

Industry Canada RSS-213, Issue 3: 2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS) 2015

Test Item

Kind of product: Product name:	UPCS Headset S7310T, S7320T
HVIN:	S7310T, S7320T
PMN:	Savi 7310 Office, Savi 7320 Office
FVIN:	1
HMN:	1
FCC ID:	AL8-S73X0T
IC:	457A-S73X0T
S/N serial number:	Radiated: /
	Conducted: /
HW hardware status:	VB2
SW software status:	V0056
Frequency [MHz]:	1920 -1930
Type of Modulation:	GFSK, π/2-DBSK, π/4-DQPSK, π/8-D8PSK
Number of channels:	5 RF Channels, 5x12 = 60 TDMA Duplex Channels
Antenna:	Two integrated antennas
Power Supply:	Lilon battery
Temperature Range:	-20°C to 50°C

Test Report authorised:

Test performed:

2020-04-20 Lenjoi

Lenjoint, Marco Lab Manager RC 2020-04-20

Wolf, Joachim Head of Department EPNS

1 Table of contents

1	Table of contents	2
2	General information	3
	 2.1 Notes and disclaimer 2.2 Application details 	
3	Test standard/s:	3
4	Test Environment	4
5	Summary of Measurement Results	5
6	Test Set-up	6
	 6.1 Frequency Measurements	6 7 9 10 10
7	Detailed Test Results	11
	7.1 Power Line Conducted Emissions 7.2 Digital Modulation Techniques 7.3 Labeling Requirements 7.4 Antenna Requirements 7.5 Channel Frequencies 7.6 Automatic Discontinuation of Transmission 7.7 Peak Power Output 7.8 Emission Bandwidth B 7.9 Power Spectral Density 7.10 In-Band Unwanted Emissions, Conducted 7.11 Out-of-Band Emissions, Conducted 7.12 Carrier Frequency Stability 7.13 Frame Repetition Stability 7.14 Frame Repetition Stability 7.15 Monitoring Threshold, Least Interfered Channel 7.16 Threshold Monitoring Bandwidth 7.17 Reaction Time and Monitoring Interval 7.18 Time and Spectrum Window Access Procedure 7.19 Acknowledgments and Transmission duration 7.20 Dual Access Criteria Check 7.21 Alternative monitoring interval 7.22 Spurious Emissions (Radiated) 7.23 Receiver Spurious Emissions	$\begin{array}{c} 11\\ 14\\ 15\\ 16\\ 17\\ 29\\ 34\\ 47\\ 49\\ 55\\ 57\\ 60\\ \end{array}$
8	Test equipment and ancillaries used for tests	
9	Observations	
Anr	ex A: Photographs of the Test Set-up	67
	ex B: External Photographs of the EUT	
Anr	ex C: Internal Photographs of the EUT	67
Anr	ex D: Document History	68
Anr	ex E: Further Information	69
Anr	ex F: Accreditation Certificate	70

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwriting signature. For verification of the electronical signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2020-04-06
Date of receipt of test item:	2020-04-06
Start of test:	2020-04-06
End of test:	2020-04-20
Person(s) present during the test:	

3 Test standard/s:

Test Standard	Version	Test Standard Description
FCC Part 15, subpart D	2016-06	Isochronous UPCS Device 1920 – 1930 MHz
Industry Canada RSS-213, Issue 3	2015-03	2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)
ANSI C63.17	2013-08	American National Standard for Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communication Services (UPCS) Devices
ANSI C63.4	2014-06	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

4 Test Environment

Temperature:

- Relative humidity content: Air pressure:
- + 22 °C during room temperature tests + 50 °C during high temperature test
- 20 °C during low temperature test
- 38 %

not relevant for this kind of testing

Summary of Measurement Results 5

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

CFR 47 Part 15 UPCS

Name of test	FCC CFR 47	IC RSS-213	Verdict
	Paragraph	Paragraph	
Digital Modulation Techniques	15.319(b)	6.1	Complies
Labeling requirements	15.19(a)(3)	RSS-GEN 5.2	Complies
Antenna requirements	15.317, 15.203	4.1(e)	Complies
Power Line Conducted Emission	15.107(a),	6.3	Complies
	15.207(a)	RSS_GEN 7.2.2	
Emission Bandwidth	15.323(a)	6.4	Complies
In-band Emission	15.323(d)	6.7.2	Complies
Out-of-band Emissions	15.323(d)	6.7.1	Complies
Peak Transmit Power	15.319(c)(e),	6.5	Complies
	15.31(e)		
Power Spectral Density	15.319(d)	4.3.2.1	Complies
Automatic discontinuation of transmission	15.319(f)	4.3.4(a)	Complies
Carrier frequency stability	15.323(f)	6.2	Complies
Frame repetition stability	15.323(e)	4.3.4(c)	Complies
Frame period and jitter	15.323(e)	4.3.4(c)	Complies
Monitoring threshold, Least interfered	15.323(c)(2);(5);	4.3.4(b)	Complies
channel	(9)		
Monitoring of intended transmit window and	15.323(c)(1)	4.3.4	Complies
maximum reaction time			
Threshold monitoring bandwidth	15.323(c)(7)	4.3.4	N/A
Reaction time and monitoring interval	15.323(c)(1);(5);	4.3.4	Complies
	(7)		
Access criteria test interval	15.323(c)(4);(6)	4.3.4	Complies
Access criteria functional test	15.323(c)(4);(6)	4.3.4	Complies
Acknowledgments	15.323(c)(4)	4.3.4	Complies
Transmission duration	15.323(c)(3)	4.3.4	Complies
Dual access criteria	15.323(c)(10)	4.3.4	Complies
Alternative monitoring interval	15.323(c)(10);(11)	4.3.4	N/A ²
Spurious Emissions (Antenna Conducted)	15.323(d)	6.7.1	Complies ³
Spurious Emissions (Radiated)	15.319(g),	4.3.3	Complies ⁴
	15.109(a),	RSS-GEN 7.2.3	
	15,209(a)		
Receiver Spurious Emissions	N/A	6.8	Complies

¹Only applicable for EUT that can initiate a communication link

² The client declares that the tested equipment does not implement this provision ³ The tested equipment has integrated antennas only

⁴Only requirement FCC 15.109 for unintentional radiators was tested radiated

Note: Spot-checks were performed and GFSK and $\pi/2$ -DBSK were identified as the worst case modulations.

6 Test Set-up

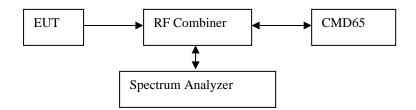
6.1 Frequency Measurements

Test Set-up 1:

This setup is used for measuring Carrier Frequency Stability at nominal and extreme temperatures.

For long term Frequency Stability, the EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to 01010101....

6.2 Timing Measurements


Test Set-up 2:

This setup is used for measuring Frame Repetition Stability, Frame Period and Jitter.

6.3 Conducted Emission Test

Test Set-up 3:

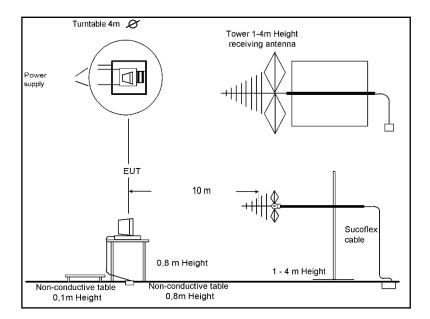
This setup is used for all conducted emission tests.

The EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to Pseudo-Random bit sequence to simulate normal speech.

6.4 Radiated Emission Test

30 MHz – 1GHz:

Test Set-up 4:


- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

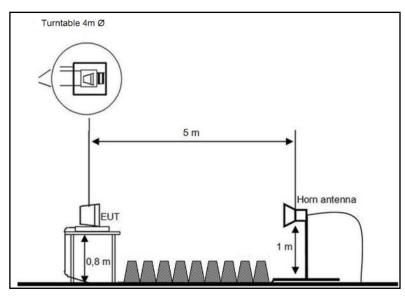
- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software
 maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

1GHz – 10 GHz:

Test Set-up 5:

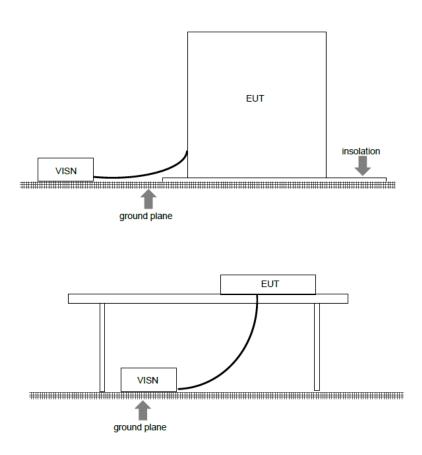

- The Equipment was setup to simulate a typical usage like described in the user manual / or described by manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0,8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is: (see ANSI C 63.4)
- < 18 GHz = 3 m 18-26 GHz = 1,5 m 26-40 GHz = 0,75 m
- The EUT was set into operation.

Premeasurement

- The turntable rotates continuous from 0° to 360°
- The antenna is polarized vertical and horizontal.
- In accordance to the antenna beam and the size of the EUT the antenna height changes in 30 cm steps, start at 1 meter. If it is not possible to tilt the emissions will be checked with a manually tilted antenna from top side.
- The analyzer scans quickly to find the maximum emissions of the EUT

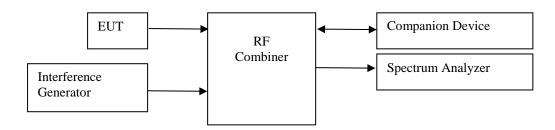
Final measurement

- The final measurement will be performed with minimum the six highest peaks (depends on emissions and number of measured points below 1 GHz)
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with AV (Average / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.



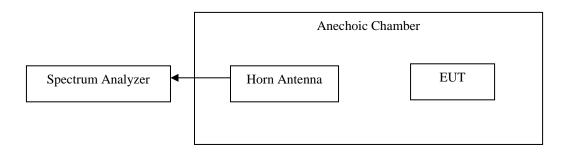
6.5 Power Line Conducted Emissions Test

Test Set-up 6:


According to EMC basic standard ANSI C 63.4

6.6 Monitoring Tests

Test Set-up 6:



This test setup is used for all Monitoring and Time and Spectrum Access Procedure tests. The path loss from the signal generator to the EUT is measured with a power meter before the testing is started.

A clock signal is used to synchronize the Interference Generator to the start of the DECT frame, this signal always comes from the base station. If the EUT is a DECT Portable Part (i.e. a handset) the clock signal will come from the Companion Device.

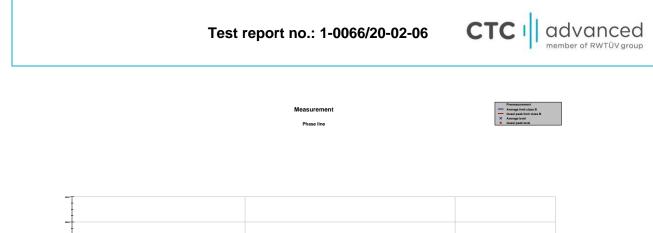
6.7 Radiated Output Power Test

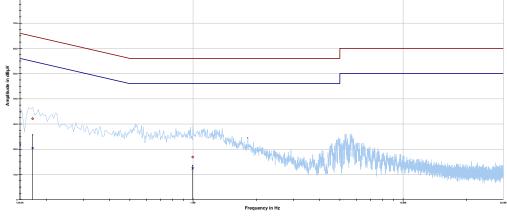
Test Set-up 7:

This setup is used for measuring the radiated output power in a fully anechoic chamber with a measurement distance of 1m.

7 Detailed Test Results

7.1 Power Line Conducted Emissions


Measurement Procedure:

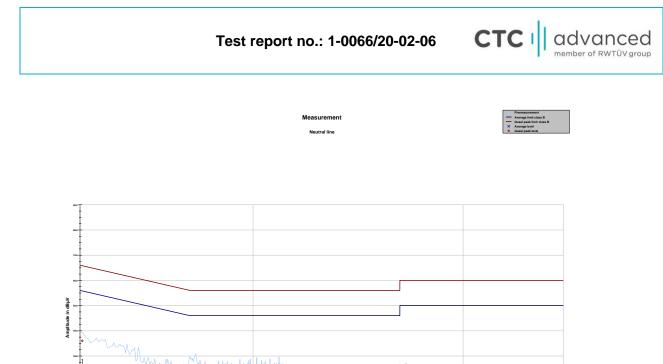

ANSI C63.4-2014 using 50µH/50 ohms LISN.

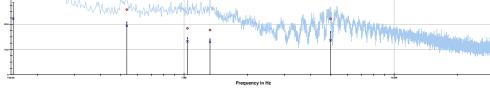
Test Result: Pass

Measurement Data: See attached plots

Requirement: FCC 15.207 (a)

Project ID: 1-0066/20-02-02


Phase line tbl


Project ID: 1-0066/20-02-02

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.150000	34.79	31.21	66.000	21.61	34.39	56.000
0.172387	32.11	32.73	64.845	20.40	34.96	55.360
0.996994	16.87	39.13	56.000	12.42	33.58	46.000

Project ID - 1-0066/20-02-02 EUT - S7320T/A

Operating mode - charging mode

Project ID: 1-0066/20-02-02

Neutral line tbl

Project ID: 1-0066/20-02-02

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.153731	36.00	29.79	65.796	22.20	33.69	55.893
0.534319	25.79	30.21	56.000	19.36	26.64	46.000
1.038037	18.38	37.62	56.000	13.18	32.82	46.000
1.329075	17.68	38.32	56.000	13.04	32.96	46.000
4.978237	22.11	33.89	56.000	13.57	32.43	46.000

Project ID - 1-0066/20-02-02 EUT - S7320T/A

Operating mode - charging mode

7.2 Digital Modulation Techniques

The tested equipment is based on DECT technology, the only difference is that the channel allocation is modified to operate in the 1920-1930 MHz band.

The EUT use Multi Carrier / Time Division Multiple Access / Time division duplex and Digital GFSK modulation.

For further details see the operational description provided by the applicant.

Requirement: FCC 15.319(b)

All transmissions must use only digital modulation techniques.

7.3 Labeling Requirements

See separate documents showing the label design and the placement of the label on the EUT.

Requirement: FCC 15.19

The FCC identifier shall be displayed on the label, and the device(s) shall bear the following statement in a conspicuous location on the device or in the user manual if the device is to small:

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label itself shall be of a permanent type, not a paper label, and shall last the lifetime of the equipment.

Test r	eport no.: 1-0066/20-02-06	СТС	advanced member of RWTŨV group
7.4 Antenna Requirements			
Does the EUT have detachable antenna	(s)?	Yes	🛛 No
If detachable, is the antenna connector(s) non-standard?	□Yes	🗌 No

The tested equipment has only integral antennas. The conducted tests were performed on a sample with a temporary antenna connector.

Requirements: FCC 15.203, 14.204. 15.317

7.5 Channel Frequencies

UPCS CHANNEL	FREQUENCY (MHz)
Upper Band Edge	1930.000
0 (Highest)	1928.448
1	1926.720
2	1924.992
3	1923.264
4 (Lowest)	1921.536
Lower Band Edge	1920.000

Requirement: FCC 15.301

Within 1920-1930 MHz band for isochronous devices.

7.6 Automatic Discontinuation of Transmission

Does the EUT transmit control and Signaling Information?		□Yes	🖾 No
Type of EUT:		Respond	ling device

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

Number	Test	EUT Reaction	Verdict
1	Power removed from EUT	N/A	N/A
2	EUT switched Off	С	Pass
3	Hook-On by companion device	С	Pass
4	Hook-On by EUT	С	Pass
5	Power removed from companion device	A	Pass
6	Companion device switched Off	N/A	N/A

A – Connection breakdown, Cease of all transmissions

B – Connection breakdown, EUT transmits control and signaling information

C – Connection breakdown, companion device transmits control and signaling information

N/A – Not applicable (the EUT does not have an on/off switch and can not perform Hook-On)

Requirement: FCC 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. This provision is not intended to preclude transmission of control and signaling information or use or repetitive code used by certain digital modulation technologies to complete frame or burst intervals.

7.7 Peak Power Output

Measurement Procedure:

ANSI C63.17, clause 6.1.2.

Test Results: Pass

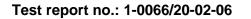
Measurement Data:

Maximum Conducted Output Power

Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm) GMSK	Maximum Radiated Output Power (dBm) GMSK	Maximum Antenna Gain (dBi)
4	1921.536	17.7	12.9	-4.8
2	1924.992	17.6	13.4	-4.2
0	1928.448	17.5	13.3	-4.2

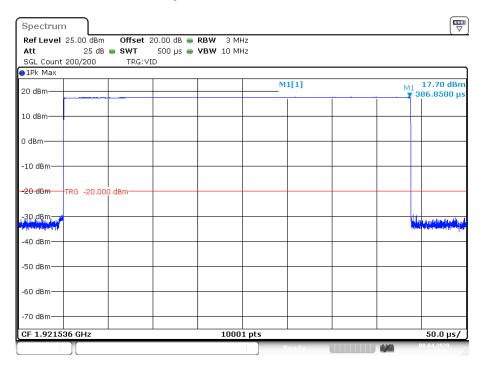
Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm) DBSK
4	1921.536	17.4
2	1924.992	17.3
0	1928.448	17.2

For this test it was also checked that the input voltage variation of 85 and 115% of nominal value did not have any effect on the measured output power, neither radiated nor conducted.

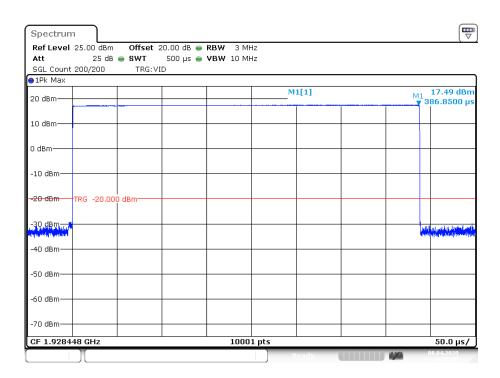

Limit:

Conducted: 100 µW X SQRT(B)where B is the measured Emission Bandwidth in HzFCC 15.319(c)(e):20.8 dBm (120 mW)RSS-213, Issue 2:20.6 dBm (116 mW)The antenna gain is below 3 dBi.

Requirements: FCC 15.319(c)(e). RSS-213, Issue 2


Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in Hertz.

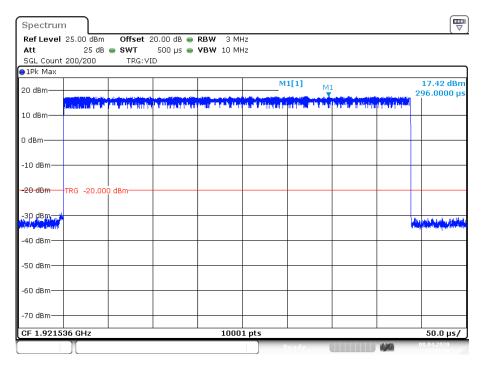
The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.



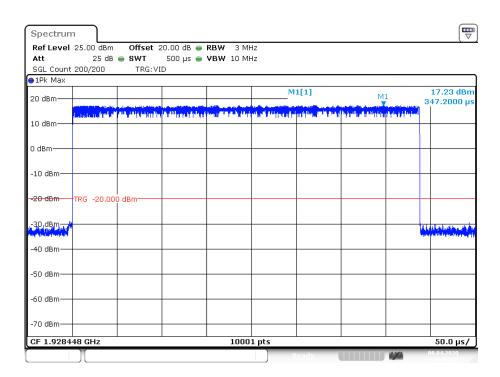
Conducted Peak Output Power, GMSK

Lower Channel

Upper Channel



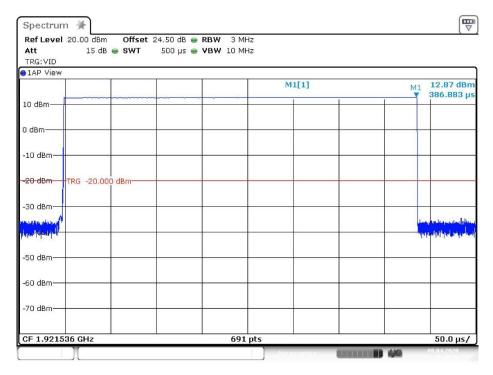
Spectrun	n								
	25.00 dBm		20.00 dB 👄						
Att SGL Count		SWT TRG: '		VBW 10 MH	ΗZ				
1Pk Max	200/200	TING.	10						
20 dBm					M	1[1]		M1	17.56 dBm 386.8500 μs
10 dBm									
0 dBm									
-10 dBm—									
-20 dBm	TRG -20.00	 0 dBm							
+30, dBm									
-40 dBm—									
-50 dBm									
-60 dBm—									
-70 dBm—									
CF 1.9249	92 GHz	·		1000	1 pts	·	·	·	50.0 µs/
					F F	teady		4,70	08.04.2020


Middle Channel

Conducted Peak Output Power, DBSK

Lower Channel

Upper Channel



Spectrun	n 25.00 dBm	Offeet	00 00 dp -	RBW 3 M	1					[₩
Att				VBW 10 MH						
SGL Count	: 200/200	TRG: V	ID .							
1Pk Max	1	1	1	1						
20 dBm					M	1[1] _{M1}				17.29 dBr 70.8000 µ
	Landon "Phy"		and the second second		eiter Mitteleter		Printle Address	(hind the last		
10 dBm										
D dBm										
-10 dBm										
-20 dBm	TRG -20.00	0 dBm								
-30,dBm									1	
And An Inc.									1	and produced in
-40 dBm										
-50 dBm										
-60 dBm										
-70 dBm—										
CF 1.9249	92 GHz	1	1	1000	1 pts	1	1	I		50.0 µs/

Middle Channel

Radiated Peak Output Power

Lower Channel

				1	541513		13.32 dB
					M1[1]	M1	386.883
10 dBm			<u>.</u>				
) dBm					¢		
10 dBm							
20 dBm - T	RG -20.000	dBm					
30 dBm							
Hadaari -			(a) .	· · · · ·	5		a and a bardeland A and a stranger and a stranger T
50 dBm							
60 dBm			°				

Upper Channel

Att	20.00 dBm 15 dB	Offset SWT	24.50 dB 👄 500 µs 👄	RBW 3 MHz VBW 10 MHz				
TRG: VID								
1AP View					M1	[1]	M1	13.39 dBm
10 dBm-								386.883 µs
.u asm								
I dBm								
10 dBm		~						
20 dBm	TRG -20.00	0 dBm						
30 dBm								
a de anterior de								demistry surface
Her-Hagelder,								and the part of the second
50 dBm								
50 dBm								
70 dBm								
F 1.9249	92 GHz			691 p	ts			50.0 µs/

Middle Channel

7.8 Emission Bandwidth B

Measurement Procedure:

ANSI C63.17, clause 6.1.3.

Test Results: Pass

Measurement Data:

Channel No. GMSK	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	1441
0	1928.448	1441

Channel No. DBSK	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	1687
0	1928.448	1686

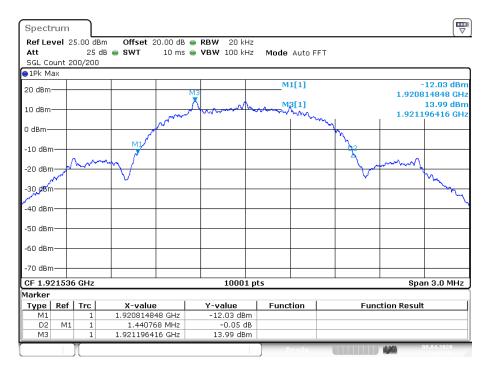
Channel No.	Frequency	20 dB Bandwidth B
GMSK	(MHz)	(kHz)
2	1924.992	1340

Channel No.	Frequency	20 dB Bandwidth B
DBSK	(MHz)	(kHz)
2	1924.992	1579

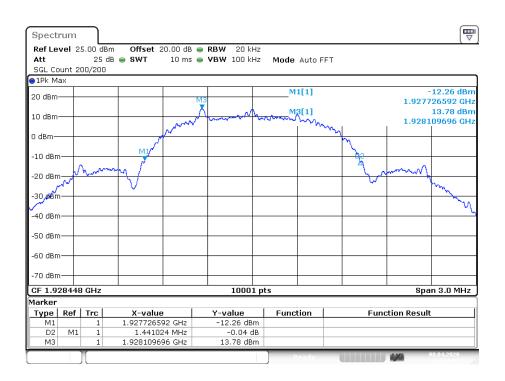
Channel No.	Frequency (MHz)	6 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A
Channel No.	Frequency (MHz)	12 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A

Requirement: FCC 15.323(a)

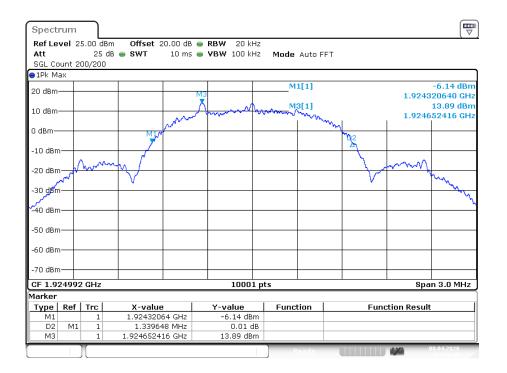
The 26 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.


Requirement: RSS-213 Issue 2, clause 6.4

The 20 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.

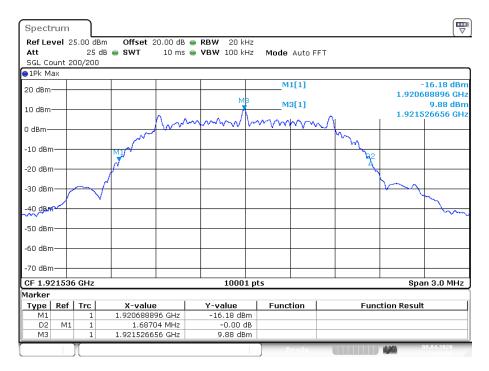

No requirement for 6 dB and 12 dB Bandwidth. These values are only used for testing Monitoring Bandwidth if the Simple Compliance test fails (ANSI C63.17, clause 7.4).

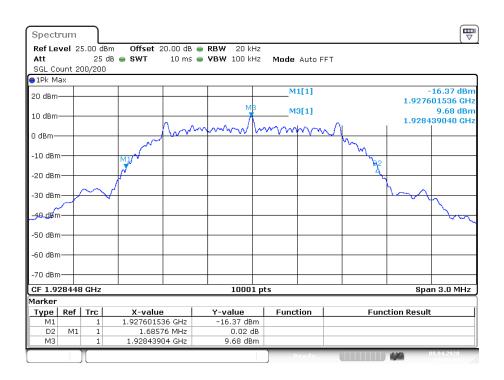
Modulation: GMSK



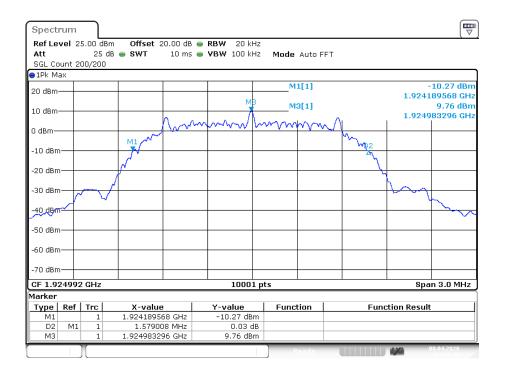
Emission Bandwidth B, Lower Channel

Emission Bandwidth B, Upper Channel




20 dB Bandwidth B, Middle Channel

Modulation: DBSK



Emission Bandwidth B, Lower Channel

Emission Bandwidth B, Upper Channel

20 dB Bandwidth B, Middle Channel

7.9 Power Spectral Density

Measurement Procedure:

ANSI C63.17, clause 6.1.5.

Test Results: Pass

Measurement Data:

Channel No. GMSK	Frequency (MHz)	Power Spectral Density (dBm/3kHz)
4	1921.196416	-2.99
0	1928.109696	-2.94

Channel No. DBSK	Frequency (MHz)	Power Spectral Density (dBm/3kHz)
4	1921.526656	-4.27
0	1928.439040	-4.69

Averaged over 100 sweeps.

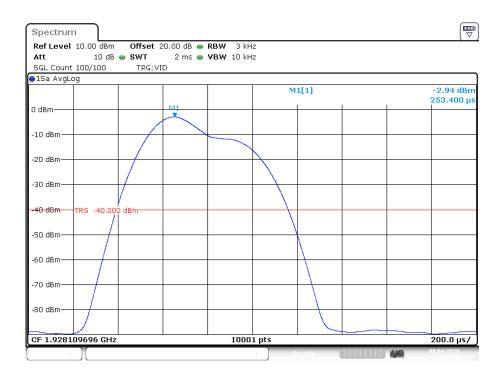
Requirement: FCC 15.319(d)

The Power Spectral Density shall be less than 3 mW/3kHz (4.77 dBm) when averaged over at least 100 sweeps.

Power Spectral Density, GMSK

Lower Channel:

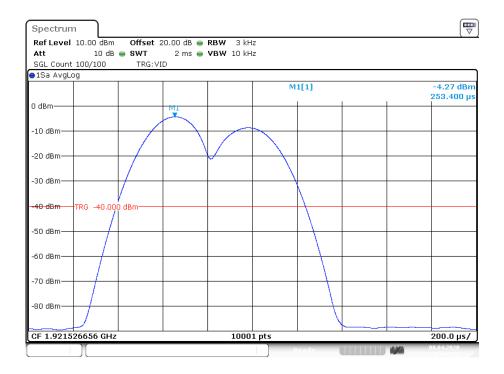
Frequency of the maximum level was recorded under chapter 5.9.


Spectrun	n								
Ref Level	10.00 dBm	Offset 2	20.00 dB 👄	RBW 3 kH	z				
Att		e swt	2 ms 😑	VBW 10 kH	z				
SGL Count		TRG: VI	D						
<mark>⊜</mark> 1Sa AvgL	og								
					м	1[1]			-2.99 dBm 253.400 µs
0 dBm			M1					<u> </u>	
-10 dBm—								+	
-20 dBm		-/							
-30 dBm—		/							
-40 dBm	-TRG -40.00	0 dBm							
-50 dBm	/								
-60 dBm						\backslash			
-70 dBm									
-80 dBm—									
CF 1.9211	.96416 GHz	I	I	1000	1 pts		·		200.0 µs/
)[R	te ad y		4/4	08.04.2020

Pulse power [dBm]	-2.99
Pulse power [mW]	0.50

Upper Channel:

Frequency of the maximum level was recorded under chapter 5.9.


Pulse power [dBm]	-2.94
Pulse power [mW]	0.51

Power Spectral Density, DBSK

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.



Pulse power [dBm]	-4.27
Pulse power [mW]	0.37

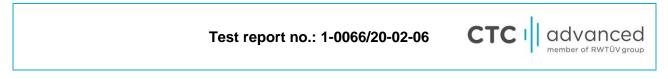
Upper Channel:

Frequency of the maximum level was recorded under chapter 5.9.

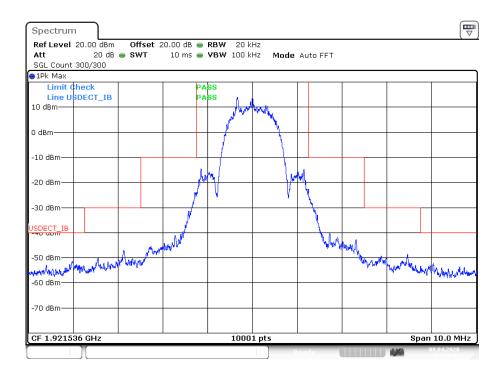
Pulse power [dBm]	-4.69
Pulse power [mW]	0.34

7.10 In-Band Unwanted Emissions, Conducted

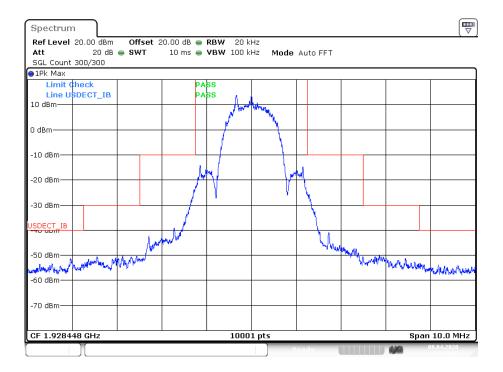
Measurement Procedure:


ANSI C63.17, clause 6.1.6.1.

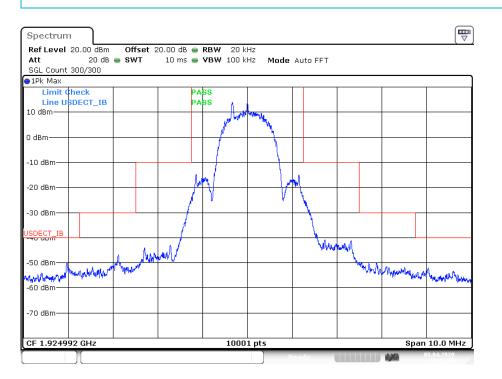
Test Results: Pass


Measurement Data: See plots.

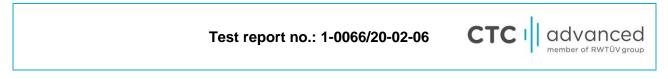
Requirement: FCC 15.323(d)


B < f2 ≤2B:	less than or equal to 30 dB below max. permitted peak power level
2B < f2 ≤3B:	less than or equal to 50 dB below max. permitted peak power level
3B < f2 ≤UPCS Band Edge:	less than or equal to 60 dB below max. permitted peak power level

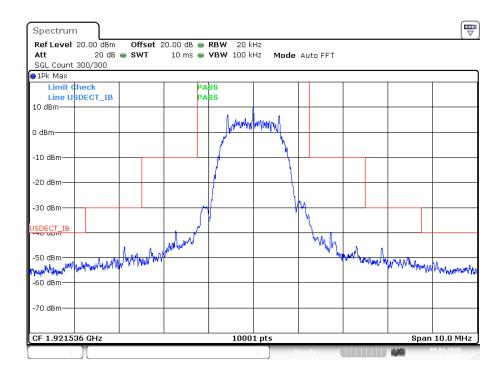
In-Band Unwanted Emissions, Conducted, GMSK

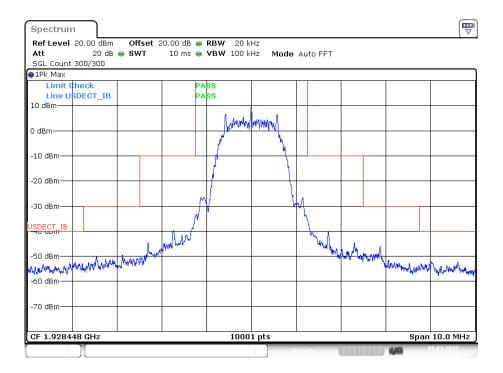


Lower Channel



Upper Channel




Middle Channel

In-Band Unwanted Emissions, Conducted, DBSK

Lower Channel

Upper Channel

Ref Level 20.00 dBm Offset 20.00 dB RBW 20 kHz Att 20 dB SWT 10 ms VBW 100 kHz Mode Auto FFT SGL Count 300/300 PASS Image: Second Seco	Spectrum							
Limit Check Line USDECT_IB PASS 10 dBm 0 0 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -50 dBm 0 -70 dBm 0 -70 dBm 0	Att 20 dB				Auto FFT			•
Line USDECT_IB PASS Image: Constraint of the second secon	∎1Pk Max							
0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -10 d	Line USDECT_IB							
-10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm			Wandah	minimul				
-20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm								
-30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm			1					
ISDECT_IB Image: Constraint of the second seco								
-50 dBm	SDECT_IB		Λ	Y	Ч.			
-70 dBm	50 d8m	humalin	1		No and	well		
-70 dBm	Mun hampundan Man Mark	Advances of the second s				an and a	an who who was	hundryahan
	-70 dBm							
CF 1.924992 GHz 10001 pts Span 10.0 MHz	CF 1.924992 GHz	<u> </u>	1000	1 pts			Span	10.0 MHz

Middle Channel

The BS spurious in-band transmission level is below the indicated limit.

7.11 Out-of-Band Emissions, Conducted

Measurement Procedure:

ANSI C63.17, clause 6.1.6.2.

Test Results: Pass

Measurement Data: See plots.

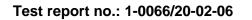
Requirement: FCC 15.323(d)

$f \leq 1.25$ MHz outside UPCS band:	≤ -9.5 dBm
1.25 MHz \leq f \leq 2.5 MHz outside UPCS band:	≤ -29.5 dBm
f ≥ 2.5 MHz outside UPCS band:	≤ -39.5 dBm

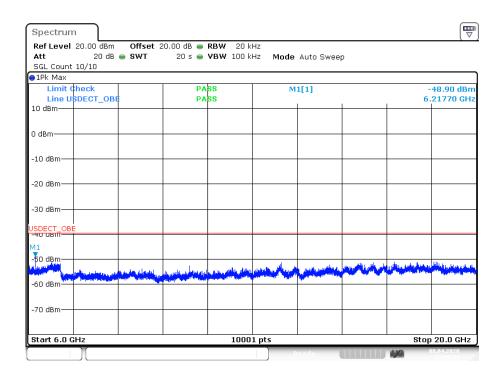
Out-of-Band Unwanted Emissions, Conducted, GMSK

Upper and Lower Channel:

Spectrum				
Ref Level 20.00 dBm Offs Att 20 dB • SW1 SGL Count 20/20	et 20.00 dB ● RBW 20 1 2 s ● VBW 100 1		φ	
●1Pk Max				
Limit Check Line USDECT_OBE 10 dBm	PASS PASS	M1[1]		-55.89 dBm 190 kHz
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
-50 dBm				
60 d8m		n a basili di kana da ku ya shi basi da pakara. A nambi na mana na mana na mana na mana na ma		An ann an Anna an Anna Anna an Anna an
-70 dBm				
Start 100.0 kHz	1000)1 pts		Stop 1.9 GHz
		Ready	4.44	08.04.2020


Spectrum								
Ref Level 20.00 dBm Att 20 dB (20.00 dB 👄 150 ms 👄	RBW 20 k VBW 100 k		Auto Swee	0		(
SGL Count 200/200								
1Pk Max								
Limit Check		PA		M	1[1]			-40.73 dBm
Line USDECT_OBE		PA	SS				1.91	981900 GH:
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
								м
JSDECT_OBE								
-50 dBm								
						n dialah a		Add No
definition of the second of the second states of th		diales den al papare de		ond at the difference	المحادثة فتعرياه			in the t
and the second se	A CREATE AND A CARD		and months and states	a of all an other stars.	Design of the second second			
-70 dBm								
Start 1.9 GHz			1000	1 pts			Sto	p 1.92 GHz
							510	

Out-of-Band Unwanted Emissions, Conducted, GMSK


		kHz		
Att 20 dB SWT 1 SGL Count 200/200	.50 ms 👄 VBW 100	KHZ Mode Auto Swe	зер	
1Pk Max				
Limit Check	PASS	M1[1]		-42.18 dB
Line USDECT_OBE	PASS		1	1.93017500 GF
10 dBm				
D dBm				
SDECT OBE				
20 dBm				
30 dBm				
40 dBm				
hidem-				
No Institute of the				
and the second state of the second state of the second state of the	يعارفون الدرور العامل الأسمالان ورعاقل		ومروقا والعامين ويستاد العواقا والتقرير	here we have been a loss of the second
on the state of th	interesting of the state of the strengthese states and the states of the	al de la contraction	Second brief brief the second	parantipa sector financia para
70 40				
-70 dBm				

Spectrum				
Ref Level 20.00 dBm Att 20 dB •				
SGL Count 10/10	5WI 105 -	VBW IOU KHZ MOOG	Auto Sweep	
●1Pk Max				
Limit Check	PA	SS N	11[1]	-52.01 dBn
Line USDECT_OBE	PA	38	1 1	5.917590 GH
10 dBm				
0 dBm				
10 40				
-10 dBm				
-20 dBm				
-20 UBIII				
-30 dBm				
-30 ubiii				
-50 dBm				M1
		a second and the statement of the		a also with the group shak stands at a
المراجع المراجع في المرجع بعام المحمد المراجع المرجع المرجع المرجع المرجع المرجع المرجع المرجع المرجع المرجع ا المرجع المرجع	the data of the start is fire to the source in the data of the set	here in the second s	a development of the later of the second section.	a daa aanaa dadhada gaala ay ahada ahada da bi
-70 dBm				
		10001		
Start 1.95 GHz		10001 pts		Stop 6.0 GHz

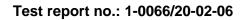
Out-of-Band Unwanted Emissions, Conducted, GMSK

The BS spurious out-of-band transmission level is below the indicated limit.

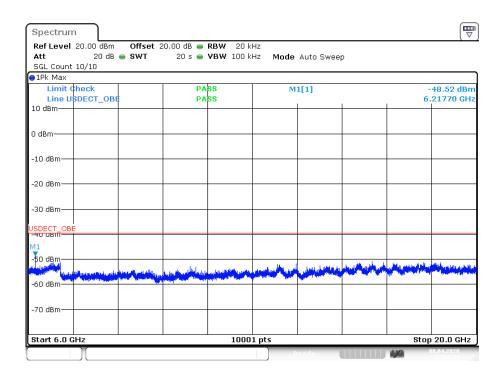
Out-of-Band Unwanted Emissions, Conducted, DBSK

Upper and Lower Channel:

Spectrum			
Ref Level 20.00 dBm Offse Att 20 dB SWT SGL Count 20/20	nt 20.00 dB ● RBW 20 l 2 s ● VBW 100 l		p
●1Pk Max			
Limit Check Line USDECT_OBE	PASS PASS	M1[1]	-55.66 dBn 15.200 MH
10 dBm			
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm			
-50 dBm			
60 dBm - the star and the start			
-70 dBm	ang belan ang atara ng kanang kan Ing pang kanang kana	an da an	and a first of the standard st
Start 100.0 kHz	1000)1 pts	Stop 1.9 GHz
		Ready	08.04.2020


Spectrum				
	set 20.00 dB 👄 RBW 20			
Att 20 dB 👄 SW	'T 150 ms 👄 VBW 100	kHz Mode Auto Swee	ер	
SGL Count 200/200 1Pk Max				
Limit Check	PASS			
Line USDECT_OBE	PASS	M1[1]		-39.14 dBm L.91981500 GHz
10 dBm	r noo		+	1.91901000 012
) dBm				
-10 dBm				
20 dBm				
-20 ubiii				
00 JD				
-30 dBm				
SDECT_OBE				M
40 UBITI				
				1.1.1
50 dBm				1
والمحاولة المحاليين المقارمة المقاط فالقرور	والمرود بالعراق والمعالية المعادلة المادعات	an and a fell and and for a first of the state of the sta	النا بالمراجلين الفياغان اخان	and the second second
and the second second second second second	an a	a special construction of the strength fields	A Paral manufacture of the state of the second s	
-70 dBm				
Start 1.9 GHz	100	D1 pts		Stop 1.92 GHz
		Doady	4.964	08.04.2020

Out-of-Band Unwanted Emissions, Conducted, DBSK


Att 20 dB 👄 SWT SGL Count 200/200		kHz Mode Auto Swee	·P	
1Pk Max				
Limit Check Line USDECT_OBE	PASS PASS	M1[1]	-41 1.93017	39 dB
D dBm	PASS		1.93017	300 G
dBm				
DECT OBE				
20 dBm				
30 dBm				
i0 dBm				
didBm				
The second s	aka			سالاسالان
50 dBm	la se provinsi na se prime da se participation de servir. El la servir de la s		al provide the second statement of provide the second statement of the second statement of the second statement Second statement of the second statement of the statement of the second statement of the second statement of the	er Gogelfalle

Spectrum Ref Level 20.00 dBm Offset	20.00 dB 👄 RBW 20 l	kHz		[7
	10 s 😑 VBW 100	kHz Mode Auto Swee	эр	
SGL Count 10/10				
1Pk Max		1		
Limit Check	PASS	M1[1]		-51.94 dBı
Line USDECT_OBE	PASS		1 1	5.745080 GH
) dBm				
-10 dBm				
-20 dBm				
-30 dBm				
SDECT ORE				
SDECT_OBE				
-50 dBm				M1
technic sector with the mark party based in the sector sectors in whether	والمالية ومقامله ومرجعا وراجا الاربية والا	والمرجع المراجع والمراجع والمراجع والمراجع		Maine for months in Maine as
		A free of the Addition of the Addition of the	a salah a ta a ta a	
-70 dBm				
Start 1.95 GHz	1000)1 pts		Stop 6.0 GHz

Out-of-Band Unwanted Emissions, Conducted, DBSK

The BS spurious out-of-band transmission level is below the indicated limit.

7.12 Carrier Frequency Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.1.

Requirement: FCC 15.323(f)

Test Results: Pass

Measurement Data:

The Frequency Stability is measured with the CMD65. The CMD65 was logged by a computer programmed to get the new readings as fast as possible (about 3 readings per second) over the noted time period or number of readings. The peak-to-peak difference was recorded and the mean value and deviation in ppm was calculated.

The Carrier Frequency Stability over power Supply Voltage and over Temperature is measured also with the CMD65.

Carrier Frequency Stability over Time at Nominal Temperature

Average Mean Carrier	Max. Diff.	Min. Diff.	Max Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	(ppm)
1924.987760	12.10	-21.34	8.882	±10

Deviation ppm = $((Max.Diff. - Mean.Diff.) / Mean Carrier Freq.) x 10^6$ Deviation (ppm) is calculated from 3000 readings with the CMD65.

Carrier Frequency Stability over Power Supply at Nominal Temperature

Voltage	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
3.80 V DC	1924.990	Ref.	Ref.	
4.35 V DC	1924.990	0.0	0.0	±10
3.40 V DC	1924.990	0.0	0.0	

Deviation ppm = ((Mean – Measured frequency) / Mean) x 10⁶

Carrier Frequency Stability over Temperature

Temperature	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
T = +20°C	1924.990	Ref.	Ref.	
T = -20°C	1924.990	0.0	0.0	±10
T = +50°C	1924.990	0.0	0.0	

Deviation ppm = ((Mean – Measured frequency) / Mean) $x 10^{6}$

7.13 Frame Repetition Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.2.

Test Results: Pass

Measurement Data:

The Frame Repetition Stability is measured with the CMD65. The Frame Repetition Stability is 3 times the standard deviation.

Carrier Frequency	Mean	Standard Deviation	Frame Repetition				
(MHz)	(Hz)	(ppm)	Stability (ppm)				
1924.992	99.9999999976	0.043	0.128				

Limit:

Frame Repetition Stability	±10 ppm (TDMA)
----------------------------	----------------

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.2.

7.14 Frame Period and Jitter

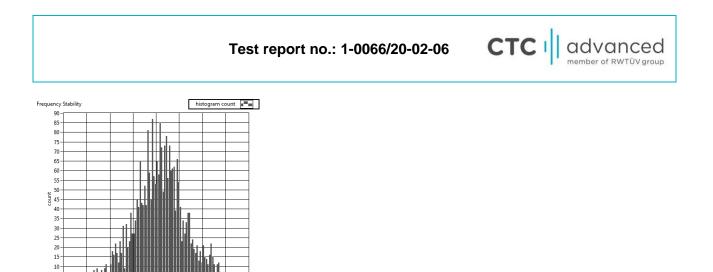
Measurement Procedure:

ANSI C63.17, clause 6.2.3.

Test Results: Pass

Measurement Data:

The Frame Repetition Stability is measured with the CMD65

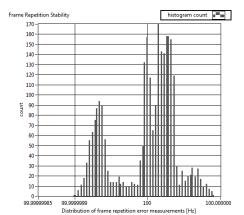

Carrier Frequency	Frame Period	Max Jitter	3xStandard Deviation of
(MHz)	(ms)	(µs)	Jitter (μs)
1924.992	10.000	0.002	0.002

Max Jitter = (1/(Frame Period + Pk-Pk)/2) - (1/Frame Period), when Pk-Pk and Frame Period are in Hz. 3xSt.Dev.Jitter $3x(1/(Frame Period + St.Dev)) - (1/St.Dev)) \times 10^6$

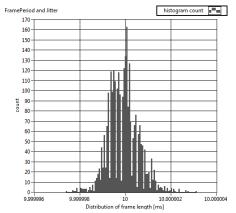
Limit:

Frame Period	20 or 10 ms				
Max Jitter	25 µs				
3 times St.Dev. of Jitter	12.5 µs				

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.3.



-15000 -10000 -5000 0 5000 Distribution of mean carrier frequency [Hz] Histogram of Carrier Frequency Stability


15000 10000

5

-2000

Histogram of Frame Repetition Stability

Histogram of Frame Period and Jitter

7.15 Monitoring Threshold, Least Interfered Channel

Measurement Procedure:

ANSI C63.17, clause 7.3.2

Monitoring Threshold limits:

Lower Threshold:

 $T_L = 15 \log B - 184 + 30 - P_{EUT}$ (dBm)

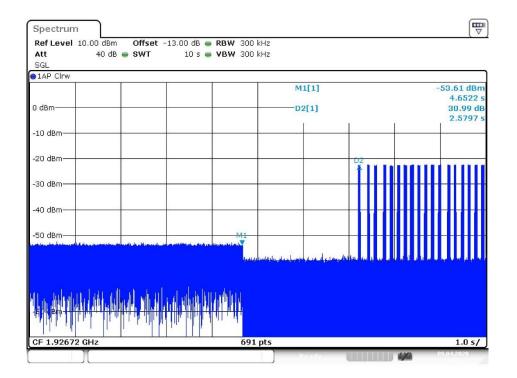
B is measured Emission Bandwidth in Hz P_{EUT} is measured Transmitter Power in dBm

Calculated value:

Lower Threshold	-79.3 dBm
	10.0 0.0111

Least Interfered Channel (LIC) Procedure Test, FCC 15.323(c)(2) and (c)(5)

ANSI C63.17 clause 7.3.2 ref.	Observation	Verdict
b) $f_1 T_L + 13 \text{ dB}, f_2 T_L + 6 \text{ dB}$	Transmission always on f_2	Pass
c) $f_1 T_L + 6 dB$, $f_2 T_L + 13 dB$	Transmission always on f_1	Pass
d) $f_1 T_L + 7 dB$, $f_2 T_L$	Transmission always on f2	Pass
e) f_1 T _L , f_2 at T _L + 7 dB	Transmission always on f ₁	Pass


Measurement Procedure:

ANSI C63.17, clause 7.3.3

Selected Channel Confirmation, FCC 15.323(c)(1) and (5)

ANSI C63.17 clause 7.3.3	Observation	Verdict		
b) Shall not transmit on f_1	EUT transmits on f_2	Pass		
d) Shall not transmit on f ₂	EUT transmits on f_1	Pass		

Comment: This test is only applicable for EUTs that can be an initiating device.

7.3.3 Selected Channel Confirmation, connection 2.6 s after interferer removed

7.16 Threshold Monitoring Bandwidth

This test is only required if a dedicated monitoring receiver is used. If the test is not carried out the manufacturer shall declare and provide evidence that the monitoring is made through the radio receiver used for communication.

Measurement Procedure:

Simple Compliance Test, ANSI C63.17, clause 7.4.1

More Detailed Test, ANSI C63.17, clause 7.4.2

The test is passed if **either** the Simple Compliance Test or the More Detailed Test is passed.

During this test the spectrum analyzer is observed visually to see if the EUT transmits or not.

Test Results:

Test performed	Observation	Verdict
Simple Compliance Test, at ±30% of B	N/A	N/A
More Detailed Test, at -6 dB points	N/A	N/A
More Detailed Test, at -12 dB points	N/A	N/A

The More Detailed Test must be pass at both the -6dB and -12 dB points if the Simple Compliance Test fails.

Comment: The tested EUT uses the same receiver for monitoring and communication, this test is therefore not required.

Limits: FCC 15.323(c)(7):

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission.

7.17 Reaction Time and Monitoring Interval

Measurement Procedure:

ANSI C63.17, clause 7.5

Test Results:

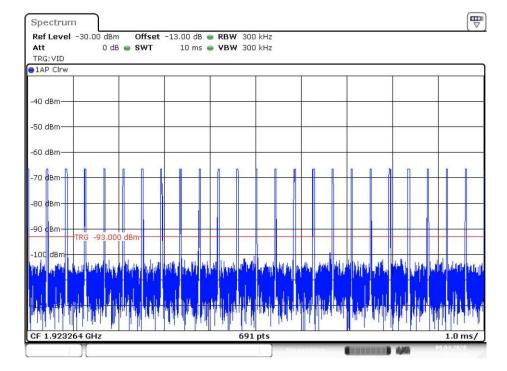
By administrative commands and out-of-operating region interference, the EUT is restricted to operate on carrier frequencies f_1 and f_2 .

Time-synchronized pulsed interference was then applied on f_1 at pulsed levels TL + UM to check that the EUT does not transmit. The level was raised 6 dB for part d) with 35 µs pulses. Additionally a CW signal was applied on f_2 with a level of TL.

The pulses are synchronized with the EUT timeslots and applied cantered within all timeslots.

Pulse Width, ref. to ANSI C63.17 clause 7.5	Observation	Verdict
c) > largest of 50 μs and 50*SQRT(1.25/B)	Transmission on f2	Pass
d) > largest of 35 μs and 35*SQRT(1.25/B) and with interference level raised 6 dB	Transmission on f ₂	Pass

Comment: Since B is larger than 1.25 MHz, the test was performed with pulse lengths of 50 µs and 35 µs.


Limits: FCC 15.323(c)(1), (5) and (7)

The maximum reaction time must be less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds.

If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

Comment: This test is only applicable for EUTs that can be an initiating device.

35 µs Pulses

50 µs Pulses

Spectrun	n																				₽
Ref Level	-30.00	dBm	01	ffset	-13.	00 dl	B 👄	RBV	/ 300	ı kHz											
Att		0 dB	👄 S1	NT		10 m	s 👄	VBV	i 300	l kHz											
TRG: VID																					
●1AP Clrw																					
-40 dBm							_														
-50 dBm		_			_		_							_			_		-		
-60 dBm		-					-					2									
-70 dBm—							+					-									
-80 cBm																					
-90 cBm	TRG -93	3.000	dBm+	-																	
-100 dBm-	Ĩ																				
	Alun	W	Wh*	44	P MP	hall	4		put	hyl	1	14	APA	ųr,			11	lun I	II.	white	d,
	. h. H.	1.04	1.1		ılıı				116	_ ار	1	di il		1 1			11	che je		1.1	4
In the second se				¶'	1.11.		Į.		thul ,	ľ											
CF 1.9232	64 GHz					- 97 - 95 r			691	pts		20 	1		Ciel.		200		- 655	1.0 r	ns/
	Т										Me	1.511	ing	1		HINS	440	1	09.	14.202	•

Test report no.: 1-0066/20-02-06

7.18 Time and Spectrum Window Access Procedure

This requirement is only for EUTs which transmit unacknowledged control and signaling information

Measurement Procedure:

Timing for EUTs using control and signaling channel type transmissions: ANSI C63.17, clause 8.1

Test results:

Access Criteria, ref. to ANSI C63.17 clause 8.1.1	Observation	Verdict
b) Check that the EUT transmits on the interference free time slot	N/A	N/A
b) The EUT must terminate or pause in its repetitive transmission of the control and signaling channel on the open channel to repeat the access criteria not less frequently than every 30 s	N/A	N/A

If FCC 15.323(c)(6) option Random Waiting Interval is NOT implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.2	Observation	Verdict
b) Check that the EUT changes to interference free time slot when interference is introduced on the time slot in use	N/A	N/A

If FCC 15.323(c)(6) option Random Waiting Interval is implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.3	Observation	Verdict
b-d) Check that the EUT uses random waiting interval before continuing transmission on an interfered time slot	N/A	N/A

Comment: The tested EUT does not support the Random Waiting Interval option.

Limits:

FCC 15.323(c)(4):

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

FCC 15.323(c)(6):

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

7.19 Acknowledgments and Transmission duration

Measurement Procedure:

Acknowledgments: ANSI C63.17, clause 8.2.1

Transmission Duration: ANSI C63.17, clause 8.2.2

During the test **Initial transmission without acknowledgments** the signal from the EUT to the companion device is blocked by circulators in addition to the tunable attenuator.

The test **Transmission time after loss of acknowledgments** is performed by cutting-off the signal from the companion device by a RF switch the time until the EUT stops transmitting.

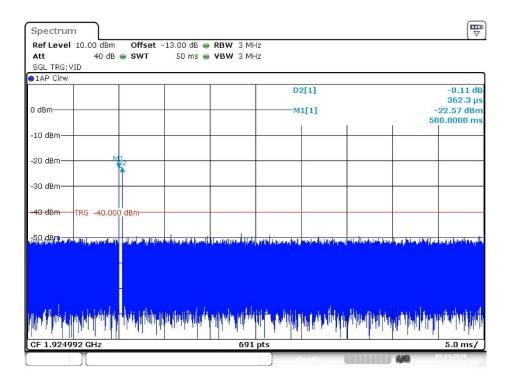
The **Transmission Duration** test is performed by monitoring the slot in use and measuring the time until the EUT changes to a different slot.

Test Results:

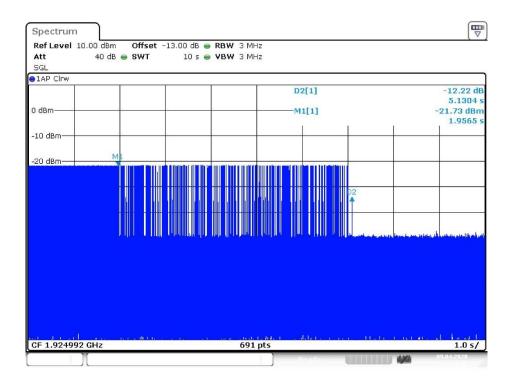
Acknowledgments

Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
a) Initial transmission without acknowledgments	0.4 ms	Pass
c) Transmission time after loss of acknowledgments	5.1 s	Pass

Transmission Duration


Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict
 b) Transmission duration on same time and frequency window 	1 s	Pass

Comment: /


Limits: FCC 15.323(c)(3) and (4)

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria. Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which the time access criteria must be repeated.

8.2.1a) Initial Transmission Time without Acknowledgments

8.2.1c) Transmission Time after Loss of Acknowledgments

7.20 Dual Access Criteria Check

Measurement Procedure:

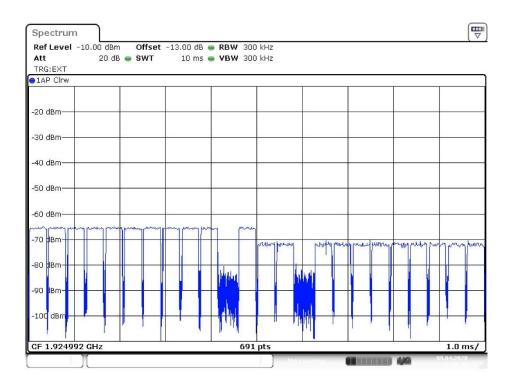
EUTs that do not implement the Upper Threshold: ANSI C62.17, clause 8.3.1 EUTs that implement the Upper Threshold: ANSI C62.17, clause 8.3.2 This test is required for equipment that uses the access criteria in FCC 15.323(c)(10).

Test Results:

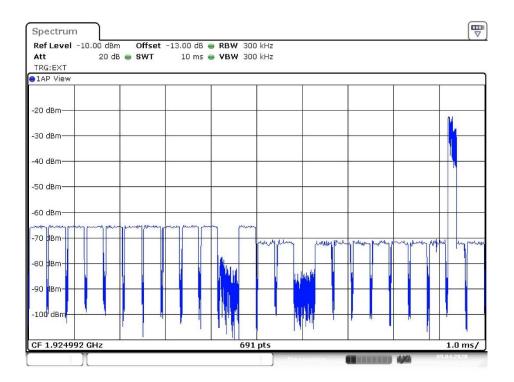
EUTs that do NOT implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.1	Observation	Verdict
 b) EUT is restricted to a single carrier f₁ for TDMA systems. The test is pass if the EUT can set up a communication link. 	N/A	N/A
c) d) No transmission on interference-free receive time/spectrum window. All transmit slots blocked	N/A	N/A
e) f) No transmission on interference-free transmit time/spectrum window. All transmit slots blocked	N/A	N/A

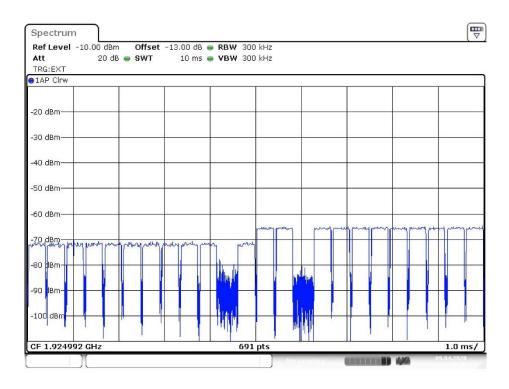
EUTs that implement the LIC algorithm:


Test ref. to ANSI C63.17 clause 8.3.2	Observation	Verdict
 b) EUT is restricted to a single carrier f₁ for TDMA systems. The test is pass if the EUT can set up a communication link. 	N/A	N/A
c) d) Transmission on interference-free receive time/spectrum window.	Transmission on interference-free receive time window	Pass
e) f) Transmission on interference-free transmit time/spectrum window.	Transmission on interference-free transmit time window	Pass

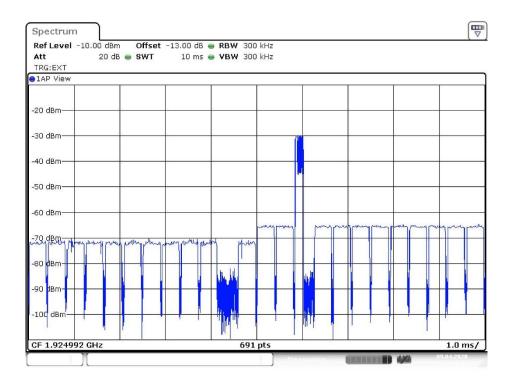
Comment: This test is only applicable for EUTs that can be an initiating device of a duplex connection.


Limits: FCC 15.323(c)(10)

An initiating device may attempt to establish a duplex connection by monitoring both, its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. if the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.



8.3.2 c) Transmission on interference-free receive time window



8.3.2 d) Transmission on interference-free receive time window

8.3.2 e) Transmission on interference-free transmit time window

8.3.2 f) Transmission on interference-free transmit time window

7.21 Alternative monitoring interval

Test procedure described in ANSI C63.17, clause 8.4.

This test is required if the EUT implements the provision of FCC 15.323(c)(11).

Test Result:

Not tested. The tested EUT does not implement this provision. See manufacturer's declaration.

7.22 Spurious Emissions (Radiated)

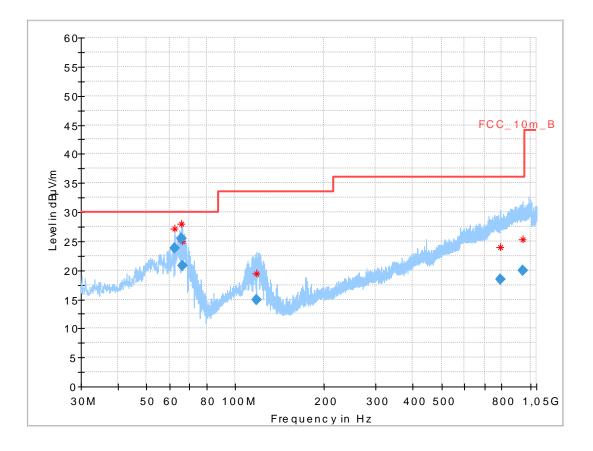
Measurement Procedure:

FCC 15.209, FCC 15.109

Test Result: Pass

Measurement Data: See plots.

Requirement: FCC 15.109(b)

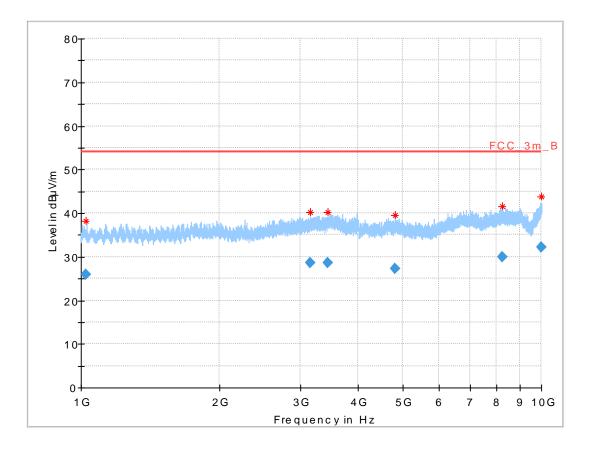

30 –	88 MHz:	90 μV/m
88 –	216 MHz:	150 µV/m
216 –	960 MHz:	210 µV/m
960 –	1000 MHz:	300 µV/m

Common Information

EUT: Serial number: Test description: Operating condition: Operator name: Comment: headset only

FCC part 15 class B @ 10 m charging Wolsdorfer AC 115V/60Hz

Final_Result


Frequency (MHz)	QuasiPe ak (dBµV/m	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimut h (deg)	Corr. (dB/m)
62.222	23.88	30.0	6.1	1000	120.0	244.0	V	160	12
65.648	25.46	30.0	4.5	1000	120.0	330.0	V	102	11
66.023	20.78	30.0	9.2	1000	120.0	255.0	V	211	11
118.017	14.88	33.5	18.6	1000	120.0	103.0	V	285	11
793.991	18.39	36.0	17.6	1000	120.0	355.0	Н	0	22
940.762	20.02	36.0	16.0	1000	120.0	381.0	V	308	24

Common Information

headset only

FCC part 15 class B charging Wolsdorfer AC 115V/60Hz

Final_Result

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/ m)
1026.101	26.03	, 54.0	28.0	1000	1000.0	100.0	н	0	-4
3151.697	28.70	54.0	25.3	1000	1000.0	100.0	н	227	0
3428.645	28.69	54.0	25.3	1000	1000.0	100.0	Η	277	0
4805.229	27.30	54.0	26.7	1000	1000.0	100.0	Н	243	1
8221.508	29.84	54.0	24.2	1000	1000.0	100.0	Н	277	7
9996.667	32.18	54.0	21.8	1000	1000.0	100.0	۷	272	9

The radiated spurious emission of the unintentional radiator is below the indicated limit.

7.23 Receiver Spurious Emissions

Measurement Procedure:

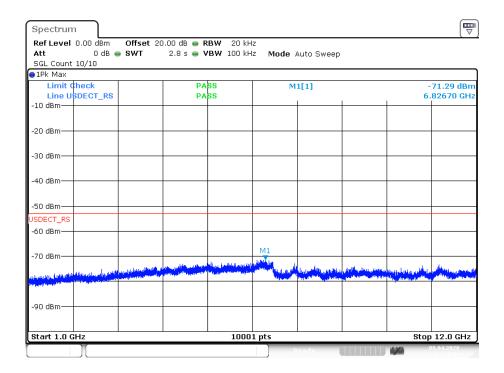
Industry Canada RSS-213 paragraph 6.8 and RSS-GEN paragraphs 4.8 and 6.

Test results:

Frequency MHz	Carrier No.	Measured Value Conducted dBm	Conducted Limit dBm	Margin dB
30 - 1000	all	-73.0	-57	16.0
> 1000	all	-70.5	-53	17.5

Requirements: RSS-GEN Issue 2, clause 6

The measurement can be performed either radiated or conducted.


When measured conducted: No spurious signals appearing at the antenna terminals shall exceed 2 nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nW above 1 GHz.

When measured radiated: See table 1 in RSS-GEN Issue2, clause 6.

Ref Level 0.00 dBm Offset	20.00 dB 😑 RBW 20 k	Hz		(\Box
Att OdB SWT	250 ms 👄 VBW 100 k		0	
SGL Count 25/25				
1Pk Max				
Limit Check	PASS	M1[1]		-72.98 dBm
Line USDECT_RS	PASS		1 1	150.0 kHz
10 dBm				
20 dBm				
30 dBm				
40 dBm				
50 dBm				
SDECT_RS				
60 dBm				
70 dBm				
Q. SBM to part of a statistic transmission	aller an handle	and mere the series of the	ب ماريم و د د مروانا والاراد و	وماراه والمردولة والعرار المراجع المروحين
el far fin en fine en fine en fine de la compara par partes de la compara en transferencia de la compara en tra En fine de la compara de la	agent wergene der anseten gehören die eine eine sterkende der eine der eine die eine die der eine die die die Andere eine die die die die die die die die die di	والمالية فاستحداقه فوريا بماركون بالمناعدية	and a structure of the state of	Contraction and the programmer
90 dBm				
Start 100.0 kHz	100	D1 pts	· · · · ·	Stop 1.0 GHz

Receiver Spurious Emissions, Conducted, 100 kHz – 1 GHz

Receiver Spurious Emissions, Conducted, 1 GHz – 12 GHz

RefLevel 0.00 dBm Offset 20.00 dB ● RBW 20 kHz Att 0 dB ● SWT 2 s ● YBW 100 kHz Mode Auto Sween						
Att 0 dB SWT 2 s VBW 100 kHz Mode Auto Sweep SGL Count 10/10						
1Pk Max						
Limit Check	PASS	M1[1]		-70.53 dBm		
Line USDECT_RS	PASS		1 1	16.287970 GH		
-10 dBm						
-20 dBm						
-30 dBm						
40 dBm						
SDECT_RS						
-60 dBm			_			
70 dBm		M1				
والمقادلين والمستحج والمستحد والمستحد والمستحد والمستح والمعاد والمعا	المربال أوجاه أأتنا مبدر ومطويع وراد		and a different contract of the state of the	وكالمارية ومنهوية المتعاد		
80 dBm	han a shall will be a shall will be a shall	and a state		address of the data set of		
90 dBm						

Receiver Spurious Emissions, Conducted, 12 GHz – 20 GHz

8 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

No.	Equipment	Manufacturer	Туре	Serial No.		Kind of Calib.	Last Calib.	Next Calib.
	Conducted							
L-1	Spectrum Analyzer	R&S	FSV30	100763	300003950	k	12/2019	12/2020
L-2	Signal Generator	R&S	SMBV100A	257858	300004529	vlkl!	12/2017	12/2020
L-3	Signaling Unit	R&S	CMD 65	825486	300003611	vlkl!	03/2019	03/2021
L-4	Power Meter	R&S	NRP	100212	300003780	vlkl!	12/2018	12/2020
L-5	Power Sensor	R&S	NRP-Z22	100031	400000188	vlkl!	12/2019	12/2021

No.	Equipment	Manufacturer	Туре	Serial No.		Kind of Calib.	Last Calib.	Next Calib.
	Power Line Conducted Emission							
G-1	EMI Receiver	R&S	ESCI 3	100083	3000003312	k	12/2019	12/2020
G-2	VISN	R&S	ESH 3-Z5	893045/004	300000584	vlkl!	12/2018	12/2020

No.	Equipment	Manufacturer	Туре	Serial No.	Inv. No.	Kind of Calib.	Last Calib.	Next Calib.
	Radiated Emission	L		. <u></u>	•	. <u></u>	<u>. </u>	
F-1	EMI Receiver	R&S	ESR3	102587	300005771	k	12/2019	12/2020
F-2	Spectrum Analyzer	R&S	FSU26	200809	300003874	k	12/2019	12/2020
F-3	Trilog Antenna	Schwarzbeck	VULB9163	371	300003854	vlkl!	11/2017	11/2020
F-4	Horn antenna	Schwarzbeck	BBHA9120B	188	300003896	vlkl!	04/2018	04/2020

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkI! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

9 Observations

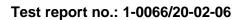
No observations exceeding those reported with the single test cases have been made.

Annex A: Photographs of the Test Set-up

See additional PDF document Annex A-C.

Annex B: External Photographs of the EUT

See additional PDF document Annex A-C.


Annex C: Internal Photographs of the EUT

See additional PDF document Annex A-C.

Annex D: Document History

Version	Applied Changes	Date of Release

Annex E: Further Information

<u>Glossary</u>

DUT	-	Device under Test
EMC	-	Electromagnetic Compatibility
EUT	-	Equipment under Test
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	not applicable
S/N	-	Serial Number
SW	-	Software

Annex F: Accreditation Certificate

first page	last page
Every	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of ac creditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 11.01.2019 Frankfurt am Main, 11.01.2019	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkKS). Exampted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkKStelleG) of 31 July 2009 (Federal Law Gazette I). 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation at market surveillance relating to the marketing of products (Official Journal of the European Union L 218 of July 2008, 30). DAKKS is a signatory to the Multilateral Agreements for Mutual Recognition of the European Co-operation for Accreditation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.iaf.nu

first page last page DAkks Deuts Deutsche Akkreditierungsstelle GmbH Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The publication of extracts of the accreditation certificate is subject to the prior written appr Deutsche Akkreditterungsstelle GmHH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment bady mentioned overleaf. l by No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS. The accreditation was granted pussuant to the Acr on the Accreditation Body (AkiStolleG) of 31 July 2009 (Federal Law Gazette I p. 2625) and the Regulation [EC] No 765/2008 of the European Parliament and of the Council of 5 July 2003 setting our the requirements for accreditation and market surveillance relating to the marketing of ordiacts ((Theia Journal of the European Liona) L28 do July 2008, p. 30). DAAS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (GA). International Accreditation Forum (Mark) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each uther's accreditations. The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.lac.org ILAC: www.lac.org Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 11.01.2019 See rules overleaf.

Note:

The current certificate including annex can be received on request.