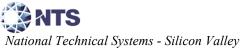


NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for FCC Grant of Equipment Authorization Canada Certification


Innovation, Science and Economic Development Canada RSS-Gen Issue 4 / RSS 247 Issue 2 FCC Part 15 Subpart C

Model: WH500-XD1

IC CERTIFICATION #: FCC ID:	457A-WH500XD1 AL8-WH500XD1
APPLICANT:	Plantronics Inc. P.O. Box 635 Santa Cruz, CA 95061-0635
TEST SITE(S):	National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-4
REPORT DATE:	September 13, 2017
REISSUE DATE:	December 5, 2017
FINAL TEST DATES:	August 1, 4, 9, 10 and 16, 2017
TOTAL NUMBER OF PAGES:	50

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Report Date: September 13, 2017

VALIDATING SIGNATORIES

PROGRAM MGR

sic (

Deniz Demirci Senior Wireless / EMC Engineer

TECHNICAL REVIEWER:

Deniz Demirci Senior Wireless / EMC Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

nne

Breanne Siska Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	September 13, 2017	First release	
1	September 15, 2017	Typos corrected.	Deniz Demirci
2	September 27, 2017	Dates and version numbers added to undated reference standards. Revised to clarify below 30 MHz measurements. Clarified the EUT height above 1 GHz radiated emission measurements.	Deniz Demirci
3	December 5, 2017	Revised to update model name	David Guidotti

TABLE OF CONTENTS

VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	6
TEST RESULTS SUMMARY	7
DIGITAL TRANSMISSION SYSTEMS (902 – 928 MHZ)	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	11
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	12
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	12
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	20
APPENDIX B TEST DATA	
END OF REPORT	
EAD OF RELORI	

SCOPE

An electromagnetic emissions test has been performed on the Plantronics Inc. model WH500-XD1, pursuant to the following rules:

RSS Gen Issue 4 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2013 FCC DTS Measurement Guidance KDB558074 D01 v04 (April 5, 2017)

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Plantronics Inc. model WH500-XD1 complied with the requirements of the following regulations:

RSS-Gen Issue 4 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Plantronics Inc. model WH500-XD1 and therefore apply only to the tested sample. The sample was selected and prepared by Bill Jones of Plantronics Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (902 - 928 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 247 5.2	Digital Modulation	Systems uses DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 247 5.2 (1)	6 dB Bandwidth	0.920 MHz	> 500 kHz	Complies
15.247 (b) (3)	RSS 247 5.4 (4)	Output Power, 902 – 928 MHz	17.7 dBm (0.055 Watts) EIRP = 0.091 W ^{Note 1}	1 Watt, EIRP limited to 4 Watts.	Complies
15.247(e)	RSS 210 5.2 (2)	Power Spectral Density	3.6 dBm/3 kHz	8 dBm/3 kHz	Complies
15.247(d)	RSS 247 5.5	Antenna Port Spurious Emissions 890 MHz – 940 MHz	-27.0 dBc	< -20 dBc	Complies
15.247(d) / 15.209	RSS 247 5.5	Radiated Spurious Emissions 9 kHz – 10 GHz	53.3 dBµV/m @ 3936.0 MHz (-20.7 dB)	Refer to the limits section (p18) for restricted bands, all others < -20 dBc	Complies
Note 1: EIRP c	alculated using ar	ntenna gain of 2.2 dBi for the	e highest EIRP system.		

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Internal	Unique or integral antenna required	Complies
15.407 (b) (6)	RSS-Gen Table 3	AC Conducted Emissions	33.5 dBµV @ 2.233 MHz (-22.5 dB)	Refer to page 17	Complies
15.247 (i) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to SAR exclusion calculation and RSS 102 declaration	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSS-Gen 8.3	User Manual	Integral antenna	Statement for products with detachable antenna	Complies
-	RSS-Gen 8.4	User Manual	Refer to user manual	Statement for all products	Complies
-	RSP-100 RSS-Gen 6.6	Occupied Bandwidth	1.231 MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.5 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (field strength)	dBu\//m	25 to 1000 MHz	± 3.6 dB
	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Plantronics Inc. model WH500-XD1 is a phone headset for Plantronics Base units. The sample was received on August 1, 2017 and tested on August 1, 4, 9, 10 and 16, 2017. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Plantronics	WH500-XD1	Phone Headset	Hermit #3	AL8-WH500XD1

OTHER EUT DETAILS

The EUT has TDD air interface protocol with maximum of 7 % source based duty cycle.

ANTENNA SYSTEM

Integral antenna.

ENCLOSURE

The EUT enclosure measures approximately $10 \ge 2 \ge 2$ cm. It is primarily constructed of plastic.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

AC powerline spurious emissions:

Company	Model	Description	Serial Number	FCC ID
Plantronics	-	Call indication	-	-
Lucent	-	Phone	0821	-
Plantronics	C052-XD	Base unit	MBZ	-

Radiated emissions:

Company	Model	Description	Serial Number	FCC ID
Plantronics	C052-XD	Base unit (Remote)	MBZ	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows: AC powerline spurious emissions:

Port	Port Connected To		Cable(s)		
TOIL	Connected 10	Description	Shielded or Unshielded	Length(m)	
Charging port	Base unit	Direct connection	N/A	N/A	

EUT OPERATION

During testing, the EUT was transmitting with full power for each test case detailed in the test report.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Reg FCC	istration Numbers Canada	Location
Chamber 4	US0027	2845B-4	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4-2014 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4-2014.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10-2013. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4-2014 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4-2014.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20 Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000 MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a 50 μ H Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 μ H CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10-2013 specifies that the test height above ground for table mounted devices shall be 0.8 m for below 1 GHz measurements and 1.5 m for above 1 GHz measurements. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4-2014. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

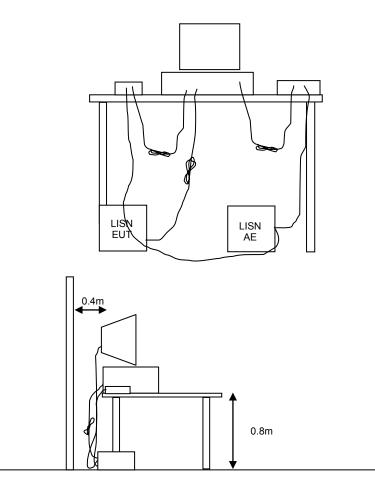
TEST PROCEDURES

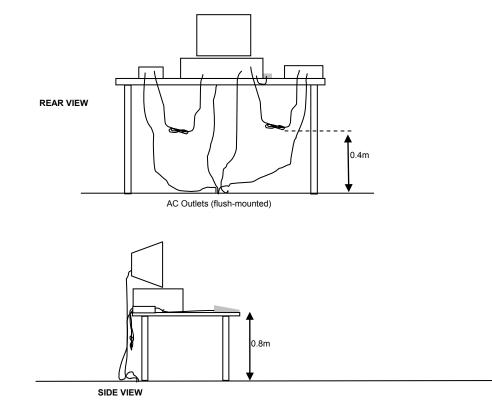
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10-2013, and the worst-case orientation is used for final measurements.

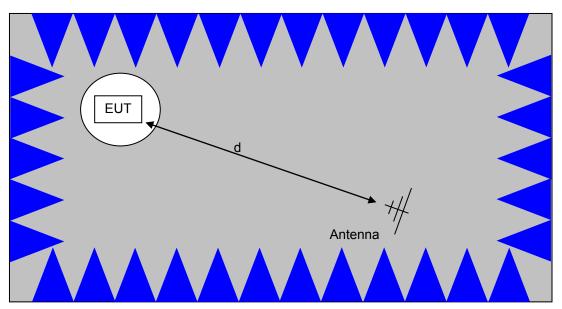
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.



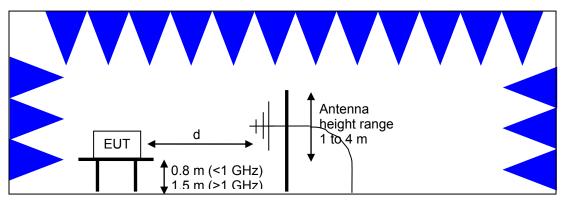

Figure 1 Typical Conducted Emissions Test Configuration

RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

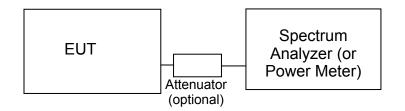
A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1 m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6 dB, 20 dB, 26 dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10-2013 and RSS GEN Issue 4.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dB μ V). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dB μ V/m). The results are then converted to the linear forms of μ V and μ V/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBµV)	Quasi Peak Limit (dBµV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

Report Date: September 13, 2017

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (µV/m)	Limit (dBµV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3 kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3 kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3 kHz

The maximum permitted output power is reduced by 1 dB for every dB the antenna gain exceeds 6 dBi.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20 dB below the level of the highest in-band signal level (30 dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 6

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

Report Date: September 13, 2017

 $R_r - S = M$ where: $R_r =$ Receiver Reading in dB μ V S = Specification Limit in dB μ V M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_{d} = 20*LOG_{10} (D_{m}/D_{s})$ where: $F_{d} = Distance Factor in dB$ $D_{m} = Measurement Distance in meters$ $D_{s} = Specification Distance in meters$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$\begin{array}{rcl} R_{c} &=& R_{r} \,+\, F_{d} \\ & \text{and} \\ & M &=& R_{c} \,-\, L_{S} \\ & \text{where:} \\ & R_{r} &=& \text{Receiver Reading in } dB\mu V/m \\ & F_{d} &=& \text{Distance Factor in } dB \\ & R_{c} &=& \text{Corrected Reading in } dB\mu V/m \\ & L_{S} &=& \text{Specification Limit in } dB\mu V/m \end{array}$$

M = Margin in dB Relative to Spec.

Appendix A Test Equipment Calibration Data

Manufacturer	Description	<u>Model</u>	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
Radiated Emissions National Technical Systems	, 30 - 10,000 MHz, 01-Aug-17 NTS EMI Software (rev 2.10)	N/A	0		N/A
National Technical Systems	NTS Capture Analyzer Software (rev 3.8)	N/A	0		N/A
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/5/2016	10/5/2017
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	9/29/2016	9/29/2018
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	10/31/2016	11/1/2017
Hewlett Packard	High Pass filter, 1.5 GHz (Blu System)	P/N 84300- 80037 (84125C)	1389	9/9/2016	9/9/2017
Sunol Sciences Com-Power Rohde & Schwarz	Biconilog, 30-3000 MHz Preamplifier, 30-1000 MHz EMI Test Receiver, 20 Hz-7	JB3 PA-103 ESIB 7	1548 1632 1756	10/12/2016 3/8/2017 7/8/2017	10/12/2018 3/8/2018 7/8/2018
EMCO	GHz Magnetic Loop Antenna, 9 kHz-30 MHz	AL-130	3003	8/9/2016	8/9/2018
	, 1,000 - 10,000 MHz, 04-Aug-17				
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/5/2016	10/5/2017
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	3115 8564E (84125C)	786 1148	12/21/2015 10/31/2016	12/21/2017 11/1/2017
Hewlett Packard	High Pass filter, 1.5 GHz (Blu System)	P/N 84300- 80037 (84125C)	1389	9/9/2016	9/9/2017
Radiated Emissions	, 30 - 10,000 MHz, 09-Aug-17				
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/5/2016	10/5/2017
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	3115 8564E (84125C)	786 1148	12/21/2015 10/31/2016	12/21/2017 11/1/2017
Hewlett Packard	High Pass filter, 1.5 GHz (Blu System)	P/N 84300- 80037 (84125C)	1389	9/9/2016	9/9/2017
Sunol Sciences Com-Power Rohde & Schwarz	Biconilog, 30-3000 MHz Preamplifier, 30-1000 MHz EMI Test Receiver, 20 Hz-7 GHz	JB3 PA-103 ESIB 7	1548 1632 1756	10/12/2016 3/8/2017 7/8/2017	10/12/2018 3/8/2018 7/8/2018
	, 1,000 - 6,000 MHz, 10-Aug-17				
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/5/2016	10/5/2017
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	3115 8564E (84125C)	786 1148	12/21/2015 10/31/2016	12/21/2017 11/1/2017
					D

Reissue Date: December 5, 2017 Report Date: September 13, 2017 **Calibrated** Manufacturer **Description** Model Asset # Cal Due 1386 10/13/2016 10/13/2018 EMCO Antenna, Horn, 1-18 GHz 3115 (SA40-Blu) Antenna port measurements, 16-Aug-17 National Technical NTS Capture Analyzer N/A 0 N/A Systems Software (rev 3.8) Power Meter, Single Channel Rohde & Schwarz NRVS 1422 3/10/2017 3/10/2018 Peak Power Sensor 100 uW -Rohde & Schwarz NRV-Z32 1536 4/19/2017 4/21/2018 2 Watts (w/ 20 dB pad, SN BJ5155) Agilent USB Average Power Sensor U2001A 2442 1/5/2017 1/5/2018 Technologies Agilent 3Hz -44GHz PSA Spectrum E4446A 2796 5/22/2017 5/22/2018 Technologies Analyzer AC Power Line Conducted Emissions, 10-Aug-17 National Technical NTS EMI Software (rev 2.10) N/A 0 N/A Systems Rohde & Schwarz Pulse Limiter ESH3 Z2 1401 2/3/2017 2/3/2018 EMI Test Receiver, 20 Hz-7 Rohde & Schwarz ESIB 7 1756 7/8/2017 7/8/2018 GHz 2000 Fischer Custom LISN, 25A, 150kHz to 30MHz, FCC-LISN-50-9/26/2016 9/26/2017 Comm 25 Amp, 25-2-09

Project number JD105563

Appendix B Test Data

T105585 Pages 23 – 27 T105586 Pages 28 – 49

EMC Test Data

WE ENGINEER S	OCCESS.		
Client:	Plantronics Inc.	Job Number:	JD105563
Product	C052-XD1 and C054-XD1, 900 MHz Cordless Base	T-Log Number:	T105585
System Configuration:		Project Manager:	Christine Krebill
Contact:	Bill Jones	Project Coordinator:	
Emissions Standard(s):	FCC 15.247 / RSS-247	Class:	В
Immunity Standard(s):		Environment:	

EMC Test Data

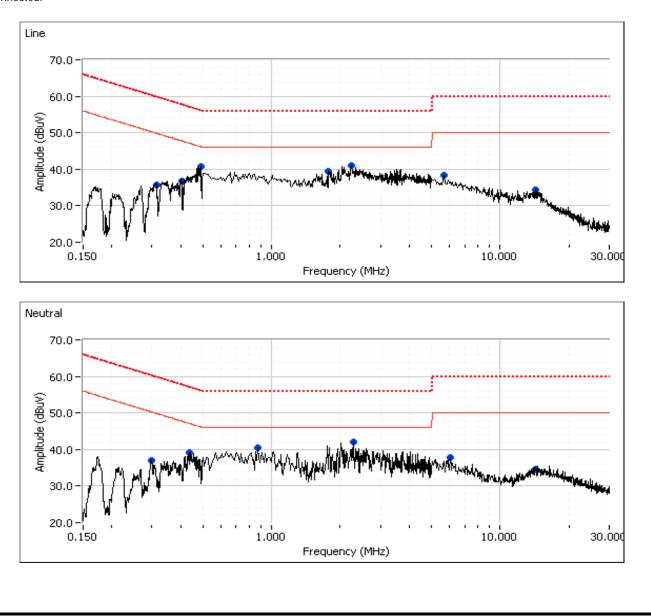
For The

Plantronics Inc.

Product

C052-XD1 and C054-XD1, 900 MHz Cordless Base Units

Date of Last Test: 9/15/2017


		CCESS			EMC Test Data
Client:	Plantronics Inc.				Job Number: JD105563
Model	C052-XD1 and (C054-XD1, 900 MHz Cordless B	ase l Inits		-Log Number: T105585
					ject Manager: Christine Krebill
	Bill Jones FCC 15.247 / RS			Projec	t Coordinator: - Class: B
Standard:	FUU 15.2477 RC	55-247			UIdSS. B
		Cond (NTS Silicon Valley, Fren	ucted Emissions mont Facility, Semi-Ane	choic Chaml	ber)
Test Spe		objective of this test session is cification listed above.	to perform final qualificati	on testing of t	the EUT with respect to the
Te	Date of Test: 8/10 est Engineer: Den est Location: Frer		Config. Used Config Change EUT Voltage		2
General 1	est Configura	ation			
	Conditions: of Results	Temperature Rel. Humidity			
Ru	in #	Test Performed	Limit	Result	Margin
	1	CE, AC Power, 120 V/60 Hz	Class B	Pass	33.5 dBµV @ 2.233 MHz (-22.5 dB)
No modifica Deviation	is From The S	to the EUT during testing	ard.		

	NTS He engineer success	EM	C Test Data
Client:	Plantronics Inc.	Job Number:	JD105563
Madalı	C052-XD1 and C054-XD1, 900 MHz Cordless Base Units	T-Log Number:	T105585
wouer.		Project Manager:	Christine Krebill
Contact:	Bill Jones	Project Coordinator:	-
Standard:	FCC 15.247 / RSS-247	Class:	В

Run #1: AC Power Port Conducted Emissions, 0.15 - 30 MHz, 120 V/60 Hz

EUT and Test Configuration Details:

Hermit headset and Base set to transmit at center channel. Headset is charging. Call indicator attached and active. Phone line is connected.

		R SUCCESS					EM	C Test L
Client	Plantronics	Inc.					Job Number:	JD105563
							T-Log Number:	T105585
Model	C052-XD1	and C054-XD	1, 900 MHz	Cordless Bas	se Units		Project Manager:	
Contact	: Bill Jones						Project Coordinator:	
	FCC 15.24	7/000 217						
Standard	FUC 15.24	//RSS-24/					Class:	В
eliminar	v neak readi	nas canturer	during pre	ascan (neak	readings v	rs. average limi	t)	
requency		AC		ss B	Detector	Comments	9	
MHz	dBµV	Line	Limit	Margin	QP/Ave	Commonto		
0.313	35.6	Line 1	49.9	-14.3	Peak			
0.405	36.8	Line 1	47.8	-11.0	Peak			
0.490	40.8	Line 1	46.2	-5.4	Peak			
1.781	39.4	Line 1	46.0	-6.6	Peak			
2.231	41.1	Line 1	46.0	-4.9	Peak			
5.701	38.4	Line 1	50.0	-11.6	Peak			
14.269	34.4	Line 1	50.0	-15.6	Peak			
0.298	37.1	Neutral	50.3	-13.2	Peak			
0.440	39.2	Neutral	47.1	-7.9	Peak			
0.870	40.4	Neutral	46.0	-5.6	Peak			
2.277	42.0	Neutral	46.0	-4.0	Peak			
6.052	37.7	Neutral	50.0	-12.3	Peak			
14.218	34.7	Neutral	50.0	-15.3	Peak			
	1	verage readi		D	Datastas	0		
requency		AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	OD(1,00)		
2.233	33.5	Line 1	56.0	-22.5	QP	QP (1.00s)		
0.868	33.3	Neutral	56.0	-22.7	QP	QP (1.00s)		
1.792	32.6	Line 1	56.0	-23.4	QP OP	QP (1.00s)		
2.286 0.489	32.2 32.0	Neutral	56.0 56.2	-23.8	QP QP	QP (1.00s)		
0.489	32.0	Line 1	56.2	-24.2 -24.6	QP QP	QP (1.00s) QP (1.00s)		
2.233	20.2	Neutral Line 1	46.0	-24.0 -25.8	AVG	AVG (0.10s)		
2.235	20.2	Neutral	46.0	-25.8	AVG	AVG (0.10s) AVG (0.10s)		
1.792	18.9	Line 1	46.0	-25.9	AVG	AVG (0.10s) AVG (0.10s)		
14.241	22.7	Neutral	50.0	-27.3	AVG	AVG (0.103) AVG (0.105)		
0.868	18.3	Neutral	46.0	-27.3	AVG	AVG (0.103) AVG (0.105)		
14.217	20.8	Line 1	50.0	-29.2	AVG	AVG (0.103) AVG (0.105)		
	17.5	Neutral	47.0	-29.5	AVG	AVG (0.103) AVG (0.105)		
0 441	30.1	Line 1	60.0	-29.9	QP	QP (1.00s)		
0.441	16.2	Line 1	46.2	-30.0	AVG	AVG (0.10s)		
5.607	107	1	50.0	-30.0	AVG	AVG (0.103) AVG (0.105)		
5.607 0.489		l ine 1						
5.607	20.0 30.2	Line 1 Neutral	60.3	-30.1	QP	QP (1.00s)		

NTS
WE ENGINEER

0.404

0.404

0.313

25.1

13.6

13.9

Line 1

Line 1

Line 1

57.8

47.8

49.9

-32.7

-34.2

-36.0

EMC Test Data

·	VE ENGINEEF	SUCCESS						
Client:	Plantronics	Inc.					Job Number:	JD105563
Madal		and C054-XD	1 000 MU-	Cordlocc Day	so Linite		T-Log Number:	T105585
wouer.	C002-AD1 6						Project Manager:	Christine Krebill
Contact:	Bill Jones						Project Coordinator:	-
Standard:	FCC 15.247	/ RSS-247					Class:	В
Cont - Fina Frequency		and averag	U U	ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
14.241	29.2	Neutral	60.0	-30.8	QP	QP (1.00s)		
5.996	18.9	Neutral	50.0	-31.1	AVG	AVG (0.10s)		
5.996	28.2	Neutral	60.0	-31.8	QP	QP (1.00s)		
0.298	18.2	Neutral	50.3	-32.1	AVG	AVG (0.10s)		
14.217	27.5	Line 1	60.0	-32.5	QP	QP (1.00s)		

QP

AVG

AVG

QP (1.00s) AVG (0.10s)

AVG (0.10s)

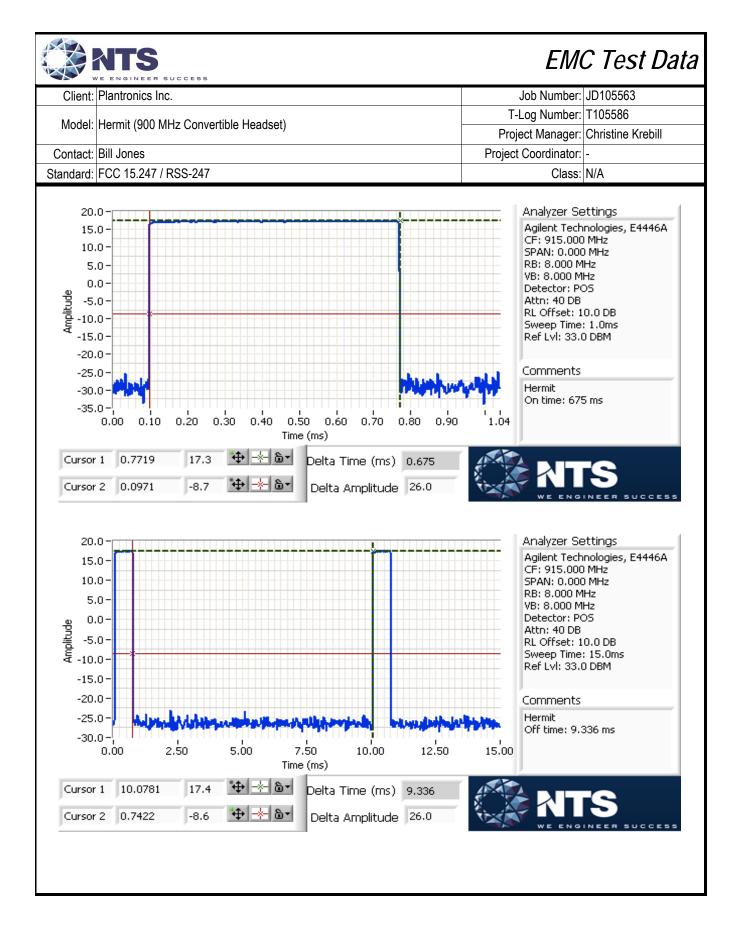
EMC Test Data

WE ENGINEER S	OCCESS		
Client:	Plantronics Inc.	Job Number:	JD105563
Product	Hermit (900 MHz Convertible Headset)	T-Log Number:	T105586
System Configuration:		Project Manager:	Christine Krebill
Contact:	Bill Jones	Project Coordinator:	
Emissions Standard(s):	FCC 15.247 / RSS-247	Class:	В
Immunity Standard(s):		Environment:	

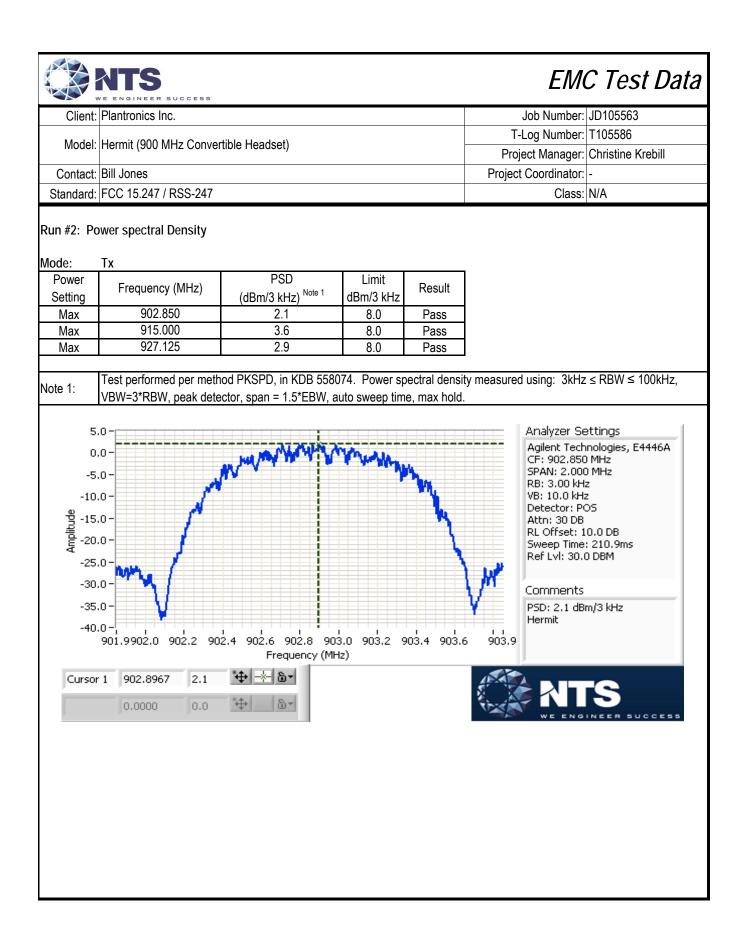
EMC Test Data

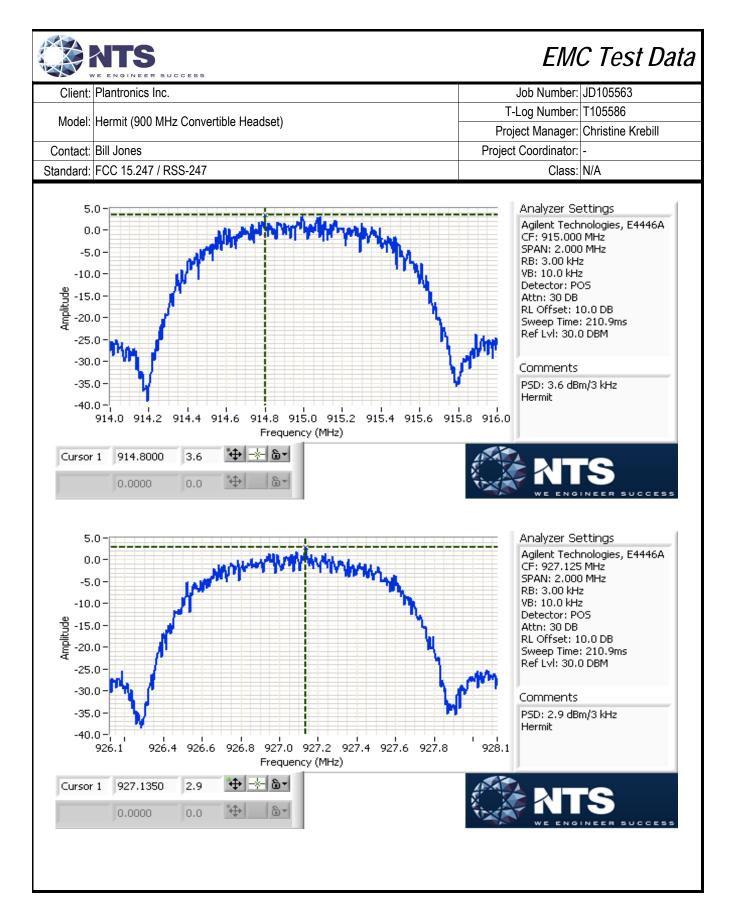
For The

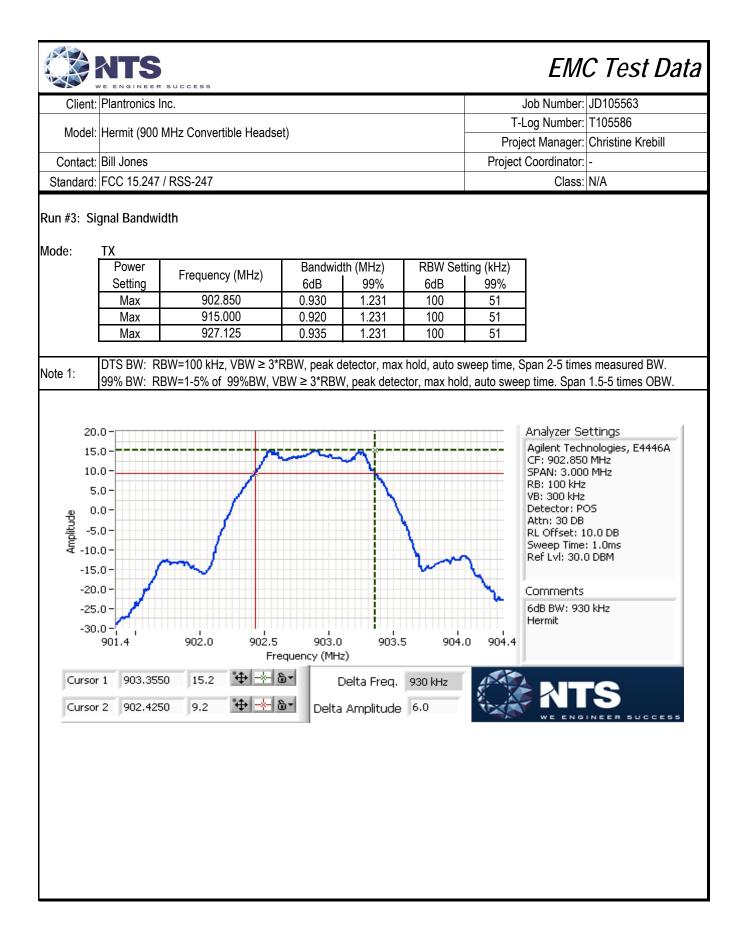
Plantronics Inc.

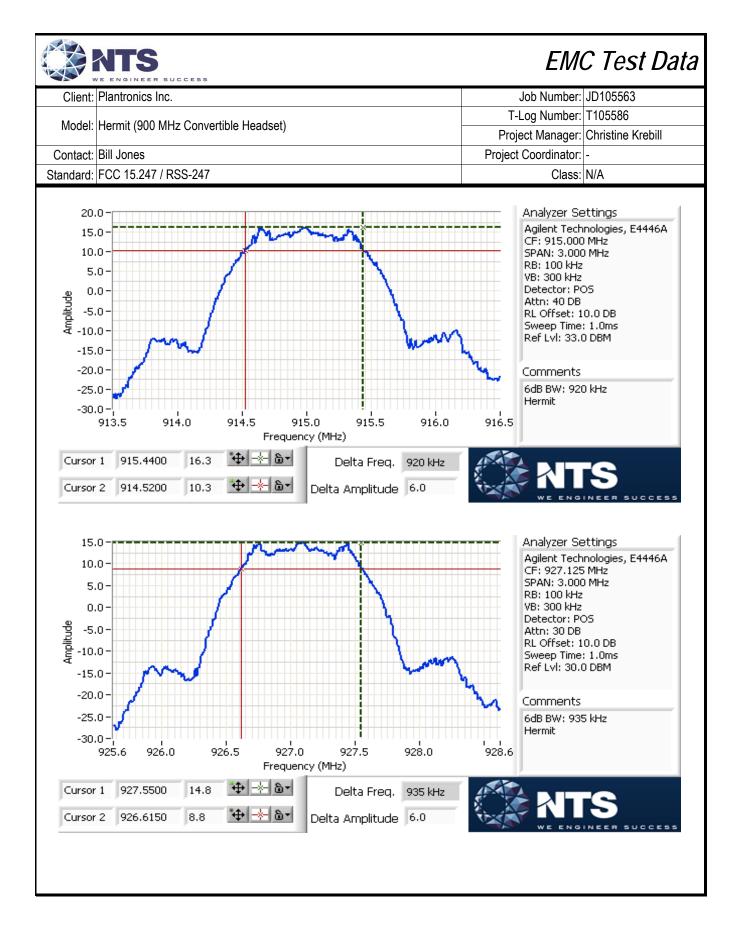

Product

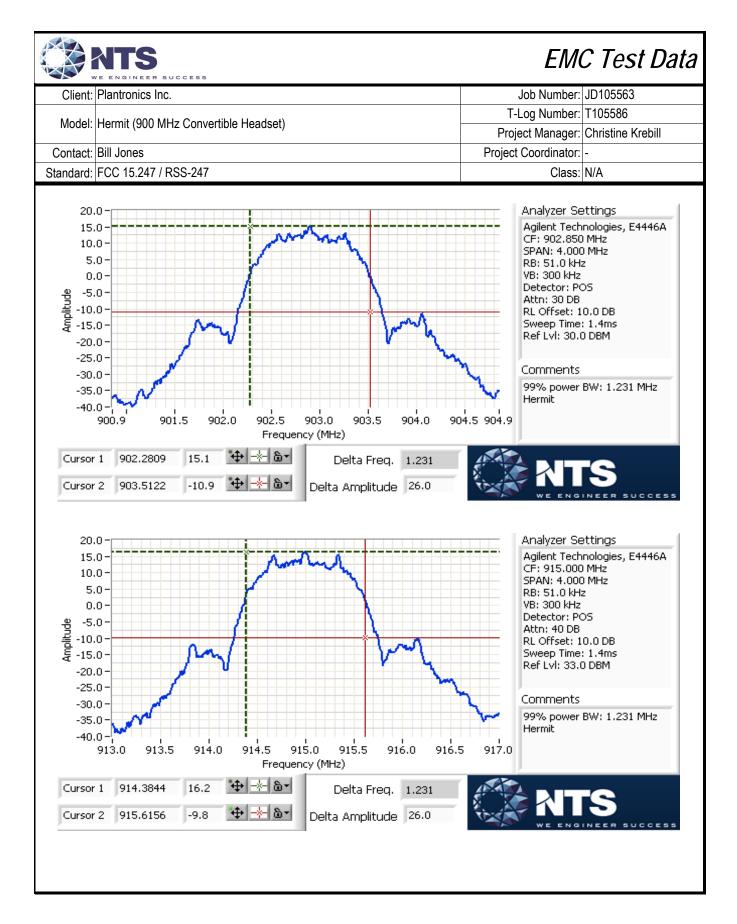
Hermit (900 MHz Convertible Headset)

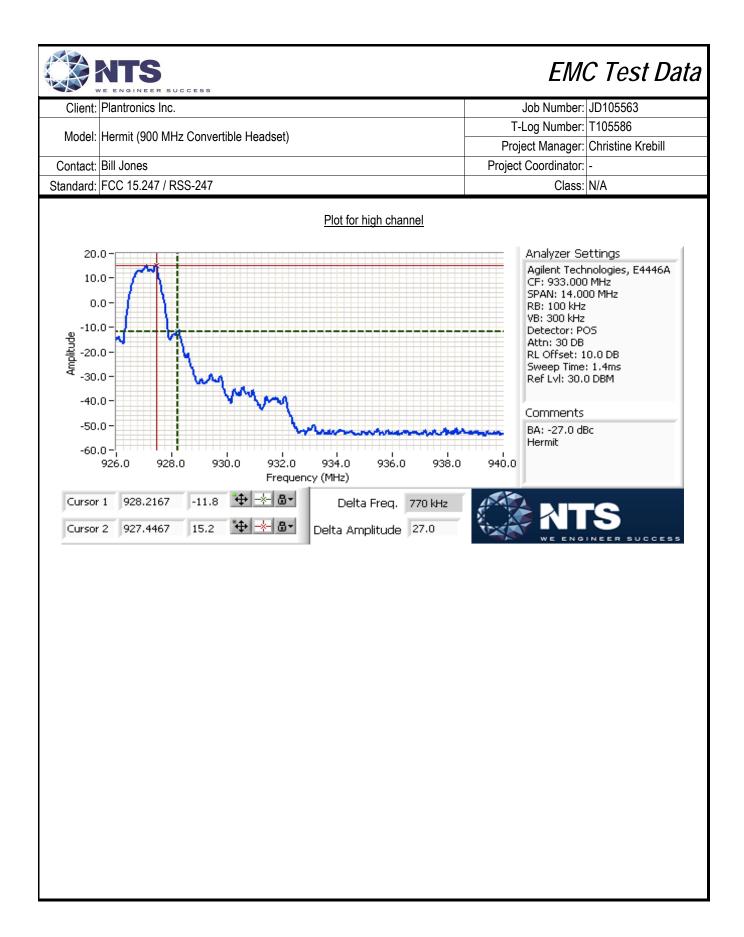

Date of Last Test: 8/16/2017


NTS				EM	C Test Data
Client: Plantronics	R SUCCESS			Job Number:	ID105563
	IIIC.			T-Log Number:	
Model: Hermit (900) MHz Conver	tible Headset)			Christine Krebill
Contact: Bill Jones				ect Coordinator:	
	7/000.047		Fioje		
Standard: FCC 15.247	! / RSS-247			Class:	N/A
		and FCC 15.247 (DTS) / Power, PSD, Bandwidth an			S
Test Specific Detai	ils				
Objective:	The objectiv	e of this test session is to perform t listed above.	final qualification testing o	f the EUT with r	espect to the
Date of Test: Test Engineer: Test Location:	: Deniz Demir		Config. Used: 1 Config Change: None EUT Voltage: 4 Vdc		
chain.	been correcte IS: T	rum analyzer or power meter via a ed to allow for the external attenuat emperature: 20-22 °C el. Humidity: 38-40 %		each on one w	
Summary of Resul	ts				
Run # Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1 Max		Output Power	15.247(b)	Pass	17.7 dBm
2 Max		Power spectral Density (PSD)	15.247(d)	Pass	3.6 dBm/3 kHz
3 Max		Minimum 6 dB Bandwidth	15.247(a)	Pass	0.920 MHz
3 Max		99% Bandwidth	RSS GEN	-	1.231 MHz
4 Max		Spurious emissions	15.247(b)	Pass	-27.0 dBc


Inded: Hermit (900 MHz Convertible Headset) T-Log Number: T105586 Project Manager: Christine Krebill Intact: Bill Jones Project Coordinator: udard: FCC 15.247 / RSS-247 Class: WA Class: NA edure Comments: Image: Image: urements performed in accordance with FCC KDB 558074 Image: Min VBW for FS (Hz) T. 0.07 Yes 0.675 - 15.0 0.07 Yes 0.675 - - 0.00 15.0 0.07 Yes 0.675 - - 0.00 15.0 0.07 Yes 0.675 - - - 0.00 15.0 0.07 Yes 0.675 - - - 0.00 15.0 0.00 10.00 10.00 Nth Project Contract Analyzer Settings -10.0 -5.0 0.00 10.00 10.00 Nth Project Contract Project Contract 10.0 -5.0 0.00 10.00 10.00 Nth <	Client:	Plantronics	Inc.						Job Number:	
Intact: Bill Jones Project Coordinator: Indact: FCC 15.247 / RSS-247 Class: N/A edure Comments: Class: N/A irrements performed in accordance with FCC KDB 558074 Min VBW Min VBW Mode Data Rate Duty Cycle Constant T (ms) Pwr Cor Lin Volt Min VBW Tx - 0.07 Yes 0.675 - - - 20.0 - - 0.07 Yes 0.675 - - - 10.0 - - - - - - - - 20.0 - - - - - - - - 10.0 -	/lodel:	Hermit (900	MHz Conve	rtible Headse	t)				-	
Ideard: FCC 15.247 / RSS-247 Class: N/A edure Comments: urements performed in accordance with FCC KDB 558074 Mode Data Rate Duty Cycle Constant T (ms) Pwr Cor Lin Volt Min VBW Mode Data Rate Duty Cycle Constant DC? T (ms) Pwr Cor Lin Volt Min VBW 20.0 Analyzer Settings Analyzer Settings Analyzer Settings SPAR: 0.000 MHz SP	ntact [.]	Bill Jones						-	-	
edure Comments: performed in accordance with FCC KDB 558074 Mode Data Rate Duty Cycle Constant DC? T (ms) Pwr Cor Eactor* for FS (Hz) Tx - 0.07 Yes 0.675			7 / RSS-247							
Mode Data Rate Duty Cycle Constant DC? T (ms) Pwr Cor Factor* Lin Volt Cor Factor* Min VBW for FS (Hz) 1 0.07 Yes 0.675 - - - 20.0 0 0.07 Yes 0.675 - - 20.0 0 0 0.675 - - - 20.0 0 0 0.675 - - - 20.0 0 0 0.675 - - - 20.0 0 0 0 0.675 - - - 20.0 0 0 0 0 0 -	edure	Comme	nts:							
Mode Data Rate Duty Cycle Constant DC? T (ms) Pwr Cor Factor*t Min VBW for FS (Hz) Tx - 0.07 Yes 0.675 - - 20.0 - - - - - 15.0 - - - - - 0.0 - - - - - 0.0 - - - - - 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	uremen	ts performe	ed in accorda	nce with FCC	KDB 55807	4				
20.0 40.0 Analyzer Settings 10.0 5.0 30.0 10.00 -5.0 -5.0 -5.0 20.00 40.00 60.00 80.00 100.00 -10.0 -5.0 <		Mode	Data Rate			T (ms)		Cor		
15.0- Agilent Technologies, E4446A 10.0- 5.0- 5.0- 0.0- -5.0- -5.0- -5.0- -5.0- -10.0- -5.0- -15.0- -20.0- -20.0- -20.0- -20.0- -20.0- -20.0- -20.0- -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.00 20.00 40.00 60.00 80.00 100.00 Time (ms) 0.00 Cursor 1 0.000 17.4 + * * * Pelta Time (ms) 0.00 Cursor 2 0.000 -8.6 -8.6 + * * > Delta Amplitude 26.0 ************************************	E	Тx	-	0.07	Yes	0.675	-	-	-	
15.0- Agilent Technologies, E4446A 10.0- 5.0- 5.0- 0.0- -5.0- -5.0- -5.0- -5.0- -10.0- -5.0- -15.0- -20.0- -20.0- -20.0- -20.0- -20.0- -20.0- -20.0- -20.0- -20.0- -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.0- -20.00 -20.00 20.00 40.00 60.00 80.00 100.00 Time (ms) 0.00 Cursor 1 0.000 17.4 + * * * Pelta Time (ms) 0.00 Cursor 2 0.000 -8.6 -8.6 * * * Pelta Amplitude 26.0	20.4								Appluzor Co	attioac
-25.0	15.0 10.0 5.0 0.0 -5.0) =) =) =) =) =) =) =) = () =							Agilent Tech CF: 915.000 SPAN: 0.000 RB: 8.000 M VB: 8.000 M Detector: PC Attn: 40 DB RL Offset: 1 Sweep Time	nologies, E4446A) MHz) MHz Hz Hz DS 0.0 DB : 100.0ms
-30.0- 0.00 20.00 40.00 60.00 80.00 100.00 Time (ms) Cursor 1 0.0000 17.4 ⊕ ★ ŵ Delta Time (ms) 0.00 Cursor 2 0.0000 -8.6 ⊕ ★ ŵ Delta Amplitude 26.0			المعا الدامية	بالساب	مسامعه	الاستدالة	Nec 1.8.00	-	_	
Time (ms) Cursor 1 0.0000 17.4										
Cursor 2 0.0000 -8.6 👾 🖈 🗟 🗸 Delta Amplitude 26.0		0.00	20.00	40.00		0.00	80.00	100.00		
	Cursor	1 0.0000	17.4	+ 6	ò∙ Delta	Time (ms)	0.00			
	Cursor :	2 0.0000	-8.6	₩-*-8	Delta	Amplitude	26.0			INEER SUCCES




Client	Plantronics Inc.						Job Number:	JD105563	
	Model: Hermit (900 MHz Convertible Headset) Contact: Bill Jones					T-Log Number:			
Model:						Project Manager:			
Contact						Project Coordinator:			
	: FCC 15.247 / RSS-247						Class: N/A		
							01035.	11/7	
ໃun #1:	Itput Power								
eak power	ſ								
Power	Frequency (MHz)	Output Power		Antenna	Decult	EIRP		Output Power	
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
Max	902.850	16.2	41.7	2.2	Pass	18.4	0.069		
Max	915.000	17.4	55.0	2.2	Pass	19.6	0.091		
Max	927.125	16.1	40.7	2.2	Pass	18.3	0.068		
Note 1:	Output power measured	using a peak	c power mete	er, spurious lir	nit is -20 dBo).			
	wer (On time) - For info			· · · ·				-	
Power	wer (On time) - For info Frequency (MHz)	Output	y Power mW	Antenna Gain (dBi)	Result	EI dBm	RP W		Power mW
	Frequency (MHz) 902.850		Power		Result Pass			Output (dBm) ³	
Power Setting ² Max Max	Frequency (MHz) 902.850 915.000	Output (dBm) ¹ 15.3 16.5	Power mW 33.88 44.67	Gain (dBi) 2.2 2.2		dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max	Frequency (MHz) 902.850	Output (dBm) ¹ 15.3	Power mW 33.88	Gain (dBi) 2.2	Pass	dBm 17.5	W 0.056		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max	Frequency (MHz) 902.850 915.000	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		
Power Setting ² Max Max Max	Frequency (MHz) 902.850 915.000 927.125	Output (dBm) ¹ 15.3 16.5 15.1	Power mW 33.88 44.67 32.36	Gain (dBi) 2.2 2.2 2.2	Pass Pass	dBm 17.5 18.7	W 0.056 0.074		



Client:	Plantronics Inc.	Job N	lumber: JD105563			
Model	Hermit (900 MHz Conve	ortible Headse	-	lumber: T105586		
				anager: Christine Krebill		
	Bill Jones FCC 15.247 / RSS-247		Project Coordinator: -			
Stanuaru.	FUU 13.2477 K33-247					Class: N/A
ın #4a: (Dut of Band Spurious Ei	missions				
		Power				
	Frequency (MHz)	Setting	Mode	Limit	Result	
	902.850	Max	Тх	-20 dBc	Pass -28.3 dBc	
	927.125	Max	Тх	-20 dBc	Pass -27.0 dBo	
	.0-				Agile CF: SPAI RB:	yzer Settings :nt Technologies, E44464 897.000 MHz 101 MHz 100 kHz 300 kHz
-10 -10 -20 -30	.0-			ľ	Pete Attn RL C Swe	ector: POS : 30 DB iffset: 10.0 DB ep Time: 1.4ms
901 -20 Hublitude Hublitude	.0 -		_	m	Pete Attn RL C Swe	ctor: POS : 30 DB iffset: 10.0 DB
Pniid ₩ -30 -40	.0 - .0 - .0 -		r	m	Dete Attn RL C Swe Ref	ector: POS : 30 DB iffset: 10.0 DB ep Time: 1.4ms Lvl: 30.0 DBM ments
-20 -30 -40 -50	.0- .0- .0- .0-	94.0 890 Fre	anas	900'.0 902'.0	Dete Attn RL C Swe Ref Com BA: Herr	ector: POS : 30 DB iffset: 10.0 DB ep Time: 1.4ms Lvl: 30.0 DBM ments -28.3 dBc
900-140 40 -40 -50	.0- .0- .0- .0- .0- .0- .0- .0- .0- .0-		5.0 898.0 quency (MHz)	900'.0 902'.0	Dete Attn RL C Swe Ref Com BA: Herr	ector: POS : 30 DB iffset: 10.0 DB ep Time: 1.4ms Lvl: 30.0 DBM ments -28.3 dBc
-20 W -30 -40 -50 -60	.0- .0- .0- .0- .0- .0- .0- .0- .0- .0-	Fre	5.0 898.0 quency (MHz) 3▼ De	900.0 902.0	Dete Attn RL C Swe Ref Com BA: Herr	ector: POS : 30 DB iffset: 10.0 DB ep Time: 1.4ms Lvl: 30.0 DBM ments -28.3 dBc

EMC Test Data

	VE ENGINEER SUCCESS		
Client:	Plantronics Inc.	Job Number:	JD105563
Model:	Hermit (900 MHz Convertible Headset)	T-Log Number:	T105586
		Project Manager:	Christine Krebill
Contact:	Bill Jones	Project Coordinator:	-
Standard:	FCC 15.247 / RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

TS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

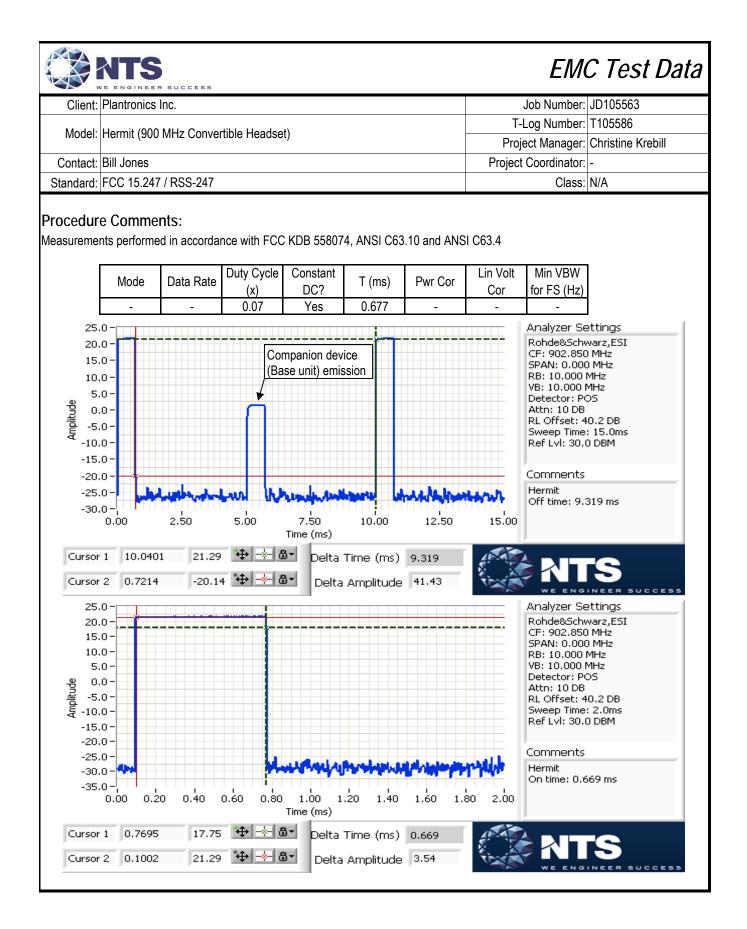
Ambient Conditions:

Temperature:	22-24	°C
Rel. Humidity:	35-40	%

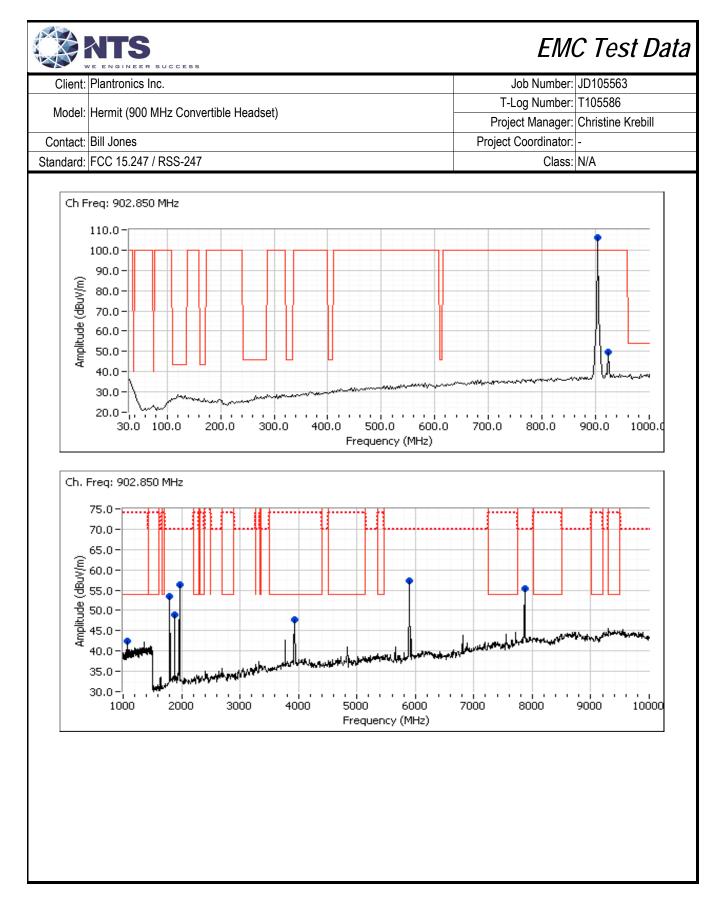
Summary of Results - Device Operating in the 902 - 928 MHz Band

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
	Ту	902.850		Max	Radiated Emissions,	FCC Part 15.209 /	50.5 dBµV/m @ 3925.3
	Tx	MHz	-	IVIAX	9 kHz - 10 GHz	15.247(c)	MHz (-23.5 dB)
1	1 Tv	915.000		Мах	Radiated Emissions,	FCC Part 15.209 /	53.3 dBµV/m @ 3936.0
I	Tx	MHz	-	Max	9 kHz - 10 GHz	15.247(c)	MHz (-20.7 dB)
	Тх	927.125		Max	Radiated Emissions,	FCC Part 15.209 /	52.6 dBµV/m @ 3938.4
	IX	MHz	-	Max	9 kHz - 10 GHz	15.247(c)	MHz (-21.4 dB)

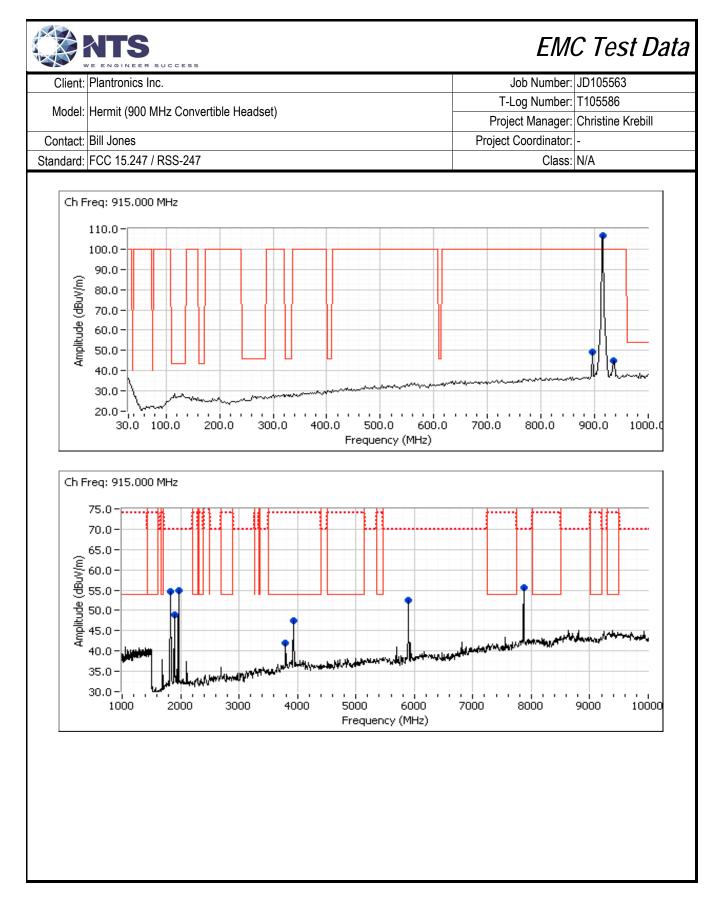
Modifications Made During Testing

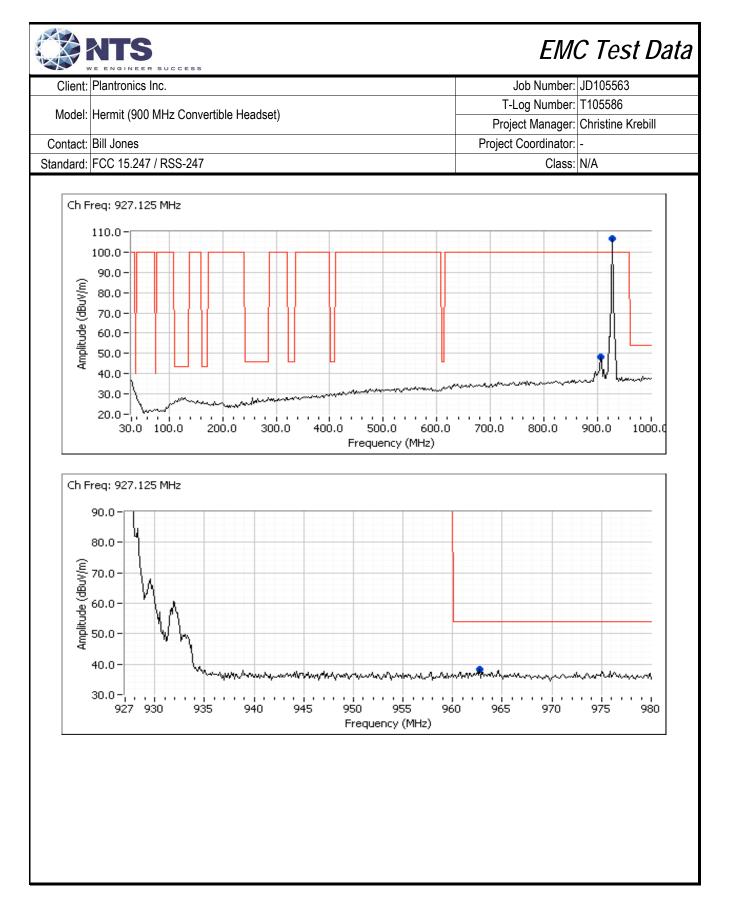

No modifications were made to the EUT during testing

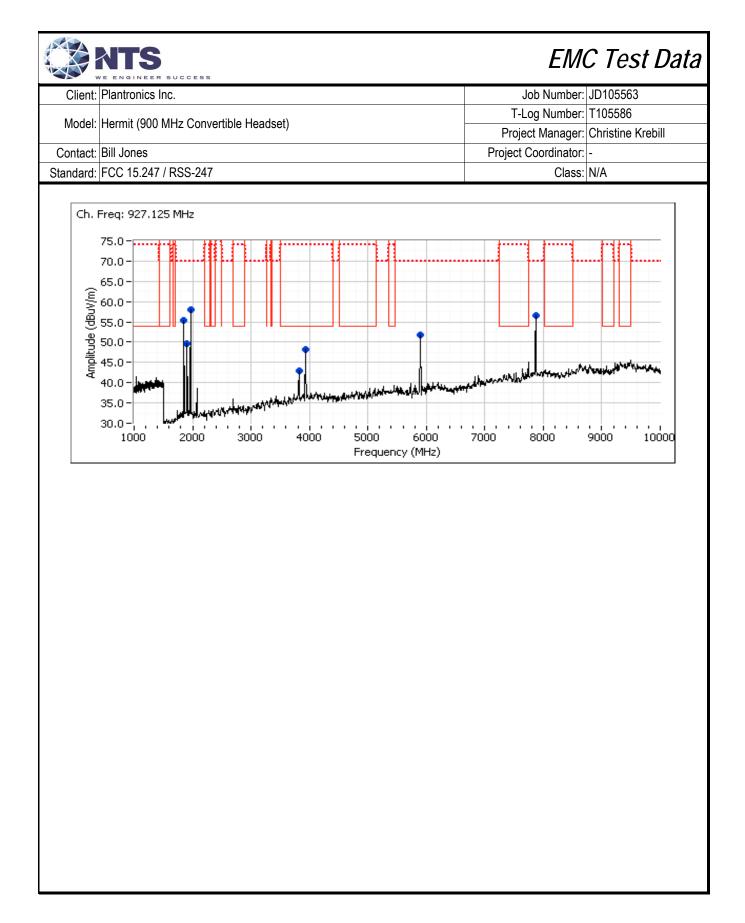
Deviations From The Standard

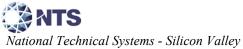

No deviations were made from the requirements of the standard.

Sample Notes


Sample S/N: Hermit #3


		SUCCESS						EIVIC	C Test Data
Client:	Plantronics I	nc.			JD105563				
				T-	Log Number:	T105586			
Model:	Hermit (900	MHz Conve	rtible Headse		Project Manager: Christine Krebil				
Contact:	Bill Jones						-	-	
	FCC 15.247	1000 017			Project Coordinator: - Class: N/A				
Standard:	FUU 15.247	/ 833-247		Class.	N/A				
Run #1: Ra	idiated Spur	ious Emissi	ions, 30 MHz	z - 10 GHz.					
C	Date of Test:	8/1/2017, 8/	4/2017		С	onfig. Used:	1		
Te	st Engineer:	Deniz Demi	rci		Cor	fig Change:	None		
Te	est Location:	FT Ch #4			E	UT Voltage:	Battery pow	vered	
Run #1a: L	ow Channel								
	902.850 MH	Z	Mode:	-					
Tx Chain:	-		Data Rate:	-					
Frequency	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
902.856	107.3	H		iviai yiii	PK	57	3.0	Fundamenta	al RB 100 kHz;VB 300 kH
924.188	49.7	H	87.3	-37.6	PK	110	1.5		;VB 300 kHz;Peak
1064.840	50.0	H	74.0	-24.0	PK	306	2.0		/B 3 MHz;Peak
1064.840	30.0	H	54.0	-24.0	AVG	306	2.0	Note 2	b o miliz,i ouk
1805.600	58.6	H	87.3	-28.7	PK	271	1.8		;VB 300 kHz;Peak
1886.510	54.0	H	87.3	-33.3	PK	139	2.5		;VB 300 kHz;Peak
1968.600	59.8	Н	87.3	-27.5	PK	289	1.4		;VB 300 kHz;Peak
3925.250	50.5	Н	74.0	-23.5	PK	45	2.0		/B 3 MHz;Peak
3925.250	30.5	Н	54.0	-23.5	AVG	45	2.0	Note 2	
5897.380	56.7	Н	87.3	-30.6	PK	268	1.4	RB 100 kHz	;VB 300 kHz;Peak
7872.630	54.3	Н	87.3	-33.0	PK	302	1.1	RB 100 kHz	;VB 300 kHz;Peak
				•	•				t, Side and Flat). The
Note:					damental pow	er and spuri	ous emissio	n results. The	e side orinetation results
	were presen	ted as final r	measuremen	ts.	0/40.00)				
Note 2:					8/10.00)) was	s used to call	culate avera	ge value from	n peak measurement per
	the rule part	FCC 15.35(c) and RSS	-Gen 6.10			he fixed me		ntenna height of 1 m.
Note 3:					this frequency		ine lixed me	asurement ar	itenna neight of 1 m.
	THEIE WEIE	no signincan				range.			
1									




		SUCCESS						ЕМС	C Test Data
Client:	Plantronics I	nc.			Job Number:	JD105563			
				T-	Log Number:	T105586			
Model:	Hermit (900	MHz Conve	rtible Headse			•	Christine Krebill		
Contact:	Bill Jones					Coordinator:			
		1000 047			Tiojool				
Standard:	FCC 15.247	/ 855-247			Class:	IN/A			
	enter Chanr 915.000 MH -		Mode: Data Rate:	-					
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
895.030	49.4	H	87.6	-38.2	PK	84	3.0	RB 100 kHz	;VB 300 kHz;Peak
915.000	107.6	H	-	-	PK	277	1.0		al RB 100 kHz;VB 300 kH
935.852	44.8	Н	87.6	-42.8	PK	297	1.5		;VB 300 kHz;Peak
1829.370	58.9	Н	87.6	-28.7	PK	282	2.1		;VB 300 kHz;Peak
1897.950	45.3	Н	87.6	-42.3	PK	224	1.2		;VB 300 kHz;Peak
1968.090	57.6	Н	87.6	-30.0	PK	282	1.4		;VB 300 kHz;Peak
3797.710	49.4	Н	74.0	-24.6	PK	30	1.0		B 3 MHz;Peak
3797.710	29.4	H	54.0	-24.6	AVG	30	1.0	Note 2	
3936.010	53.3	H	74.0	-20.7	PK	299	1.0		'B 3 MHz;Peak
3936.010	33.3	Н	54.0	-20.7	AVG	299	1.0	Note 2	
5894.640	45.5	Н	87.6	-42.1	PK	335	1.3	RB 100 kHz	;VB 300 kHz;Peak
7872.490	55.1	V	87.6	-32.5	PK	26	1.3		;VB 300 kHz;Peak
Note:	side orientat were presen	ion of the El ted as final i	JT has the wo	ost case fun ts.	damental pow	er and spuri	ous emissio	n results. The	t, Side and Flat). The side orinetation results
Note 2:	•••		tor of -20 dB c) and RSS-		8/10.00)) was	used to cald	culate avera	ge value from	peak measurement per
					n 9 kHz and 3	0 MHz with t	he fixed mo	asurement an	itenna height of 1 m.
Note 3:					this frequency				

Contact: Bill Jo Standard: FCC Run #1c: High Ch Channel: 927.1 Tx Chain: - Frequency Le MHz dBµ 906.693 48 927.125 10 962.687 38 962.687 18	ones 15.247 / RSS-2	Mode: Data Rate: 15.209	- - -			Proj	Log Number: ect Manager: Coordinator: Class:	Christine Krebill -
Contact: Bill Jo Standard: FCC Run #1c: High Ch Channel: 927.1 X Chain: - Frequency Le MHz dBµ 906.693 48 927.125 10 962.687 38 962.687 18	ones 15.247 / RSS-2 hannel 25 MHz 2vel Pol 1V/m v/h	247 Mode: Data Rate: 15.209	- - -				Coordinator:	-
Standard: FCC Run #1c: High Ch Channel: 927.1 X Chain: Frequency Le MHz dBµ 906.693 44 927.125 10 962.687 38 962.687 18	15.247 / RSS-2 hannel 125 MHz 2vel Pol 1V/m v/h	Mode: Data Rate: 15.209	- -			Project		
Run #1c: High Ch Channel: 927.1 x Chain: - Frequency Le MHz dBµ 906.693 48 927.125 10 962.687 38 962.687 18	hannel 25 MHz evel Pol uV/m v/h	Mode: Data Rate: 15.209	-			· ·	Class:	N/A
Run #1c: High Channel: 927.1 Channel: 927.1 x Chain: - Frequency Le MHz dBµ 906.693 48 927.125 10 962.687 38 962.687 18	hannel 25 MHz evel Pol uV/m v/h	Mode: Data Rate: 15.209	- -					
x Chain: - requency Le MHz dB _L 906.693 48 927.125 10 962.687 38 962.687 18	evel Pol .vV/m v/h	Data Rate: 15.209	-					
MHz dBµ 906.693 48 927.125 10 962.687 38 962.687 18	ιV/m v/h		145.047					
906.693 48 927.125 10 962.687 38 962.687 18		Limit	/ 15.247	Detector	Azimuth	Height	Comments	
927.12510962.68738962.68718	8.2 H		Margin	Pk/QP/Avg	degrees	meters		
962.687 38 962.687 18		87.8	-39.6	PK	64	1.5		;VB 300 kHz;Peak
962.687 18)7.8 H	-	-	PK	122	1.0		al RB 100 kHz;VB 300 l
	8.3 H	74.0	-35.7	PK	70	1.0		and edge noise floor.
	8.3 H	54.0	-35.7	PK	70	1.0		and edge noise floor.
	8.7 H	87.8	-29.1	PK	291	1.5		;VB 300 kHz;Peak
	0.7 H	87.8	-37.1	PK	122	1.0		;VB 300 kHz;Peak
	8.9 H	87.8	-28.9	PK	292	1.4		;VB 300 kHz;Peak
	8.8 V	74.0	-25.2	PK	74	1.8		/B 3 MHz;Peak
	8.8 V	54.0	-25.2	AVG	74	1.8	Note 2	
	2.6 H 2.6 H	74.0 54.0	-21.4 -21.4	PK AVG	138 138	1.0	Note 2	/B 3 MHz;Peak
	<u>2.0 П</u> 4.4 V	87.8	-21.4	PK	257	<u>1.0</u> 1.7		;VB 300 kHz;Peak
	4.4 V 6.6 H	87.8	-31.2	PK	316	1.1		;VB 300 kHz;Peak
1012.450 50	0.0 11	07.0	-31.2	FK	310	1.1	ND TOU KITZ	, VD JUU KI IZ, FEAK
Note: side o were	prientation of th presented as f	e EUT has the w nal measuremen	ost case fun ts.	damental pow	er and spuri	ous emissio	n results. The	it, Side and Flat). The eside orinetation result
Note 2: the ru	ule part FCC 15	5.35(c) and RSS	-Gen 6.10				-	n peak measurement pont
Noto 3		ficant emissions of				-	-	ŭ

Report Date: September 13, 2017

End of Report

This page is intentionally blank and marks the last page of this test report.