBP-4 Belt-Clip & Speaker-Microphone

SAR 0s: 5.841 mW/g SAR 340s: 5.303 mW/g (-0.420 dB) (340s = Zoom Scan Duration) (500s = Area Scan Duration)

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	s): TK-481-3 TK-481-4		DUT Type:	Portable Dual-Band PTT FM Radio Transceiver			KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs					sion of Celltech Labs Inc.	Page 29 of 66	

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - High Band - 935.05 MHz - Ni-Cd IS 1500mAh Battery P/N: KNB-17B

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 935.05 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 935.05 MHz; σ = 1.02 mho/m; ϵ_r = 52.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 0.8 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.71 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.0 V/m; Power Drift = -0.606 dB Peak SAR (extrapolated) = 5.65 W/kg SAR(1 g) = 4.21 mW/g; SAR(10 g) = 2.9 mW/g Maximum value of SAR (measured) = 4.48 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		Radio Transceiver	KEINWOOD
2010 Celltech Labs Inc. This document is not to be re				produced in whole	or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 30 of 66

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - High Band - 935.05 MHz - Ni-MH 1600mAh Battery P/N: KNB-21N

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 935.05 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 935.05 MHz; σ = 1.02 mho/m; ϵ_r = 52.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.1 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.60 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.9 V/m; Power Drift = -0.640 dB Peak SAR (extrapolated) = 6.50 W/kg SAR(1 g) = 4.86 mW/g; SAR(10 g) = 3.37 mW/g Maximum value of SAR (measured) = 5.19 mW/g Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.1 V/m; Power Drift = -0.724 dB Peak SAR (extrapolated) = 7.36 W/kg SAR(1 g) = 3.19 mW/g; SAR(10 g) = 1.97 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KEINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of				sion of Celltech Labs Inc.	Page 31 of 66		

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - High Band - 935.05 MHz - Ni-MH 2100mAh Battery P/N: KNB-22N

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 935.05 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 935.05 MHz; σ = 1.02 mho/m; ϵ_r = 52.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 0.9 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.26 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.6 V/m; Power Drift = -0.529 dB Peak SAR (extrapolated) = 6.28 W/kg SAR(1 g) = 4.67 mW/g; SAR(10 g) = 3.25 mW/g Maximum value of SAR (measured) = 5.01 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KEINWOOD
2010 Celltech Labs Inc. This document is not to be re			produced in whole of	or in part without the prior wri	itten permiss	sion of Celltech Labs Inc.	Page 32 of 66

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - High Band - 935.05 MHz - Ni-MH IS 2100mAh Battery P/N: KNB-22NC

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 935.05 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 935.05 MHz; σ = 1.02 mho/m; ϵ_r = 52.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 0.9 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.58 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.6 V/m; Power Drift = -0.579 dB Peak SAR (extrapolated) = 7.14 W/kg SAR(1 g) = 5.25 mW/g; SAR(10 g) = 3.62 mW/g Maximum value of SAR (measured) = 5.66 mW/g Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.3 V/m; Power Drift = -0.616 dB Peak SAR (extrapolated) = 5.06 W/kg SAR(1 g) = 3.38 mW/g; SAR(10 g) = 2.27 mW/g

Maximum value of SAR (measured) = 3.72 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		Radio Transceiver	KEINWOOD
2010 Celltech Labs Inc. This document is not to be re			produced in whole	or in part without the prior wr	itten permis	sion of Celltech Labs Inc.	Page 33 of 66	

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - High Band - 935.05 MHz - Ni-MH 1400mAh Battery P/N: KNB-52N

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 935.05 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 935.05 MHz; σ = 1.02 mho/m; ϵ_r = 52.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.1 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.77 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.9 V/m; Power Drift = -0.431 dB Peak SAR (extrapolated) = 5.95 W/kg SAR(1 g) = 4.44 mW/g; SAR(10 g) = 3.09 mW/g Maximum value of SAR (measured) = 4.73 mW/g Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.3 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 7.93 W/kg SAR(1 g) = 3.41 mW/g; SAR(10 g) = 2.26 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900		
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		Radio Transceiver	KEINWOOD
2010 Celltech Labs Inc. This document is not to be re				produced in whole	or in part without the prior wr	itten permis	sion of Celltech Labs Inc.	Page 34 of 66

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Body-worn SAR - High Band - 935.05 MHz - Alkaline Battery Case P/N: KBP-4

DUT: Kenwood TK-481-4; Type: Portable 900 MHz PTT FM Radio Transceiver; Serial: 2S-02

Body-worn Accessory: Belt-Clip (P/N: KBH-10); Audio Accessory: Speaker-Microphone (P/N: KMC-25)

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Frequency: 935.05 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 935.05 MHz; σ = 1.02 mho/m; ϵ_r = 52.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.0 cm Belt-Clip Spacing from Back Side of DUT (Battery Housing) to Planar Phantom

Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.45 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 67.8 V/m; Power Drift = -0.910 dB Peak SAR (extrapolated) = 7.54 W/kg SAR(1 g) = 5.57 mW/g; SAR(10 g) = 3.85 mW/g Maximum value of SAR (measured) = 5.98 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-481-3 TK-481-4		DUT Type:	Portable Dual-Band PTT FM Radio Transceiver			KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 35 of 66		

Clinate	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
CCENTECH	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testing and Engineering Services Lat:	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-481-3 TK-481-4		DUT Type:	Portable Dual-Band PTT FM Radio Transceiver			KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 36 of 66	

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibration: 04/20/2009

Ambient Temp: 22.8°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 835 MHz; σ = 0.94 mho/m; ϵ_r = 53; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(6.34, 6.34, 6.34); Calibrated: 16/07/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 835 MHz Dipole

Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.38 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.0 V/m; Power Drift = -0.082 dB Peak SAR (extrapolated) = 3.23 W/kg SAR(1 g) = 2.26 mW/g; SAR(10 g) = 1.5 mW/g Maximum value of SAR (measured) = 2.44 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-481-3 TK-481-4		DUT Type:	Portable Dual-Band PTT FM Radio Transceiver			KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 37 of 66	

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Z-Axis Scan

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-481-3 TK-481-4		DUT Type:	Portable Dual-Band PTT FM Radio Transceiver			KLINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 38 of 66

Celltech	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

System Performance Check - 835 MHz Dipole - Head

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibration: 04/20/2009

Ambient Temp: 22.5°C; Fluid Temp: 21.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835HSL Medium parameters used: f = 835 MHz; σ = 0.86 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(6.59, 6.59, 6.59); Calibrated: 16/07/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 835 MHz Dipole

Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.36 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.6 V/m; Power Drift = 0.108 dB Peak SAR (extrapolated) = 3.35 W/kg SAR(1 g) = 2.26 mW/g; SAR(10 g) = 1.47 mW/g Maximum value of SAR (measured) = 2.45 mW/g

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-481-3 TK-481-4		DUT Type:	Portable Dual-Band PTT FM Radio Transceiver			KENWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 39 of 66	

<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	RF Exposure Category Occupational (Controlled)	Test Lab Certificate No. 2470.01

Z-Axis Scan

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-481-3 TK-481-4		DUT Type:	Portable Dual-Band PTT FM Radio Transceiver			REINWOOD
2010 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 40 of 66	

Callback	Date(s) of Evaluation Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat:	<u>Test Report Issue Date</u> January 15, 2010	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> Occupational (Controlled)	Test Lab Certificate No. 2470.01

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900 IC:		282D-229900		
Model(s):	s): TK-481-3		TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KENWOOD	
2010 Celltech Labs Inc. This document is not			ument is not to be re	produced in whole of	or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 41 of 66

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
CCENTECCI	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testing and Engineering Services Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

835 MHz System Performance Check & 895/935 MHz DUT Evaluation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 23/Dec/2009 Frequency (GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***** FCC eB FCC_sB Test_e Test_s Freq 0.7350 55.59 0.96 54.74 0.84 54.38 0.7450 55.55 0.96 0.84 0.7550 55.51 0.96 54.51 0.85 55.47 0.96 54.75 0.86 0.7650 0.7750 55.43 0.97 54.30 0.86 0.7850 55.39 0.97 54.45 0.89 54.39 0.7950 55.36 0.97 0.90 0.8050 54.11 0.91 55.32 0.97 0.8150 54.00 0.92 55.28 0.97 0.8250 55.24 0.97 53.72 0.93 0.8350 55.20 0.97 53.04 0.94 0.8450 55.17 0.98 53.63 0.94 0.8550 55.14 0.99 53.66 0.96 0.8650 55.11 1.01 53.46 0.96 0.8750 55.08 1.02 53.09 0.97 0.8850 55.05 1.03 53.37 0.99 0.8950 55.02 1.04 53.10 1.00 0.9050 1.05 53.19 1.00 55.00 0.9150 55.00 1.06 53.17 1.01 0.9250 53.09 54.98 1.06 1.01 0.9350 54.96 52.75 1.07 1.02

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900 IC:		282D-229900		
Model(s):	(s): TK-481-3		TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver			
2010 Celltech Labs Inc. This document is not to be re			produced in whole	or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 42 of 66	

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
CCENTECN	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Refer and Expension Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

835 MHz System Performance Check & 895/935 MHz DUT Evaluation (Head)

Celltech Labs Inc.							
Test Result for UIM Dielectric Parameter							
4/Jan/2010							
	Frequenc	y (GHz)					
FCC_eHFCC OET 65 Suppl	lement C	(June 200	01) Limit	s for Head Epsilon			
FCC_SHFCC OET 65 Supp	lement C	(June 20	01) Limit	ts for Head Sigma			
les	st_e ⊨ps	mo of UI	IVI A				
۲ Ct ************************************	si_s siy *********	***********	VI *******	*****			
Freq	FCC_eH	FCC_sH	Test e	Test s			
0.7350	42.02	0.89	41.33	0.76			
0.7450	41.97	0.89	41.26	0.78			
0.7550	41.92	0.89	40.92	0.77			
0.7650	41.86	0.89	41.05	0.80			
0.7750	41.81	0.90	40.78	0.80			
0.7850	41.76	0.90	40.91	0.80			
0.7950	41.71	0.90	40.84	0.82			
0.8050	41.66	0.90	40.53	0.82			
0.8150	41.60	0.90	40.39	0.83			
0.8250	41.55	0.90	40.44	0.84			
0.8350	41.50	0.90	40.33	0.86			
0.8450	41.50	0.91	40.12	0.86			
0.8550	41.50	0.92	40.05	0.88			
0.8650	41.50	0.93	40.12	0.89			
0.8750	41.50	0.94	40.05	0.91			
0.0000	41.50	0.95	20.40	0.91			
0.0950	41.50	0.90	39.49	0.92			
0.9030	41.50	0.97	30.60	0.92			
0.9150	41.00	0.90	39.00	0.93			
0.9350	41.46	0.99	39.57	0.94			

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900	ALH229900 IC: 282D-22990			
Model(s):	TK-481-3		TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KENWOOD	
2010 Celltech Labs Inc. This docur		ument is not to be re	produced in whole of	or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 43 of 66	

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
CCENTECN	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testing and Engineering Services Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)	

APPENDIX E - DIPOLE CALIBRATION

Applicant:	Kenwood USA Corporation		FCC ID:	ALH229900 IC: 282D-229900		282D-229900	KENWOOD
Model(s):	l(s): TK-481-3		TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		
2010 Celltech Labs Inc. This doe		ument is not to be re	produced in whole	or in part without the prior wr	itten permiss	sion of Celltech Labs Inc.	Page 65 of 66

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Celltech Client Certificate No: D835V2-4d075 Apr09 CALIBRATION CERTIFICATE Object D835V2 - SN: 4d075 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits Calibration date: April 20, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 08-Oct-08 (No. 217-00898) Oct-09 Power sensor HP 8481A US37292783 08-Oct-08 (No. 217-00898) Oct-09 Reference 20 dB Attenuator SN: 5086 (20a) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV2 SN: 3025 28-Apr-08 (No. ES3-3025_Apr08) Apr-09 DAE4 SN: 601 07-Mar-09 (No. DAE4-601_Mar09) Mar-10 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-07) In house check: Oct-09 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Katja Pokovic Approved by: **Technical Manager** Issued: April 22, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d075_Apr09

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR normalized	normalized to 1W	9.40 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.46 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.19 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	9.96 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.61 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.64 mW / g
SAR normalized	normalized to 1W	6.56 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.39 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 3.1 jΩ
Return Loss	- 29.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 4.1 jΩ
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.401 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 09, 2007

DASY5 Validation Report for Head TSL

Date/Time: 14.04.2009 11:20:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 900 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57 V/m; Power Drift = 0.011 dBPeak SAR (extrapolated) = 3.47 W/kgSAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/gMaximum value of SAR (measured) = 2.74 mW/g

0 dB = 2.74 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 20.04.2009 09:57:39

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.4 V/m; Power Drift = -0.00173 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.64 mW/g Maximum value of SAR (measured) = 2.9 mW/g

0 dB = 2.9 mW/g

Impedance Measurement Plot for Body TSL

	<u>Date(s) of Evaluation</u> Dec. 23, 2009 & Jan. 04, 2010	<u>Test Report Serial No.</u> 121509ALH-T999-S90F	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)		
CCENTECN	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01	
Testig and Engineering Services Lat	January 15, 2010	Specific Absorption Rate	Occupational (Controlled)		

APPENDIX F - PROBE CALIBRATION

Applicant:	Kenv	Kenwood USA Corporation		FCC ID:	ALH229900	IC:	282D-229900	
Model(s):	TK-	481-3	TK-481-4	DUT Type:	Portable Dual-Band PTT FM Radio Transceiver		KENWOOD	
2010 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 66 of 66		

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client Celltech			Certificate No: ET3-1590_Jul09
ALIBRATION (CERTIFICAT	E	
Dbject	ET3DV6 - SN:1	590	
Calibration procedure(s)	QA CAL-01.v6, Calibration proc	QA CAL-12.v5, QA CAL edure for dosimetric E-fi	-23.v3 and QA CAL-25.v2 eld probes
Calibration date:	July 16, 2009		
Condition of the calibrated item	In Tolerance		
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1	ents the traceability to na rtainties with confidence sted in the closed laborat 'E critical for calibration)	tional standards, which realize th probability are given on the follow ory facility: environment temperat	e physical units of measurements (SI). ving pages and are part of the certificate. ure (22 ± 3)°C and humidity < 70%.
Primary Standards		Cal Date (Certificate No)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
ower sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013 Jar	109) Jan-10
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Se	ep08) Sep-09
Secondary Standards	#	Check Date (in house)	Sabadulad Chark
RE generator HP 8648C	11536421101700	4-Aug-99 (in house check Or	t 07) In bauss shock: Oct 09
vetwork Analyzer HP 8753E	US37390585	18-Oct-01 (in house check O	in house check: Oct-09
	Name	Function	Signatura
Calibrated by:	Marcel Fehr	Laboratory Tech	nician
\pproved by:	Katja Pokovic	Technical Mana	ger bla hif
			Issued: July 16, 2009
his calibration certificate shall no	ot be reproduced except	in full without written approval of f	he laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	ϕ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f \leq 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1590_Jul09

Probe ET3DV6

SN:1590

Manufactured: Last calibrated: Recalibrated: March 19, 2001 July 21, 2008 July 16, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free	Diode Compression ^B				
NormX	1.83 ± 10.1%	μV/(V/m)²	DCP X	90 mV	
NormY	2.02 ± 10.1%	μV/(V/m) ²	DCP Y	95 mV	
NormZ	1.73 ± 10.1%	μ V/(V/m)²	DCP Z	85 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 835 MHz Typical SAR gradient: 5 % per mm

Sensor Center to	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	9.9	6.3
SAR _{be} [%]	With Correction Algorithm	0.9	0.6

Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ **),** ϑ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.29	1.90	7.34 ± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.37	2.32	6.59 ± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.22	1.91	7.34 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.30	2.77	6.34 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1590_Jul09

Deviation from Isotropy in HSL

Error (φ, ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)