

FCC CFR47 PART 15 SUBPART C CERTIFICATION **TEST REPORT**

FOR

STEREO BLUETOOTH HEADSET

MODEL NUMBER: VOYAGER 855

FCC ID: AL8-V855

REPORT NUMBER: 07U11114-1

ISSUE DATE: JUNE 25, 2007

Prepared for PLANTRONICS, INC. **345 ENCINAL STREET** SANTA CRUZ, CA 95060, U.S.A.

Prepared by **COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.** TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	06/25/07	Initial Issue	T. Chan

Page 2 of 68

TABLE OF CONTENTS

	ATT	ESTATION OF TEST RESULTS	.4
2.	TES	Г METHODOLOGY	.5
3.	FAC	ILITIES AND ACCREDITATION	.5
4.	CAL	IBRATION AND UNCERTAINTY	.5
4.	.1.	MEASURING INSTRUMENT CALIBRATION	. 5
4.	.2.	MEASUREMENT UNCERTAINTY	. 5
5.	EQU	IPMENT UNDER TEST	.6
5.	.1.	DESCRIPTION OF EUT	. 6
5.	.2.	MAXIMUM OUTPUT POWER	. 6
5.	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	. 6
5.	.4.	SOFTWARE AND FIRMWARE	. 6
5.	.5.	WORST-CASE CONFIGURATION AND MODE	. 7
5.	. 6.	DESCRIPTION OF TEST SETUP	. 7
6.	TES	Г AND MEASUREMENT EQUIPMENT	.9
7.	LIM	ITS AND RESULTS	10
		ITS AND RESULTS	
	. <i>1</i> . 7.1.1	ANTENNA PORT CHANNEL TESTS	<i>10</i> 10
	. <i>1</i> . 7.1.1 7.1.2	ANTENNA PORT CHANNEL TESTS 20 dB BANDWIDTH HOPPING FREQUENCY SEPARATION	<i>10</i> 10 14
	. <i>1</i> . 7.1.1 7.1.2 7.1.3	ANTENNA PORT CHANNEL TESTS 20 dB BANDWIDTH HOPPING FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS	<i>10</i> 10 14 16
	.1. 7.1.1 7.1.2 7.1.3 7.1.4	ANTENNA PORT CHANNEL TESTS	<i>10</i> 10 14 16 21
	.1. 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	ANTENNA PORT CHANNEL TESTS	<i>10</i> 10 14 16 21 24
	. <i>I</i> . 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	ANTENNA PORT CHANNEL TESTS	<i>10</i> 10 14 16 21 24 28
	.1. 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	ANTENNA PORT CHANNEL TESTS	10 10 14 16 21 24 28 31
7.	.1. 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8	ANTENNA PORT CHANNEL TESTS 20 dB BANDWIDTH HOPPING FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS AVERAGE TIME OF OCCUPANCY PEAK OUTPUT POWER MAXIMUM PERMISSIBLE EXPOSURE AVERAGE POWER CONDUCTED SPURIOUS EMISSIONS	10 10 14 16 21 24 28 31 32
7.	.1. 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8	ANTENNA PORT CHANNEL TESTS	10 10 14 16 21 24 28 31 32 41
7.	.1. 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 .2.	ANTENNA PORT CHANNEL TESTS	<i>10</i> 10 14 16 21 24 28 31 32 <i>41</i> 41
7.	.1. 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 .2. 7.2.1	ANTENNA PORT CHANNEL TESTS 20 dB BANDWIDTH HOPPING FREQUENCY SEPARATION. NUMBER OF HOPPING CHANNELS. AVERAGE TIME OF OCCUPANCY PEAK OUTPUT POWER MAXIMUM PERMISSIBLE EXPOSURE AVERAGE POWER. CONDUCTED SPURIOUS EMISSIONS RADIATED EMISSIONS TRANSMITTER RADIATED SPURIOUS EMISSIONS ABOVE 1 GHZ	<i>10</i> 10 14 16 21 24 28 31 32 <i>41</i> 41 44
7.	.1. 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 .2. 7.2.1 7.2.2 7.2.3	ANTENNA PORT CHANNEL TESTS 20 dB BANDWIDTH HOPPING FREQUENCY SEPARATION. NUMBER OF HOPPING CHANNELS. AVERAGE TIME OF OCCUPANCY PEAK OUTPUT POWER MAXIMUM PERMISSIBLE EXPOSURE AVERAGE POWER. CONDUCTED SPURIOUS EMISSIONS RADIATED EMISSIONS TRANSMITTER RADIATED SPURIOUS EMISSIONS ABOVE 1 GHZ	<i>10</i> 10 14 16 21 24 28 31 32 <i>41</i> 41 44 53

Page 3 of 68

1. ATTESTATION OF TEST RESULTS

FCC PART 15 SUBPART C		NO NON-COMPLIANCE NOTED
STANDA	RD	TEST RESULTS
	APPLICAB	LE STANDARDS
DATE TESTED:	JUNE 7-15, 200	7
SERIAL NUMBER:	CS01978	
MODEL:	VOYAGER 855	
EUT DESCRIPTION:	STEREO BLUE	TOOTH HEADSET
COMPANY NAME:	PLANTRONIC 345 ENCINAL SANTA CRUZ,	

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

KEITH NG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 68

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Radiated Emission, Above 2000 MHz	+/- 4.3 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 68

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth Stereo Headset

The radio module is manufactured by CSR.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

2400 to 2483.5 MHz Authorized Band

Frequency Range	Output Power	Output Power
(MHz)	(dBm)	(mW)
2402 - 2480	2.75	1.88

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a ceramic chip antenna, with a maximum gain of 2 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was rev. 10.17.

The EUT driver software installed in the host support equipment during testing was CSRBlueCoreUSB.

The test utility software used during testing was CSR Bluesuite, rev. 1.24.

Page 6 of 68

5.5. WORST-CASE CONFIGURATION AND MODE

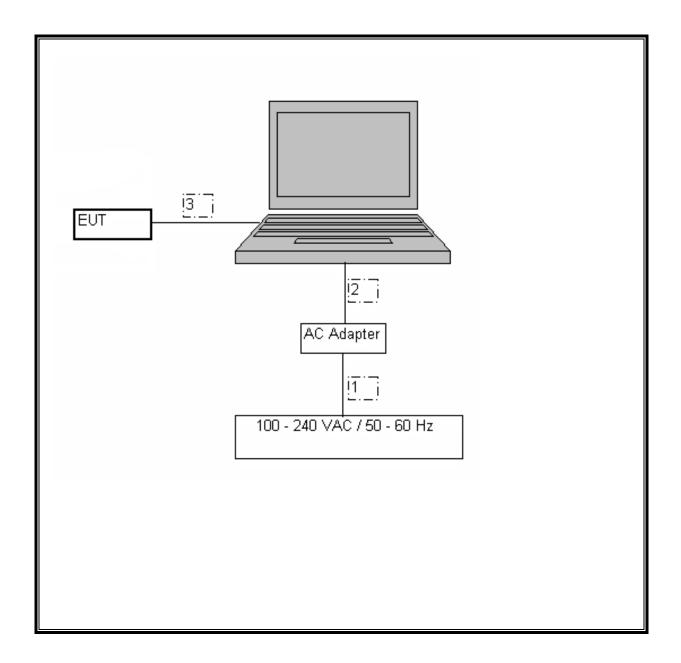
The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2441 MHz.

The X, Y, and Z orientations were investigated. The X orientation was determined as the worst-case.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number FCC ID						
Laptop	Dell	LAITUDE	C/N-06P823-48155-242-0115	DoC		
Adapter	Dell	ADP-70EB	TH-09364U-17971-087-DRJ5	DoC		


I/O CABLES

	I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	AC	1	US115	Unshielded	1.5m	N/A		
2	DC	1	DC	Unshielded	1.5m	N/A		
3	USB	1	USB	Shielded	1.0m	N/A		

TEST SETUP

The EUT is connected to a laptop to control the function of the radio then tested in stand alone configuration for radiated tests.

SETUP DIAGRAM FOR TESTS

Page 8 of 68

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/2/2007		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	12/2/2007		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY45300064	3/18/2008		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00561	10/3/2007		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	4/15/2008		
SA RF Section, 1.5 GHz	Agilent / HP	85680B	2814A04227	1/7/2008		
Quasi-Peak Adaptor	Agilent / HP	85650A	3145A01654	1/21/2008		
SA Display Section 2	Agilent / HP	85662A	2816A16696	4/7/2008		
Preamplifier, 1300 MHz	Agilent / HP	8447D	1937A02062	1/20/2008		
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	8/13/2007		

Page 9 of 68

7. LIMITS AND RESULTS

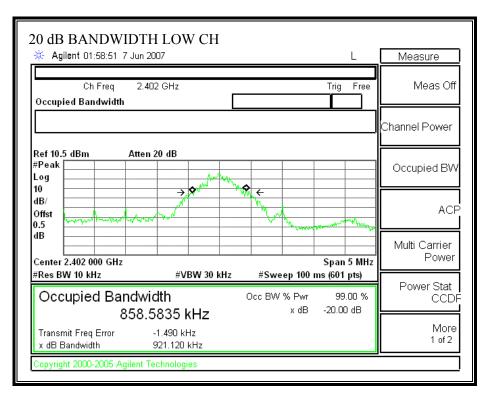
7.1. ANTENNA PORT CHANNEL TESTS

7.1.1. 20 dB BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 20 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

RESULTS

No non-compliance noted:

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	921.12
Middle	2441	921.103
High	2480	915.538

20 dB BANDWIDTH

Page 11 of 68

20 dB BANDWIDTH M			L	Measure
Ch Freq 2.441 G Occupied Bandwidth	ЭНz		Trig Free	Meas Off
				Channel Power
Ref 10.5 dBm Atten 20 #Peak				Occupied BW
10 dB/ Offst 0.5	→ * * ****	N. C.	montering	ACP
dB	#VBW 30 kHz	#Sweep 100 r	Span 5 MHz ns (601 pts)	Multi Carrier Power
Occupied Bandwidtl 858.86	h '	Dcc BW % Pwr x dB	99.00 % -20.00 dB	Power Stat CCDF
x dB Bandwidth 921	983 kHz I.103 kHz			More 1 of 2
Copyright 2000-2005 Agilent Tech	nologies			

Page 12 of 68

20 dB BANDWIDTH HIGH C Agilent 01:55:07 7 Jun 2007	CH L	Measure
Ch Freq 2.48 GHz Occupied Bandwidth	Trig Free	Meas Off
		Channel Power
Ref 10.5 dBm Atten 20 dB #Peak		Occupied BW
$\begin{array}{c c} 10 \\ 10 \\ dB \\ Offst \\ 0.5 \\ r \\ $	The C	ACP
dB Center 2.480 000 GHz #Res BW 10 kHz #VBW 3	Span 5 MHz 0 kHz #Sweep 100 ms (601 pts)	Multi Carrier Power
Occupied Bandwidth 858.2698 kHz	Occ BW % Pwr 99.00 %	Power Stat CCDF
Transmit Freq Error-1.555 kHzx dB Bandwidth915.538 kHz		More 1 of 2
Copyright 2000-2005 Agilent Technologies		

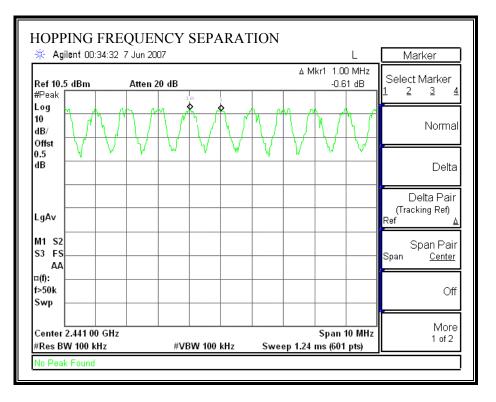
Page 13 of 68

7.1.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

§15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

No non-compliance noted:

Page 14 of 68

HOPPING FREQUENCY SEPARATION

Page 15 of 68

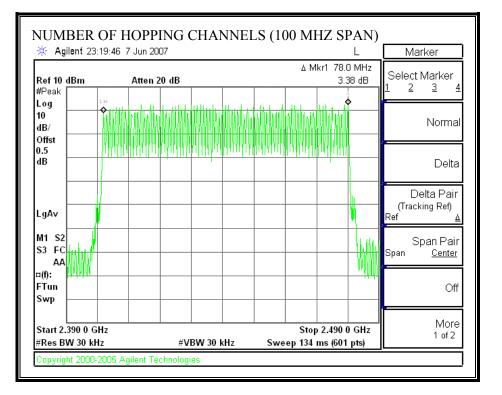
7.1.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

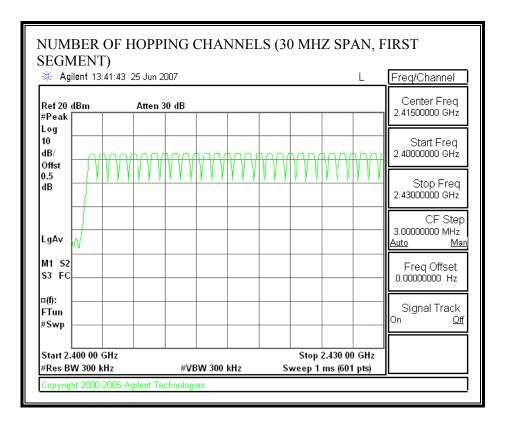
15.247 (a) (1) (iii) Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

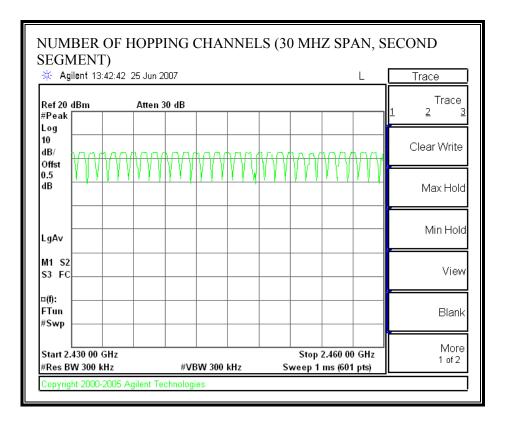
The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 1 % of the span. The analyzer is set to Max Hold.

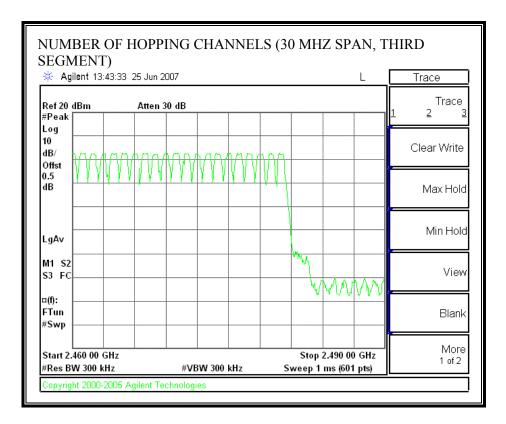

RESULTS

No non-compliance noted:


79 Channels observed.

Page 16 of 68


NUMBER OF HOPPING CHANNELS


Page 17 of 68

Page 18 of 68

Page 19 of 68

Page 20 of 68

7.1.4. AVERAGE TIME OF OCCUPANCY

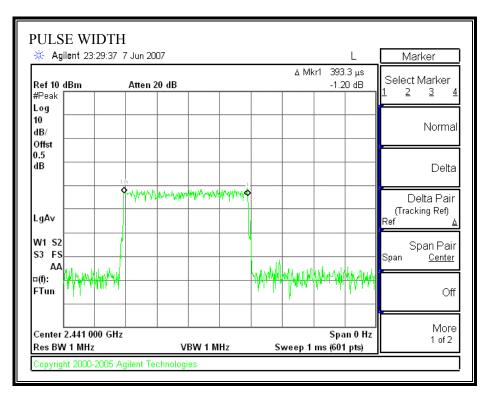
<u>LIMIT</u>

15.247 (a) (1) (iii) Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15 nonoverlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

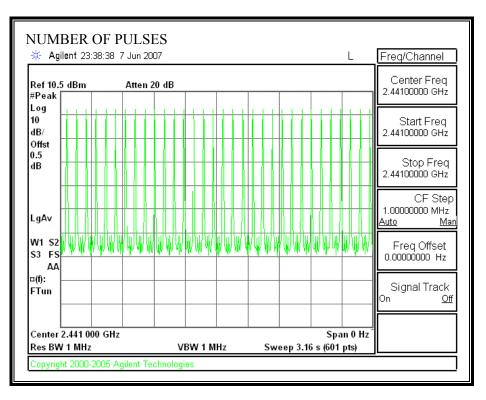
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.


RESULTS

No non-compliance noted:

Time Of Occupancy = 10 * 32 pulses * 0.3933 msec = 125.856 msec


Page 21 of 68

PULSE WIDTH

Page 22 of 68

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 23 of 68

7.1.5. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

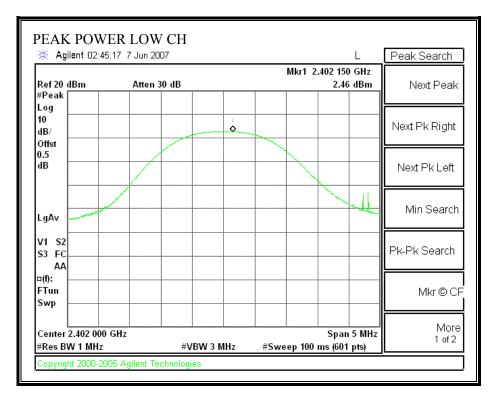
§15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels: 1 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 2 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

No non-compliance noted:

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2402	2.46	30	-27.54
Middle	2441	2.75	30	-27.25
High	2480	2.62	30	-27.38

Page 24 of 68

OUTPUT POWER

Page 25 of 68

🔆 Agilent 02:44	4:14 / Jun 2007				L	Peak Search
Ref 20 dBm #Peak	Atten 30 dB		M	kr1 2.44	10 842 GHz 2.75 dBm	Next Peak
Log 10 dB/		1				Next Pk Right
Offst 0.5 dB						Next Pk Left
LgAv www.						Min Search
V1 S2 S3 FC						Pk-Pk Search
¤(f): FTun Swp						Mkr © Cf
Center 2.441 000 #Res BW 1 MHz		VBW 3 MHz	#Swee		Span 5 MHz s (601 pts)	More 1 of 2

Page 26 of 68

🔆 Agilent 02:47	:49 7 Jun 2007				L	Peak Search
Ref 20 dBm #Peak	Atten 30 d	IB	N	lkr1 2.479 2	850 GHz .62 dBm	Next Peak
Log						l
10 dB/						Next Pk Right
Offst 0.5						
dB						Next Pk Left
LgAv					A man	Min Search
M1 S2 S3 FC						Pk-Pk Search
AA						
¤(f): FTun Swp						Mkr © Cl
Center 2.480 000 #Res BW 1 MHz	GHz	#VBW 3 MHz		Sp p 100 ms (6	an 5 MHz	More 1 of 2

Page 27 of 68

7.1.6. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 8
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500 1500–100.000		0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz

t = trequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled is potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 28 of 68

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10^{(P(dBm)/10)}$ and $G(numeric) = 10^{(G(dBi)/10)}$

yields

 $d = 0.282 * 10^{(P+G)} / 20) / \sqrt{S}$

where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$

Page 29 of 68

LIMITS

From 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

MPE	Output	Antenna	Power
Distance	Power	Gain	Density
(cm)	(dBm)	(dBi)	(mW/cm^2)
20.0	2.75	2.00	0.0006

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 30 of 68

7.1.7. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 0.5 dB was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	1.60
Middle	2441	1.95
High	2480	1.73

Page 31 of 68

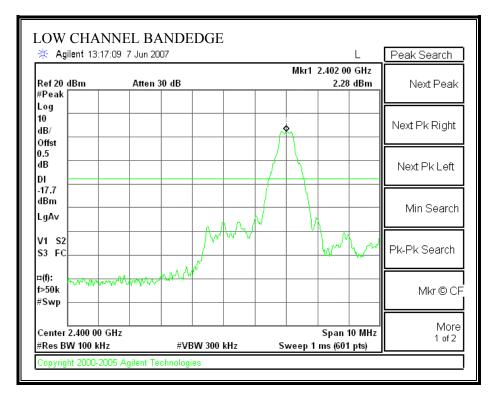
7.1.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

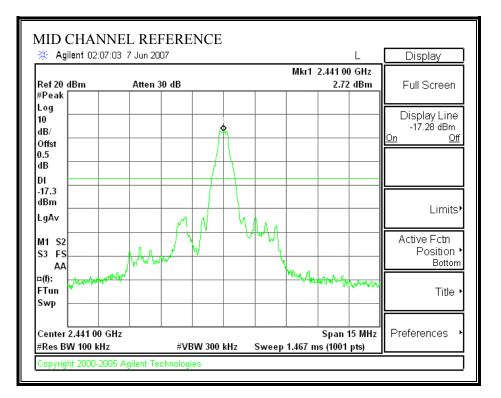

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

No non-compliance noted:

Page 32 of 68

SPURIOUS EMISSIONS, LOW CHANNEL

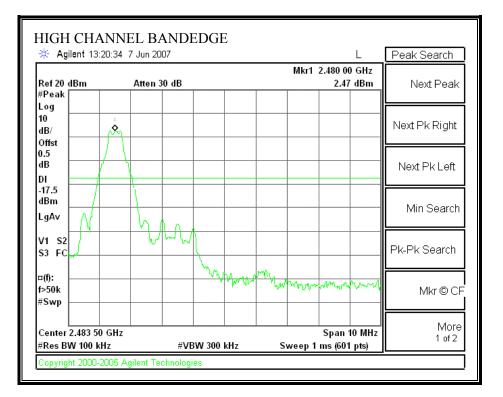


Page 33 of 68

		7 Jun 2007				M	kr2 4.8	1 GHz	Freq/Cha	
Ref 20 dBi #Peak ∏	m	Atten 30	dB				-48.54	dBm	Center 13.015000	
Log 10 dB/ Offst	1 •								Start 30.000000	
0.5 dB		2							Stop 26.000000	Freq 0 GHz
DI -17.7		*	<u>A</u>	a Maria and Statemarks	and and the	and the second	- warden of the	~~~~	2.5970000	
Start 30 M	Hz					St	op 26.00) GHz	<u>Auto</u>	<u>Mar</u>
#Res BW	100 kHz		#VBW	300 kHz	Swee	p 2.482 s			Freq C 0.0000000	
Marker 1 2	Trace (1) (1)	Type Freq Freq		X Axis 2.39 GH 4.81 GH	_		Amplitu -3.92 dBr 48.54 dBr	n	Signal	
									On	Off

Page 34 of 68

SPURIOUS EMISSIONS, MID CHANNEL

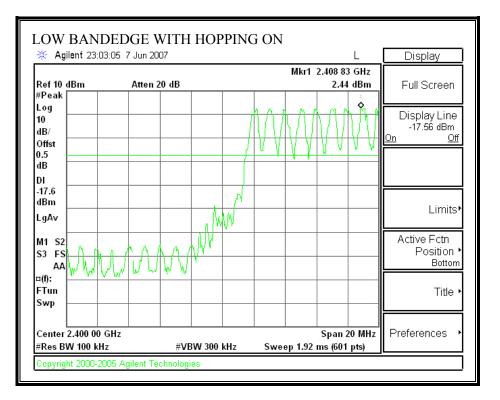


Page 35 of 68

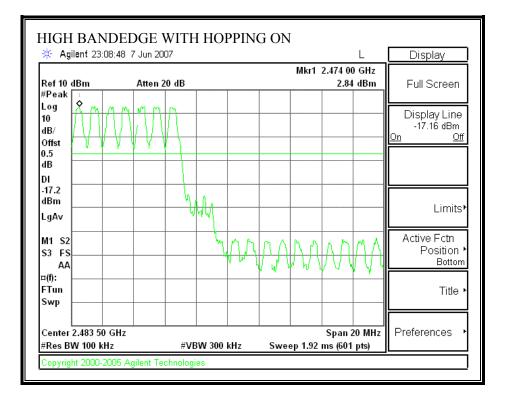
🔆 Agilen	f 02:09:41	7 Jun 2007						L	Marker
Ref 20 dBr #Peak	n	Atten 30 d	B			N	kr4 4.8 -52.30		Select Marker 1 2 3
Log 10 dB/ Offst									Marker Trace <u>Auto 1</u> 2
0.5 dB DI	2	4							Readout Frequency
-17.3 dBm LgAv			-	and the second second		www.	and the state of the	~~~	Marker Table <u>On O</u>
Start 30 M #Res BW 1			#VBW 300	kHz	Swee	St 2.482	op 26.0 s (1001		Marker All Off
Marker 1 2 3 4	Trace (1) (1) (1) (1)	Type Freq Freq Freq Freq	2 3 4	(Axis :.45 GHz :.25 GHz I.06 GHz I.89 GHz			Amplitu 16.56 dB 46.88 dB 54.40 dB 52.30 dB	ude m m m	
									Mor 2 of 2

Page 36 of 68

SPURIOUS EMISSIONS, HIGH CHANNEL



Page 37 of 68


🔆 Agilen	t 02:14:43	7 Jun 200	7						L		1arker
Ref20dBr #Peak	n	Atten 30	dB				Mk		51 GHz)dBm	Seleo	t Marker
	l									<u> </u>	
10	<u> </u>										Norma
Offst 0.5 dB										,	Delta
DI -17.5 dBm	2		ren ren		~~\$	-	Lage March	and and	m		Delta Pair
LgAv										(Tra Ref	icking Ref) ≜
Start 30 M	Hz						St	op 26.0	0 GHz		Spon Doir
#Res BW 1			#VBW			Swee	p 2.482			Span	Span Pair Center
Marker 1	Trace (1)	Type Freq			Aoxis 17 GHz			Amplit 1.46 dB		<u> </u>	
2	(1)	Freq			I3 GHz			-55.40 dE			
3	(1)	Freq		15.5	1 GHz			-52.99 dE) m		Off
											More 1 of 2

Page 38 of 68

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 39 of 68

Page 40 of 68

7.2. RADIATED EMISSIONS

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. \$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency Field Strength (MHz) (microvolts/mete		Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 42 of 68

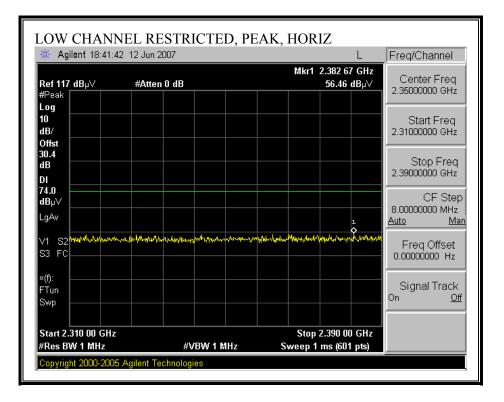
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

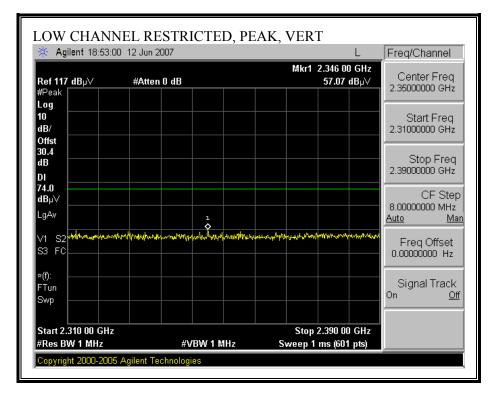

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 43 of 68

7.2.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

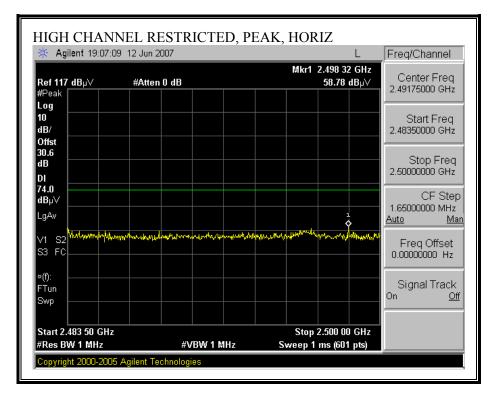


Page 44 of 68

🔆 Agilent 18:48:0	16 12 Jun 2007		L	Freq/Channel
Ref 117 dB µ∨ #Peak	#Atten 0 dB	Mkr1 2.38 44	8587GHz .58dBµ∀	Center Freq 2.35000000 GHz
Log				
10 dB/				Start Freq 2.31000000 GHz
Offst 30.4 dB				Stop Freq 2.3900000 GHz
DI				CF Step
dBµ∨ LgAv				8.00000000 MHz <u>Auto Man</u>
V1 S2 S3 FC			1 •	Freq Offset 0.00000000 Hz
×(f): FTun				Signal Track
Swp				On <u>Off</u>
Start 2.310 00 GHz		Stop 2.39	0 00 GHz	
#Res BW 1 MHz	#VBW 10 F	lz Sweep 6.238 s (601 pts)	

Page 45 of 68

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

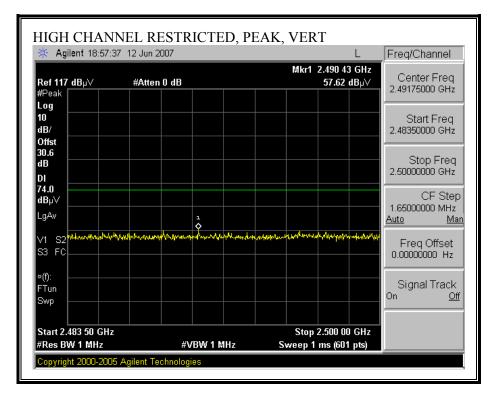


Page 46 of 68

🔆 Agilent 18:53:4	42 12 Jun 2007		L	Freq/Channel
Ref 117 dBµ∨	#Atten 0 dB	Mkr1 2.386 44.4	i00 GHz 15 dBµ∨	Center Freq 2.3500000 GHz
#Peak Log				
10 dB/				Start Freq 2.3100000 GHz
Offst 30.4 dB				Stop Freq
DI				2.3900000 GHz
54.0 dBµ∨				CF Step
LgAv				8.0000000 MHz <u>Auto Man</u>
V1 S2			1 \$	Freq Offset 0.00000000 Hz
×(f):				
FTun Swp				Signal Track On <u>Off</u>
Start 2.310 00 GHz		Stop 2.390	00 GHz	
#Res BW 1 MHz	#VBW 10 H			

Page 47 of 68

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 48 of 68

🔆 Agilent 19:07:3	33 12 Jun 2007				L	Freq/Channel
Ref 117 dB µ∨ #Peak	#Atten 0 dB		Mkr1	2.496 (45.47	l1 GHz dBµ∨	Center Freq 2.49175000 GHz
Log						
10 dB/						Start Freq 2.48350000 GHz
Offst 30.6 dB						Stop Freq
DI						2.50000000 GHz
54.0 dBµ∀						CF Step 1.6500000 MHz
LgAv						Auto Man
V1 S2 S3 FC			1 \$			Freq Offset 0.00000000 Hz
×(f):						
FTun Swp						Signal Track On <u>Off</u>
Start 2.483 50 GHz #Res BW 1 MHz		10 Hz	Stop Sweep 1.28	2.500 0		

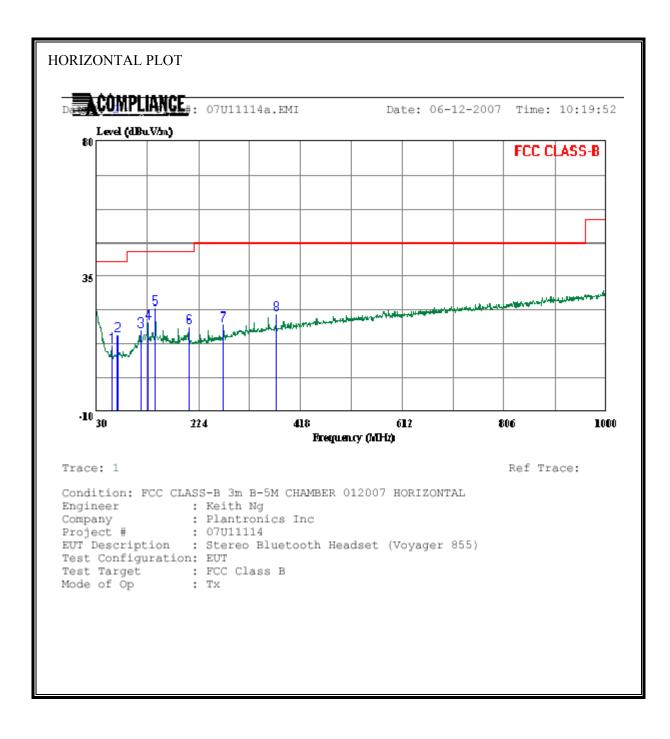
Page 49 of 68

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 50 of 68

🔆 Agilent 18:58:	09 12 Jun 2007		L	Freq/Channel
Ref 117 dBµ∨	#Atten 0 dB	Mkr1 2.49 44	6 15 GHz .71 dBµ∨	Center Freq 2.49175000 GHz
#Peak Log				2.4011 3000 0112
10 dB/				Start Freq 2.48350000 GHz
Offst 30.6 dB				Stop Freq
DI				2.50000000 GHz
54.0 dBµ∨				CF Step 1.6500000 MHz
LgAv				<u>Auto Man</u>
V1 S2 S3 FC				Freq Offset 0.00000000 Hz
×(f):				
FTun Swp				Signal Track On <u>Off</u>
Start 2.483 50 GH;	,	Stop 2.50	0.00.6Hz	
#Res BW 1 MHz	#VBW 10			

Page 51 of 68

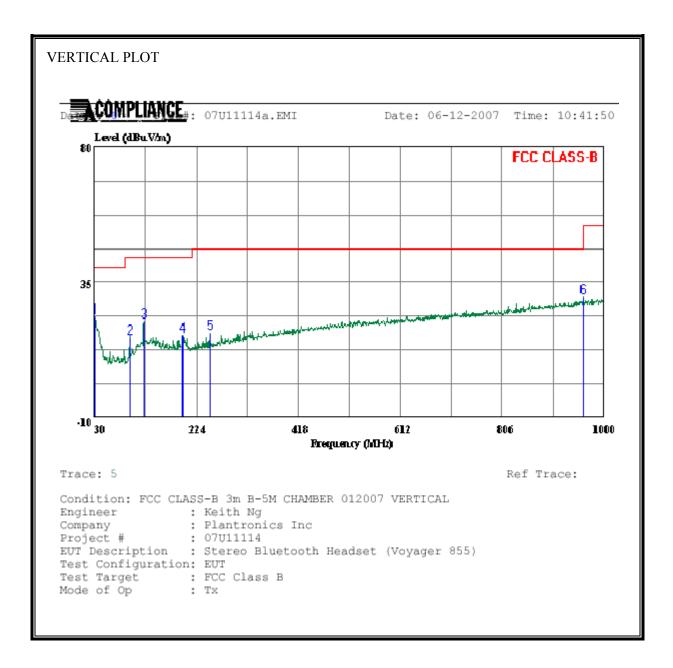

HARMONICS AND SPURIOUS EMISSIONS

est Equip		-													
		8GHz		amplife			Pre-am	plifer	26-40GH		н	orn > 180	GHz		Limit
T73; S/N:		-	• T14	5 Agilent	008A0	056				•				•	FCC 15.205
- Hi Frequen		cable		3 foot o	able		12	foot c	able		HPF	Pe	ject Filte	Peal	<u>k Measurements</u>
		abic		n 1872150			Willian				- 4.0GHz		jectrite	RB	W=VBW=1MHz ge Measurements
			• Vie	n 1872150	02	•	willian	1 10720	•		4.00Hz	•		v	1MHz; VBW=10Hz
f I	Dist	Read Pk	Read Av	g. AF	CL	Amp	D Corr	Fltr	Peak	Avg		Avg Lim	Pk Mar	Avg Mar	Notes
GHz (w ch, 2402	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
	3.0	52.5	37.4	33.3	3.0	-34.8	0.0	6.0	54.6	39.5	74	54	-19.4	-14.5	V
804	3.0	47.1	34.6	33.3	3.0	-34.8	0.0	0.0	49.2	36.7	74	54	-24.8	-17.3	Н
lid ch, 2441	MHz														
	3.0	46.7	33.5	33.4	3.1	-34.9	0.0	6.0	48.9	35.7	74	54	-25.1	-18.3	<u>v</u>
882	3.0	47.7	35.0	33.4	3.1	-34.9	0.0	0.6	49.9	37.2	74	54	- 24.1	- 16.8	H
i ch. 2480 M															
	3.0 3.0	48.1 49.5	35.0 36.1	33.4 33.4	3.2 3.2	-34.9 -34.9	0.0 0.0	6.0 6.0	50.5 51.9	37.4 38.6	74 74	54 54	-23.5 -22.1	-16.6 -15.4	 Н
f Di	ist ead F	were detecto Measuremo Distance to Analyzer R Antenna Fa	ent Freque Antenna eading actor		se floor	Amp	Average	Corre Field S d Peal	ct to 3 mete Strength @ k Field Stre	3 m		Pk Lim Avg Mar	Peak Fiel Margin vs	Field Strengt d Strength L Average L Deak Limit	imit imit

Page 52 of 68

7.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)


Page 53 of 68

REPORT NO: 07U11114-1 EUT: STEREO BLUETOOTH HEADSET

HORIZ	ZONTAL DA	ATA						
			ctor Leve		Limit	Remark	Page: 1	
1 2 3 4 5 6 7 8	69.770 113.420 127.970 141.550 205.570 271.530	37.91 -2 34.70 -1 36.10 -1 41.24 -1 35.79 -1 36.00 -1	dB dBuV/ 3.14 11.8 2.67 15.2 7.99 16.7 6.52 19.5 6.87 24.3 7.76 18.0 7.05 18.9 4.10 22.1	40.00 43.50 43.50 43.50 43.50 43.50 43.50 43.50 546.00	-28.19 -24.75 -26.79 -23.92 -19.14 -25.47 -27.05	Peak Peak Peak Peak Peak Peak		

Page 54 of 68

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 55 of 68

REPORT NO: 07U11114-1 EUT: STEREO BLUETOOTH HEADSET

VERT	ICAL DATA	Δ						
		Read Level F			Line		Remark	Page: 1
1 2 3 4 5 6	96,930	35.60 -	-9.13 -21.43 -16.52 -17.30 -17.72	23.57 16.47 21.78 17.20 17.88	43.50 43.50 43.50 46.00	-16.43 -27.03 -21.72 -26.30 -28.12	Peak Peak Peak Peak	

Page 56 of 68

7.3. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 "	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

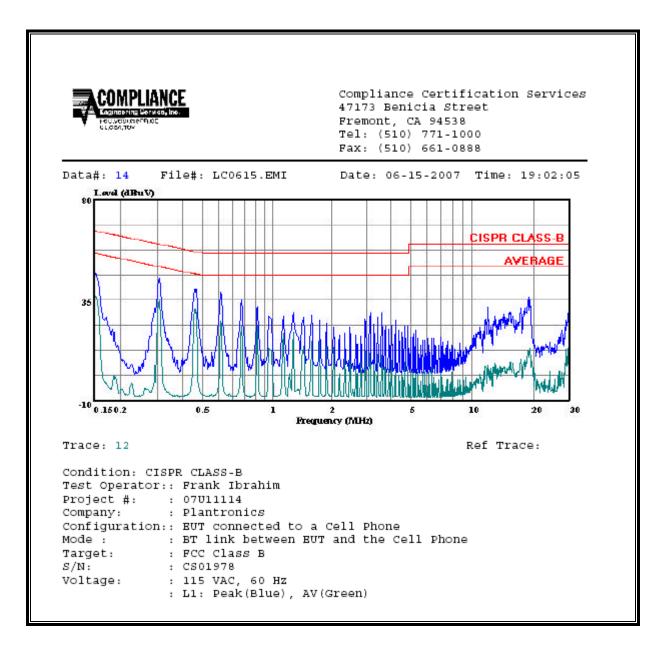
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

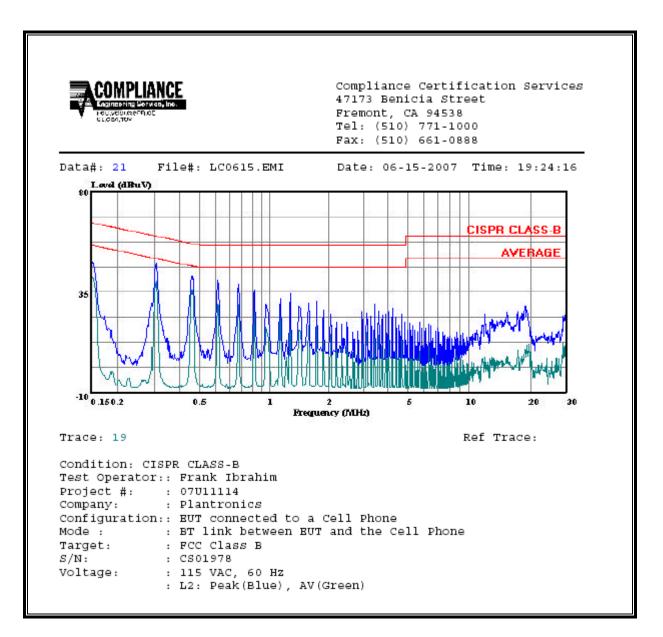
RESULTS

No non-compliance noted:


Page 57 of 68

6 WORST EMISSIONS

Reading			Closs	Limit	EN_B	Mar	Remark	
PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2
46.67		36.76	0.00	65.89	55.89	-19.22	-19.13	L1
44.92		34.77	0.00	60.05	50.05	-15.13	-15.28	L1
38.54		25.45	0.00	56.00	46.00	-17.46	-20.55	L1
48.42		41.31	0.00	65.89	55.89	-17.47	-14.58	L2
47.38		39.76	0.00	60.02	50.02	-12.64	-10.26	L2
42.38		35.89	0.00	56.67	46.67	-14.29	-10.78	L2
								l
Data								
	46.67 44.92 38.54 48.42 47.38 42.38	PK (dBuV) QP (dBuV) 46.67 44.92 38.54 48.42 47.38 42.38	PK (dBuV) QP (dBuV) AV (dBuV) 46.67 36.76 44.92 34.77 38.54 25.45 48.42 41.31 47.38 39.76 42.38 35.89	PK (dBuV) QP (dBuV) AV (dBuV) (dB) 46.67 36.76 0.00 44.92 34.77 0.00 38.54 25.45 0.00 48.42 41.31 0.00 47.38 39.76 0.00 42.38 35.89 0.00	PK (dBuV) QP (dBuV) AV (dBuV) (dB) QP 46.67 36.76 0.00 65.89 44.92 34.77 0.00 60.05 38.54 25.45 0.00 56.00 48.42 41.31 0.00 65.89 47.38 39.76 0.00 60.02 42.38 35.89 0.00 56.67	PK (dBuV) QP (dBuV) AV (dBuV) (dB) QP AV 46.67 36.76 0.00 65.89 55.89 44.92 34.77 0.00 60.05 50.05 38.54 25.45 0.00 65.89 55.89 47.38 39.76 0.00 60.02 50.02 42.38 35.89 0.00 56.67 46.67	PK (dBuV) QP (dBuV) AV (dBuV) (dB) QP AV QP (dB) 46.67 36.76 0.00 65.89 55.89 -19.22 44.92 34.77 0.00 60.05 50.05 -15.13 38.54 25.45 0.00 56.00 46.00 -17.46 48.42 41.31 0.00 65.89 55.89 -17.47 47.38 39.76 0.00 60.02 50.02 -12.64 42.38 35.89 0.00 56.67 46.67 -14.29	PK (dBuV) QP (dBuV) AV (dBuV) (dB) QP AV QP (dB) AV (dB) 46.67 36.76 0.00 65.89 55.89 -19.22 -19.13 44.92 34.77 0.00 60.05 50.05 -15.13 -15.28 38.54 25.45 0.00 56.00 46.00 -17.46 -20.55 48.42 41.31 0.00 65.89 55.89 -17.47 -14.58 47.38 39.76 0.00 60.02 50.02 -12.64 -10.26 42.38 35.89 0.00 56.67 46.67 -14.29 -10.78


Page 58 of 68

LINE 1 RESULTS

Page 59 of 68

LINE 2 RESULTS

Page 60 of 68