

### FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

**CERTIFICATION TEST REPORT** 

FOR

### **BLUETOOTH HEADSET**

### MODEL NUMBER: WEARABLE CONCEPT 2

FCC ID: AL8-WC2 IC: 457A-WC2

### REPORT NUMBER: 15U20565-E1V5

**ISSUE DATE: FEBRUARY 25, 2016** 

Prepared for PLANTRONICS, INC. 345 ENCINAL STREET SANTA CRUZ, CA 95060 USA

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

### **Revision History**

| Rev. | Issue<br>Date | Revisions                                                                | Revised By |
|------|---------------|--------------------------------------------------------------------------|------------|
| V1   | 10/01/2015    | Initial Issue                                                            | C. Pang    |
| V2   | 11/02/2015    | Add duty cycle on spurious data and delete Yellow<br>Highlighted section | C. Pang    |
| V3   | 11/19/2015    | Address TCB's Questions                                                  | C. Pang    |
| V4   | 2/18/2016     | Address TCB's Question on Section 7.2.4                                  | C. Pang    |
| V5   | 02/25/2016    | Address TCB's Questions                                                  | C. Pang    |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 88

# TABLE OF CONTENTS

| 1. AT   | ITESTATION OF TEST RESULTS                                                    | 5       |
|---------|-------------------------------------------------------------------------------|---------|
| 2. TE   | ST METHODOLOGY                                                                | 6       |
| 3. FA   | ACILITIES AND ACCREDITATION                                                   | 6       |
| 4. CA   | ALIBRATION AND UNCERTAINTY                                                    | 6       |
| 4.1.    | MEASURING INSTRUMENT CALIBRATION                                              | 6       |
| 4.2.    | SAMPLE CALCULATION                                                            | 6       |
| 4.3.    | MEASUREMENT UNCERTAINTY                                                       | 7       |
| 5. EQ   | QUIPMENT UNDER TEST                                                           | 8       |
| 5.1.    | DESCRIPTION OF EUT                                                            | 8       |
| 5.2.    | MAXIMUM OUTPUT POWER                                                          | 8       |
| 5.3.    | DESCRIPTION OF AVAILABLE ANTENNAS                                             | 8       |
| 5.4.    | SOFTWARE AND FIRMWARE                                                         | 8       |
| 5.5.    | WORST-CASE CONFIGURATION AND MODE                                             | 8       |
| 5.6.    | DESCRIPTION OF TEST SETUP                                                     | 9       |
| 6. TE   | EST AND MEASUREMENT EQUIPMENT1                                                | 1       |
| 7 ΔΝ    | TENNA PORT TEST RESULTS                                                       | 2       |
| 7.1.    | ON TIME AND DUTY CYCLE1                                                       | 2       |
| 7.2.    | BASIC DATA RATE GFSK MODULATION1                                              | 4       |
| 7.2     | 2.1. 20 dB AND 99% BANDWIDTH                                                  | 4       |
| 7.2     | 2.2. HOPPING FREQUENCY SEPARATION1<br>2.3. NUMBER OF HOPPING CHANNELS 1       | /<br>9  |
| 7.2     | 2.4. AVERAGE TIME OF OCCUPANCY                                                | 2       |
| 7.2     | 2.5. OUTPUT POWER                                                             | 6       |
| 7.2     | 2.6. AVERAGE POWER                                                            | /<br>8  |
| 7.3.    | ENHANCED DATA RATE OPSK MODULATION                                            | 3       |
| 7.3     | 3.1. OUTPUT POWER                                                             | 3       |
| 7.3     | 3.2. AVERAGE POWER                                                            | 4       |
| 7.4.    |                                                                               | 5       |
| 7.4     | 4.2. HOPPING FREQUENCY SEPARATION                                             | 8       |
| 7.4     | 4.3. NUMBER OF HOPPING CHANNELS4                                              | 0       |
| 7.4     |                                                                               | 3       |
| 7.4     | 4.6. AVERAGE POWER                                                            | 7<br>.8 |
| 7.4     | 4.7. CONDUCTED SPURIOUS EMISSIONS4                                            | 9       |
| 8. RA   | ADIATED TEST RESULTS                                                          | 4       |
| 8.1.    | LIMITS AND PROCEDURE                                                          | 4       |
|         | Page 3 of 88<br>RIFICATION SERVICES INC. FORM NO: CCSUP470                    | 11      |
| 47173 E | BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-088 | 8       |

This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

| REPORT NO: 15U20565-E1V5                  | DATE: FEBRUARY 25, 2016 |
|-------------------------------------------|-------------------------|
| FCC ID: AL8-WC2                           | IC: 457A-WC2            |
| 8.2. TRANSMITTER ABOVE 1 GHz              |                         |
| 8.2.1. BASIC DATA RATE GFSK MODULATION    |                         |
| 8.2.2. ENHANCED DATA RATE 8PSK MODULATION | 65                      |
| 8.3. WORST-CASE ABOVE 18GHz               | 75                      |
| 8.4. WORST-CASE BELOW 1 GHz               | 77                      |
| 8.5. TX SPURIOUS FROM 0.15 TO 30 MHz      |                         |
| 8.6. AC POWER LINE CONDUCTED EMISSIONS    |                         |
|                                           | 84                      |
|                                           |                         |

Page 4 of 88

## **1. ATTESTATION OF TEST RESULTS**

| COMPANY NAME:    | PLANTRONICS INC.<br>345 ENCINAL STREET           |
|------------------|--------------------------------------------------|
|                  | SANTA CRUZ, CA 95060                             |
| EUT DESCRIPTION: | BLUETOOTH HEADSET                                |
| MODEL:           | WEARABLE CONCEPT 2                               |
| SERIAL NUMBER:   | BLD2_COMP06 (CONDUCTED) & BLD2_COMP02 (RADIATED) |
| DATE TESTED:     | APRIL 09-15, 2015                                |
|                  |                                                  |

| APPLICABLE STANDARDS            |              |  |  |  |  |
|---------------------------------|--------------|--|--|--|--|
| STANDARD                        | TEST RESULTS |  |  |  |  |
| CFR 47 Part 15 Subpart C        | Pass         |  |  |  |  |
| INDUSTRY CANADA RSS-247 Issue 1 | Pass         |  |  |  |  |
| INDUSTRY CANADA RSS-GEN Issue 4 | Pass         |  |  |  |  |

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

CHIN PANG SENIOR ENGINEER UL VERIFICATION SERVICES INC.

Tested By:

JOEY GOMEZ EMC ENGINEER UL VERIFICATION SERVICES INC.

Page 5 of 88

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-247 Issue 1.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street | 47266 Benicia Street |
|----------------------|----------------------|
| Chamber A            | Chamber D            |
| Chamber B            | 🛛 Chamber E          |
| Chamber C            | Chamber F            |
|                      | 🗌 Chamber G          |
|                      | 🛛 Chamber H          |

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

# 4. CALIBRATION AND UNCERTAINTY

# 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

# 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 6 of 88

# 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz | ± 3.52 dB   |
| Radiated Disturbance, 30 to 1000 MHz  | ± 4.94 dB   |
| Radiated Disturbance, 1 to 6 GHz      | ± 3.86 dB   |
| Radiated Disturbance, 6 to 18 GHz     | ± 4.23 dB   |
| Radiated Disturbance, 18 to 26 GHz    | ± 5.30 dB   |
| Radiated Disturbance, 26 to 40 GHz    | ± 5.23 dB   |

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 88

# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth headset.

# 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

| Frequency Range Mode |               | Output Power | Output Power |
|----------------------|---------------|--------------|--------------|
| (MHz)                |               | (dBm)        | (mW)         |
| 2402 - 2480          | Basic GFSK    | 7.05         | 5.07         |
| 2402 - 2480          | DQPSK         | 6.47         | 4.44         |
| 2402 - 2480          | Enhanced 8PSK | 6.67         | 4.65         |

## 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a monopole antenna, with a maximum gain of -6.1dBi.

# 5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 10400

The test utility software used during testing was BlueTest3 2.5.0

# 5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z position, it was determined that X (Flatbed) orientation was the worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Page 8 of 88

## 5.6. DESCRIPTION OF TEST SETUP

#### SUPPORT EQUIPMENT

| Support Equipment List                                  |      |      |             |     |  |  |  |
|---------------------------------------------------------|------|------|-------------|-----|--|--|--|
| Description Manufacturer Model Serial Number FCC ID     |      |      |             |     |  |  |  |
| Laptop                                                  | Dell | D400 | 45426167881 | N/A |  |  |  |
| AC/DC Adapter Dell LA90PS0-00 0DF266-71615-67J-34B1 N/A |      |      |             |     |  |  |  |

#### I/O CABLES

| I/O Cable List |                                                                         |       |         |            |      |     |  |  |
|----------------|-------------------------------------------------------------------------|-------|---------|------------|------|-----|--|--|
| Cable          | Cable Port # of identical Connector Cable Type Cable Length (m) Remarks |       |         |            |      |     |  |  |
| No             |                                                                         | ports | Туре    |            |      |     |  |  |
| 1              | DC                                                                      | 1     | Barrel  | Unshielded | 1    | N/A |  |  |
| 2              | AC                                                                      | 1     | 3-Prong | Unshielded | 1    | N/A |  |  |
| 3              | USB                                                                     | 1     | USB     | Unshielded | 0.25 | N/A |  |  |

#### TEST SETUP

The EUT is connected to a host laptop via USB cable, test software exercises the radio.

Page 9 of 88

#### SETUP DIAGRAM FOR TESTS



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888

Page 10 of 88

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| Test Equipment List                                   |                                                       |                 |                        |                 |          |  |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------|-----------------|------------------------|-----------------|----------|--|--|--|--|
| Description                                           | Description Manufacturer Model T No. Cal Date Cal Due |                 |                        |                 |          |  |  |  |  |
| Horn Antenna 1-18 GHz                                 | ETS Lindgren                                          | 3117            | 863                    | 01/07/15        | 01/07/16 |  |  |  |  |
| Hybrid Antenna 30 - 2000MHz                           | Sunol Sciences                                        | JB3             | 900                    | 05/14/14        | 05/14/15 |  |  |  |  |
| 3GHz HPF                                              | Micro-Tronics                                         | HPM17543        | 897                    | 05/13/14        | 05/13/15 |  |  |  |  |
| Amplifier 1-18GHz                                     | Miteq                                                 | AFS42-00101800- | 495                    | 06/05/14        | 06/05/15 |  |  |  |  |
|                                                       |                                                       | 25-S-42         |                        |                 |          |  |  |  |  |
| Power Sensor, P - series, 50MHz<br>to 18GHz, Wideband | Keysight                                              | N1921A          | MY52200012             | 9/8/2014        | 9/8/2015 |  |  |  |  |
| Power Meter, P-series dual                            | Keysight                                              | N1912A          | MY55136012             | 6/8/2014        | 6/8/2015 |  |  |  |  |
| channel                                               |                                                       |                 |                        |                 |          |  |  |  |  |
| Amplifier 10kHz - 1GHz                                | Sonoma                                                | 310N            | 835                    | 06/05/14        | 06/05/15 |  |  |  |  |
| Spectrum Analyzer PXA 3Hz -                           | Agilent                                               | N9030A          | 906                    | 05/07/14        | 05/07/15 |  |  |  |  |
| 44GHz                                                 |                                                       |                 |                        |                 |          |  |  |  |  |
| Horn Antenna 18-26GHz                                 | ARA                                                   | MWH-1826        | 89                     | 12/17/14        | 12/17/15 |  |  |  |  |
| Amplifier 1-26.5GHz                                   | Agilent                                               | 8449B           | 404                    | 06/05/14        | 06/05/15 |  |  |  |  |
| Spectrum Analyzer 40GHz                               | Agilent                                               | 8564E           | 106                    | 08/06/14        | 08/06/15 |  |  |  |  |
| LISN                                                  | FCC                                                   | 50/250-25-2     | 24                     | 01/16/15        | 01/16/16 |  |  |  |  |
| EMI Receiver                                          | Rohde & Schwartz                                      | ESCI7           | 284                    | 09/16/14        | 09/16/15 |  |  |  |  |
|                                                       | UL                                                    | SOFTWARE        |                        |                 |          |  |  |  |  |
| Radiated Software                                     | UL                                                    | UL EMC          | Ver                    | 9.5, July 22, 2 | 2014     |  |  |  |  |
| Conducted Software                                    | UL                                                    | UL EMC          | Ver 2                  | .2, March 31,   | 2015     |  |  |  |  |
| AC Line Conducted Software                            | UL                                                    | UL EMC          | Ver 9.5, April 3, 2015 |                 |          |  |  |  |  |

Page 11 of 88

# 7. ANTENNA PORT TEST RESULTS

# 7.1. ON TIME AND DUTY CYCLE

### <u>LIMITS</u>

None; for reporting purposes only.

#### **PROCEDURE**

KDB 558074 Zero-Span Spectrum Analyzer Method.

#### **RESULTS**

#### **ON TIME AND DUTY CYCLE**

| Mode                       | <b>ON Time</b> | Period | Duty Cycle | Duty   | Duty Cycle               | 1/B         |
|----------------------------|----------------|--------|------------|--------|--------------------------|-------------|
|                            | В              |        | x          | Cycle  | <b>Correction Factor</b> | Minimum VBW |
|                            | (msec)         | (msec) | (linear)   | (%)    | (dB)                     | (kHz)       |
| 2.4 GHz band (Hopping OFF) |                |        |            |        |                          |             |
| Bluetooth GFSK             | 2.890          | 3.750  | 0.771      | 77.07% | 1.13                     | 0.346       |
| Bluetooth 8PSK             | 0.384          | 1.248  | 0.308      | 30.77% | 5.12                     | 2.604       |

Page 12 of 88

#### **DUTY CYCLE PLOTS**

#### **HOPPING OFF**

| RL RF 50 Ω                         | DC                         | SENSE:INT                      | ALIGN AUTO             | 10:14:20 PM Apr 09, 2015                            | Erequency                    |
|------------------------------------|----------------------------|--------------------------------|------------------------|-----------------------------------------------------|------------------------------|
|                                    | PNO: Fast ←<br>IFGain:High | Trig: Free Run<br>#Atten: 0 dB | #Avg Type: RMS         | TRACE 1 2 3 4 5 6<br>TYPE WMWWWW<br>DET P A A A A A | requirey                     |
| dB/div Ref -20.00 (                | iBm                        |                                | ΔN                     | lkr3 3.750 ms<br>0.06 dB                            | Auto Tune                    |
|                                    |                            |                                | \_1∆2                  | 3∆4                                                 | O antan Fran                 |
| 1.0                                |                            |                                |                        |                                                     | 2.441000000 GH               |
| 1.0                                |                            |                                | gen d. ha              | hadret the start                                    |                              |
| 0.0                                |                            |                                | 4 h. h. mb. J.n        | u un den sitt in fran fi                            | Start Free<br>2.441000000 GH |
| 1.0                                |                            |                                |                        |                                                     |                              |
|                                    |                            |                                |                        |                                                     | Stop Free                    |
| 10                                 |                            |                                |                        |                                                     | 2.441000000 GH               |
| enter 2.441000000 G<br>es BW 8 MHz | Hz<br>#VB                  | W 50 MHz                       | Sweep 5.0              | Span 0 Hz<br>00 ms (1001 pts)                       | CF Stej<br>8.000000 MH       |
| R MODE TRC SCL                     | X<br>2.890 ms (A           | Y Fl                           | UNCTION FUNCTION WIDTH | FUNCTION VALUE                                      | <u>Auto</u> Mar              |
| 2 F 1 t                            | 845.0 µs                   | -32.41 dBm                     |                        |                                                     | FregOffse                    |
| 1 F 1 t                            | 845.0 μs                   | -32.41 dBm                     |                        |                                                     | 0 H                          |
| 5<br>6                             |                            |                                |                        | E                                                   |                              |
| 7<br>R                             |                            |                                |                        |                                                     |                              |
| 9                                  |                            |                                |                        |                                                     |                              |
| 0                                  |                            |                                |                        |                                                     |                              |



Page 13 of 88

# 7.2. BASIC DATA RATE GFSK MODULATION

### 7.2.1. 20 dB AND 99% BANDWIDTH

#### <u>LIMIT</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency | 20 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (kHz)           | (kHz)         |
| Low     | 2402      | 943.8           | 927.65        |
| Middle  | 2441      | 955.6           | 935.64        |
| High    | 2480      | 927.7           | 935.83        |

Page 14 of 88

#### 20 dB AND 99% BANDWIDTH





Page 15 of 88



Page 16 of 88

### 7.2.2. HOPPING FREQUENCY SEPARATION

#### <u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

#### **RESULTS**

Page 17 of 88

#### **HOPPING FREQUENCY SEPARATION**



Page 18 of 88

### 7.2.3. NUMBER OF HOPPING CHANNELS

#### <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

#### **RESULTS**

Normal Mode: 79 Channels observed.

Page 19 of 88

#### NUMBER OF HOPPING CHANNELS





Page 20 of 88





Page 21 of 88

### 7.2.4. AVERAGE TIME OF OCCUPANCY

#### <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels \* 0.4 s) is equal to 10 \* (# of pulses in 3.16 s) \* pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels \* 0.4 seconds) is equal to 10 \* (# of pulses in 0.8 s) \* pulse width

#### **RESULTS**

| DH Packet     | Pulse<br>Width | Number of<br>Pulses in | Average Time<br>of Occupancy | Limit | Margin |  |  |
|---------------|----------------|------------------------|------------------------------|-------|--------|--|--|
|               | (msec)         | 3.16                   | (sec)                        | (sec) | (sec)  |  |  |
|               |                | seconds                |                              |       |        |  |  |
| GFSK Norma    | I Mode         |                        |                              |       |        |  |  |
| DH1           | 0.413          | 32                     | 0.132                        | 0.4   | -0.268 |  |  |
| DH3           | 1.666          | 16                     | 0.267                        | 0.4   | -0.133 |  |  |
| DH5           | 2.908          | 10                     | 0.291                        | 0.4   | -0.109 |  |  |
|               |                |                        |                              |       |        |  |  |
| DH Packet     | Pulse          | Number of              | Average Time                 | Limit | Margin |  |  |
|               | Width          | Pulses in              | of Occupancy                 |       |        |  |  |
|               | (msec)         | 0.8                    | (sec)                        | (sec) | (sec)  |  |  |
|               |                | seconds                |                              |       |        |  |  |
| GFSK AFH Mode |                |                        |                              |       |        |  |  |
| DH1           | 0.413          | 8                      | 0.033                        | 0.4   | -0.367 |  |  |
| DH3           | 1.666          | 4                      | 0.067                        | 0.4   | -0.333 |  |  |
| DH5           | 2.908          | 2.5                    | 0.073                        | 0.4   | -0.327 |  |  |

Page 22 of 88

#### PULSE WIDTH - DH1

| RF 50 S                   | ept SA<br>2 DC  <br>000000 GHz                                                                                                                     |                                                                                                                                                                                                | SENS                                                                                                                                                  | E:INT<br>100.0 µs                                                                                                                                                                                                  | Avg Type                                                                                                                                                                                                                        | ALIGN AUTO<br>E: Log-Pwr                                                                                                                                                                                                                          | 10:34:08 A<br>TRAC                                                                                                                                                                                                                                | M Apr 14, 2015<br>DE 1 2 3 4 5 6<br>PE WWWWWWWWWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Offset 10             | PNO<br>IFGa<br>0.5 dB                                                                                                                              | :Wide 🕞<br>in:Low                                                                                                                                                                              | Atten: 20 o                                                                                                                                           | iB                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   | ΔMkr1 4                                                                                                                                                                                                                                           | TRADET PPPPPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Auto Tune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ref 20.00                 | dBm                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                 | 2.93 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contor Ero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           |                                                                                                                                                    |                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                   | TRIG LVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.441000000 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2                         |                                                                                                                                                    |                                                                                                                                                                                                |                                                                                                                                                       | 1Δ2                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Start Free<br>2.441000000 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nj                        |                                                                                                                                                    |                                                                                                                                                                                                |                                                                                                                                                       | hiyikyay                                                                                                                                                                                                           | Whatter of                                                                                                                                                                                                                      | al a start a st                                                                                                                                   | nt mund                                                                                                                                                                                                                                           | politiphenipol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Stop Fre</b><br>2.441000000 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 141000000<br>Flattop) 1.0 | GHz<br>MHz                                                                                                                                         | #VBV                                                                                                                                                                                           | / 1.0 MHz                                                                                                                                             |                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                               | Sweep 1                                                                                                                                                                                                                                           | S<br>.000 ms (                                                                                                                                                                                                                                    | Span 0 Hz<br>1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CF Stej<br>1.000000 MH<br>Auto Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CISCL<br>t (Δ)<br>t       | ×<br>413.<br>92.0                                                                                                                                  | 0 μs (Δ)<br>0 μs                                                                                                                                                                               | -2.93 d<br>-28.53 dBi                                                                                                                                 | FUN<br>B<br>n                                                                                                                                                                                                      | CTION FUN                                                                                                                                                                                                                       | ICTION WIDTH                                                                                                                                                                                                                                      | FUNCTI                                                                                                                                                                                                                                            | ON VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Freq Offse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           |                                                                                                                                                    |                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                   | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |                                                                                                                                                    |                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                           | Trum Analyzer - Su c<br>req 2.44100<br>Ref Offset 11<br>Ref 20.00<br>4410000000 (<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c | trum Analyzer - Swept SA<br>PF 50 Ω DC<br>req 2.441000000 GHz<br>PRO<br>IFGa<br>Ref Offset 10.5 dB<br>Ref 20.00 dBm<br>2<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | tum Analyzer - Swept SA<br>PF 50 Ω C<br>PR 50 Ω C<br>PR 50 Ω C<br>PR 50 Ω C<br>PNO: Wide G<br>IF Gain:Low<br>Ref Offset 10.5 dB<br>Ref 20.00 dBm<br>2 | tum Analyzer - Swept SA<br>RF   50 ≥ DC   Sens<br>req 2.441000000 GHz<br>IF Gain:Low Trig Delays<br>Ref 0ffset 10.5 dB<br>Ref 20.00 dBm<br>2<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | tum Ankyzer - Swept SA<br>RF 50 0 C SENSELIWT<br>req 2.441000000 GHz<br>PNO: Wide Frig: Video<br>Atten: 20 dB<br>Ref 0ffset 10.5 dB<br>Ref 20.00 dBm<br>2<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | tum Analyzer - Swept SA<br>RF 500 DC DC SENSELINT<br>req 2.441000000 GHz<br>PNO: Wide Trig: Video Atten: 20 dB<br>Ref 20.00 dBm<br>Ref 0ffset 10.5 dB<br>Ref 20.00 dBm<br>2<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | tum Anizer - Swept SA<br>RF 599 DC SENSE:INT ALGN AUTO<br>req 2.441000000 GHz<br>PNO: Wide PFGain.Low Trig: Video Atten: 20 dB<br>Ref 00ffset 10.5 dB<br>Ref 20.00 dBm<br>2<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | tum Analyzer - Swept SA<br>RF 500 DC DC SENSE:INTI ALIGN AUTO 10:34:06 A<br>req 2.441000000 GHz<br>PNO: Wide Trig: Video Atten: 20 dB Avg Type: Log-Pwr<br>IFGain:Low Atten: 20 dB COMMERCIAL SENSE:INTI ALIGN AUTO 10:34:06 A<br>Ref 00ffset 10.5 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Atten: 20 dB COMMERCIAL SUB Atten: 20 dB COMMERCIAL SENSE:INTI ALIGN AUTO 10:34:06 A<br>Ref 00ffset 10.5 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Atten: 20 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Trace Trace Atten: 20 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Atten: 20 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Atten: 20 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Trace Trace Atten: 20 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Trace Trace Atten: 20 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Trace Trace Atten: 20 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Trace Atten: 20 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Avg Type: Log-Pwr<br>Avg Type: Log-Pwr<br>Trace Atten: 20 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Trace Atten: 20 dB COMMERCIAL SUB Avg Type: Log-Pwr<br>Avg Type | tum Analyzer - Swept SA<br>RF 50 DC DC SENSE:INT ALIGN AUTO 10:34:08 AM Apr14, 2015<br>req 2.441000000 GHz<br>PNO: Wide Trig: Video<br>HFGain:Low Atten: 20 dB ATT 12:34:56 AM Apr14, 2015<br>TRACE |

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1



Page 23 of 88

#### PULSE WIDTH – DH3

| Agilent Spec                      | trum Analyzer - Swept S         | A                       |                                    |                                 |                                                                               |                                            |
|-----------------------------------|---------------------------------|-------------------------|------------------------------------|---------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|
| enter F                           | req 2.441000                    | 000 GHz<br>PNO: Wide C  | Trig Delay-200.0 µs<br>Trig: Video | ALIGN AUTO<br>Avg Type: Log-Pwr | 10:35:41 AM Apr14, 2015<br>TRACE 1 2 3 4 5 6<br>TYPE WWWWW<br>DET P P P P P P | Frequency                                  |
| dB/div                            | Ref Offset 10.5<br>Ref 20.00 dE | dB<br>3m                | Atten: 10 db                       | Δ                               | Mkr1 1.666 ms<br>2.15 dB                                                      | Auto Tune                                  |
| pg                                |                                 |                         |                                    |                                 |                                                                               | Contor From                                |
| .00                               |                                 |                         |                                    |                                 | TRIG LVL                                                                      | 2.441000000 GHz                            |
| 0.0<br>0.0                        | 2                               |                         |                                    |                                 | 1Δ2_                                                                          | Start Freq<br>2.441000000 GHz              |
| 0.0<br>0.0 <mark>/***/#*</mark> * | hud                             |                         |                                    |                                 |                                                                               | Stop Fred<br>2.441000000 GHz               |
| enter 2.4<br>es BW (I             | I41000000 GH<br>Flattop) 1.0 M  | lz<br>Hz #VB            | W 1.0 MHz                          | Sweep 2                         | Span 0 Hz<br>.000 ms (1001 pts)                                               | CF Step<br>1.000000 MHz<br><u>Auto</u> Mar |
| Δ2 1<br>2 N 1<br>3<br>4<br>5<br>6 | t (Δ)<br>t                      | 1.666 ms (Δ<br>190.0 μs | .) 2.15 dB<br>-28.18 dBm           |                                 | E                                                                             | Freq Offset<br>0 Hz                        |
| 7<br>3<br>9<br>0                  |                                 |                         |                                    |                                 |                                                                               |                                            |

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – DH3



Page 24 of 88

#### PULSE WIDTH – DH5

| Agilent Spe<br>R L | ctrum Analyze<br>RF | r - Swept SA<br>50 Ω DC |                         | SENSE:INT                | ALIGN AUTO            | 10:36:55 A | M Apr 14, 2015              |                  |
|--------------------|---------------------|-------------------------|-------------------------|--------------------------|-----------------------|------------|-----------------------------|------------------|
|                    |                     |                         | PNO: Wide               | Trig Delay-400.0 μα      | Avg Type: Log-Pwr     | TRA<br>TY  | CE 1 2 3 4 5 6<br>PE WWWWWW | Frequency        |
|                    |                     |                         | IFGain:Low              | Atten: 20 dB             |                       |            |                             | Auto Tune        |
| ) dB/div           | Ref Offs<br>Ref 20  | et 10.5 dB<br>.00 dBm   |                         |                          |                       | 2 AWKET 2  | .908 ms<br>8.97 dB          |                  |
|                    |                     |                         |                         |                          |                       | ▲1∆2       |                             | Contor Fro       |
|                    |                     |                         |                         |                          |                       | - 7        |                             | 2 441000000 GH:  |
| 0.0                |                     |                         |                         |                          |                       |            | TRIG LVL                    | 2                |
| 1.0                | 2                   |                         |                         |                          |                       |            |                             |                  |
| 0.0                | Y                   |                         |                         |                          |                       |            |                             | Start Free       |
| 1.0                |                     |                         |                         |                          |                       |            |                             | 2.44 1000000 GH. |
| 1.0                |                     |                         |                         |                          |                       |            |                             |                  |
| 3.0 44             | mhl                 |                         |                         |                          |                       | Hypertreep | happenagenet                | Stop Fred        |
| 0.0                |                     |                         |                         |                          |                       |            | · ·                         | 2.441000000 GH:  |
| anter 2            | 4410000             |                         |                         |                          |                       |            | nan û Hz                    | CE Stor          |
| es BW              | (Flattop)           | 1.0 MHz                 | #VB                     | W 1.0 MHz                | Sweep                 | 4.000 ms ( | (1001 pts)                  | 1.000000 MH      |
| R MODE 1           | RC SCL              | х                       |                         | Y FL                     | INCTION FUNCTION WIDT | H FUNCT    | ON VALUE                    | <u>Auto</u> Mar  |
| Δ2<br>2 N          | 1 t (Δ)<br>1 t      |                         | 2.908 ms (Δ<br>388 0 us | ) 28.97 dB<br>-25 26 dBm |                       |            |                             |                  |
| 3                  |                     |                         |                         |                          |                       |            |                             | Freq Offse       |
| 5                  |                     |                         |                         |                          |                       |            | E                           | 0 H              |
| 5<br>7             |                     |                         |                         |                          |                       |            |                             |                  |
| B<br>9             |                     |                         |                         |                          |                       |            |                             |                  |
| 0                  |                     |                         |                         |                          |                       |            |                             |                  |
|                    |                     |                         |                         |                          |                       |            | *                           |                  |

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5



Page 25 of 88

### 7.2.5. OUTPUT POWER

#### <u>LIMIT</u>

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 (5.4) (2)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

#### TEST PROCEDURE

The transmitter output is connected to a wideband gated power meter.

#### **RESULTS**

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Directional<br>Gain<br>(dBi) | Limit<br>(dBm) | Margin<br>(dB) |
|---------|--------------------|-----------------------|------------------------------|----------------|----------------|
| Low     | 2402               | 5.74                  | -6.10                        | 21             | -15.26         |
| Middle  | 2441               | 6.42                  | -6.10                        | 21             | -14.58         |
| High    | 2480               | 7.05                  | -6.10                        | 21             | -13.95         |

Page 26 of 88

### 7.2.6. AVERAGE POWER

#### <u>LIMIT</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a wideband gated power meter.

#### **RESULTS**

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 2402      | 5.60          |
| Middle  | 2441      | 6.32          |
| High    | 2480      | 6.95          |

Page 27 of 88

### 7.2.7. CONDUCTED SPURIOUS EMISSIONS

#### LIMITS

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC RSS-247 (5.5)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Page 28 of 88

#### **RESULTS**

#### SPURIOUS EMISSIONS, LOW CHANNEL





Page 29 of 88

#### SPURIOUS EMISSIONS, MID CHANNEL





Page 30 of 88

#### SPURIOUS EMISSIONS, HIGH CHANNEL





Page 31 of 88

#### SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON





Page 32 of 88

## 7.3. ENHANCED DATA RATE QPSK MODULATION

### 7.3.1. OUTPUT POWER

#### <u>LIMIT</u>

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 (5.4) (2)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

#### TEST PROCEDURE

The transmitter output is connected to a wideband gated power meter.

#### **RESULTS**

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

#### **RESULTS**

| Channel | Frequency | Output Power | Directional   | Limit | Margin |
|---------|-----------|--------------|---------------|-------|--------|
|         | (MHz)     | (dBm)        | Gain<br>(dBi) | (dBm) | (dB)   |
| Low     | 2402      | 4.70         | -6.10         | 21    | -16.30 |
| Middle  | 2441      | 5.40         | -6.10         | 21    | -15.60 |
| High    | 2480      | 6.05         | -6.10         | 21    | -14.95 |

Page 33 of 88

### 7.3.2. AVERAGE POWER

#### <u>LIMIT</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a wideband gated power meter.

#### **RESULTS**

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 2402      | 2.95          |
| Middle  | 2441      | 3.78          |
| High    | 2480      | 4.72          |

Page 34 of 88

## 7.4. ENHANCED DATA RATE 8PSK MODULATION

### 7.4.1. 20 dB AND 99% BANDWIDTH

#### <u>LIMIT</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency | 20 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (kHz)           | (kHz)         |
| Low     | 2402      | 1.340           | 1.2553        |
| Middle  | 2441      | 1.287           | 1.2566        |
| High    | 2480      | 1.260           | 1.3569        |

Page 35 of 88

#### 20 dB AND 99% BANDWIDTH





Page 36 of 88


Page 37 of 88

# 7.4.2. HOPPING FREQUENCY SEPARATION

## <u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

### **RESULTS**

Page 38 of 88

### **HOPPING FREQUENCY SEPARATION**

| RI     | ent sp   | ectrun | RE          | zer - swej                             | DC DC                 |                  |               | _             | SENSE-T               | NT    |                       | ALIG    |             | 10.22  | 03 AM A | or 14 - 2 | 015 |             |
|--------|----------|--------|-------------|----------------------------------------|-----------------------|------------------|---------------|---------------|-----------------------|-------|-----------------------|---------|-------------|--------|---------|-----------|-----|-------------|
| ark    | er       | 1Δ     | 1.0         | 25000                                  | 0000 N                | IHz              |               |               |                       |       | Avg T                 | ype: Lo | g-Pwr       | 10.22  | TRACE   | 1 2 3 4   | 5 6 | Peak Search |
|        |          |        |             |                                        |                       | PNO: V<br>IFGain | Vide 🕞<br>Low | Trig:<br>Atte | : Free Ru<br>n: 20 dB | n     |                       |         |             |        | DET     | PPPP      | PP  |             |
|        |          | _      |             | <b>F</b> + 40                          | 6 JD                  |                  |               |               |                       |       |                       |         | Δ           | /kr1 1 | 1.02    | 5 MI      | Hz  | NextPea     |
| ) dB/  | /div     | F      | ler 0       | 20.00 (                                | :s as<br>: <b>iBm</b> |                  |               |               |                       |       |                       |         |             |        | 0.      | 04 c      | 1B  |             |
|        |          |        |             |                                        |                       |                  |               |               | 2                     |       |                       | 1/      | 12          |        |         |           |     |             |
|        | , na m   | ~~~    | -           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | warm                  |                  | verme         | www.          | mort                  | -many | and the second second | -       | ورو المراسم | -      |         |           | m   | Next Pk Rig |
|        |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     |             |
| [      |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     |             |
| 0.0    |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     | Next Pk Le  |
| L      |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     |             |
| 0.0    |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     |             |
|        |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     | Marker Del  |
| 0.0    |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     | Marker Der  |
| Ľ      |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     |             |
| ente   | er 2     | .44    | 1000        | GHz                                    |                       |                  |               |               |                       |       |                       |         |             | Spa    | n 5.0   | 00 M      | Hz  |             |
| Res    | BV       | 1 30   | U KI        | 1Z                                     |                       |                  | #VBV          | V 910 I       | KHZ                   |       |                       | SW      | ep 2        | .533 m | is (11  | JU1 P     | ts) | MKr→C       |
| KR MO  | 0DE<br>2 | TRC S  | iCL<br>f (/ | N.                                     | X<br>1                | 025 M            | Hz (Λ)        | Y             | 0 04 dB               | FUNC  | TION                  | FUNCTIC | N WDTH      | FUI    | NCTION  | VALUE     | Â.  |             |
| 2 1    | N        | 1      | f           | -,                                     | 2.441                 | 000 GI           | -Iz           | 5.4           | 47 dBm                |       |                       |         |             |        |         |           |     |             |
| 4      |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     | Mkr→RefL    |
| 5<br>6 |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           | E   |             |
| 7<br>8 |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     | Ma          |
| 9      |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           |     |             |
| 0      |          |        |             |                                        |                       |                  |               |               |                       |       |                       |         |             |        |         |           | -   | 101         |

Page 39 of 88

# 7.4.3. NUMBER OF HOPPING CHANNELS

# <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

# TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

# **RESULTS**

Normal Mode: 79 Channels observed.

Page 40 of 88

### NUMBER OF HOPPING CHANNELS





Page 41 of 88





Page 42 of 88

# 7.4.4. AVERAGE TIME OF OCCUPANCY

# <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

# TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels \* 0.4 s) is equal to 10 \* (# of pulses in 3.16 s) \* pulse width.

# RESULTS

# 8PSK (EDR) Mode

| DH Packet | Pulse  | Number of | Average | Limit | Margin |
|-----------|--------|-----------|---------|-------|--------|
|           | Width  | Pulses in | Time of |       | -      |
|           | (msec) | 3.16      | (sec)   | (sec) | (sec)  |
|           |        | seconds   |         |       |        |
| DH1       | 0.42   | 32        | 0.134   | 0.4   | -0.266 |
| DH3       | 1.676  | 16        | 0.268   | 0.4   | -0.132 |
| DH5       | 2.92   | 10        | 0.292   | 0.4   | -0.108 |

<u>Note:</u> for AFH (8PSK) mode, please refer to the results of AFH (GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate on page 22 demonstrates compliance with channel occupancy when AFH is employed

Page 43 of 88

# PULSE WIDTH - DH1

| RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RF                  | - Swept SA<br>50 Ω DC | CH2                            | SEN<br>Trig Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ISE:INT  |          | ALIGN AUTO   | 10:29:46 A      | M Apr 14, 2015               | Frequency                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------|-----------------|------------------------------|---------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ey 2.44             | 1000000               | PNO: Wide<br>IFGain:Low        | Trig: Vide<br>Atten: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o<br>dB  |          |              | TY              | PE WWWWWWW<br>ET P P P P P P |                                                   |
| ) dB/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref Offs<br>Ref 20. | et 10.5 dB<br>.00 dBm |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |              | ΔMkr1 4         | l22.0 μs<br>1.18 dB          | Auto Tune                                         |
| ' <sup>g</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |              |                 |                              | Center Fred                                       |
| .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                       | 1949/10-00-00<br>1949/10-00-00 | mp of a construction of a construction of the |          |          |              |                 | TRIG LVL                     | 2.441000000 GH                                    |
| 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ <sup>2</sup>     |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1Δ2      |          |              |                 |                              | Start Fred<br>2.441000000 GH:                     |
| 0.0<br>0.0 <b>m////</b><br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                   |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hyphph   | *****    | nhailteinte  | Alter Article   | happlichapp                  | <b>Stop Fred</b><br>2.441000000 GH:               |
| enter 2.<br>es BW (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1410000<br>Flattop) | 00 GHz<br>1.0 MHz     | #VI                            | 3W 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | ;        | Sweep 1      | S<br>I.000 ms ( | span 0 Hz<br>1001 pts)       | <b>CF Step</b><br>1.000000 MH:<br><u>Auto</u> Mar |
| $\begin{array}{c c} \hline \mathbf{MODE} \\ \hline \mathbf{A2} \\ 2 \\ \mathbf{N} \\ 1 \\ 2 \\ \mathbf{N} \\ 1 \\ \mathbf{N} \\ \mathbf{N}$ | t (Δ)<br>t          | X                     | 422.0 µs (<br>90.00 µs         | Δ) 1.18<br>-31.55 dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB<br>Sm | TION FUN | VCTION WIDTH | FUNCTI          | ON VALUE                     | FreqOffse                                         |
| 4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |              |                 | =                            | 0 H;                                              |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |              |                 |                              |                                                   |
| 9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |              |                 |                              |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |              |                 |                              |                                                   |

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1



Page 44 of 88

## PULSE WIDTH – DH3

| Agile        | ent Spect       | rum A       | nalyzer       | - Swept       | SA        |           |                   |        | CE4       | ICT. INT             |          |                           | 10,01,00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N April 4, 2015        |                         |
|--------------|-----------------|-------------|---------------|---------------|-----------|-----------|-------------------|--------|-----------|----------------------|----------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|
| ent          | er Fr           | eq          | 2.44          | 100           | 0000      | GH        | z                 | Ţ      | rig Dela  | y-200.0 µs           | Avg Ty   | be: Log-Pwr               | 10:31:30 A<br>TRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE 1 2 3 4 5 6         | Frequency               |
|              |                 |             |               |               |           | PN<br>IFG | 0:Wide<br>ain:Low | ₽ ¦    | tten: 20  | dB                   |          |                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ETPPPPP                |                         |
|              | <i>la</i> liu   | Re          | f Offse       | et 10.        | 5 dB      |           |                   |        |           |                      |          | 2                         | Mkr1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .676 ms<br>3.21 dB     | Auto Tune               |
|              | Juiv            | NC          | 1 20.         | 00 u          | Din       |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |
| 3.0          |                 | 1           |               |               | -U-ylughu |           | ,                 |        | manduning | ow <i>alawali</i> wa |          | areast all a full and the | - white a state of the state of |                        | Center Freq             |
| .00 -        |                 |             |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIG LVL               | 2.441000000 GHz         |
|              |                 |             | <u>_</u>      |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |
|              |                 |             | 2             |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1∆2                    | Start Fred              |
|              |                 |             |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 2.441000000 GHz         |
| 10           |                 |             |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |
| 1.0          | Alking          | d           |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shuruh                 | Stop Freq               |
| ).0          | M. L.           | · ·         |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.64.0                 | 2.441000000 GHz         |
| Ļ            |                 |             |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |
| ento<br>es E | er 2.4<br>3W (F | 410<br>Tatt | 100001<br>(00 | JU G<br>1.0 N | HZ<br>1Hz |           | #VE               | SW 1.0 | ) MHz     |                      |          | Sweep 2                   | ء<br>2.000 ms (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | span U Hz<br>1001 pts) | CF Step<br>1.000000 MHz |
| R M          |                 | d so        | - 1- 7        |               | X         |           |                   |        | Y         | FU                   | NCTION F | JNCTION WIDTH             | EUNCTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ON VALUE               | <u>Auto</u> Mar         |
| 4            | 2 1             | t           | (Δ)           |               |           | 1.67      | '6 ms (/          | (۵     | -3.21     | dB                   |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |
| 3            |                 |             |               |               |           | 190       | .υ μs             | -4     | .0.01 ut  | 5111                 |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Freq Offset             |
| 1<br>5       |                 |             |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                      | 0 Hz                    |
| 5<br>7       |                 |             |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |
| B            |                 |             |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |
| 0            |                 |             |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |
|              |                 |             |               |               |           |           |                   |        |           |                      |          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – DH3



Page 45 of 88

## PULSE WIDTH – DH5

| Agilent Spectru                       | m Analyzer - Swe | pt SA                                  |                     |                             |              |               |                     |                           | - 5 💌           |
|---------------------------------------|------------------|----------------------------------------|---------------------|-----------------------------|--------------|---------------|---------------------|---------------------------|-----------------|
| enter Fre                             | a 2.4410         | 00000 GH                               | z                   | Trig Delay-500.             | 0 µs Avg Typ | be: Log-Pwr   | 10:23:11 AM<br>TRAC | E 1 2 3 4 5 6             | Frequency       |
|                                       |                  | PN                                     | O:Wide 🗔            | Trig: Video<br>Atten: 20 dB |              |               | TYP                 | T P P P P P P             |                 |
|                                       |                  |                                        |                     |                             |              | Δ             | <u>Mkr1 2.</u>      | 920 ms                    | Auto Tune       |
| ) dB/div                              | Ref 20.00        | dBm                                    |                     |                             |              |               | -23                 | 3.86 dB                   |                 |
| <sup>og</sup>                         |                  |                                        |                     |                             |              |               |                     |                           | 0               |
| 0.0                                   | 2 ver            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | the second second   |                             | ~~~~~~~~~~   | **********    |                     |                           | 2 441000000 CH  |
|                                       |                  |                                        |                     |                             |              |               |                     | TRIG LVL                  | 2.441000000 GH2 |
| J.U                                   |                  |                                        |                     |                             |              |               | 1∆2                 |                           |                 |
| 0.0                                   |                  |                                        |                     |                             |              |               | - Y                 |                           | Start Fred      |
| U.U                                   |                  |                                        |                     |                             |              |               |                     |                           | 2.441000000 GH  |
| 0.0                                   |                  |                                        |                     |                             |              |               |                     |                           |                 |
| 0.0                                   | Land             |                                        |                     |                             |              |               | a.b. a.a            | and Norman                | Stop Fred       |
| 210 <b>- 1<del>6 16 11 1</del>601</b> | <b>-</b> *N      |                                        |                     |                             |              |               | 2464                | <del>M to a flagare</del> | 2.441000000 GH  |
| 0.0                                   |                  |                                        |                     |                             |              |               |                     |                           |                 |
| enter 2.44                            | 1000000          | GHz                                    |                     |                             |              |               | S                   | pan 0 Hz                  | CF Step         |
| es BW (Fla                            | attop) 1.0       | MHz                                    | #VBV                | / 1.0 MHz                   |              | Sweep 4.0     | 000 ms (            | 1001 pts)                 | 1.000000 MH     |
| KR MODE TRC                           | SCL              | Х                                      |                     | Y                           | FUNCTION FL  | UNCTION WIDTH | FUNCTIO             | N VALUE                   | Auto Mar        |
| Δ2 1<br>2 N 1                         | t (Δ)<br>t       | 2.9                                    | 20 ms (Δ)<br>8.0 μs | -23.86 dB<br>1.33 dBm       |              |               |                     |                           |                 |
| 3<br>4                                |                  |                                        |                     |                             |              |               |                     |                           | FreqOnsel       |
| 5                                     |                  |                                        |                     |                             |              |               |                     | E                         |                 |
| o<br>7                                |                  |                                        |                     |                             |              |               |                     |                           |                 |
| 8<br>9                                |                  |                                        |                     |                             |              |               |                     |                           |                 |
| 0                                     |                  |                                        |                     |                             |              |               |                     |                           |                 |
|                                       |                  |                                        |                     |                             |              |               |                     | *                         |                 |

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5



Page 46 of 88

# 7.4.5. OUTPUT POWER

# <u>LIMIT</u>

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 (5.4) (2)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

# TEST PROCEDURE

The transmitter output is connected to a wideband gated power meter.

# **RESULTS**

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Directional<br>Gain<br>(dBi) | Limit<br>(dBm) | Margin<br>(dB) |
|---------|--------------------|-----------------------|------------------------------|----------------|----------------|
| Low     | 2402               | 5.12                  | -6.10                        | 21             | -15.88         |
| Middle  | 2441               | 6.01                  | -6.10                        | 21             | -14.99         |
| High    | 2480               | 6.67                  | -6.10                        | 21             | -14.33         |

Page 47 of 88

# 7.4.6. AVERAGE POWER

## <u>LIMIT</u>

None; for reporting purposes only.

# TEST PROCEDURE

The transmitter output is connected to a wideband gated power meter.

### **RESULTS**

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 2402      | 3.66          |
| Middle  | 2441      | 5.21          |
| High    | 2480      | 5.95          |

Page 48 of 88

# 7.4.7. CONDUCTED SPURIOUS EMISSIONS

# **LIMITS**

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC RSS-247 (5.5)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

# TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Page 49 of 88

## **RESULTS**

### SPURIOUS EMISSIONS, LOW CHANNEL





Page 50 of 88

### SPURIOUS EMISSIONS, MID CHANNEL





Page 51 of 88

### SPURIOUS EMISSIONS, HIGH CHANNEL





Page 52 of 88

### SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON





Page 53 of 88

# 8. RADIATED TEST RESULTS

# 8.1. LIMITS AND PROCEDURE

# **LIMITS**

FCC §15.205 and §15.209

IC RSS-GEN, Section 8.9 and 8.10.

| Frequency Range | Field Strength Limit | Measurement distance<br>(meters) |
|-----------------|----------------------|----------------------------------|
| (MHz)           | (microvolts/meter)   |                                  |
| 0.009-0.490     | 2400/F(kHz)          | 300                              |
| 0.490-1.705     | 24000/F(kHz)         | 30                               |
| 1.705-30.0      | 30                   | 30                               |
| 30-88           | 100**                | 3                                |
| 88-216          | 150**                | 3                                |
| 216-960         | 200**                | 3                                |
| Above 960       | 500                  | 3                                |

# TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 3MHz video bandwidth with average detector for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 54 of 88

# 8.2. TRANSMITTER ABOVE 1 GHz

# 8.2.1. BASIC DATA RATE GFSK MODULATION

# RESTRICTED BANDEDGE (LOW CHANNEL)



# **Trace Markers**

| Marke<br>r | Frequen<br>cy<br>(GHz) | Meter<br>Readin<br>g<br>(dBuV) | Det  | AF T346<br>(dB/m) | Amp/Cbl<br>/Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/<br>m) | Margi<br>n<br>(dB) | Peak<br>Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimut<br>h<br>(Degs) | Heigh<br>t<br>(cm) | Polarit<br>Y |
|------------|------------------------|--------------------------------|------|-------------------|------------------------------|----------------------------------|----------------------------------|--------------------|---------------------------|----------------------|-----------------------|--------------------|--------------|
| 2          | * 2.376                | 44                             | РК   | 32                | -24.6                        | 51.4                             | -                                | -                  | 74                        | -22.6                | 169                   | 223                | н            |
| 4          | * 2.376                | 29.71                          | VB1T | 32                | -24.6                        | 37.11                            | 54                               | -16.89             | -                         | -                    | 169                   | 223                | н            |
| 1          | * 2.39                 | 41.64                          | РК   | 32.1              | -24.7                        | 49.04                            | -                                | -                  | 74                        | -24.96               | 169                   | 223                | Н            |
| 3          | * 2.39                 | 29.44                          | VB1T | 32.1              | -24.7                        | 36.84                            | 54                               | -17.16             | -                         | -                    | 169                   | 223                | н            |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 55 of 88



| Marker | Frequenc<br>y<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T346<br>(dB/m) | Amp/Cbl<br>/Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m<br>) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|------------------------|----------------------------|------|-------------------|------------------------------|----------------------------------|----------------------------------|----------------|------------------------|----------------------|-------------------|----------------|----------|
| 4      | * 2.376                | 29.61                      | VB1T | 32                | -24.6                        | 37.01                            | 54                               | -16.99         | -                      | -                    | 245               | 353            | V        |
| 2      | * 2.379                | 44.13                      | РК   | 32                | -24.6                        | 51.53                            | -                                | -              | 74                     | -22.47               | 245               | 353            | V        |
| 1      | * 2.39                 | 42.03                      | РК   | 32.1              | -24.7                        | 49.43                            | -                                | -              | 74                     | -24.57               | 245               | 353            | V        |
| 3      | * 2.39                 | 29.3                       | VB1T | 32.1              | -24.7                        | 36.7                             | 54                               | -17.3          | -                      | -                    | 245               | 353            | V        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 56 of 88

### AUTHORIZED BANDEDGE (HIGH CHANNEL)



# **Trace Markers**

| Marker | Frequenc<br>Y<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T346<br>(dB/m) | Amp/Cbl/<br>Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak<br>Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|------------------------|----------------------------|------|-------------------|------------------------------|----------------------------------|------------------------------|----------------|---------------------------|----------------------|-------------------|----------------|----------|
| 1      | * 2.484                | 41.66                      | РК   | 32.2              | -24.3                        | 49.56                            | -                            | -              | 74                        | -24.44               | 20                | 320            | н        |
| 3      | * 2.484                | 29.35                      | VB1T | 32.2              | -24.3                        | 37.25                            | 54                           | -16.75         | -                         | -                    | 20                | 320            | Н        |
| 4      | 2.508                  | 29.78                      | VB1T | 32.2              | -24.2                        | 37.78                            | 54                           | -16.22         | -                         | -                    | 20                | 320            | н        |
| 2      | 2.529                  | 44.3                       | РК   | 32.2              | -24.1                        | 52.4                             | -                            | -              | 74                        | -21.6                | 20                | 320            | н        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

### PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 57 of 88



| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T346<br>(dB/m) | Amp/Cbl/<br>Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|-------------------|------------------------------|----------------------------------|------------------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 1      | * 2.484            | 41.53                      | РК   | 32.2              | -24.3                        | 49.43                            | -                            | -              | 74                     | -24.57            | 82                | 400            | V        |
| 3      | * 2.484            | 29.25                      | VB1T | 32.2              | -24.3                        | 37.15                            | 54                           | -16.85         | -                      | -                 | 82                | 400            | V        |
| 2      | 2.508              | 44.15                      | PK   | 32.2              | -24.2                        | 52.15                            | -                            | -              | 74                     | -21.85            | 82                | 400            | V        |
| 4      | 2.508              | 29.78                      | VB1T | 32.2              | -24.2                        | 37.78                            | 54                           | -16.22         | -                      | -                 | 82                | 400            | V        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

### PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 58 of 88

### HARMONICS AND SPURIOUS EMISSIONS

### LOW CHANNEL



Page 59 of 88

# REPORT NO: 15U20565-E1V5 FCC ID: AL8-WC2

### Trace Markers

| Marker | Frequency | Meter   | Det  | AF T712 | Amp/Cbl/ | Corrected | Avg Limit | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|-----------|-----------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      | (dB/m)  | Fltr/Pad | Reading   | (dBuV/m)  | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     | (dBuV/m)  |           |        |            |           |         |        |          |
| 1      | * 1.468   | 43.46   | PK3  | 27.9    | -25.5    | 45.86     | -         | -      | 74         | -28.14    | 360     | 100    | н        |
|        | * 1.468   | 30.42   | VB1T | 27.9    | -25.5    | 32.82     | 54        | -21.18 | -          | -         | 360     | 100    | Н        |
| 2      | * 1.602   | 45.06   | PK3  | 27.7    | -25.1    | 47.66     | -         | -      | 74         | -26.34    | 193     | 325    | н        |
|        | * 1.601   | 34.11   | VB1T | 27.7    | -25.1    | 36.71     | 54        | -17.29 | -          | -         | 193     | 325    | н        |
| 3      | * 4.804   | 47.42   | PK3  | 33.9    | -32.5    | 48.82     | -         | -      | 74         | -25.18    | 159     | 192    | Н        |
|        | * 4.804   | 40.86   | VB1T | 33.9    | -32.5    | 42.26     | 54        | -11.74 | -          | -         | 159     | 192    | Н        |
| 4      | * 1.468   | 46.22   | PK3  | 27.9    | -25.5    | 48.62     | -         | -      | 74         | -25.38    | 176     | 151    | V        |
|        | * 1.468   | 38.15   | VB1T | 27.9    | -25.5    | 40.55     | 54        | -13.45 | -          | -         | 176     | 151    | V        |
| 5      | * 1.601   | 49.12   | PK3  | 27.7    | -25.1    | 51.72     | -         | -      | 74         | -22.28    | 169     | 202    | V        |
|        | * 1.601   | 39.53   | VB1T | 27.7    | -25.1    | 42.13     | 54        | -11.87 | -          | -         | 169     | 202    | V        |
| 6      | * 4.804   | 47.66   | PK3  | 33.9    | -32.5    | 49.06     | -         | -      | 74         | -24.94    | 354     | 236    | V        |
|        | * 4.804   | 41.08   | VB1T | 33.9    | -32.5    | 42.48     | 54        | -11.52 | -          | -         | 354     | 236    | V        |

\* - indicates frequency in CFR 47, Part 15 Restricted Band" and "Industry Canada RSS-Restricted Band

PK3 - KDB558074 Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 60 of 88

### **MID CHANNEL**

| III Fremont - Chamber H                                                                                                                                                                                                  |                              |                                                                                                                |                     |                                                                                                                 |                                                             |                                                                                                                 | 9 Apr 20                        | 15 22:13:16                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|
| 5<br>                                                                                                                                                                                                                    |                              |                                                                                                                |                     | Radiatec<br>Project Num<br>Client:Plan<br>Config:EUT<br>Made:GFSK 2<br>Tested by:J                              | l Emissi<br>ber:150205<br>tronics<br>Only<br>441MHz<br>. Li | ons 3<br>65                                                                                                     | -Meters                         |                                           |
| .5                                                                                                                                                                                                                       |                              |                                                                                                                |                     |                                                                                                                 |                                                             |                                                                                                                 |                                 |                                           |
| 5 Peak Limit (dBuV/m)                                                                                                                                                                                                    |                              |                                                                                                                |                     |                                                                                                                 |                                                             |                                                                                                                 |                                 |                                           |
| 5                                                                                                                                                                                                                        |                              |                                                                                                                |                     |                                                                                                                 |                                                             |                                                                                                                 |                                 |                                           |
| 5 Avg Limit (dBuV/m)                                                                                                                                                                                                     |                              |                                                                                                                |                     |                                                                                                                 |                                                             |                                                                                                                 |                                 |                                           |
| 5<br>1 2                                                                                                                                                                                                                 | h hereiterte der andere blev |                                                                                                                | 3                   |                                                                                                                 |                                                             |                                                                                                                 |                                 | Note and Constitution of the owner of     |
| 5 Million Collection Providence                                                                                                                                                                                          |                              | المتحقيل بالمعالية المعالية ا |                     | in the second | ni pi pinini                                                | al a second s |                                 |                                           |
| .5                                                                                                                                                                                                                       |                              |                                                                                                                |                     |                                                                                                                 |                                                             |                                                                                                                 |                                 |                                           |
| 1                                                                                                                                                                                                                        |                              |                                                                                                                |                     |                                                                                                                 |                                                             |                                                                                                                 | 10                              | 18                                        |
| Ronge (GHz) Det RBN UBN A-<br>1:1-3 PEAK IM(-6dB) 39k Par                                                                                                                                                                | rg Typ Sweep                 | Pts #Swps/Mode Position<br>6681 [nf/MAXH B-368deps                                                             | n Ronge<br>H 3:3-18 | (GHz) Det<br>PEAK                                                                                               | RBW VBW<br>1M(-6dB) 3Bk                                     | Avg Typ<br>Pur Avg(RMS                                                                                          | Sweep Pts ∰<br>Auto/Cpled 18k I | ixps/Made Position<br>inf/MAXH 8-368degsH |
| 11MH- DOT 20215 7 1                                                                                                                                                                                                      | ницинал насокраев            |                                                                                                                |                     |                                                                                                                 |                                                             |                                                                                                                 |                                 | Paul 0 5 22                               |
| 41MHz.DAT 30915 7 Jul 2014<br>RTICAL                                                                                                                                                                                     | nografija natovojne          |                                                                                                                |                     |                                                                                                                 |                                                             |                                                                                                                 | 0 ^ 20                          | Rev 9.5 22                                |
| 41MHz.DAT 30915 7 Jul 2014<br>TICAL<br>5UL Fremont - Chamber H<br>15<br>15                                                                                                                                               |                              |                                                                                                                |                     | Radiatec<br>Project Num<br>Client:Plan<br>Config:EUT<br>Mode:GFSK 2<br>Tested by:J                              | Emissi<br>ber:15U205<br>tronics<br>Only<br>441MHz<br>Li     | ons 3<br>65                                                                                                     | 9 Apr 20<br>-Meters             | Rev 9.5 22                                |
| 41MHz.DAT 30915 7 Jul 2014<br>TICAL<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                     |                              |                                                                                                                |                     | Radiatec<br>Project Num<br>Config:EUT<br>Made:GFSK 2<br>Tested by:J                                             | l Emissi<br>ber: 15020<br>tronics<br>Only<br>. Li           | ons 3<br>65                                                                                                     | 9 Apr 20<br>-Meters             | Rev 9.5 22                                |
| HIMHz.DAT 30915 7 Jul 2014<br>TICAL<br>5<br>5<br>5<br>5<br>5<br>7<br>7 Jul 2014<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                 |                              |                                                                                                                |                     | Radiatec<br>Project Num<br>Client;Plan<br>Mode:GFSK 2<br>Tested by;J                                            | I Emissi<br>ber:15/202<br>tronics<br>Only<br>441MHz<br>. Li | ons 3<br>65                                                                                                     | 9 Apr 20<br>-Meters             | Rev 9.5 22                                |
| HIMHz.DAT 30915 7 Jul 2014<br>TICAL<br>SUL Fremont - Chomber H<br>5<br>5<br>5<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>9<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9     |                              |                                                                                                                |                     | Radiatec<br>Project Num<br>Client:Plan<br>Mode:GFSK 2<br>Tested by:J                                            | l Emissi<br>ber:15U28<br>tronics<br>Only<br>441MHz<br>. Li  | ons 3                                                                                                           | 9 Apr 20<br>-Meters             | Rev 9.5 22                                |
| 41MHz.DAT 30915 7 Jul 2014<br><b>STICAL</b><br>5<br>5<br>5<br>5<br>6<br>7<br>7<br>8<br>7<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                |                              |                                                                                                                |                     | Radiatec<br>Project Num<br>Client:Plan<br>Mode:GFSK 2<br>Tested by:J                                            | I Emissi<br>ber:15U20<br>tronics<br>Only<br>441MHz<br>. Li  | ons 3                                                                                                           | 9 Apr 20<br>-Meters             | Rev 9.5 22                                |
| 41MHz.DAT 30915 7 Jul 2014<br>ETICAL<br>5<br>5<br>5<br>7<br>7<br>7<br>7<br>8<br>7<br>8<br>7<br>9<br>7<br>9<br>7<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                         |                              |                                                                                                                | 6                   | Radiatec<br>Project Num<br>Client:Plan<br>Gonfig:EUT<br>Mode:GFSK 2<br>Tested by:J                              | I Emissi<br>ber: 15020<br>tronics<br>Only<br>441MHz<br>. Li | ons 3                                                                                                           | 9 Apr 20<br>-Meters             | Rev 9.5 22                                |
| A1MHz.DAT 30915 7 Jul 2014<br>TICAL<br>5<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>7<br>7<br>8<br>7<br>8<br>7<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                     |                              |                                                                                                                |                     | Radiatec<br>Project Num<br>Chient:Plan<br>Config:EUT<br>Mode:GFSK 2<br>Tested by:J                              | I Emissi<br>ber: 15/20<br>tronics<br>Only<br>441MHz<br>. Li | ons 3                                                                                                           | 9 Apr 20<br>-Meters             | Rev 9.5 22                                |
| AIMHz.DAT 30915 7 Jul 2014<br>TICAL<br>5<br>UL Fremont - Chamber H<br>5<br>                                                                                                                                              |                              |                                                                                                                |                     | Radiatec<br>Project Num<br>Client: Plan<br>Config:EUT<br>Mode: GFSK 2<br>Tested by: J                           | I Emissi<br>ber: 150200<br>tronics<br>Only<br>. Li          | ons 3<br>65                                                                                                     | 9 Apr 20<br>-Meters             | Rev 9.5 22                                |
| AIMHz.DAT 30915 7 Jul 2014<br>AIMHz.DAT 30915 7 Jul 2014<br>STICAL<br>5<br>5<br>5<br>6<br>7<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |                              | Frequ                                                                                                          | 6<br>ency (6H       | Radiatec<br>Project Num<br>Client:Plan<br>Mode: GFSK 2<br>Tested by:J                                           | I Emissi<br>ber:15U20<br>tronics<br>Only<br>441MHz<br>. Li  | ons 3                                                                                                           | 9 Apr 20<br>-Meters             | Rev 9.5 22                                |

Page 61 of 88

| Marker | Frequency | Meter   | Det  | AF T712 | Amp/Cbl/ | Corrected | Avg Limit | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|-----------|-----------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      | (dB/m)  | Fltr/Pad | Reading   | (dBuV/m)  | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     | (dBuV/m)  |           |        |            |           |         |        |          |
| 1      | * 1.469   | 44.06   | PK3  | 27.9    | -25.5    | 46.46     | -         | -      | 74         | -27.54    | 198     | 311    | н        |
|        | * 1.468   | 32.55   | VB10 | 27.9    | -25.5    | 34.95     | 54        | -19.05 | -          | -         | 198     | 311    | н        |
| 2      | * 1.601   | 45      | PK3  | 27.7    | -25.1    | 47.6      | -         | -      | 74         | -26.4     | 198     | 311    | Н        |
|        | * 1.601   | 36.25   | VB10 | 27.7    | -25.1    | 38.85     | 54        | -15.15 | -          | -         | 198     | 311    | Н        |
| 3      | * 4.882   | 46.22   | PK3  | 33.8    | -32.1    | 47.92     | -         | -      | 74         | -26.08    | 160     | 183    | н        |
|        | * 4.882   | 41.03   | VB10 | 33.8    | -32.1    | 42.73     | 54        | -11.27 | -          | -         | 160     | 183    | н        |
| 4      | * 1.468   | 46.23   | PK3  | 27.9    | -25.5    | 48.63     | -         | -      | 74         | -25.37    | 172     | 185    | V        |
|        | * 1.468   | 38.99   | VB10 | 27.9    | -25.5    | 41.39     | 54        | -12.61 | -          | -         | 172     | 185    | V        |
| 5      | * 1.601   | 49.13   | PK3  | 27.7    | -25.1    | 51.73     | -         | -      | 74         | -22.27    | 175     | 277    | V        |
|        | * 1.601   | 38.76   | VB10 | 27.7    | -25.1    | 41.36     | 54        | -12.64 | -          | -         | 175     | 277    | V        |
| 6      | * 4.882   | 46.49   | PK3  | 33.9    | -32.1    | 48.29     | -         | -      | 74         | -25.71    | 347     | 176    | V        |
|        | * 4.882   | 41.18   | VB10 | 33.8    | -32.1    | 42.88     | 54        | -11.12 | -          | -         | 347     | 176    | V        |

\* - indicates frequency in CFR 47, Part 15 Restricted Band" and "Industry Canada RSS-Restricted Band

PK3 - KDB558074 Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 62 of 88

### **HIGH CHANNEL**



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 63 of 88

| Marker | Frequency | Meter   | Det  | AF T712 | Amp/Cbl/ | Corrected | Avg Limit | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|-----------|-----------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      | (dB/m)  | Fltr/Pad | Reading   | (dBuV/m)  | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     | (dBuV/m)  |           |        |            |           |         |        |          |
| 1      | * 1.47    | 44.04   | PK3  | 27.9    | -25.5    | 46.44     | -         | -      | 74         | -27.56    | 360     | 100    | н        |
|        | * 1.468   | 31.53   | VB10 | 27.9    | -25.5    | 33.94     | 54        | -20.06 | -          | -         | 360     | 100    | Н        |
| 2      | * 1.603   | 43.98   | PK3  | 27.8    | -25.1    | 46.68     | -         | -      | 74         | -27.32    | 360     | 100    | н        |
|        | * 1.601   | 31.56   | VB10 | 27.7    | -25.1    | 34.16     | 54        | -19.84 | -          | -         | 360     | 100    | Н        |
| 3      | * 4.96    | 45.37   | PK3  | 33.9    | -31.8    | 47.47     | -         | -      | 74         | -26.53    | 163     | 164    | Н        |
|        | * 4.96    | 39.54   | VB10 | 33.9    | -31.8    | 41.64     | 54        | -12.36 | -          | -         | 163     | 164    | Н        |
| 4      | * 1.468   | 46.99   | PK3  | 27.9    | -25.5    | 49.39     | -         | -      | 74         | -24.61    | 179     | 152    | V        |
|        | * 1.468   | 39.21   | VB10 | 27.9    | -25.5    | 41.44     | 54        | -12.56 | -          | -         | 179     | 152    | V        |
| 5      | * 1.602   | 48.75   | PK3  | 27.7    | -25.1    | 51.35     | -         | -      | 74         | -22.65    | 170     | 303    | V        |
|        | * 1.601   | 39.7    | VB10 | 27.7    | -25.1    | 42.3      | 54        | -11.7  | -          | -         | 170     | 303    | V        |
| 6      | * 4.96    | 47.86   | PK3  | 33.9    | -31.8    | 49.96     | -         | -      | 74         | -24.04    | 353     | 156    | V        |
|        | * 4.96    | 43.04   | VB10 | 33.9    | -31.8    | 45.14     | 54        | -8.86  | -          | -         | 353     | 156    | V        |

\* - indicates frequency in CFR 47, Part 15 Restricted Band" and "Industry Canada RSS-Restricted Band

PK3 - KDB558074 Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 64 of 88

# 8.2.2. ENHANCED DATA RATE 8PSK MODULATION

### **RESTRICTED BANDEDGE (LOW CHANNEL)**



# **Trace Markers**

| Mark<br>er | Freque<br>ncy<br>(GHz) | Meter<br>Readi<br>ng<br>(dBuV<br>) | Det  | AF T346<br>(dB/m) | Amp/Cb<br>l/Fltr/Pa<br>d (dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margi<br>n<br>(dB) | Peak<br>Limit<br>(dBuV<br>/m) | PK<br>Margin<br>(dB) | Azimut<br>h<br>(Degs) | Height<br>(cm) | Polarity |
|------------|------------------------|------------------------------------|------|-------------------|-------------------------------|----------------------------------|------------------------------|--------------------|-------------------------------|----------------------|-----------------------|----------------|----------|
| 2          | * 2.375                | 44.52                              | РК   | 32                | -24.6                         | 51.92                            | -                            | -                  | 74                            | -22.08               | 144                   | 338            | н        |
| 4          | * 2.376                | 31.01                              | VB1T | 32                | -24.6                         | 38.41                            | 54                           | -15.59             | -                             | -                    | 144                   | 338            | н        |
| 1          | * 2.39                 | 41.65                              | РК   | 32.1              | -24.7                         | 49.05                            | -                            | -                  | 74                            | -24.95               | 144                   | 338            | н        |
| 3          | * 2.39                 | 30.2                               | VB1T | 32.1              | -24.7                         | 37.6                             | 54                           | -16.4              | -                             | -                    | 144                   | 338            | н        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

#### PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 65 of 88



| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T346<br>(dB/m) | Amp/Cbl/<br>Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|-------------------|------------------------------|----------------------------------|------------------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 2      | * 2.361            | 44.08                      | PK   | 32                | -24.8                        | 51.28                            | -                            | -              | 74                     | -22.72            | 249               | 360            | V        |
| 4      | * 2.376            | 30.9                       | VB1T | 32                | -24.6                        | 38.3                             | 54                           | -15.7          | -                      | -                 | 249               | 360            | V        |
| 1      | * 2.39             | 40.76                      | РК   | 32.1              | -24.7                        | 48.16                            | -                            | -              | 74                     | -25.84            | 249               | 360            | V        |
| 3      | * 2.39             | 30.4                       | VB1T | 32.1              | -24.7                        | 37.8                             | 54                           | -16.2          | -                      | -                 | 249               | 360            | V        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 66 of 88

### AUTHORIZED BANDEDGE (HIGH CHANNEL)



# **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T346<br>(dB/m) | Amp/Cbl/F<br>ltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|-------------------|------------------------------|----------------------------------|------------------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 1      | * 2.484            | 41.42                      | РК   | 32.2              | -24.3                        | 49.32                            | -                            | -              | 74                     | -24.68            | 136               | 315            | Н        |
| 3      | * 2.484            | 30.91                      | VB1T | 32.2              | -24.3                        | 38.81                            | 54                           | -15.19         | -                      | -                 | 136               | 315            | н        |
| 2      | 2.506              | 44.15                      | РК   | 32.2              | -24.2                        | 52.15                            | -                            | -              | 74                     | -21.85            | 136               | 315            | н        |
| 4      | 2.508              | 31.44                      | VB1T | 32.2              | -24.2                        | 39.44                            | 54                           | -14.56         | -                      | -                 | 136               | 315            | н        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

### PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 67 of 88



| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T346<br>(dB/m) | Amp/Cbl/F<br>ltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|-------------------|------------------------------|----------------------------------|------------------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 1      | * 2.484            | 40.6                       | РК   | 32.2              | -24.3                        | 48.5                             | -                            | -              | 74                     | -25.5             | 260               | 399            | V        |
| 3      | * 2.484            | 30.26                      | VB1T | 32.2              | -24.3                        | 38.16                            | 54                           | -15.84         | -                      | -                 | 260               | 399            | V        |
| 4      | 2.508              | 31.02                      | VB1T | 32.2              | -24.2                        | 39.02                            | 54                           | -14.98         | -                      | -                 | 260               | 399            | V        |
| 2      | 2.538              | 43.93                      | РК   | 32.2              | -24.1                        | 52.03                            | -                            | -              | 74                     | -21.97            | 260               | 399            | V        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 68 of 88

### HARMONICS AND SPURIOUS EMISSIONS

### LOW CHANNEL



Page 69 of 88

| Frequency<br>(GHz) | Meter<br>Reading | Det  | AF T346<br>(dB/m) | Amp/Cbl/F<br>ltr/Pad | Corrected<br>Reading | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------------------|------------------|------|-------------------|----------------------|----------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
|                    | (ubuv)           |      |                   | (UB)                 | (ubuv/iii)           |                       |                |                        |                   |                   |                |          |
| * 1.504            | 43.6             | РКЗ  | 28.2              | -26.3                | 45.5                 | -                     | -              | 74                     | -28.5             | 360               | 101            | н        |
| * 1.506            | 32.46            | VB1T | 28.2              | -26.3                | 34.36                | 54                    | -19.64         | -                      | -                 | 360               | 101            | н        |
| * 2.246            | 46.94            | PK3  | 31.6              | -25.2                | 53.34                | -                     | -              | 74                     | -20.66            | 147               | 400            | н        |
| * 2.246            | 39.84            | VB1T | 31.6              | -25.2                | 46.24                | 54                    | -7.76          | -                      | -                 | 147               | 400            | н        |
| * 4.804            | 48.9             | РКЗ  | 34.1              | -30.9                | 52.1                 | -                     | -              | 74                     | -21.9             | 239               | 323            | н        |
| * 4.804            | 43.81            | VB1T | 34.1              | -30.9                | 47.01                | 54                    | -6.99          | -                      | -                 | 239               | 323            | Н        |
| * 4.804            | 47.08            | PK3  | 34.1              | -30.9                | 50.28                | -                     | -              | 74                     | -23.72            | 251               | 314            | V        |
| * 4.804            | 41.23            | VB1T | 34.1              | -30.9                | 44.43                | 54                    | -9.57          | -                      | -                 | 251               | 314            | V        |
| * 4.86             | 42.32            | PK3  | 34.1              | -31.1                | 45.32                | -                     | -              | 74                     | -28.68            | 251               | 314            | V        |
| * 4.86             | 31.08            | VB1T | 34.1              | -31.1                | 34.08                | 54                    | -19.92         | -                      | -                 | 251               | 314            | V        |
| 2.558              | 47.61            | РКЗ  | 32.3              | -24.1                | 55.81                | -                     | -              | -                      | -                 | 102               | 245            | н        |
| 2.558              | 41.2             | VB1T | 32.3              | -24.1                | 49.4                 | -                     | -              | -                      | -                 | 102               | 245            | Н        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK3 FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 70 of 88

### **MID CHANNEL**



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 71 of 88

| Marker | Frequency<br>(GHz) | Meter<br>Reading | Det  | AF T346<br>(dB/m) | Amp/Cbl/Fltr<br>/Pad (dB) | DC Corr (dB) | Corrected<br>Reading | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|------------------|------|-------------------|---------------------------|--------------|----------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
|        |                    | (dBuV)           |      |                   |                           |              | (dBuV/m)             |                       |                |                        |                   |                   |                |          |
| 1      | * 1.503            | 43.93            | PK3  | 28.2              | -26.3                     | 0            | 45.83                | -                     | -              | 74                     | -28.17            | 360               | 101            | н        |
|        | * 1.504            | 32.44            | VB1T | 28.2              | -26.3                     | 0            | 34.34                | 54                    | -19.66         | -                      | -                 | 360               | 101            | н        |
| 2      | * 2.285            | 46.97            | PK3  | 31.8              | -25.1                     | 0            | 53.67                | -                     | -              | 74                     | -20.33            | 123               | 305            | н        |
|        | * 2.285            | 39.95            | VB1T | 31.8              | -25.1                     | 0            | 46.65                | 54                    | -7.35          | -                      | -                 | 123               | 305            | н        |
| 4      | * 1.519            | 44.44            | PK3  | 28.2              | -26.3                     | 0            | 46.34                | -                     | -              | 74                     | -27.66            | 108               | 247            | V        |
|        | * 1.519            | 32.27            | VB1T | 28.2              | -26.3                     | 0            | 34.17                | 54                    | -19.83         | -                      | -                 | 108               | 247            | V        |
| 5      | * 4.882            | 47.82            | PK3  | 34.1              | -30.9                     | 0            | 51.02                | -                     | -              | 74                     | -22.98            | 108               | 258            | н        |
|        | * 4.882            | 42.57            | VB1T | 34.1              | -30.9                     | 0            | 45.77                | 54                    | -8.23          | -                      | -                 | 108               | 258            | н        |
| 6      | * 4.882            | 48.8             | PK3  | 34.1              | -30.9                     | 0            | 52                   | -                     | -              | 74                     | -22               | 250               | 308            | V        |
|        | * 4.882            | 44.23            | VB1T | 34.1              | -30.9                     | 0            | 47.43                | 54                    | -6.57          | -                      | -                 | 250               | 308            | V        |
| 3      | 2.597              | 46.08            | PK3  | 32.4              | -24.1                     | 0            | 54.38                | -                     | -              | -                      | -                 | 108               | 247            | Н        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK3 -FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 72 of 88
### HIGH CHANNEL



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 73 of 88

### **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading | Det  | AF T346<br>(dB/m) | Amp/Cbl/Fltr<br>/Pad (dB) | DC Corr (dB) | Corrected<br>Reading | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|------------------|------|-------------------|---------------------------|--------------|----------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
|        |                    | (dBuV)           |      |                   |                           |              | (dBuV/m)             |                       |                |                        |                   |                   |                |          |
| 1      | * 1.483            | 44.72            | PK3  | 28.3              | -26.3                     | 0            | 46.72                | -                     | -              | 74                     | -27.28            | 360               | 101            | н        |
|        | * 1.482            | 32.39            | VB1T | 28.3              | -26.3                     | 0            | 34.39                | 54                    | -19.61         | -                      | -                 | 360               | 101            | Н        |
| 2      | * 2.324            | 47.37            | PK3  | 31.9              | -25                       | 0            | 54.27                | -                     | -              | 74                     | -19.73            | 311               | 295            | н        |
|        | * 2.324            | 40.02            | VB1T | 31.9              | -25                       | 0            | 46.92                | 54                    | -7.08          | -                      | -                 | 311               | 295            | Н        |
| 4      | * 4.96             | 47.04            | PK3  | 34.1              | -30.2                     | 0            | 50.94                | -                     | -              | 74                     | -23.06            | 356               | 274            | Н        |
|        | * 4.96             | 42.44            | VB1T | 34.1              | -30.2                     | 0            | 46.34                | 54                    | -7.66          | -                      | -                 | 356               | 274            | Н        |
| 5      | * 4.96             | 47.35            | PK3  | 34.1              | -30.2                     | 0            | 51.25                | -                     | -              | 74                     | -22.75            | 226               | 309            | V        |
|        | * 4.96             | 43.05            | VB1T | 34.1              | -30.2                     | 0            | 46.95                | 54                    | -7.05          | -                      | -                 | 226               | 309            | V        |
| 6      | * 5.077            | 41.31            | PK3  | 34.2              | -30.7                     | 0            | 44.81                | -                     | -              | 74                     | -29.19            | 226               | 309            | V        |
|        | * 5.077            | 29.38            | VB1T | 34.2              | -30.7                     | 0            | 32.88                | 54                    | -21.12         | -                      | -                 | 226               | 309            | V        |
| 3      | 2.636              | 39.54            | РК   | 32.4              | -24                       | 0            | 47.94                | -                     | -              | -                      | -                 | 0-360             | 200            | Н        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK3 -FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 74 of 88

# 8.3. WORST-CASE ABOVE 18GHz

#### SPURIOUS EMISSIONS 18GHz TO 26GHz MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

| וכ      | RIZON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|
| 1       | R5UL EMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | 1                                                                                                                                         | 10 Apr 2015                       | 22:26:41                      |
| 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions                                                                                                                              |                                   |                               |
|         | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | Order Number:15U20565                                                                                                                     |                                   |                               |
|         | apl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | Client:Plantronics                                                                                                                        |                                   |                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | Mode:BT Worst Case                                                                                                                        |                                   |                               |
|         | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | Tested by / SN:J. Li                                                                                                                      |                                   |                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | imit (dbuV/m)                                           |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         | 55 Avg Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nit (dBuV/m)                                            |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                       | 2                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | 2                                                                                                                                         | h                                 | 1                             |
|         | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                           | . Ark                                                                                            | may add and the more thank whether                                                                                                        | When the work when a stranger and | and the second states and the |
|         | Marman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | por an an the adverse of the                            | manufund                              | Mr. M. Markan                                                                                                                                                                                                                                                                                                                                             | Name Martha Corres                                                                               | Point water addition of the second                                                                                                        |                                   |                               |
|         | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                                                           |                                   |                               |
|         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                       | F                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | 24-2                                                                                                                                      |                                   | 26                            |
|         | <b>D</b> (01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | 7 6                                   | DL 40                                                                                                                                                                                                                                                                                                                                                     | requency (                                                                                       |                                                                                                                                           | C                                 | L L-L-1                       |
|         | 1:18-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1M(-3dB)/3M Ref/Httn Det/Hv<br>1M(-3dB)/3M 97/0 PEAK/ - | ng lup Sweep                          | Pts #Supa/Node                                                                                                                                                                                                                                                                                                                                            | Label Kan                                                                                        | ge (afiz) KBW/VBW Ket/Httn Det/Hvg ly                                                                                                     | р Эмеер Pts #Эмрь/Мос             | de Lobel                      |
| or:     | st Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30915 6 Feb 2015                                        | Auto                                  | 1282 NRAH                                                                                                                                                                                                                                                                                                                                                 | horizontai                                                                                       |                                                                                                                                           |                                   | Rev 9.5 16 Mar :              |
| or:     | st Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30915 6 Feb 2015                                        | Ruto                                  | LZE NAM                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |                                                                                                                                           | 10 Apr 2015                       | Rev 9.5 16 Mar :              |
| 1       | Det Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30915 6 Feb 2015                                        | Auto                                  | 1282 19831                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | PE Emissions                                                                                                                              | 10 Apr 2015                       | Rev 9.5 16 Mar :              |
| 1       | UL EMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30915 6 Feb 2015                                        | Auto                                  | 1.282 19601                                                                                                                                                                                                                                                                                                                                               |                                                                                                  | RF Emissions                                                                                                                              | 10 Apr 2015                       | Rev 9.5 16 Mar :<br>22:26:41  |
| 1       | Dat Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>"Client:Plantronics                                                                              | 10 Apr 2015                       | Rev 9.5 16 Mar :<br>22:26:41  |
| 1       | 85 UL EMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30915 6 Feb 2015                                        | Ruto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>Client:Plantronics<br>Configuration:EUT Only<br>Made:BT Worst Cose                               | 10 Apr 2015                       | Rev 9.5 16 Mar 3              |
| 1       | 05 UL EMC<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>Client:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>                           | 10 Apr 2015                       | Rev 9.5 16 Mar :<br>22:26:41  |
| 1       | 25 UL EMC<br>95<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>Cilient:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Cose<br>Tested by / SN:J. Li      | 10 Apr 2015                       | Rev 9.5 16 Mar :<br>22:26:41  |
| 1       | 25 UL EMC<br>25 05 000<br>25 000 000 000 000<br>25 000 000 000 000<br>25 000 000 000 000<br>25 000 000 000 000 000<br>25 000 000 000 000 000<br>25 000 000 000 000 000 000<br>25 000 000 000 000 000 000<br>25 000 000 000 000 000 000 000 000000000 | 30915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Orden Number:15U20565<br>Cilent:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li       | 10 Apr 2015                       | Rev 9.5 16 Mar :<br>22:26:41  |
| 1       | 25 UL EMC<br>95<br>85<br>75 Peak L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30915 6 Feb 2015<br>imit (dBuU/m)                       | Ruto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>Cilent:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li       | 10 Apr 2015                       | Rev 9.5 16 Mar :<br>22:26:41  |
| 1       | 85<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38915 6 Feb 2015<br>imit (dBuU/m)                       | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>Cilent:Plantropics<br>Configuration:EUT Only<br>Made:ST Worst Case<br><br>Tested by / SN:J. Li   | 10 Apr 2015                       |                               |
| 1       | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30915 6 Feb 2015<br>imit (dBuU/m)                       |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>Client:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Cose<br>Tested by / SN:J. Li       | 10 Apr 2015                       |                               |
| 1       | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30915 6 Feb 2015<br>imit (dBuU/m)                       |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>Client:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Cose<br><br>Tested by / SN:J. Li   | 10 Apr 2015                       | Rev 9.5 16 Mar 3              |
| 1       | 85<br>75<br>85<br>75<br>85<br>75<br>85<br>75<br>85<br>75<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38915 6 Feb 2015<br>imit (dBuU/m)<br>nit (dBuU/m)       |                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>Client:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Cose<br>Tested by / SN:J. Li       | 10 Apr 2015                       | 22:26:41                      |
| 1       | 25 Peak L<br>65 Avg Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38915 6 Feb 2015<br>imit (dBuU/m)<br>nit (dBuU/m)       | Ruto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Orden Number:15U20565<br>Cilient:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li      | 10 Apr 2015                       | 22:26:41                      |
| 1       | ast Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30915 6 Feb 2015<br>imit (dBuU/m)<br>mit (dBuU/m)       | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                | RF Emissions<br>Order Number:15U20565<br>Cilent:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li       | 10 Apr 2015                       | 22:26:41                      |
| 1       | At Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38915 6 Feb 2015<br>imit (dBuU/m)<br>mit (dBuU/m)       |                                       | 1.02C 1937                                                                                                                                                                                                                                                                                                                                                | 5<br>5<br>5<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | RF Emissions<br>Order Number:15U20565<br>Cilient:Plontronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li      | 10 Apr 2015                       | 22:26:41                      |
| 1       | at Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30915 6 Feb 2015<br>imit (dBuU/m)<br>mit (dBuU/m)       | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>Client:Plantronics<br>Configuration:EUT Only<br>Mode:ST Worst Case<br>Tested by / SN:J. Li       | 10 Apr 2015                       | 22:26:41                      |
| 1       | ast Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U28565<br>Client:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li       | 10 Apr 2015                       | 22:26:41                      |
| 1       | at Cose.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           | тори салон<br>у Мила Фенерици, истори                                                            | RF Emissions<br>Orden Number:15U20565<br>Cilient:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li      | 10 Apr 2015                       | 22:26:41                      |
| 1       | as UL EMC<br>95<br>85<br>75 Peak L<br>65<br>55 Avg L i<br>45<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Order Number:15U20565<br>Cilent:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li       | 10 Apr 2015                       | 22:26:41                      |
| 1       | At Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           | 5<br>y///m <sup>5</sup>                                                                          | RF Emissions<br>Order Number:15U20565<br>Cilent:Plontronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li       | 10 Apr 2015                       | 22:26:41                      |
| 1       | At Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38915 6 Feb 2015                                        |                                       |                                                                                                                                                                                                                                                                                                                                                           | тре лагода<br>                                                                                   | RF Emissions<br>Order Number:15U20565<br>Cilient:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li      | 10 Apr 2015                       | 22:26:41                      |
| 1       | ast Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           | то салан<br>                                                                                     | RF Emissions<br>Order Number:15U20565<br>Client:Plantronics<br>Configuration:EUT Only<br>Mode:ET Worst Cose<br>Tested by / SN:J. Li       | 10 Apr 2015                       | 22:26:41                      |
| 1       | at Cose.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | RF Emissions<br>Orden Number:15U20565<br>Cilient:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li      | 10 Apr 2015                       |                               |
| <u></u> | at Cose.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30915 6 Feb 2015                                        | Auto                                  |                                                                                                                                                                                                                                                                                                                                                           | Trequency ((                                                                                     | RF Emissions<br>Order Number:15U20565<br>Cilient:Plantronics<br>Configuration:EUT Only<br>Mode:BT Worst Case<br>Tested by / SN:J. Li      | 10 Apr 2015                       |                               |
| <u></u> | bt Case.DAT<br>B5<br>B5<br>B5<br>Case.DAT<br>B5<br>B5<br>B5<br>Avg Li<br>Case.DAT<br>B5<br>B5<br>B5<br>B5<br>B5<br>B7<br>B7<br>B7                                                                                                                                                                                                                                                                                                                                                                                                      | 38915 6 Feb 2015                                        | якто<br>                              | الطلا (Rish)                                                                                                                                                                                                                                                                                                                                              | 5<br>yhr 19<br>                                                                                  | RF Emissions<br>Order Number: 15U20565<br>Cilient: Plantronics<br>Configuration: EUT Only<br>Mode: BT Worst Case<br>Tested by / SN: J. Li | 10 Apr 2015                       | 22:26:41                      |
| 1       | At Case.DAT<br>B5<br>B5<br>B5<br>B5<br>B5<br>Avg Li<br>Case.Case.DAT<br>B5<br>B5<br>B5<br>Avg Li<br>B5<br>B7<br>B7<br>B7<br>B7<br>B7<br>B7<br>B7                                                                                                                                                                                                                                                                                                                                                                                       | 38915 6 Feb 2015                                        | якто<br>якто<br>4<br>22/м_ума-разметр | المعد المعالم ا<br>المعالم المعالم ا<br>المعالم المعالم ا | 5<br>5<br>5<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                | RF Emissions<br>Order Number: 15U20565<br>Cilient: Plontronics<br>Configuration: EUT Only<br>Mode: BT Worst Case<br>Tested by / SN: J. Li | 10 Apr 2015                       | Rev 9.5 16 Mar 2<br>22:26:41  |
| 1       | At Case.DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38915 6 Feb 2015                                        | Auto                                  | الملك المكام الملك ال<br>الملك الملك الم<br>الملك الملك الم     |                                                                                                  | RF Emissions<br>Order Number: 15U20565<br>Cilient: Plontronics<br>Configuration: EUT Only<br>Mode: BT Worst Case<br>Tested by / SN: J. Li | 10 Apr 2015                       | 22:26:41                      |

Page 75 of 88

## REPORT NO: 15U20565-E1V5 FCC ID: AL8-WC2

#### Trace Markers

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | T89 AF<br>(dB/m) | Amp/Cbl<br>(dB) | Dist Corr<br>(dB) | Corrected<br>Reading<br>(dBuVolts) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) |
|--------|--------------------|----------------------------|-----|------------------|-----------------|-------------------|------------------------------------|-----------------------|----------------|------------------------|-------------------|
| 1      | 19.032             | 41.07                      | Pk  | 32.9             | -24.3           | -9.5              | 40.17                              | 49.5                  | -9.33          | 69.5                   | -29.33            |
| 2      | 21.024             | 42.67                      | Pk  | 33.3             | -23.8           | -9.5              | 42.67                              | 49.5                  | -6.83          | 69.5                   | -26.83            |
| 3      | 22.703             | 42.27                      | Pk  | 33.8             | -23.4           | -9.5              | 43.17                              | 49.5                  | -6.33          | 69.5                   | -26.33            |
| 4      | 19.665             | 41.57                      | Pk  | 32.9             | -24.3           | -9.5              | 40.67                              | 49.5                  | -8.83          | 69.5                   | -28.83            |
| 5      | 21.391             | 41.57                      | Pk  | 33.3             | -23.7           | -9.5              | 41.67                              | 49.5                  | -7.83          | 69.5                   | -27.83            |
| 6      | 22.596             | 41.5                       | Pk  | 33.7             | -23.2           | -9.5              | 42.50                              | 49.5                  | -7.00          | 69.5                   | -27.00            |

PK - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 76 of 88

# 8.4. WORST-CASE BELOW 1 GHz

### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



Page 77 of 88

## REPORT NO: 15U20565-E1V5 FCC ID: AL8-WC2

#### Trace Markers

| Marker | Frequency  | Meter   | Det | AF T477 | Amp/Cbl | Corrected | QPk Limit | Margin | Azimuth | Height | Polarity |
|--------|------------|---------|-----|---------|---------|-----------|-----------|--------|---------|--------|----------|
|        | (MHz)      | Reading |     | (dB/m)  | (dB)    | Reading   | (dBuV/m)  | (dB)   | (Degs)  | (cm)   |          |
|        |            | (dBuV)  |     |         |         | (dBuV/m)  |           |        |         |        |          |
| 1      | * 113.8525 | 53.72   | РК  | 13.2    | -30.4   | 36.52     | 43.52     | -7     | 0-360   | 301    | н        |
| 6      | * 112.28   | 51.2    | РК  | 13      | -30.4   | 33.8      | 43.52     | -9.72  | 0-360   | 100    | V        |
| 3      | * 266.9    | 48.16   | РК  | 13      | -29.3   | 31.86     | 46.02     | -14.16 | 0-360   | 100    | н        |
| 7      | * 253.8    | 41.9    | РК  | 11.5    | -29.4   | 24        | 46.02     | -22.02 | 0-360   | 201    | V        |
| 8      | * 400.3    | 38.56   | РК  | 15.5    | -28.6   | 25.46     | 46.02     | -20.56 | 0-360   | 100    | V        |
| 2      | 156.018    | 53.17   | QP  | 12.4    | -30     | 35.57     | 43.52     | -7.95  | 97      | 169    | н        |
| 4      | 399.6      | 41.88   | РК  | 15.5    | -28.6   | 28.78     | 46.02     | -17.24 | 0-360   | 100    | н        |
| 5      | 486.7      | 48.04   | РК  | 17.7    | -28.4   | 37.34     | 46.02     | -8.68  | 0-360   | 100    | н        |
| 9      | 534.1      | 44.55   | РК  | 18.1    | -28.2   | 34.45     | 46.02     | -11.57 | 0-360   | 201    | V        |
| 10     | 698.9      | 40.11   | PK  | 20.2    | -27.8   | 32.51     | 46.02     | -13.51 | 0-360   | 100    | V        |

\* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

QP - Quasi-Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888

Page 78 of 88

# 8.5. TX SPURIOUS FROM 0.15 TO 30 MHz



## DATA

| Marker   | Freque | Meter   | Det | Loop    | Cbl (dB) | Dist Corr | Corrected  | Peak Limit | Margin | Avg Limit | Margin | Azimuth |
|----------|--------|---------|-----|---------|----------|-----------|------------|------------|--------|-----------|--------|---------|
|          | ncy    | Reading |     | Antenna |          | 300m      | Reading    | (dBuV/m)   | (dB)   | (dBuV/m)  | (dB)   | (Degs)  |
|          | (MHz)  | (dBuV)  |     | (dB/m)  |          |           | (dBuVolts) |            |        |           |        |         |
| FACE ON  |        |         |     |         |          |           |            |            |        |           |        |         |
| 1        | .0366  | 44.99   | Pk  | 13.6    | .1       | -80       | -21.31     | 56.33      | -77.64 | 36.33     | -57.64 | 0-360   |
| 2        | .2734  | 39.61   | Pk  | 10.3    | .1       | -80       | -29.99     | 38.87      | -68.86 | 18.87     | -48.86 | 0-360   |
| 3        | 3.257  | 17.62   | Pk  | 10.4    | .3       | -40       | -11.68     | 29.54      | -41.22 | -         | -      | 0-360   |
|          | 09     |         |     |         |          |           |            |            |        |           |        |         |
| FACE OFF |        |         |     |         |          |           |            |            |        |           |        |         |
| 4        | .0361  | 42.34   | Pk  | 13.6    | .1       | -80       | -23.96     | 56.45      | -80.41 | 36.45     | -60.41 | 0-360   |
| 5        | .2722  | 39.57   | Pk  | 10.3    | .1       | -80       | -30.03     | 38.91      | -68.94 | 18.91     | -48.94 | 0-360   |
|          | 3      |         |     |         |          |           |            |            |        |           |        |         |
| 6        | 3.301  | 17.41   | Pk  | 10.4    | .3       | -40       | -11.89     | 29.54      | -41.43 | -         | -      | 0-360   |
|          | 1      |         |     |         |          |           |            |            |        |           |        |         |

Page 79 of 88

# 8.6. AC POWER LINE CONDUCTED EMISSIONS

## **LIMITS**

FCC §15.207 (a)

RSS-Gen 8.8

| Frequency of Emission (MHz) | Conducted Limit (dBuV) |            |  |  |
|-----------------------------|------------------------|------------|--|--|
|                             | Quasi-peak             | Average    |  |  |
| 0.15-0.5                    | 66 to 56 *             | 56 to 46 " |  |  |
| 0.5-5                       | 56                     | 46         |  |  |
| 5-30                        | 60                     | 50         |  |  |

Decreases with the logarithm of the frequency.

### TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

**RESULTS** 

Page 80 of 88

### 6 WORST EMISSIONS

Range 1: Line-L1 .15 - 30MHz

| Marker | Frequency | Meter   | Det | T24 IL L1 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22 | Margin |
|--------|-----------|---------|-----|-----------|-----------|-----------|------------|--------|----------|--------|
|        | (MHz)     | Reading |     |           | 1&3       | Reading   | Class B QP | (dB)   | Class B  | (dB)   |
|        |           | (dBuV)  |     |           |           | dBuV      |            |        | Avg      |        |
| 1      | .1905     | 44.68   | Qp  | 1         | 0         | 45.68     | -          | -      | 54.01    | -8.33  |
| 2      | .1905     | 33.62   | Ca  | 1         | 0         | 34.62     | -          | -      | 54.01    | -19.39 |
| 3      | .5055     | 35.57   | Qp  | .3        | 0         | 35.87     | -          | -      | 46       | -10.13 |
| 4      | .5055     | 28.46   | Ca  | .3        | 0         | 28.76     | -          | -      | 46       | -17.24 |
| 5      | 1.0635    | 37.76   | Pk  | .2        | 0         | 37.96     | -          | -      | 46       | -8.04  |
| 6      | 1.0635    | 26.73   | Av  | .2        | 0         | 26.93     | 56         | -29.07 | 46       | -19.07 |

#### Range 2: Line-L2 .15 - 30MHz

| Marker | Frequency | Meter   | Det | T24 IL L2 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22 | Margin |
|--------|-----------|---------|-----|-----------|-----------|-----------|------------|--------|----------|--------|
|        | (MHz)     | Reading |     |           | 2&3       | Reading   | Class B QP | (dB)   | Class B  | (dB)   |
|        |           | (dBuV)  |     |           |           | dBuV      |            |        | Avg      |        |
| 7      | .2715     | 40.82   | Pk  | .7        | 0         | 41.52     | -          | -      | 51.07    | -9.55  |
| 8      | .2715     | 37.34   | Av  | .7        | 0         | 38.04     | 61.07      | -23.03 | 51.07    | -13.03 |
| 9      | .6585     | 37.19   | Pk  | .3        | 0         | 37.49     | -          | -      | 46       | -8.51  |
| 10     | .6315     | 27.9    | Av  | .3        | 0         | 28.2      | 56         | -27.8  | 46       | -17.8  |
| 11     | .87       | 37.35   | Pk  | .3        | 0         | 37.65     | -          | -      | 46       | -8.35  |
| 12     | .8655     | 29      | Av  | .3        | 0         | 29.3      | 56         | -26.7  | 46       | -16.7  |

Pk - Peak detector

Av - Average detection

**Qp** - Quasi-Peak detector

Ca - CISPR average detection

Page 81 of 88

### LINE 1 RESULTS



Page 82 of 88

### LINE 2 RESULTS



Page 83 of 88