

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

BLUETOOTH HEADSET

MODEL NUMBERS: WEARABLE CONCEPT 2

FCC ID: AL8-WC2 IC: 457A-WC2

REPORT NUMBER: 15U20565-E8V2

ISSUE DATE: FEBRUARY 17, 2016

Prepared for PLANTRONICS, INC. 345 ENCINAL STREET SANTA CRUZ, CA 95060 U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	02/12/2016	Initial Issue	C. Pang
V2	02/17/2016	Address TCB's Question	C. Pang

Page 2 of 29

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FAG	CILITIES AND ACCREDITATION	5
4.	CAI	LIBRATION AND UNCERTAINTY	5
	4.1.	MEASURING INSTRUMENT CALIBRATION	5
	4.2.	SAMPLE CALCULATION	5
	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQ	UIPMENT UNDER TEST	7
÷	5.1.	DESCRIPTION OF EUT	7
÷	5.2.	MAXIMUM OUTPUT POWER	7
÷	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
÷	5.4.	SOFTWARE AND FIRMWARE	7
÷	5.5.	WORST-CASE CONFIGURATION AND MODE	7
÷	5.6.	DESCRIPTION OF TEST SETUP	8
6.	TES	ST AND MEASUREMENT EQUIPMENT	10
7.	OC	CUPIED BANDWIDTH	11
8.	RAI	DIATED EMISSION TEST RESULTS	13
ė	8.1.	LIMITS AND PROCEDURE	13
	8.1. 8.1.	 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 – 30 MHz) TX SPURIOUS EMISSION 30 TO 1000 MHz 	15 19
9.	FRE	EQUENCY STABILITY	21
10	. A	C MAINS LINE CONDUCTED EMISSIONS	22
11	S	ETUP PHOTOS	26

Page 3 of 29

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:PLANTRONICS INC.
345 ENCINAL STREET
SANTA CRUZ, CA 95060, U.S.A.EUT DESCRIPTION:BLUETOOTH HEADSETMODEL:Wearable Concept 2SERIAL NUMBER:BLD2_COMP06 (CONDUCTED) & BLD2_COMP02 (RADIATED)DATE TESTED:DECEMBER 09, 2015 AND FEBRUARY 10, 2016

APPLICABLE STANDARDS						
STANDARD	TEST RESULTS					
FCC PART 15 SUBPART C	Pass					
INDUSTRY CANADA RSS-210 Issue 8, Annex 2	Pass					
INDUSTRY CANADA RSS-GEN Issue 4	Pass					

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

Clung

CHIN PANG SENIOR ENGINEER UL VERIFICATION SERVICES INC.

TOM CHEN EMC ENGINEER UL VERIFICATION SERVICES INC

Page 4 of 29

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, KDB 937606, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 8.

Comparisons between the semi-anechoic chamber and an open area test site for devices that operate at the EUT frequency had been conducted and data is kept on file. There were no significant differences found between the two sites so data taken in the chamber is equivalent to the data which would have been taken on the open area test site

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	Chamber E
Chamber C	Chamber F
	🛛 Chamber G
	Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 5 of 29

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 29

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth headset.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	E Field at 30m distance			
(MHz)	(dBuV/m)			
13.56	41.34			

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a planar inductive NFC antenna.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 10400.

The test utility software used during testing was ConnectTest.exe.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z position, it was determined that X (Flatbed) orientation was the worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Page 7 of 29

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
Laptop	Dell	D400	45426167881	N/A			
AC/DC Adapter	Dell	LA90PS0-00	0DF266-71615-67J-34B1	N/A			

I/O CABLES

I/O Cable List									
Cable No	Port	Cable Length	Remarks						
		ports	Туре		(m)				
1	DC	1	Barrel	Unshielded	1	N/A			
2	AC	1	3-Prong	Unshielded	1	N/A			
3	USB	1	USB	Unshielded	0.25	N/A			

TEST SETUP

The EUT is connected to a host laptop via USB cable, test software exercises the radio.

Page 8 of 29

SETUP DIAGRAM RADIATED

Page 9 of 29

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List								
Description	Manufacturer	Model	T No.	Cal Due				
Antenna, Broadband Hybrid	Sunol Sciences	JB3	900	04/10/16				
Amplifier, 10KHz to 1GHz, 32dB	Sonoma	310N	173	06/09/16				
Antenna, Loop, 30 MHz	EMCO	6502	35	05/15/16				
Chamber, Environmental	Thermotron	SE 600-10-10	80	05/15/16				
Spectrum Analyzer, PXA, 3Hz to	Agilent	N9030A	1222	03/27/16				
44GHz								
EMI Test Receiver, 9 kHz-7 GHz	R & S	ESCI 7	1124	09/30/16				
LISN for Conducted Emissions CISPR-	FCC	LISN-50/250-25-	24	01/16/16				
16		2						
Line conducted Power cable ANSI	UL	PG1	861	07/28/15				
63.4								
Antenna, Broadband Hybrid,	Sunol Sciences	JB3	407	03/05/16				
30MHz to 2000MHz								
UL SOFTWARE								
*Radiated Software	UL	ULEMC	Ver 9.5, July 22, 2014					
*AC Line Conducted Software	UL	UL EMC	Ver 9.5, A	pril 3, 2015				

Note: * indicates automation software version used in the compliance certification testing

Page 10 of 29

7. OCCUPIED BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 10kHz. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Frequency	99% Bandwidth	20dB Bandwidth		
(MHz)	(KHz)	(KHz)		
13.56	0.419	0.496		

Page 11 of 29

99% BANDWIDTH

Page 12 of 29

8. RADIATED EMISSION TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMIT</u>

§15.225 IC RSS-210, A2.6 IC RSS-GEN, Section 8.9 (Transmitter) IC RSS-GEN, Section 7.1.2 (Receiver)

(a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.

(b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110– 14.010 MHz and shall not exceed the general radiated emission limits in § 15.209 as follows:

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Limits for radiated disturbance of an intentional radiator							
Frequency range (MHz)	Limits (µV/m)	Measurement Distance (m)					
0.009 - 0.490	2400 / F (kHz)	300					
0.490 – 1.705	24000 / F (kHz)	30					
1.705 – 30.0	30	30					
30 - 88	100**	3					
88 - 216	150**	3					
216 – 960	200**	3					
Above 960	500	3					

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241. §15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Formula for converting the filed strength from uV/m to dBuV/m is:

Limit $(dBuV/m) = 20 \log limit (uV/m)$

Page 13 of 29

§15.209 (d) The emission limits shown the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

§15.209 (d) The provisions in §§ 15.225, measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

TEST PROCEDURE

ANSI C63.10, 2013

The EUT is an intentional radiator that incorporates a digital device, the highest fundamental frequency generated or used in the device is 13.56 MHz; therefore, the frequency range was investigated from 0.15 MHz to the 10th harmonic of the highest fundamental frequency, or 1000 MHz, whichever is greater.

RESULTS

Page 14 of 29

8.1.1. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 – 30 MHz)

Blue: Antenna loop face On

Green: Antenna loop face Off

Page 15 of 29

REPORT NO: 15U20565-E8V2 FCC ID: AL8-WC2

Trace Markers

Marker	Frequency	Meter	Det	Loop	Cbl (dB)	Dist Corr	Corrected	FCC 15.225	Margin	Azimuth
	(MHz)	Reading		Antenna		30m	Reading	Limit	(dB)	(Degs)
		(dBuV)		(dB/m)			dB(uVolts/			
							metery			
1	12.71	34.71	Pk	10.4	.6	-40	5.71	29.54	-23.83	0-360
10	12.71107	34.32	Pk	10.4	.6	-40	5.32	29.54	-24.22	0-360
11	13.02786	39.26	Pk	10.4	.6	-40	10.26	40.51	-30.25	0-360
2	13.02825	39.31	Pk	10.4	.6	-40	10.31	40.51	-30.2	0-360
3	13.13475	41.51	Pk	10.4	.6	-40	12.51	40.51	-28	0-360
12	13.13479	40.45	Pk	10.4	.6	-40	11.45	40.51	-29.06	0-360
13	13.34629	50.73	Pk	10.4	.6	-40	21.73	40.51	-18.78	0-360
4	13.34788	52.26	Pk	10.4	.6	-40	23.26	40.51	-17.25	0-360
5	13.45175	56.92	Pk	10.4	.6	-40	27.92	50.48	-22.56	0-360
14	13.45196	54.5	Pk	10.4	.6	-40	25.5	50.48	-24.98	0-360
15	13.55793	70.09	Pk	10.4	.6	-40	41.09	84	-42.91	0-360
6	13.55925	70.34	Pk	10.4	.6	-40	41.34	84	-42.66	0-360
16	13.66375	58.91	Pk	10.4	.6	-40	29.91	50.48	-20.57	0-360
17	13.76957	54.3	Pk	10.3	.6	-40	25.2	40.51	-15.31	0-360
7	13.77188	54.28	Pk	10.3	.6	-40	25.18	40.51	-15.33	0-360
8	13.98388	47.78	Pk	10.3	.6	-40	18.68	40.51	-21.83	0-360
18	14.08673	48.06	Pk	10.3	.6	-40	18.96	29.54	-10.58	0-360
19	14.40463	46.1	Pk	10.3	.6	-40	17	29.54	-12.54	0-360
9	14.40763	48.23	Pk	10.3	.6	-40	19.13	29.54	-10.41	0-360

Pk - Peak detector

FCC 15.225 13.56MHz Fundamental Mask.TST 39763 7 May 2015

Rev 9.5 24 Jun 2015

PK - Peak detector

Page 16 of 29

SPURIOUS EMISSIONS

Blue: Antenna Loop FACE ON

Green: Antenna Loop FACE OFF

Page 17 of 29

REPORT NO: 15U20565-E8V2 FCC ID: AL8-WC2

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr 300m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
10	.10346	35.18	Pk	11	.1	-80	-33.72	47.31	-81.03	27.31	-61.03	0-360
1	.10422	16.83	Pk	11	.1	-80	-52.07	47.24	-99.31	27.24	-79.31	0-360

Pk - Peak detector

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr 30m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
2	.59804	19.85	Pk	10.2	.2	-40	-9.75	32.07	-41.82	-	-	0-360
11	.59804	40.68	Pk	10.2	.2	-40	11.08	32.07	-20.99	-	-	0-360
12	.9055	38.34	Pk	10.2	.2	-40	8.74	28.47	-19.73	-	-	0-360
3	.90771	18.11	Pk	10.2	.2	-40	-11.49	28.44	-39.93	-	-	0-360
13	1.19313	32.11	Pk	10.4	.2	-40	2.71	26.07	-23.36	-	-	0-360
4	1.19347	11.88	Pk	10.4	.2	-40	-17.52	26.07	-43.59	-	-	0-360
14	1.81661	29.07	Pk	10.4	.2	-40	33	29.54	-29.87	-	-	0-360
5	1.81976	8.24	Pk	10.4	.2	-40	-21.16	29.54	-50.7	-	-	0-360
6	3.17796	10.52	Pk	10.4	.3	-40	-18.78	29.54	-48.32	-	-	0-360
15	3.17796	27.53	Pk	10.4	.3	-40	-1.77	29.54	-31.31	-	-	0-360
7	3.6024	10.89	Pk	10.5	.3	-40	-18.31	29.54	-47.85	-	-	0-360
16	3.6024	27.32	Pk	10.5	.3	-40	-1.88	29.54	-31.42	-	-	0-360
17	13.55945	69.86	Pk	10.4	.6	-40	40.86	84	-43.14	-	-	0-360
8	13.56024	49.85	Pk	10.4	.6	-40	20.85	84	-63.15	-	-	0-360
9	27.12188	15.73	Pk	8.4	.9	-40	-14.97	29.54	-44.51	-	-	0-360
18	27.12188	45.93	Pk	8.4	.9	-40	15.23	29.54	-14.31	-	-	0-360

Pk - Peak detector

FCC 15.209 Below 30MHz.TST 30915 8 Jan 2015

Rev 9.5 24 Jun 2015

Page 18 of 29

8.1.2. TX SPURIOUS EMISSION 30 TO 1000 MHz

Page 19 of 29

Trace Markers

Marker	Frequency	Meter	Det	AF T899	Amp Cbl (dB)	Corrected	Class B QPk	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)		Reading	Limit	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)	(dBuV/m)				
1	40.6675	45.65	Pk	14	-31.1	28.55	40	-11.45	0-360	401	Н
2	40.6675	56.57	Pk	14	-31.1	39.47	40	53	0-360	101	V
	40.6675	56.13	Qp	14	-31.1	39.03	40	97	65	109	V
3	528.7	54.48	Pk	18.2	-27.8	44.88	46.02	-1.14	0-360	100	V
	528.7	52.34	Qp	18.3	-27.8	42.84	46.02	-3.18	201	100	V
7	528.8	49.46	Pk	18.3	-27.8	39.96	46.02	-6.06	0-360	201	Н
8	555.9	50.09	Pk	17.7	-27.7	40.09	46.02	-5.93	0-360	201	Н
	555.9	55.3	Qp	17.7	-27.7	45.3	46.02	72	197	104	V
5	583	54.16	Pk	18.8	-27.7	45.26	46.02	76	0-360	100	V
	583	52.21	QP	18.8	-27.7	43.31	46.02	2.71	0-360	100	V
6	650.9	53.09	Pk	19.7	-27.4	45.39	46.02	63	0-360	100	V
	650.9	52.2	QP	19.7	-27.4	44.5	46.02	-1.52	0-360	100	V

Pk - Peak detector

* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

Page 20 of 29

9. FREQUENCY STABILITY

LIMIT

§15.225 (e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency, over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

TEST PROCEDURE

ANSI C63.10 Clause 6.8

RESULTS

	Reference Frequency: EUT Channel 13.56 MHz @ 20ºC													
			Limit: ± 100 ppm = 1.356 kHz											
Power	Envir.													
Supply	Temp		Frequency Deviation Measureed with Time Elapse											
		Startup	Delta	@ 2 mins	Delta	@ 5 mins	Delta	@ 10 mins	Delta	Limit				
(Vdc)	(°C)	(MHz)	(ppm)	(MHz)	(ppm)	(MHz)	(ppm)	(MHz)	(ppm)	(ppm)				
3.70	50	13.5597517	5.228	13.5597570	4.838	13.5597586	4.721	13.5597825	2.960	± 100				
3.70	40	13.5597497	5.372	13.5597497	5.372	13.5597497	5.378	13.5597495	5.394	± 100				
3.70	30	13.5597220	7.419	13.5597220	7.419	13.5597387	6.184	13.5597505	5.319	± 100				
3.70	20	13.5598226	0.000	13.5598219	0.051	13.5598199	0.195	13.5598209	0.122	± 100				
3.70	10	13.5597659	4.181	13.5597659	4.181	13.5597659	4.182	13.5597658	4.190	± 100				
3.70	0	13.5597657	4.196	13.5597166	7.817	13.5597166	7.820	13.5597166	7.817	± 100				
3.30	20	13.5597660	4.177	13.5597595	4.655	13.5597659	4.178	13.5597659	4.178	± 100				
4.2	20	13.5597660	4.174	13.5597595	4.655	13.5597659	4.177	13.5597660	4.177	± 100				

Page 21 of 29

10. AC MAINS LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

§15.207 IC RSS-GEN, Section 7.2.2

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency range	Limits (dBµV)								
(MHz)	Quasi-peak	Average							
0.15 to 0.50	66 to 56	56 to 46							
0.50 to 5	56	46							
5 to 30	60	50							
Notes:									

1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

TEST PROCEDURE

ANSI C63.10:2013

RESULTS

No non-compliance noted:

Page 22 of 29

Trace Markers

Range 1	L: Line-L1 .15	- 30MHz								
Marker	Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading			1&3	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)				dBuV	Class B QP		Class B	
									Avg	
1	.159	50.21	Pk	1.3	0	51.51	65.52	-14.01		
2	.168	32.86	Av	1.2	0	34.06	-	-	55.06	-21
3	.4605	36.46	Pk	.4	0	36.86	56.68	-19.82		
4	.456	24.22	Av	.4	0	24.62	-	-	46.77	-22.15
5	2.427	44.96	Pk	.2	.1	45.26	56	-10.74		
6	2.4315	31.86	Av	.2	.1	32.16	-	-	46	-13.84
7	9.825	36.94	Pk	.2	.2	37.34	60	-22.66		
8	9.825	25.88	Av	.2	.2	26.28	-	-	50	-23.72
9	13.56	47.93	Pk	.2	.2	48.33	60	-11.67		
10	13.56	46.76	Av	.2	.2	47.16	-	-	50	-2.84
11	27.1185	29.7	Pk	.3	.3	30.3	60	-29.7		
12	27.1185	28.53	Av	.3	.3	29.13	-	-	50	-20.87

Pk - Peak detector

Av - Average detection

Range 2: Line-L2 .15 - 30MHz

Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading			2&3	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)				dBuV	Class B QP		Class B	
									Avg	
13	.159	50.55	Pk	1.4	0	51.95	65.52	-13.57		
14	.159	35.33	Av	1.4	0	36.73	-	-	55.52	-18.79
15	.4695	32.81	Pk	.4	0	33.21	56.52	-23.31		
16	.474	22.53	Av	.4	0	22.93	-	-	46.44	-23.51
17	2.283	40.13	Pk	.2	.1	40.43	56	-15.57		
18	2.31	29.24	Av	.2	.1	29.54	-	-	46	-16.46
19	10.0275	36.28	Pk	.2	.2	36.68	60	-23.32		
20	9.9465	24.33	Av	.2	.2	24.73	-	-	50	-25.27
21	13.56	48.53	Pk	.2	.2	48.93	60	-11.07		
22	13.56	47.78	Av	.2	.2	48.18	-	-	50	-1.82
23	27.1185	30.15	Pk	.3	.3	30.75	60	-29.25		
24	27.1185	28.65	Av	.3	.3	29.25	-	-	50	-20.75

Pk - Peak detector

Av - Average detection

FCC15 CE Class B 150kHz-30MHz Stepping.TST 1 14 May 2015

Rev 9.5 26 May 2015

Page 23 of 29

Page 24 of 29

Page 25 of 29