November 22, 2005 Blanca Piedra **Plantronics** 345 Encinal Street Santa Cruz, CA 95061-0635 Subject: FCC Emissions Report, CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT); CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT) Dear Ms. Piedra: A report has been created detailing the results of the FCC electromagnetic emissions testing performed on the CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT); CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT). Please find this report enclosed. Per Federal Communication Commission regulations, the signature of an official of the company responsible for marketing the CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT); CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT) is required, for this report, to be acceptable for determining compliance. We recommend filing this report in a safe place for future reference. Once an official has signed page 4 of this report, you may begin shipping the CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT); CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT). Each unit must be manufactured with any modifications described in the report, the proper FCC label should be attached and the appropriate FCC statement should be included in the operator's manual. If you have any questions, please don't hesitate to call us at 408-245-7800. Sincerely, Mark Briggs Principal Engineer MB/dmg **Enclosure: Emissions Report** File: R61957 # **Test Certificate** A sample of the following product received on November 1, 2005 and tested on November 8 and November 11, 2005 complied with the requirements of FCC part 15 subpart B and ICES-003 for a class B product given the measurement uncertainties as detailed in Elliott report R61957. Plantronics Model CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT); CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT) Mark Briggs Principal Engineer Mark 1 Blanca Piedra Plantronics 2016-01 Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this certificate. This certificate shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc. Ellipm I. oboratorics inc. wors, officettabs, com 584 West Maude Avenue Sunnyvalo, CA 94086-3518 108-245-7800 Phone 408-245-3499 # Electromagnetic Emissions Test Report for Verification of Compliance per FCC Part 15, Subpart B Specifications for a Class B Digital Device and ICES-003 Class B and Subpart D – Unlicensed Personal Communications **Devices** on the **Plantronics** Model: CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT); CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT) > MANUFACTURER: **Plantronics** > > 345 Encinal Street Santa Cruz, CA 95061-0635 TEST SITE: Elliott Laboratories, Inc. > 684 W. Maude Avenue Sunnyvale, CA 94086 REPORT DATE: November 22, 2005 FINAL TEST DATES: September 15, September 16 and September 20, 2005 **AUTHORIZED SIGNATORY:** Mark Briggs Principal Engineer Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc. # TABLE OF CONTENTS | COVER PAGE | 1 | |--|----| | TABLE OF CONTENTS | 2 | | SCOPE | 3 | | VALIDATING SIGNATURES | | | OBJECTIVE | | | EMISSION TEST RESULTS | | | LIMITS OF CONDUCTED INTERFERENCE VOLTAGE | | | LIMITS OF CONDUCTED INTERFERENCE VOLTAGELIMITS OF RADIATED INTERFERENCE FIELD STRENGTH | | | MEASUREMENT UNCERTAINTIES | | | EQUIPMENT UNDER TEST (EUT) DETAILS | | | GENERAL | | | OTHER EUT DETAILS | | | ENCLOSURE | | | MODIFICATIONS | | | SUPPORT EQUIPMENT | | | EUT INTERFACE PORTS | | | EUT OPERATION | | | TEST SITE | | | GENERAL INFORMATION | | | CONDUCTED EMISSIONS CONSIDERATIONS | | | RADIATED EMISSIONS CONSIDERATIONS | | | MEASUREMENT INSTRUMENTATION | | | RECEIVER SYSTEM | 11 | | INSTRUMENT CONTROL COMPUTER | | | LINE IMPEDANCE STABILIZATION NETWORK (LISN) | 11 | | FILTERS/ATTENUATORS | | | ANTENNAS | | | ANTENNA MAST AND EQUIPMENT TURNTABLE | 12 | | INSTRUMENT CALIBRATION | 12 | | TEST PROCEDURES | 13 | | EUT AND CABLE PLACEMENT | 13 | | CONDUCTED EMISSIONS | | | RADIATED EMISSIONS | 13 | | SPECIFICATION LIMITS AND SAMPLE CALCULATIONS | 14 | | CONDUCTED EMISSIONS SPECIFICATION LIMITS, | 14 | | RADIATED EMISSIONS SPECIFICATION LIMITS | | | RADIATED EMISSIONS SPECIFICATION LIMITS | 15 | | SAMPLE CALCULATIONS - CONDUCTED EMISSIONS | | | SAMPLE CALCULATIONS - RADIATED EMISSIONS | | | APPENDIX A: Test Equipment Calibration Data | | | APPENDIX B: Test Data Log Sheets | | | APPENDIX C: Test Configuration Photographs | | | APPENDIX D: Reference Documents | | | APPENDIX E: FCC Labeling and User Information | 5 | ## **SCOPE** The Federal Communications Commission (FCC) establishes rules and regulations regarding the electromagnetic emissions of all electronic devices. An electromagnetic emissions test has been performed on the Plantronics model CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT); CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT) pursuant to Subpart B of Part 15 of FCC Rules for digital devices and Subpart D of FCC rules for intentional devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-2003 as outlined in Elliott Laboratories test procedures. The test data has been provided as an appendix to this report for reference. The digital device above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards. Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization. Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance. The test results recorded herein are based on a single type test of the Plantronics models CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT); CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT) and therefore apply only to the tested samples. The samples were selected and prepared by Blanca Piedra of Plantronics. File: R61957 Page 3 of 16 pages Elliott Laboratories, Inc. -- EMC Department Test Report Report Date: November 22, 2005 ## **VALIDATING SIGNATURES** The tested sample of the cable location and Class B digital device submitted to and tested by Elliott Laboratories complied with the requirements of subpart B of Part 15 of the Federal Communications Commissions Rules as specified in this report. Mark Briggs Principal Engineer Elliott Laboratories, Inc. The official of the company responsible for marketing the device tested. Blanca Piedra Principal Engineer Plantronics ## **OBJECTIVE** The primary objective of the manufacturer is compliance with Subpart D for intentional devices and Subpart B of Part 15 of FCC Rules for the radiated and conducted emissions of digital devices. Since the subject device is intended for operation in any environment including residential areas, equipment verification is required. Equipment verification is a procedure where the manufacturer or a contracted laboratory makes measurements and takes necessary steps to ensure that the equipment complies with the appropriate technical standards. Submittal of a sample unit or test data to the FCC is not required unless specifically requested by the Commission. Once equipment verification has been obtained, a label indicating compliance must be attached to all identical units subsequently manufactured. Specific cautionary information must also be included in the operator's manual. These FCC labeling requirements are included as an appendix to this report. Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing and/or I/O cable changes, etc.). ## **EMISSION TEST RESULTS** The following emissions tests were performed on the Plantronics model CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT); CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT). The actual test results are contained in an appendix of this report. ## LIMITS OF CONDUCTED INTERFERENCE VOLTAGE The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.107(a) and 15.315. The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an appendix of this report. | Frequency | Level | Power | FCC 15.10 | 09 Class B | Detector | Comments | |-----------|-------|--------|-----------|------------|----------|-------------------------------| | MHz | dBuV | Lead | Limit | Margin | QP/Ave | | | 1.170 | 36.3 | Line 1 | 46.0 | -9.7 | Peak | Peak Reading Average
Limit | ## LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.109(g). The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an appendix of this report. | Frequency | Level | Pol | Cla | ass B | Detector | Azimuth | Height | Comments |
-----------|--------|-----|-------|--------|-----------|---------|--------|---------------| | MHz | dBuV/m | v/h | Limit | Margin | Pk/QP/Avg | Degrees | Meters | | | 235.007 | 32.7 | Н | 46.0 | -13.3 | QP | 145 | 1.4 | EUT + ambient | File: R61957 Page 5 of 16 pages ## MEASUREMENT UNCERTAINTIES ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34. | Measurement Type | Frequency Range (MHz) | Calculated Uncertainty (dB) | | |---------------------|-----------------------|-----------------------------|--| | Conducted Emissions | 0.15 to 30 | ± 2.4 | | | Radiated Emissions | 30 to 1000 | ± 3.6 | | File: R61957 Page 6 of 16 pages ## **EQUIPMENT UNDER TEST (EUT) DETAILS** ## GENERAL The Plantronics models CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT); CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT) are from the SupraPlus Wireless family of Wireless Telephone Headset Adaptors which are designed to use the UPCS (Unlicensed Personal Communications Service) band and operate under FCC Part 15 Subpart D. The systems are comprised of a headset and associated base unit. The base unit is common to all of these systems, the differences in the units are in the headsets, specifically the headphone type (monaural or binaural) and the microphone (Voice Tube or Noise Canceling). The four models in the series are: CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT) CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT) CS351N Monaural Noise Canceling Headset and Base (CS351N Mon NC) CS361N Binaural Noise Canceling Headset and Base (CS361N Bin NC) This test report covers the VoiceTube Measurements were made on each model in the series, with the combination of base and headset configured on the top channel with accessories connected to the base unit and on the bottom channel without accessories connected to the base unit to determine the worst case configuration with respect to channel. The base units are electrically identical to those for the Plantronics CS55 series of devices, with minor mechanical changes to accommodate the headsets. Preliminary tests on the CS55 series of devices demon started that the digital device emissions from the base units were independent of the operating channel, therefore only one of the base units in each test had accessories connected to the two available accessory ports. The second base unit was used to set the associated headset to the required channel. Systems (base/headset combinations) were tested in pairs (CS351 with CS 361) as follows (the operating frequency is determined by the base unit): CS351 on low channel, without accessories connected to the base unit and CS361 on high channel, with accessories connected to the base unit; CS351 on high channel, with accessories and CS361 on low channel, without accessories connected to the base unit. Normally, the base unit would be placed on a tabletop during operation. The headset is worn on the head or placed in a cradle on the base. The base unit was treated as tabletop equipment during testing to simulate the end-user environment. The headset was tested in the cradle of its respective base unit and also on its own, out of the cradle and oriented as best as possible to represent its intended, on the head use. The electrical rating of the base unit is 120 V, 60 Hz, 62.5mAmps (via an external AC-DC adapter). The headset is battery-powered and the batteries are charged from the base unit when the headset is installed in the cradle. File: R61957 Page 7 of 16 pages The samples were received on November 1, 2005 and tested on November 8 and November 11, 2005. The EUT consisted of the following component(s): ## CS351 Mon VT | Manufacturer | Model | Description | Serial Number | | |------------------------|------------|------------------------------------|----------------|--| | Plantronics | CS351 Base | Wireless Telephone Adapter Base | BI1500166 | | | Fiantionics | CSSSI Dase | Wheless Telephone Adapter Base | (Low channel) | | | Plantronics CS351 Base | | Wireless Telephone Adapter Base | BI1500007 | | | Fiantionics | CSSSI Dase | Wheless Telephone Adapter Base | (High channel) | | | Plantronics | CS351 | Wireless Telephone adapter Headset | HI500001-F | | | Planuomes | Headset | Monaural VT | П1300001-Г | | ## CS361 Bin VT | Manufacturer | Model | Description | Serial Number | | |------------------------|------------|------------------------------------|----------------|--| | Plantronics | CS361 Base | Wireless Telephone Adapter Base | BI1500166 | | | Fiantionics | CS301 Dase | Wheless Telephone Adapter Base | (Low channel) | | | Plantronics CS361 Base | | Wireless Telephone Adapter Base | BI1500007 | | | Fianuonics | CS301 Dase | Wheless Telephone Adapter Base | (High channel) | | | Plantronics | CS361 | Wireless Telephone adapter Headset | HI500002-F | | | Fianuonics | Headset | Binaural VT | П1300002-F | | ## OTHER EUT DETAILS The low channel is 1921.536MHz, the high channel is 1928.448MHz. The receiver LO operates at 864kHz above the operating frequency. The handset links to the frequency of the base. The antenna is integral to both headset and base unit, thereby meeting the requirements of FCC 15.203. ## **ENCLOSURE** The base unit enclosure is primarily constructed of plastic. It measures approximately 10.7 cm wide by 10.4 cm deep by 12.2 cm high. The CS361 & CS361N binaural and CS351 & CS351N monaural headset enclosures are primarily constructed of plastic. The binaural headset measures approximately 18 cm wide by 18 cm long by 5.5 cm deep. The monaural headset measures approximately 17 cm wide by 18 cm long by 5.5 cm deep. ## **MODIFICATIONS** The EUT did not require modifications during testing in order to comply with emissions specifications. File: R61957 Page 8 of 16 pages ## SUPPORT EQUIPMENT The following equipment was used as local support equipment for emissions testing: ## System with Accessories | Manufacturer | Model | Description | Serial Number | FCC ID | |--------------|-----------|-------------|---------------|--------| | Plantronics | HL10 | Lifter | EMI LTU #1 | N/A | | Plantronics | OLI | OLI | EMI OTU #1 | N/A | | AT&T | Z7303S01B | Telephone | 88SP05 | N/A | ## System without Accessories | Manufacturer | Model | Description | Serial Number | FCC ID | |--------------|----------|-------------|---------------|--------| | Lucent | 6416D02A | Telephone | | N/A | No support equipment was used during emissions testing. ## **EUT INTERFACE PORTS** The I/O cabling configuration during emissions testing was as follows: ## System with Accessories | | | Cable(s) | | | |-------------------|------------------------|------------------------|-------------|-----------| | Port | Connected To | | Shielded or | | | | | Description | Unshielded | Length(m) | | Base DC power | External AC-DC adapter | 2 wire | unshielded | 2 | | Base PSB bus port | Lifter PSB in | integral to lifter | unshielded | 1 | | Lifter PSB out | OLI | integral to OLI | unshielded | 1 | | Base handset in | Phone handset port | 2-wire | unshielded | 0.3 | | Base handset out | Phone handset | integral to
handset | unshielded | 1 | ## System without Accessories | | | | Cable(s) | | |------------------|------------------------|---------------------|-------------|-----------| | Port | Connected To | | Shielded or | | | | | Description | Unshielded | Length(m) | | Base DC power | External AC-DC adapter | 2 wire | unshielded | 2 | | Base handset in | Phone handset port | 2-wire | unshielded | 0.3 | | Base handset out | Phone handset | integral to handset | unshielded | 1 | ## **EUT OPERATION** For radiated emissions tests below 1GHz the system under test was configured to operate in transmit/receive mode, with a link between headset and base unit on the specified channel. The headsets were operating from a freshly-charged battery pack. File: R61957 Page 9 of 16 pages ## TEST SITE ## GENERAL INFORMATION Final test measurements were taken on November 8 and November 11, 2005 at the Elliott Laboratories Anechoic Chambers and Open Area Test Site #1 & 2 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission. The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements. ## CONDUCTED EMISSIONS CONSIDERATIONS Conducted emissions testing is performed in conformance with ANSI C63.4-2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord. ## RADIATED EMISSIONS CONSIDERATIONS The FCC has determined that radiation measurements made in a non-anechoic shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an Open Area Test Site or anechoic chamber. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines. File: R61957 Page 10 of 16 pages ## **MEASUREMENT INSTRUMENTATION** ## RECEIVER SYSTEM An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can
measure over the frequency range of 9 kHz up to 7 GHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz. ## INSTRUMENT CONTROL COMPUTER The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically. ## LINE IMPEDANCE STABILIZATION NETWORK (LISN) Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively. File: R61957 Page 11 of 16 pages ## FILTERS/ATTENUATORS External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events. ## **ANTENNAS** A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors that are programmed into the test receivers. ## ANTENNA MAST AND EQUIPMENT TURNTABLE The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material up to 12 mm thick if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement. ## **INSTRUMENT CALIBRATION** All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An appendix of this report contains the list of test equipment used and calibration information. File: R61957 Page 12 of 16 pages ## TEST PROCEDURES ## **EUT AND CABLE PLACEMENT** The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst-case orientation is used for final measurements. ## CONDUCTED EMISSIONS Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord. ## RADIATED EMISSIONS Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically or horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT. Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth that results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions that have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance. File: R61957 Page 13 of 16 pages ## SPECIFICATION LIMITS AND SAMPLE CALCULATIONS The limits for conducted and radiated emissions given below are taken from the first edition of CISPR Pub. 22 (1997), "Limits and Methods of Measurements of Radio Interference Characteristics of Information Technology Equipment." Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The limits are based on the use of an average or quasi-peak detector as indicated. ## CONDUCTED EMISSIONS SPECIFICATION LIMITS, | Frequency | Average | Quasi Peak | |-----------------|---|---| | Range | Limit | Limit | | (MHz) | (dBuV) | (dBuV) | | 0.150 to 0.500 | Linear decrease on logarithmic frequency axis between 56.0 and 46.0 | Linear decrease on logarithmic frequency axis between 66.0 and 56.0 | | 0.500 to 5.000 | 46.0 | 56.0 | | 5.000 to 30.000 | 50.0 | 60.0 | ## RADIATED EMISSIONS SPECIFICATION LIMITS | Frequency
Range
(MHz) | Class B
Limit
(uV/m @ 3m) | Class B
Limit
(dBuV/m @ 3m) | |-----------------------------|---------------------------------|-----------------------------------| | 30 to 88 | 100 | 40 | | 88 to 216 | 150 | 43.5 | | 216 to 960 | 200 | 46.0 | | Above 960 | 500 | 54.0 | File: R61957 Page 14 of 16 pages ## RADIATED EMISSIONS SPECIFICATION LIMITS Note: The limits for radiated emissions above 1000 MHz are based on the use of an average detector. In addition, limits based on the use of a peak detector are specified as 20 dB above the limits based on the use of an average detector. | Frequency | Average Limit | Average Limit | |------------|---------------|---------------| | (MHz) | (uV/m @ 3m) | (dBuV/m @ 3m) | | | , | , | | | | | | above 1000 | 500 | 54.0 | ## SAMPLE CALCULATIONS - CONDUCTED EMISSIONS Receiver readings are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows: $$R_r - S = M$$ where: R_r = Receiver Reading in dBuV S = Specification Limit in dBuV M = Margin to Specification in +/- dB File: R61957 Page 15 of 16 pages ## SAMPLE CALCULATIONS - RADIATED EMISSIONS Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula: $$F_d = 20*LOG_{10} (D_m/D_s)$$ where: F_d = Distance Factor in dB $D_{\rm m}$ = Measurement Distance in meters D_S = Specification Distance in meters Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. The margin of a
given emission peak relative to the limit is calculated as follows: $$R_c = R_r + F_d$$ and $$M = R_C - L_S$$ where: R_r = Receiver Reading in dBuV/m F_d = Distance Factor in dB R_C = Corrected Reading in dBuV/m L_S = Specification Limit in dBuV/m M = Margin in dB Relative to Spec File: R61957 Page 16 of 16 pages # APPENDIX A: Test Equipment Calibration Data 1 Page File: R61957 Appendix Page 1 of 6 # Preliminary Radiated Emissions, 30 - 1,000 MHz, 01-Nov-05 Engineer: David Bare | <u>Manufacturer</u> | <u>Description</u> | Model # | Asset # | Cal Due | |----------------------|-------------------------------------|------------|---------|-----------| | Elliott Laboratories | Log Periodic Antenna 300-1000 MHz | EL300.1000 | 297 | 31-Jan-07 | | Hewlett Packard | EMC Spectrum Analyzer 9kHz - 6.5GHz | 8595EM | 780 | 26-May-06 | | EMCO | Biconical Antenna, 30-300 MHz | 3110B | 801 | 03-Aug-06 | | Hewlett Packard | RF Preamplifier, 100 kHz - 1.3 GHz | 8447E | 1606 | 05-Aug-06 | ## Conducted Emissions - AC Power Ports, 08-Nov-05 **Engineer: Juan Martinez** | <u>Manufacturer</u> | <u>Description</u> | Model # | Asset # | Cal Due | |----------------------|-------------------------------------|--------------|---------|-----------| | Elliott Laboratories | FCC / CISPR LISN | LISN-3, OATS | 304 | 08-Jul-06 | | Hewlett Packard | EMC Spectrum Analyzer 9kHz - 6.5GHz | 8595EM | 787 | 17-Dec-05 | | Rohde & Schwarz | Test Receiver, 0.009-2750 MHz | ESN | 1332 | 23-May-06 | | Rohde& Schwarz | Pulse Limiter | ESH3 Z2 | 1398 | 11-Feb-06 | ## Radiated Emissions, 30 - 1,000 MHz, 11-Nov-05 **Engineer: Mark Briggs** | <u>Manufacturer</u> | <u>Description</u> | <u>Model #</u> | Asset # | Cal Due | |----------------------|-----------------------------------|----------------|---------|-----------| | Elliott Laboratories | Biconical Antenna, 30-300 MHz | EL30.300 | 54 | 07-Mar-07 | | Elliott Laboratories | Log Periodic Antenna 300-1000 MHz | EL300.1000 | 297 | 31-Jan-07 | | Rohde & Schwarz | Test Receiver, 9kHz-2750MHz | ESCS 30 | 1337 | 12-Jan-06 | # Radiated Emissions, 30 - 1,000 MHz, 18-Nov-05 **Engineer: Adam LaCourse** | <u>Manufacturer</u> | <u>Description</u> | <u>Model #</u> | Asset # Cal Due | |---------------------|------------------------------|----------------|-----------------| | Rohde & Schwarz | EMI Test Receiver, 20Hz-7GHz | ESIB7 | 1538 08-Jun-06 | | Sunol Sciences | Biconilog, 30-3000MHz | JB3 | 1549 26-Apr-06 | # APPENDIX B: Test Data Log Sheets **ELECTROMAGNETIC EMISSIONS** **TEST LOG SHEETS** **AND** **MEASUREMENT DATA** T61720 10 Pages File: R61957 Appendix Page 2 of 6 | Elliot | t | EM | C Test Data | |-----------------|--------------------------------|------------------|---------------| | Client: | Plantronics | Job Number: | J61697 | | Model: | CS351, CS361, CS351N, & CS361N | Test-Log Number: | T61720 | | | | Project Manager: | Juan Martinez | | Contact: | Blanca Piedra | | | | Emissions Spec: | FCC Part 15 | Class: | В | | Immunity Spec: | - | Environment: | - | # **EMC Test Data** For The # **Plantronics** Model CS351, CS361, CS351N, & CS361N Date of Last Test: 11/18/2005 | Ellio | t | EM | C Test Data | |-----------------|--------------------------------|------------------|---------------| | Client: | Plantronics | Job Number: | J61697 | | Model: | CS351, CS361, CS351N, & CS361N | Test-Log Number: | T61720 | | | | Project Manager: | Juan Martinez | | Contact: | Blanca Piedra | | | | Emissions Spec: | FCC Part 15 | Class: | В | | Immunity Spec: | - | Environment: | - | ## **EUT INFORMATION** The following information was collected during the test sessions(s). ## **General Description** The EUTs are a series of Wireless Telephone Headset Adaptors which are designed to use the UPCS (Unlicensed Personal Communications Service) band and operate under FCC Part 15 Subpart D. The systems are comprised of a headset and associated base unit. The base unit is common to all of these systems, the differences in the units are in the headsets, specifically the headphone type (monaural or binaural) and the microphone (Voice Tube or Noise Cancelling). All four models in the series are: CS351 Monaural Voice Tube Headset and Base (CS351 Mon VT) CS361 Binaural Voice Tube Headset and Base (CS361 Bin VT) CS351N Monaural Noise Cancelling Headset and Base (CS351N Mon NC) CS361N Binaural Noise Cancelling Headset and Base (CS361N Bin NC) Preliminary measurements were made on each model in the series, with the unit configured on the top channel with accessories connected and on the bottom channel without accessories to determine the worst case configuration with respect to channel and connected accessories. Units were tested in pairs (CS351 with CS 361, CS 351N with CS 361N) as follows: CS351 on low channel, without accessories and CS361 on high channel, with accessories CS351 on high channel, with accessories and CS361 on low channel, without accessories CS351N on low channel, without accessories and CS361N on high channel, with accessories CS351N on high channel, with accessories and CS361N on low channel, without accessories (Note - the operating frequency is determined by the base unit). Normally, the base unit would be placed on a tabletop during operation. The headset is worn on the head or placed in a cradle on the base. The base unit was treated as tabletop equipment during testing to simulate the end-user environment. The headset was tested in the cradle of its respective base unit and also on its own, out of the cradle and oriented as best as possible to represent its intended, on the head use. The electrical rating of the base unit is 120 V, 60 Hz, 62.5mAmps (via an external AC-DC adapter). The headset is battery-powered and the batteries are charged from the base unit when the headset is installed in the cradle. | Elliot | Plantronics | | Job Number: | 161697 | |----------------------------|----------------------|--------------------------------|----------------------------|---------------| | | CS351, CS361, CS351 | N & CS361N | Test-Log Number: | | | iviouei. | 00001, 00001, 000011 | 1, & C330111 | Project Manager: | | | Contact: | Blanca Piedra | | r rojour managon | oddii Maranoz | | Emissions Spec: | | | Class: | В | | Immunity Spec: | | | Environment: | - | | S351 Mon VT | | Equipment Under Test | İ | | | Manufacturer | Model | Description | Serial Number | FCC ID | | Plantronics | CS351 Base | Wireless Telephone | BI1500166 | - | | Plantionics | CSSST Base | Adapter Base | (Low channel) | | | Plantronics | CS351 Base | Wireless Telephone | BI1500007 | _ | | r iai ili Ui iliUS | COOUT DASE | Adapter Base | (High channel) | | | | CS351 | Wireless Telephone | | - | | Plantronics | Headset | adapter Headset | HI500001-F | | | | 11000000 | Monaural VT | | | | S361 Bin VT | | | | | | Manufacturer | Model | Description | Serial Number | FCC ID | | | | Wireless Telephone | BI1500166 | - | | Plantronics | CS361 Base | Adapter Base | (Low channel) | | | Discourable and the second | 00004 D | Wireless Telephone | BI1500007 | _ | | Plantronics | CS361 Base | Adapter Base | (High channel) | | | | CS361 | Wireless Telephone | (· ··g·· ······· | - | | Plantronics | | adapter Headset | HI500002-F | | | | Headset | Binaural VT | | | | | | | | | | S351N Mon NC: | Madal | Description | Carriel Numer are | FOC ID | | Manufacturer | Model | Description Wireless Telephone | Serial Number
BI1500166 | FCC ID | | Plantronics | CS351N Base | Adapter Base | (Low channel) | - | | | | Wireless Telephone | BI1500007 | | | Plantronics | CS351N Base | Adapter Base | (High channel) | _ | | | 000=*** | Wireless Telephone | (i ligii Gilaillei) | _ | | Plantronics | CS351N | Adapter Headset | HI500003-F | _ | | | Headset | Monaural NC | | | | | • | | | | | S361N Bin NC: | | | | | | Manufacturer | Model | Description | Serial Number | FCC ID | | Plantronics | CS361N Base | Wireless Telephone | BI1500166 | - | | | 2200111 2000 | Adapter Base | (Low channel) | | | Plantronics | CS361N Base | Wireless Telephone | BI1500007 | - | | | | Adapter Base | (High channel) | | | Dlantere | CS361N | Wireless Telephone | LUE00004 E | - | | Plantronics | Headset | Adapter Headset
Binaural NC | HI500004-F | | | Ellio | t | EMC Test Data | | | |-----------------|--------------------------------|------------------|---------------|--| | Client: | Plantronics | Job Number: | J61697 | | | Model: | CS351, CS361, CS351N, & CS361N | Test-Log Number: | T61720 | | | | | Project Manager: | Juan Martinez | | | Contact: | Blanca Piedra | | | | | Emissions Spec: | FCC Part 15 | Class: | В | | ## Other EUT Details Environment: The low channel is 1921.536MHz, the high channel is 1928.448MHz. The receiver LO operates at 864kHz above the operating frequency. The handset links to the frequency of the base. Models family name: SupraPlus Wireless Immunity Spec: ## **EUT Antenna** The antenna is integral to both headset and base unit, thereby meeting the requirements of FCC 15.203. ## **EUT Enclosure** The base unit enclosure is primarily constructed of plastic. It measures approximately 10.7 cm wide by 10.4 cm deep by 12.2 cm high. The CS361 & CS361N binaural and CS351 & CS351N monaural headset enclosures are primarily constructed of plastic. The binaural headset measures approximately 18 cm wide by 18 cm long by 5.5 cm deep. The monaural headset measures approximately 17 cm wide by 18 cm long by 5.5 cm deep. ## **Modification History** | Mod.# | Test | Date | Modification | |-------|------|------|--------------| | 1 | | | | Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification. | Elliot | Plantronics | | Job Number: | C Test Da | |--|---
---|---|-------------------------------| | | CS351, CS361, CS351N, 6 | 8 CC361NI | T-Log Number: | | | wodei. | 00001, 00001, 00001N, 0 | α C330 IIV | Project Manager: | | | Contact: | Blanca Piedra | | i roject manager. | Juan Martinez | | Emissions Spec: | | | Class: | В | | Immunity Spec: | | | Environment: | - | | | following informatio Local Support Ed | quipment - System w | ng the test sessions ith Accessories | . , | | Manufacturer | Model | Description | Serial Number | FCC ID | | Plantronics | HL10
OLI | Lifter
OLI | EMI LTU #1
EMI OTU #1 | N/A | | Plantronics
AT&T | Z7303S01B | Telephone | 88SP05 | N/A
N/A | | | Local Support Equ | lipment - System wit | Hout Accessories | | | Manufacturer
Lucent | Model
6416D02A | ipment - System wit Description Telephone | Serial Number | FCC ID
N/A | | | Model
6416D02A | Description | Serial Number | | | | Model
6416D02A | Description
Telephone | Serial Number | | | Lucent | Model
6416D02A | Description Telephone note Support Equipm | Serial Number | N/A | | Lucent Manufacturer None | Model 6416D02A Rem Model Interface Cabling | Description Telephone note Support Equipm | Serial Number ent Serial Number vith Accessories | N/A | | Lucent Manufacturer | Model
6416D02A
Rem
Model | Description Telephone note Support Equipm Description and Ports - System v | ent Serial Number Serial Number vith Accessories Cable(s) | N/A
FCC ID | | Lucent Manufacturer None Port | Model 6416D02A Rem Model Interface Cabling Connected To | Description Telephone note Support Equipm Description and Ports - System v Description | Serial Number ent Serial Number vith Accessories Cable(s) Shielded or Unshield | N/A FCC ID ded Length(n | | Lucent Manufacturer None Port Base DC power | Model 6416D02A Rem Model Interface Cabling Connected To External AC-DC adapter | Description Telephone note Support Equipm Description and Ports - System v Description 2 wire | Serial Number ent Serial Number vith Accessories Cable(s) Shielded or Unshield unshielded | N/A FCC ID ded Length(r | | Manufacturer None Port Base DC power Base PSB bus port | Model 6416D02A Rem Model Interface Cabling Connected To External AC-DC adapter Lifter PSB in | Description Telephone note Support Equipm Description and Ports - System v Description 2 wire integral to lifter | Serial Number ent Serial Number vith Accessories Cable(s) Shielded or Unshield unshielded unshielded | N/A FCC ID ded Length(n 2 1 | | Lucent Manufacturer None Port | Model 6416D02A Rem Model Interface Cabling Connected To External AC-DC adapter | Description Telephone note Support Equipm Description and Ports - System v Description 2 wire | Serial Number ent Serial Number vith Accessories Cable(s) Shielded or Unshield unshielded | N/A FCC ID ded Length(n 2 | | Connected To | Cable(s) | | | |------------------------|---------------------|---|--| | | Description | Shielded or Unshielded | Length(m) | | External AC-DC adapter | 2 wire | unshielded | 2 | | Phone handset port | 2-wire | unshielded | 0.3 | | Phone handset | integral to handset | unshielded | 1 | | | Phone handset port | Description External AC-DC adapter 2 wire Phone handset port 2-wire | Description Shielded or Unshielded External AC-DC adapter 2 wire unshielded Phone handset port 2-wire unshielded | ## **EUT Operation During Emissions Tests** For radiated emissions tests below 1GHz the system under test was configured to operate in transmit/receive mode, with a link between headset and base unit on the specified channel. The headsets were operating from a freshly-charged battery pack. | Elliott | EMC Test Data | | | | |--|--------------------------------|--|--|--| | Client: Plantronics | Job Number: J61697 | | | | | Model: CS351, CS361, CS351N, & CS361N | T-Log Number: T61720 | | | | | Widdel. C3331, C3301, C3331N, & C3301N | Account Manager: Juan Martinez | | | | | Contact: Blanca Piedra | | | | | | Spec: FCC Part 15 | Class: B | | | | ## **AC Conducted Emissions - CS361** ## **Test Specifics** Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 11/8/2005 Config. Used: 1 Test Engineer: Juan Martinez Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz ## **General Test Configuration** The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Ambient Conditions: Temperature: 13 °C Rel. Humidity: 88 % ## Summary of Results | Run # | Test Performed | Limit | Result | Margin | |-------|------------------------|-----------|--------|---------------------------------| | 2 | CE, AC Power,120V/60Hz | EN55022 B | Pass | 36.3dBµV @ 1.170MHz
(-9.7dB) | ## Modifications Made During Testing: No modifications were made to the EUT during testing ## **Deviations From The Standard** No deviations were made from the requirements of the standard. # EMC Test Data Client: Plantronics Job Number: J61697 Model: CS351, CS361, CS351N, & CS361N T-Log Number: T61720 Account Manager: Juan Martinez Contact: Blanca Piedra Class: B Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz CS361 Binaural VT (Base SN: BI1500007) with accessories | Model CS351, CS361, CS351N, & CS361N | | Elli(| | | | | | Job Number: | J61697 | |--|----------|-------------|----------|-----------|-------|------|-------------|------------------------|--------------| | Account Manager: Juan Martinez | | Plantronics | | | | | | | | | Spec: FCC Part 15 Class: B requency Level AC Line Limit Margin QP/Ave EN55022 B Detector QP/Ave Comments 1.170 36.3 Line 1 46.0 -9.7 Peak Note 1 3.683 30.4 Line 1 46.0 -15.6 Peak Note 1 7.235 31.8 Line 1 50.0 -18.2 Peak Note 1 7.235 31.7 Line 1 50.0 -18.3 Peak Note 1 0.811 41.0 Line 1 46.0 -5.0 Peak AM radio ambient, Peak Reading Average Limit 0.881 40.3 Line 1 46.0 -5.7 Peak AM radio ambient, Peak Reading Average Limit 0.680 38.0 Line 1 46.0 -8.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 34.9 Line 1 46.0 -11.1 Peak AM radio ambient, Peak Reading Average Limit 0.808 34.5 Line 1 46.0 -11.6 Peak AM radio ambient, Peak Reading Average Limit | Model: | CS351, C | S361, CS | 351N, & C | S361N | | | | | | equency MHz Level dBμV AC Line EN55022 B Limit Detector QP/Ave Comments 1.170 36.3 Line 1 46.0 -9.7 Peak Note 1 3.683 30.4 Line 1 46.0 -15.6 Peak Note 1 7.235 31.8 Line 1 50.0 -18.2 Peak Note 1 7.235 31.7 Line 1 50.0 -18.3 Peak Note 1 0.811 41.0 Line 1 46.0 -5.0 Peak AM radio ambient, Peak Reading Average Limit 0.880 38.0 Line 1 46.0 -8.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 34.9 Line 1 46.0 -11.1 Peak AM radio ambient, Peak Reading Average Limit 0.808 34.5 Line 1 46.0 -11.6 Peak AM radio ambient, Peak Reading Average Limit | Contact: | Blanca Pi | edra | | | | | - | | | MHz dBμV Line Limit Margin QP/Ave 1.170 36.3 Line 1 46.0 -9.7 Peak Note 1 3.683 30.4 Line 1 46.0 -15.6 Peak Note 1 7.235 31.8 Line 1 50.0 -18.2 Peak Note 1 7.235 31.7 Line 1 50.0 -18.3 Peak Note 1 0.811 41.0 Line 1 46.0 -5.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 38.0 Line 1 46.0 -8.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 34.9 Line 1 46.0 -11.1 Peak AM radio ambient, Peak Reading Average Limit 0.808 34.5 Line 1 46.0 -11.6 Peak AM radio ambient, Peak Reading Average Limit | Spec: | FCC Part | 15 | | | | | Class: | В | | MHz dBμV Line Limit Margin QP/Ave 1.170 36.3 Line 1 46.0 -9.7 Peak Note 1 3.683 30.4 Line 1 46.0 -15.6 Peak Note 1 7.235 31.8 Line 1 50.0 -18.2 Peak Note 1 7.235 31.7 Line 1 50.0 -18.3 Peak Note 1 0.811 41.0 Line 1 46.0 -5.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 38.0 Line 1 46.0 -8.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 34.9 Line 1 46.0 -11.1 Peak AM radio ambient, Peak Reading Average Limit 0.808 34.5 Line 1 46.0 -11.6 Peak AM radio ambient, Peak Reading Average Limit | | | | =1155 | 200 5 | T = | In . | | | | 1.170 36.3 Line 1 46.0 -9.7 Peak Note 1 3.683 30.4 Line 1 46.0 -15.6 Peak Note 1 7.235 31.8 Line 1 50.0 -18.2 Peak Note 1 7.235 31.7 Line 1 50.0 -18.3 Peak Note 1 0.811 41.0 Line 1 46.0 -5.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 38.0 Line 1 46.0 -8.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 34.9 Line 1 46.0 -11.1 Peak AM radio ambient, Peak Reading Average Limit 0.808 34.5 Line 1 46.0 -11.6 Peak AM radio ambient, Peak Reading Average Limit | | | | | ī | | Comments | | | | 3.683 30.4 Line 1 46.0 -15.6 Peak Note 1 7.235 31.8 Line 1 50.0 -18.2 Peak
Note 1 7.235 31.7 Line 1 50.0 -18.3 Peak Note 1 0.811 41.0 Line 1 46.0 -5.0 Peak AM radio ambient, Peak Reading Average Limit 0.811 40.3 Line 1 46.0 -5.7 Peak AM radio ambient, Peak Reading Average Limit 0.680 38.0 Line 1 46.0 -8.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 34.9 Line 1 46.0 -11.1 Peak AM radio ambient, Peak Reading Average Limit 0.808 34.5 Line 1 46.0 -11.6 Peak AM radio ambient, Peak Reading Average Limit | | | | | | | Note 1 | | | | 7.235 31.8 Line 1 50.0 -18.2 Peak Note 1 7.235 31.7 Line 1 50.0 -18.3 Peak Note 1 0.811 41.0 Line 1 46.0 -5.0 Peak AM radio ambient, Peak Reading Average Limit 0.811 40.3 Line 1 46.0 -5.7 Peak AM radio ambient, Peak Reading Average Limit 0.680 38.0 Line 1 46.0 -8.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 34.9 Line 1 46.0 -11.1 Peak AM radio ambient, Peak Reading Average Limit 0.808 34.5 Line 1 46.0 -11.6 Peak AM radio ambient, Peak Reading Average Limit | | | | | | | | | | | 7.235 31.7 Line 1 50.0 -18.3 Peak Note 1 0.811 41.0 Line 1 46.0 -5.0 Peak AM radio ambient, Peak Reading Average Limit 0.811 40.3 Line 1 46.0 -5.7 Peak AM radio ambient, Peak Reading Average Limit 0.680 38.0 Line 1 46.0 -8.0 Peak AM radio ambient, Peak Reading Average Limit 0.680 34.9 Line 1 46.0 -11.1 Peak AM radio ambient, Peak Reading Average Limit 0.808 34.5 Line 1 46.0 -11.6 Peak AM radio ambient, Peak Reading Average Limit | | | | | | | | | | | 0.81141.0Line 146.0-5.0PeakAM radio ambient, Peak Reading Average Limit0.81140.3Line 146.0-5.7PeakAM radio ambient, Peak Reading Average Limit0.68038.0Line 146.0-8.0PeakAM radio ambient, Peak Reading Average Limit0.68034.9Line 146.0-11.1PeakAM radio ambient, Peak Reading Average Limit0.80834.5Line 146.0-11.6PeakAM radio ambient, Peak Reading Average Limit | | | | | | | | | | | 0.81140.3Line 146.0-5.7PeakAM radio ambient, Peak Reading Average Limit0.68038.0Line 146.0-8.0PeakAM radio ambient, Peak Reading Average Limit0.68034.9Line 146.0-11.1PeakAM radio ambient, Peak Reading Average Limit0.80834.5Line 146.0-11.6PeakAM radio ambient, Peak Reading Average Limit | | | | | | | | bient, Peak Reading Av | rerage Limit | | 0.68038.0Line 146.0-8.0PeakAM radio ambient, Peak Reading Average Limit0.68034.9Line 146.0-11.1PeakAM radio ambient, Peak Reading Average Limit0.80834.5Line 146.0-11.6PeakAM radio ambient, Peak Reading Average Limit | | | | | | Peak | | | | | 0.808 34.5 Line 1 46.0 -11.6 Peak AM radio ambient, Peak Reading Average Limit | 0.680 | 38.0 | | 46.0 | -8.0 | Peak | | | | | | 0.680 | 34.9 | Line 1 | 46.0 | -11.1 | Peak | AM radio am | bient, Peak Reading Av | verage Limit | | te 1: No QP measurements taken since peak reading is more then 6-dB below the average limit. | | | | | | | | | orago | | | | | | | • | • | • | | verage Limit | | | | | | | • | • | • | | verage Limit | | | | | | | • | • | • | | verage Limit | | | | | | | • | • | • | | verage Limit | | | | | | | • | • | • | | verage Limit | | | | | | | • | • | • | | verage Limit | | | | | | | • | • | • | | verage Limit | | | | | | | • | • | • | | verage Limit | | | | | | | • | • | • | | verage Limit | | | | | | | • | • | • | | verage Limit | | EIIIOU | ENIC Test Data | | | | |--|--------------------------------|--|--|--| | Client: Plantronics | Job Number: J61697 | | | | | Model: CS351, CS361, CS351N, & CS361N | T-Log Number: T61720 | | | | | Would Coop 1, Coop 1, Coop 114, & Coop 114 | Account Manager: Juan Martinez | | | | | Contact: Blanca Piedra | | | | | | Spec: FCC Part 15 | Class: B | | | | # **Radiated Emissions - VT Configurations** ## **Test Specifics** C [11]: 44 The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Preliminary measurements for radiated emissions from each of the four Objective: configurations detailed in the EUT Description were performed on 1-Nov-2005. These measurements indicated that the emissions were independent of operating channel. This test data is for the Voice-Tube configurations. Date of Test: 11/11/2005 Config. Used: #1 Test Engineer: Mark Briggs Config Change: - Test Location: SVOATS #1 EUT Voltage: 120V/60Hz ## General Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. The test distance and extrapolation factor (if used) are detailed under each run description. Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables. Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB. Ambient Conditions: Temperature: 12 °C Rel. Humidity: 45 % ## **Summary of Results** | Run # | Test Performed | Limit | Result | Margin | |-------|---|--------------------|--------|--------------------------------------| | 1 | CS351 Mon VT, CS361 Bin
VT, RE 30 - 1000 MHz | FCC 15.109 Class B | Pass | 32.7dBµV/m @
235.007MHz (-13.3dB) | ## **Modifications Made During Testing:** No modifications were made to the EUT during testing ## **Deviations From The Standard** No deviations were made from the requirements of the standard. | | | | | | | | | | | | |---|--------------------------------|------------|-------------|-----------|-------------|--------------|----------------------|--------------------------------|-----------|--| | Elliott EMC Test Data | | | | | | | | | | | | | : Plantronics | | | | | | | Job Number: J61697 | | | | | | | | | | | T-Log Number: T61720 | | | | | Model: | CS351, CS361, CS351N, & CS361N | | | | | | | Account Manager: Juan Martinez | | | | Contact: | Blanca Pi | edra | | | | | | | | | | Spec: | FCC Part | 15 | | | | | | Class: | В | | | Run #1: Ra | adiated En | nissions | , 30-1000 N | lHz | | | | | | | | CS351 Mor | naural VT (| Low Cha | | | ies & CS361 | Binaural VT | (High Chan | nel) with acc | cessories | | | Frequency | Level | Pol | FCC C | lass B | Detector | Azimuth | Height | Comments | | | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | | | 235.007 | 32.7 | Н | 46.0 | -13.3 | QP | 145 | 1.4 | EUT + amb | ient | | | 221.184 | 31.6 | Н | 46.0 | -14.4 | QP | 130 | 1.6 | | | | | 235.007 | 30.0 | V | 46.0 | -16.0 | QP | 190 | 1.0 | EUT + amb | ient | | | 193.536 | 27.0 | Н | 43.5 | -16.5 | QP | 300 | 1.7 | | | | | 428.544 | 28.7 | Н | 46.0 | -17.3 | QP | 173 | 1.0 | | | | | 207.361 | 26.1 | Н | 43.5 | -17.4 | QP | - | - | Note 1 | | | | 456.198 | 27.5 | Н | 46.0 | -18.5 | QP | 160 | 1.0 | | | | | 483.841 | 26.8 | Н | 46.0 | -19.2 | QP | 100 | 1.0 | | | | | 331.800 | 26.5 | Н | 46.0 | -19.5 | QP | 60 | 1.0 | | | | | 221.184 | 25.4 | V | 46.0 | -20.6 | QP | 0 | 1.0 | | | | | 428.544 | 25.3 | V | 46.0 | -20.7 | QP | 330 | 1.2 | | | | | 207.361 | 21.1 | V | 43.5 | -22.4 | QP | _ | _ | Note 1 | | | | 193.536 | 20.0 | V | 43.5 | -23.5 | QP | 335 | 1.0 | | | | | Signal level calculated based on the level of the signal in the anechoic chamber and the difference between the signal level at 221.184 MHz in the anechoic chamber and the level of the same signal on the OATS (see table below). The ambient level at 207MHz prohibited making a measurement at that frequency. The calculation was further verified by making a measurement of the Noise Canceling unit in a semi anechoic chamber and comparing that measurement to the anechoic chamber measurement and finding similar correlation. | | | | | | | | | | | | All signals maximized the emissions appeared to be from the headsets. With headsets removed from the test table the 13.82 MHz-related emissions dropped significantly. Moving the interface cables for the base units had no significant effect on emissions levels. The position/orientation of the microphone boom also had little effect. | | | | | | | | | | | | | Eroautara | N. /NALI_\ | 004 | 101 | 007 | 261 | 1 | | | | | | Frequenc | arization | | .184
V | | 7.361
V | | | | | | م امیرم ا | | | H | | H | - | | | | | | | on OATS (c | | 31.6 | 25.4 | · . | easured | | | | | | Level in C | Chamber (c | , | 29.1 | 27.1 | 23.6 | 22.8 | | | | | | Delta (dB) 2.5 -1.7 | Calculated level at 207 361 MHz 26.1 21.1 | | | | | | | | | | | | Calculated level at 207.361 MHz: 26.1 21.1 | # APPENDIX C: Test Configuration Photographs 4 Pages File: R61957 Appendix Page 3 of 6 ## APPENDIX D: Reference Documents Title 47 CFR, "Marketing of Radiofrequency Devices" Part 2, Subpart I Title 47 CFR, "Equipment Authorization Procedures" Part 2, Subpart J Part 15, Subpart B Title 47 CFR, "Importation of Devices Capable of Part 2, Subpart K Causing Harmful Interference" Title 47 CFR, "Unintentional Radiators" ANSI C63.4-2003 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" FCC/OST Bulletin # 61 "The FCC Equipment Authorization Program (1993) for Radio Frequency Devices" FCC/OST Bulletin # 62 "Understanding the FCC Regulations (1993) Concerning Computing Devices"
estimated that the second state of Title 47 USC, Penalties for Non-compliance Sections 501-504 with FCC Rules CISPR Pub. 22 (1997) "Limits and Methods of Measurements of Radio Interference Characteristics of Information Technology Equipment" File: R61957 Appendix Page 4 of 6 # APPENDIX E: FCC Labeling and User Information The following information has been provided to clarify equipment labeling requirements and the information which must be included in the operator's manual. These requirements are found in the FCC Rules for radio frequency devices, Part 15. ## LABEL ## Digital Device Label Each digital device which has been verified as complying with the Class B limits shall have permanently attached in a conspicuous location for the user to observe, a label with the following statement: This device complies with Part 15 of FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. ## Label Location The FCC has defined *conspicuous location* as any location readily visible to the user of the device without the use of tools. ## Label Attachment The FCC has defined *permanently attached* as a label that can normally be expected to remain fastened to the equipment during the equipment's expected useful life. A paper gum label will generally <u>not</u> meet this condition. File: R61957 Appendix Page 5 of 6 # FCC Labeling and User Information ## OPERATOR'S MANUAL The following warning or similar statement shall be provided in a conspicuous location in the operator's manual such that the user of the equipment is aware of its interference potential. Additional information about corrective measures may also be provided to the user at the manufacturer's option. **NOTE:** This equipment has been tested and found to comply with the limits for a Class B digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try and correct the interference by one or more of the following measures: - Reorient or relocate the receiving antenna. - Increase the separation between the equipment and the receiver. - Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - Consult the dealer or an experienced radio/TV technician for help. ## Accessories Where special accessories, such as shielded cables, are required in order to meet FCC emission limits, appropriate instructions regarding the need to use such accessories must be contained on the first page of text concerned with the installation of the device in the operator's manual. ## Modifications The operator's manual must caution the user that changes or modifications not expressly approved by you, the manufacturer, could void their right to operate the equipment. ## Binding The FCC has indicated that the radio interference statement be bound in the same manner as the operator's manual. Thus, a loose-leaf insert page in a bound or center-spine stapled manual would <u>not</u> meet this condition. File: R61957 Appendix Page 6 of 6